JP2008021658A - Anisotropic conductive film and its manufacturing method - Google Patents

Anisotropic conductive film and its manufacturing method Download PDF

Info

Publication number
JP2008021658A
JP2008021658A JP2007243305A JP2007243305A JP2008021658A JP 2008021658 A JP2008021658 A JP 2008021658A JP 2007243305 A JP2007243305 A JP 2007243305A JP 2007243305 A JP2007243305 A JP 2007243305A JP 2008021658 A JP2008021658 A JP 2008021658A
Authority
JP
Japan
Prior art keywords
film
porous
conductive
hole
conductive metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007243305A
Other languages
Japanese (ja)
Other versions
JP4428431B2 (en
Inventor
Takeshi Haga
剛 羽賀
Yasuhito Masuda
泰人 増田
Fumihiro Hayashi
文弘 林
Yasuhiro Okuda
泰弘 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007243305A priority Critical patent/JP4428431B2/en
Publication of JP2008021658A publication Critical patent/JP2008021658A/en
Application granted granted Critical
Publication of JP4428431B2 publication Critical patent/JP4428431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide anisotropic conductive film which has elasticity in the film thickness direction, in which conduction in the film thickness direction with a low compressive load is possible, furthermore in which elasticity recovery is possible, and which is suitable for frequent uses. <P>SOLUTION: This anisotropic conductive film is characterized in that an electrically insulating porous film formed of a synthetic resin is used as a base film; conductive parts formed of a conductive metal adhering to the resin part of a porous structure on wall surfaces of through holes penetrating from a first surface to a second surface and formed by a process of forming the through holes in the film thickness direction of the porous film, and capable of giving conductivity only in the film thickness direction are respectively arranged independently in a plurality of parts of the base film; and the respective conductive parts are formed of the conductive metal adhering to the resin part of the porous structure on the wall surfaces of the respective through holes with the porous structure of the porous film held thereto. Its manufacturing method is also provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、異方性導電膜とその製造方法に関し、さらに詳しくは、半導体デバイスのバーンイン試験などに好適に使用することができる異方性導電膜とその製造方法に関する。   The present invention relates to an anisotropic conductive film and a method for manufacturing the same, and more particularly to an anisotropic conductive film that can be suitably used for a burn-in test of a semiconductor device and a method for manufacturing the same.

半導体ディバイスの初期故障を取り除くスクリーニング手法の一つとして、バーンイン試験が行われている。バーンイン試験では、半導体ディバイスの動作条件よりも高温かつ高圧の加速ストレスを印加し、故障発生を加速して短時間で不良品を取り除いている。例えば、パッケージングされた半導体ディバイスをバーンインボードに多数個配置し、高温槽中にて、外部から加速ストレストなる電源電圧及び入力信号を一定時間印加する。その後、半導体ディバイスを外部に取り出して、良品と不良品との判定試験を行う。判定試験では、半導体ディバイスの欠陥によるリーク電流の増加、多層配線の欠陥による不良品、コンタクトの欠陥などを判定する。バーンイン試験は、半導体ウェハの状態でも行われている。   A burn-in test is performed as one of screening methods for removing an initial failure of a semiconductor device. In the burn-in test, accelerated stress higher than the operating conditions of the semiconductor device is applied to accelerate failure occurrence and remove defective products in a short time. For example, a large number of packaged semiconductor devices are arranged on a burn-in board, and a power source voltage and an input signal that are accelerated and stressed are applied from outside in a high-temperature bath for a certain time. Thereafter, the semiconductor device is taken out and a determination test is performed on a non-defective product and a defective product. In the determination test, an increase in leakage current due to a semiconductor device defect, a defective product due to a multilayer wiring defect, a contact defect, and the like are determined. The burn-in test is also performed on a semiconductor wafer.

例えば、半導体ウェハのバーンイン試験を行う場合、半導体ウェハ表面のアルミニウムなどからなる電極パッドを介して試験を行う。その際、半導体ウェハの電極パッドと測定装置のヘッド電極との間の電極高さのバラツキによる接触不良を補うため、通常、これらの電極間に、膜厚方向のみに導電性を有するコンタクトシートを挟んで試験を行う。このコンタクトシートは、表面電極に対応するパターンに従って配置された導通部(「導電路」または「電極部」ともいう)において、膜厚方向のみに導電性を示すという特性により、異方性導電膜(「異方性導電シート」ともいう)と呼ばれる。   For example, when performing a burn-in test on a semiconductor wafer, the test is performed via an electrode pad made of aluminum or the like on the surface of the semiconductor wafer. At that time, in order to compensate for the contact failure due to the variation in the electrode height between the electrode pad of the semiconductor wafer and the head electrode of the measuring apparatus, a contact sheet having conductivity only in the film thickness direction is usually provided between these electrodes. Test with pinch. This contact sheet has an anisotropic conductive film due to the property of showing conductivity only in the film thickness direction in a conductive portion (also referred to as “conductive path” or “electrode portion”) arranged according to a pattern corresponding to the surface electrode. (Also called “anisotropic conductive sheet”).

従来、エレクトロニクス技術分野において、パッケージされた集積回路をプリント配線板に接続するなどの目的で、図6に示すように、平坦な多孔質可撓性材料63を非導電性の絶縁部とし、少なくとも1つの鉛直方向(Z軸方向)に画定された断面内に導電性金属を充填し、かつ、エポキシ樹脂などの接着剤を充填して固定した導通部62を形成した異方性導電部材61が知られている(例えば、特許文献1参照。)。しかし、この異方性導電部材61は、バーンイン試験用の異方性導電膜として使用すると、検査時の押圧によって導通部62が座屈して、弾性回復しないため、検査毎に使い捨てにせざるを得ない。そのため、検査にコストがかかりすぎることになる。したがって、この異方性導電部材61は、頻回の使用が求められるバーンイン試験用の異方性導電膜には適していない。   Conventionally, in the field of electronics, for the purpose of connecting a packaged integrated circuit to a printed wiring board, etc., as shown in FIG. 6, a flat porous flexible material 63 is used as a non-conductive insulating part, and at least An anisotropic conductive member 61 having a conductive portion 62 filled with a conductive metal in a cross section defined in one vertical direction (Z-axis direction) and fixed by filling with an adhesive such as an epoxy resin is provided. It is known (for example, refer to Patent Document 1). However, when this anisotropic conductive member 61 is used as an anisotropic conductive film for burn-in test, the conduction part 62 is buckled by the pressure at the time of inspection and does not recover elastically, so it must be disposable for each inspection. Absent. Therefore, the inspection is too expensive. Therefore, this anisotropic conductive member 61 is not suitable for an anisotropic conductive film for burn-in test that requires frequent use.

また、図7に示すように、エポキシ系樹脂材料など熱硬化性樹脂から形成された封止用絶縁シート74の膜厚方向に複数の貫通孔を設け、これらの貫通孔の中に、エラストマーに導電性粒子73を分散させた導電路形成用材料を充填して、導電路72を形成した構造の半導体素子実装用シート71が提案されている(例えば、特許文献2参照。)。導電性粒子としては、例えば、金属や合金の粒子、あるいはポリマー粒子の表面を導電性金属でめっきした構造のカプセル型導電性粒子などが使用されている。   Further, as shown in FIG. 7, a plurality of through holes are provided in the film thickness direction of the sealing insulating sheet 74 formed of a thermosetting resin such as an epoxy resin material, and the elastomer is formed in these through holes. A semiconductor element mounting sheet 71 having a structure in which a conductive path 72 is formed by filling a conductive path forming material in which conductive particles 73 are dispersed has been proposed (see, for example, Patent Document 2). As the conductive particles, for example, metal or alloy particles, or capsule-type conductive particles having a structure in which polymer particles are plated with a conductive metal are used.

半導体素子実装用シート71を膜厚方向に押圧すると、導電路72のエラストマーが圧縮されて導電性粒子73が連結することにより、導電路の膜厚方向のみに電気的導通が得られる。しかし、この半導体素子実装用シート71は、バーンイン試験用の異方性導電膜として使用すると、膜厚方向に導通を得るのに高圧縮荷重を必要とし、しかもエラストマーの劣化により弾性が低下するため、頻回の使用ができない。したがって、このような構造の半導体素子実装用シートは、半導体ウェハなどのバーンイン試験用の異方性導電膜としては適していない。   When the semiconductor element mounting sheet 71 is pressed in the film thickness direction, the elastomer of the conductive path 72 is compressed and the conductive particles 73 are connected, so that electrical conduction is obtained only in the film thickness direction of the conductive path. However, when this semiconductor element mounting sheet 71 is used as an anisotropic conductive film for a burn-in test, a high compressive load is required to obtain conduction in the film thickness direction, and the elasticity decreases due to deterioration of the elastomer. Can not be used frequently. Therefore, the semiconductor element mounting sheet having such a structure is not suitable as an anisotropic conductive film for a burn-in test such as a semiconductor wafer.

他方、半導体ウェハなどのバーンイン試験用インターポーザ(interposer)などとして用いられる異方性導電膜には、半導体ウェハの表面電極を測定装置のヘッド電極に接続したり、半導体ウェハからの配線を半導体パッケージの端子と接続することなどに加えて、応力緩和の作用も求められている。そのため、異方性導電膜には、膜厚方向に弾力性があり、低圧縮荷重で膜厚方向の導通が可能であること、さらには、弾性回復が可能で、頻回の使用に適していることが求められている。また、高密度実装などに伴って、検査に使用する異方性導電膜の各導通部の大きさやピッチなどのパターンをファイン化することが要求されている。しかし、従来技術では、これらの要求に充分に応えることができる異方性導電膜を開発することができなかった。   On the other hand, anisotropic conductive films used as burn-in test interposers for semiconductor wafers, etc. connect the surface electrode of the semiconductor wafer to the head electrode of the measuring device, or connect the wiring from the semiconductor wafer to the semiconductor package. In addition to connecting with terminals, there is also a demand for stress relaxation. Therefore, the anisotropic conductive film is elastic in the film thickness direction, can conduct in the film thickness direction with a low compressive load, and can be elastically recovered, making it suitable for frequent use. It is required to be. In addition, with high-density mounting and the like, it is required to refine the pattern such as the size and pitch of each conductive portion of the anisotropic conductive film used for inspection. However, in the prior art, it has not been possible to develop an anisotropic conductive film that can sufficiently meet these requirements.

特表平10−503320号公報 (第1−3頁、図4)JP 10-503320 A (page 1-3, FIG. 4) 特開平10−12673号公報 (第1−2頁、図1)Japanese Patent Laid-Open No. 10-12673 (page 1-2, FIG. 1)

本発明の目的は、主として半導体ウェハなどの検査に用いられる異方性導電膜であって、膜厚方向に弾力性があり、低圧縮荷重で膜厚方向の導通が可能で、さらには、弾性回復が可能で、頻回の使用に適している異方性導電膜を提供することにある。また、本発明の目的は、各導通部の大きさやピッチなどをファイン化することができる異方性導電膜を提供することにある。   An object of the present invention is an anisotropic conductive film mainly used for inspection of semiconductor wafers, etc., which has elasticity in the film thickness direction, can conduct in the film thickness direction with a low compressive load, and is elastic. An object of the present invention is to provide an anisotropic conductive film which can be recovered and is suitable for frequent use. Another object of the present invention is to provide an anisotropic conductive film that can refine the size, pitch, and the like of each conductive portion.

本発明者らは、前記目的を達成するために鋭意研究する過程で、合成樹脂から形成された電気絶縁性の多孔質膜が適度の弾性を有し、弾性回復が可能なため、異方導電性膜の基膜として適していることに着目した。しかし、多孔質膜の特定部位の多孔質構造内に導電性金属を充填して、導電性金属塊からなる導通部を形成する方法では、圧縮荷重時に導電性金属塊が座屈して弾性回復しないため、繰り返し使用することができない。   In the process of earnestly researching to achieve the above object, the present inventors have developed an anisotropic conductive film because an electrically insulating porous film formed from a synthetic resin has an appropriate elasticity and can be elastically restored. We paid attention to the fact that it is suitable as the base film of the conductive film. However, in the method in which a conductive metal is filled in a porous structure at a specific part of the porous membrane to form a conductive portion made of a conductive metal lump, the conductive metal lump does not buckle at the time of compressive load and does not recover elastically. Therefore, it cannot be used repeatedly.

そこで、さらに研究を続けた結果、多孔質膜の複数箇所に、膜厚方向に貫通する状態で多孔質構造の樹脂部に導電性金属を付着させる方法により、導通部を形成すると、導通部での多孔質構造を保持することができることを見出した。もちろん、導通部においては、多孔質構造の樹脂部には導電性金属が付着しているため、多孔質膜が本来有している多孔質構造を完全には保持することができないものの、ある程度の範囲で多孔質構造を保持させることができる。すなわち、本発明の異方性導電膜は、導通部が多孔質状となっている。   Therefore, as a result of further research, when a conductive part was formed by attaching a conductive metal to a resin part having a porous structure in a state penetrating in the film thickness direction at a plurality of locations in the porous film, It was found that the porous structure can be maintained. Of course, in the conductive part, since the conductive metal is attached to the resin part of the porous structure, the porous structure originally possessed by the porous film cannot be completely retained, but to some extent The porous structure can be maintained within a range. That is, in the anisotropic conductive film of the present invention, the conductive part is porous.

したがって、本発明の異方性導電膜は、基膜だけではなく、導通部も弾性と弾性回復性を有しており、頻回の使用が可能である。また、本発明の異方性導電膜は、低圧縮荷重で膜厚方向の導通が可能である。さらに、本発明の異方性導電膜は、導通部や導通部間のピッチなどをファイン化することもできる。本発明は、これらの知見に基づいて完成するに至ったものである。   Therefore, the anisotropic conductive film of the present invention has not only the base film but also the conductive part has elasticity and elastic recovery, and can be used frequently. In addition, the anisotropic conductive film of the present invention can conduct in the film thickness direction with a low compressive load. Furthermore, the anisotropic conductive film of the present invention can refine the conduction part, the pitch between the conduction parts, and the like. The present invention has been completed based on these findings.

本発明によれば、合成樹脂から形成された電気絶縁性の多孔質膜を基膜とし、該基膜の複数箇所に、第一表面から第二表面に貫通する、多孔質膜の膜厚方向に貫通孔を形成する工程により形成された貫通孔の壁面で多孔質構造の樹脂部に付着した導電性金属により形成され、膜厚方向にのみ導電性を付与することが可能な導通部がそれぞれ独立して設けられ、かつ、各導通部が、多孔質膜の多孔質構造を保持した状態で、各貫通孔の壁面における多孔質構造の樹脂部に付着した導電性金属により形成されていることを特徴とする異方性導電膜が提供される。   According to the present invention, an electrically insulating porous film formed from a synthetic resin is used as a base film, and the thickness direction of the porous film penetrates from the first surface to the second surface at a plurality of locations of the base film. The conductive portions attached to the resin portion of the porous structure on the wall surface of the through hole formed by the step of forming the through hole in the conductive portion, and the conductive portions that can impart conductivity only in the film thickness direction, respectively Provided independently, and each conducting part is formed of a conductive metal attached to the resin part of the porous structure on the wall surface of each through-hole while maintaining the porous structure of the porous film. An anisotropic conductive film is provided.

また、本発明によれば、合成樹脂から形成された電気絶縁性の多孔質膜からなる基膜の複数箇所に、多孔質膜の膜厚方向に貫通孔を形成する工程により、第一表面から第二表面に貫通する貫通孔を形成し、次いで、該貫通孔の壁面における多孔質構造の樹脂部に導電性金属を多孔質構造を保持するように付着させて、膜厚方向にのみ導電性を付与することが可能な導通部をそれぞれ独立して設けることを特徴とする異方性導電膜の製造方法が提供される。   Further, according to the present invention, from the first surface, a step of forming through holes in the film thickness direction of the porous film in a plurality of locations of the base film made of an electrically insulating porous film formed of a synthetic resin. A through-hole penetrating the second surface is formed, and then a conductive metal is attached to the porous resin portion on the wall surface of the through-hole so as to hold the porous structure, and is conductive only in the film thickness direction. Provided is a method for producing an anisotropic conductive film, characterized in that conductive portions capable of imparting are provided independently.

さらに、実施態様として、下記1〜3に示される異方性導電膜の製造方法が提供される。   Furthermore, the manufacturing method of the anisotropic electrically conductive film shown by following 1-3 is provided as an embodiment.

1.(1)多孔質ポリテトラフルオロエチレン膜(A)からなる基膜の両面に、マスク層としてポリテトラフルオロエチレン膜(B)及び(C)を融着させて3層構成の積層体を形成する工程、
(2)一方のマスク層の表面から、所定のパターン状にそれぞれ独立した複数の光透過部を有する光遮蔽シートを介して、シンクロトロン放射光または波長250nm以下のレーザ光を照射することにより、積層体にパターン状の貫通孔を形成する工程、
(3)貫通孔の壁面を含む積層体の全表面に化学還元反応を促進する触媒粒子を付着させる工程、
(4)両面のマスク層を剥離する工程、及び
(5)無電解めっきにより貫通孔の壁面で多孔質構造の樹脂部に導電性金属を付着させる工程
の各工程により、多孔質ポリテトラフルオロエチレン膜からなる基膜の複数箇所に、第一表面から第二表面に貫通する貫通孔の壁面で多孔質構造の樹脂部に導電性金属を付着させて、膜厚方向にのみ導電性を付与することが可能な導通部をそれぞれ独立して設けることを特徴とする異方性導電膜の製造方法。
1. (1) A polytetrafluoroethylene film (B) and (C) are fused as mask layers on both sides of a base film made of a porous polytetrafluoroethylene film (A) to form a laminate having a three-layer structure. Process,
(2) By irradiating synchrotron radiation or laser light having a wavelength of 250 nm or less from the surface of one mask layer through a light shielding sheet having a plurality of independent light transmission portions in a predetermined pattern, Forming a patterned through-hole in the laminate,
(3) A step of attaching catalyst particles that promote a chemical reduction reaction to the entire surface of the laminate including the wall surface of the through-hole,
Porous polytetrafluoroethylene by each step of (4) peeling the mask layers on both sides, and (5) attaching the conductive metal to the resin part of the porous structure on the wall surface of the through hole by electroless plating Conductive metal is attached to the resin part of the porous structure on the wall surface of the through-hole penetrating from the first surface to the second surface at a plurality of locations on the base film made of a film, thereby imparting conductivity only in the film thickness direction. A method for producing an anisotropic conductive film, characterized in that each of the conductive portions that can be provided is provided independently.

2.(I)多孔質ポリテトラフルオロエチレン膜(A)からなる基膜の両面に、マスク層としてポリテトラフルオロエチレン膜(B)及び(C)を融着させて3層構成の積層体を形成する工程、
(II)先端部に少なくとも1本のロッドを有する超音波ヘッドを用いて、該ロッドの先端を積層体の表面に押付けて超音波エネルギーを加えることにより、積層体にパターン状の貫通孔を形成する工程、
(III)貫通孔の壁面を含む積層体の全表面に化学還元反応を促進する触媒粒子を付着させる工程、
(IV)両面のマスク層を剥離する工程、及び
(V)無電解めっきにより貫通孔の壁面で多孔質構造の樹脂部に導電性金属を付着させる工程
の各工程により、多孔質ポリテトラフルオロエチレン膜からなる基膜の複数箇所に、第一表面から第二表面に貫通する貫通孔の壁面で多孔質構造の樹脂部に導電性金属を付着させて、膜厚方向にのみ導電性を付与することが可能な導通部をそれぞれ独立して設けることを特徴とする異方性導電膜の製造方法。
2. (I) A three-layer laminate is formed by fusing the polytetrafluoroethylene films (B) and (C) as mask layers on both sides of a base film made of a porous polytetrafluoroethylene film (A). Process,
(II) Using a ultrasonic head having at least one rod at the tip, press the tip of the rod against the surface of the laminate and apply ultrasonic energy to form a patterned through-hole in the laminate The process of
(III) a step of attaching catalyst particles that promote a chemical reduction reaction to the entire surface of the laminate including the wall surface of the through-hole,
Porous polytetrafluoroethylene by each step of (IV) peeling the mask layer on both sides, and (V) attaching the conductive metal to the resin part of the porous structure on the wall surface of the through hole by electroless plating Conductive metal is attached to the resin part of the porous structure on the wall surface of the through-hole penetrating from the first surface to the second surface at a plurality of locations on the base film made of a film, thereby imparting conductivity only in the film thickness direction. A method for producing an anisotropic conductive film, characterized in that each of the conductive portions that can be provided is provided independently.

3.(i)多孔質ポリテトラフルオロエチレン膜(A)からなる基膜の両面に、マスク層として多孔質ポリテトラフルオロエチレン膜(B)及び(C)を融着させて3層構成の積層体を形成する工程、
(ii)積層体の多孔質内に液体を染み込ませて、該液体を凍結させる工程、
(iii)先端部に少なくとも1本のロッドを有する超音波ヘッドを用いて、該ロッドの先端を積層体の表面に押付けて超音波エネルギーを加えることにより、積層体にパターン状の貫通孔を形成する工程、
(iv)積層体を昇温して、多孔質内の凍結体を液体に戻して除去する工程、
(V)貫通孔の壁面を含む積層体の全表面に化学還元反応を促進する触媒粒子を付着させる工程、
(vi)両面のマスク層を剥離する工程、及び
(vii)無電解めっきにより貫通孔の壁面で多孔質構造の樹脂部に導電性金属を付着させる工程
の各工程により、多孔質ポリテトラフルオロエチレン膜からなる基膜の複数箇所に、第一表面から第二表面に貫通する貫通孔の壁面で多孔質構造の樹脂部に導電性金属を付着させて、膜厚方向にのみ導電性を付与することが可能な導通部をそれぞれ独立して設けることを特徴とする異方性導電膜の製造方法。
3. (I) A porous polytetrafluoroethylene film (B) and (C) are fused as mask layers on both sides of a base film made of a porous polytetrafluoroethylene film (A) to form a laminate having a three-layer structure. Forming step,
(Ii) impregnating the liquid into the porous body of the laminate and freezing the liquid;
(Iii) Using an ultrasonic head having at least one rod at the tip, the tip of the rod is pressed against the surface of the laminate and ultrasonic energy is applied to form a patterned through-hole in the laminate. The process of
(Iv) A step of raising the temperature of the laminated body to return the frozen body in the porous body to a liquid and removing it,
(V) a step of attaching catalyst particles that promote a chemical reduction reaction to the entire surface of the laminate including the wall surface of the through hole;
Porous polytetrafluoroethylene by each step of (vi) peeling the mask layers on both sides, and (vii) attaching a conductive metal to the resin part of the porous structure on the wall surface of the through hole by electroless plating Conductive metal is attached to the resin part of the porous structure on the wall surface of the through-hole penetrating from the first surface to the second surface at a plurality of locations on the base film made of the film, thereby providing conductivity only in the film thickness direction. The anisotropic conductive film manufacturing method characterized by providing the conductive part which can be each independently provided.

本発明によれば、膜厚方向に弾力性があり、低圧縮荷重で膜厚方向の導通が可能で、さらには、弾性回復が可能で、頻回の使用に適している異方性導電膜が提供される。また、本発明によれば、各導通部の大きさやピッチなどをファイン化することができる異方性導電膜が提供される。本発明の異方性導電膜は、主に半導体ウェハなどの検査用異方性導電膜として、低圧縮荷重で膜厚方向の電気的導通が得られ、かつ、繰り返し荷重負荷でも、弾性により膜厚が復帰し、検査に繰り返し使用が可能である。   According to the present invention, an anisotropic conductive film that is elastic in the film thickness direction, can conduct in the film thickness direction with a low compressive load, and can be elastically recovered and is suitable for frequent use. Is provided. In addition, according to the present invention, an anisotropic conductive film is provided in which the size and pitch of each conductive portion can be refined. The anisotropic conductive film of the present invention is an anisotropic conductive film for inspection mainly for semiconductor wafers, etc., which provides electrical conduction in the film thickness direction with a low compressive load. The thickness returns and can be used repeatedly for inspection.

1.多孔質膜(基膜)
半導体ウェハなどのバーンイン試験用異方性導電膜は、基膜の耐熱性に優れていることが好ましい。異方性導電膜は、横方向(膜厚方向とは垂直方向)に電気絶縁性であることが必要である。したがって、多孔質膜を形成する合成樹脂は、電気絶縁性であることが必要である。
1. Porous membrane (base membrane) ;
An anisotropic conductive film for burn-in test such as a semiconductor wafer is preferably excellent in heat resistance of the base film. The anisotropic conductive film needs to be electrically insulating in the lateral direction (a direction perpendicular to the film thickness direction). Therefore, the synthetic resin forming the porous film needs to be electrically insulating.

基膜として使用する多孔質膜を形成する合成樹脂材料としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリふっ化ビニリデン(PVDF)、ポリふっ化ビニリデン共重合体、エチレン/テトラフルオロエチレン共重合体(ETFE樹脂)などのフッ素樹脂;ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、変性ポリフェニレンエーテル(mPPE)、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリスルホン(PSU)、ポリエーテルスルホン(PES)、液晶ポリマー(LCP)などのエンジニアリングプラスチック;などが挙げられる。これらの中でも、耐熱性、加工性、機械的特性、誘電特性などの観点から、PTFEが好ましい。   Synthetic resin materials for forming a porous film used as a base film include polytetrafluoroethylene (PTFE), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer. (PFA), polyvinylidene fluoride (PVDF), polyvinylidene fluoride copolymer, ethylene / tetrafluoroethylene copolymer (ETFE resin), etc .; polyimide (PI), polyamideimide (PAI), polyamide ( Engineering such as PA), modified polyphenylene ether (mPPE), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polysulfone (PSU), polyethersulfone (PES), liquid crystal polymer (LCP) Plastic; and the like. Among these, PTFE is preferable from the viewpoints of heat resistance, workability, mechanical properties, dielectric properties, and the like.

合成樹脂からなる多孔質膜を作製する方法としては、造孔法、相分離法、溶媒抽出法、延伸法、レーザ照射法などが挙げられる。合成樹脂を用いて多孔質膜を形成することにより、膜厚方向に弾性を持たせることができるとともに、誘電率を更に下げることができる。   Examples of a method for producing a porous film made of a synthetic resin include a pore making method, a phase separation method, a solvent extraction method, a stretching method, and a laser irradiation method. By forming a porous film using a synthetic resin, elasticity can be given in the film thickness direction, and the dielectric constant can be further lowered.

異方性導電膜の基膜として使用する多孔質膜は、気孔率が20〜80%程度であることが好ましい。多孔質膜は、平均孔径が10μm以下あるいはバブルポイントが2kPa以上であることが好ましく、導通部のファインピッチ化の観点からは、平均孔径が1μm以下あるいはバブルポイントが10kPa以上であることがより好ましい。多孔質膜の膜厚は、使用目的や使用箇所に応じて適宜選択することができるが、通常、3mm以下、好ましくは1mm以下である。特にバーンイン試験用の異方性導電膜では、多孔質膜の膜厚は、多くの場合、好ましくは5〜500μm、より好ましくは10〜200μm、特に好ましくは15〜100μm程度である。   The porous film used as the base film of the anisotropic conductive film preferably has a porosity of about 20 to 80%. The porous membrane preferably has an average pore diameter of 10 μm or less or a bubble point of 2 kPa or more, and more preferably has an average pore diameter of 1 μm or less or a bubble point of 10 kPa or more from the viewpoint of fine pitching of the conducting part. . The film thickness of the porous membrane can be appropriately selected according to the purpose of use and the location of use, but is usually 3 mm or less, preferably 1 mm or less. In particular, in an anisotropic conductive film for burn-in test, the thickness of the porous film is preferably 5 to 500 μm, more preferably 10 to 200 μm, and particularly preferably about 15 to 100 μm in many cases.

多孔質膜の中でも、延伸法により得られた多孔質ポリテトラフルオロエチレン膜(以下、「多孔質PTFE膜」と略記)は、耐熱性、加工性、機械的特性、誘電特性などに優れ、しかも均一な孔径分布を有する多孔質膜が得られ易いため、異方性導電膜の基膜として最も優れた材料である。   Among porous membranes, a porous polytetrafluoroethylene membrane (hereinafter abbreviated as “porous PTFE membrane”) obtained by stretching is excellent in heat resistance, processability, mechanical properties, dielectric properties, etc. Since it is easy to obtain a porous film having a uniform pore size distribution, it is the most excellent material as a base film of an anisotropic conductive film.

本発明で使用する多孔質PTFE膜は、例えば、特公昭42−13560号公報に記載の方法により製造することができる。まず、PTFEの未焼結粉末に液体潤滑剤を混合し、ラム押し出しによってチューブ状または板状に押し出す。厚みの薄いシートが所望な場合は、圧延ロールによって板状体の圧延を行う。押出圧延工程の後、必要に応じて、押出品または圧延品から液体潤滑剤を除去する。こうして得られた押出品または圧延品を少なくとも一軸方向に延伸すると、未焼結の多孔質PTFEが膜状で得られる。未焼結の多孔質PTFE膜は、収縮が起こらないように固定しながら、PTFEの融点である327℃以上の温度に加熱して、延伸した構造を焼結・固定すると、強度の高い多孔質PTFE膜が得られる。多孔質PTFE膜がチューブ状である場合には、チューブを切り開くことにより、平らな膜にすることができる。   The porous PTFE membrane used in the present invention can be produced, for example, by the method described in Japanese Patent Publication No. 42-13560. First, a liquid lubricant is mixed with the unsintered powder of PTFE, and extruded into a tube shape or a plate shape by ram extrusion. When a thin sheet is desired, the plate is rolled with a rolling roll. After the extrusion rolling process, the liquid lubricant is removed from the extruded product or the rolled product as necessary. When the extruded product or the rolled product thus obtained is stretched at least in a uniaxial direction, unsintered porous PTFE is obtained in the form of a film. An unsintered porous PTFE membrane is highly porous when heated and stretched to a temperature of 327 ° C. or higher, which is the melting point of PTFE, while being fixed so that shrinkage does not occur. A PTFE membrane is obtained. When the porous PTFE membrane is in a tube shape, a flat membrane can be obtained by opening the tube.

延伸法により得られた多孔質PTFE膜は、それぞれPTFEにより形成された非常に細い繊維(フィブリル)と該繊維によって互いに連結された結節(ノード)とからなる微細繊維状組織を有している。多孔質PTFE膜は、この微細繊維状組織が多孔質構造を形成している。   The porous PTFE membrane obtained by the stretching method has a fine fibrous structure composed of very thin fibers (fibrils) formed by PTFE and nodes (nodes) connected to each other by the fibers. In the porous PTFE membrane, this fine fibrous structure forms a porous structure.

2.導通部(電極部)の形成
本発明では、合成樹脂から形成された電気絶縁性の多孔質膜からなる基膜の複数箇所に、第一表面から第二表面に貫通する状態で多孔質構造の樹脂部に導電性金属を付着させて、膜厚方向に導電性を付与することが可能な導通部をそれぞれ独立して設ける。
2. Formation of conduction part (electrode part) :
In the present invention, a conductive metal is attached to a resin portion having a porous structure in a state of penetrating from the first surface to the second surface at a plurality of locations on the base film made of a synthetic resin and made of an electrically insulating porous film. Thus, the conductive portions capable of imparting conductivity in the film thickness direction are provided independently.

基膜の複数箇所に導通部を形成するには、先ず、導電性金属を付着する位置を特定する必要がある。導電性金属を付着させる位置を特定する方法としては、例えば、多孔質膜に液体レジストを含浸させて、パターン状に露光し、現像して、レジスト除去部を導電性金属の付着位置とする方法がある。本発明では、多孔質膜の特定位置の膜厚方向に微細な貫通孔を形成して、該貫通孔の壁面を導電性金属の付着位置とする方法を好適に採用することができる。多孔質膜に多数の貫通孔を形成する本発明の方法は、フォトリソグラフィ技術を用いる前者の方法に比べて、ファインピッチで導電性金属を付着させる場合に適している。また、多孔質膜に多数の貫通孔を形成する方法は、例えば、30μm以下、さらには25μm以下の微細な直径の導通部を形成するのに適している。   In order to form conductive portions at a plurality of locations on the base film, first, it is necessary to specify the position where the conductive metal is attached. As a method for specifying the position where the conductive metal is attached, for example, a method in which a porous film is impregnated with a liquid resist, exposed in a pattern and developed, and the resist removal portion is set as the conductive metal attachment position. There is. In this invention, the method of forming a fine through-hole in the film thickness direction of the specific position of a porous film, and making the wall surface of this through-hole into the adhesion position of an electroconductive metal can be employ | adopted suitably. The method of the present invention for forming a large number of through-holes in a porous film is suitable for the case of depositing a conductive metal at a fine pitch as compared with the former method using a photolithography technique. Further, the method of forming a large number of through holes in the porous film is suitable for forming a conductive portion having a fine diameter of, for example, 30 μm or less, and further 25 μm or less.

本発明では、多孔質膜からなる基膜の複数箇所に、第一表面から第二表面に貫通する状態で多孔質構造の樹脂部に導電性金属を付着させて導通部を形成する。フォトリソグラフィ技術を用いる方法では、無電解めっき法などによりレジスト除去部に導電性金属粒子を析出させて、多孔質構造の樹脂部に導電性金属を連続して付着させる。この場合、レジスト除去部の第一表面から第二表面に貫通する状態となるように、多孔質構造の樹脂部に導電性金属を連続して付着させる。貫通孔を形成する本発明に特有の方法では、貫通孔の壁面に露出している多孔質構造の樹脂部に、無電解めっき法などにより導電性金属粒子を析出させる方法により付着させる。   In the present invention, a conductive portion is formed by adhering a conductive metal to a resin portion having a porous structure in a state of penetrating from the first surface to the second surface at a plurality of locations on a base film made of a porous membrane. In the method using the photolithography technique, conductive metal particles are deposited on the resist removal portion by an electroless plating method or the like, and the conductive metal is continuously attached to the porous resin portion. In this case, the conductive metal is continuously attached to the resin portion having the porous structure so as to penetrate from the first surface to the second surface of the resist removal portion. In the method unique to the present invention for forming the through-hole, the conductive metal particles are adhered to the porous resin portion exposed on the wall surface of the through-hole by a method such as electroless plating.

多孔質構造の樹脂部とは、多孔質膜の多孔質構造を形成している骨格部を意味している。多孔質構造の樹脂部の形状は、多孔質膜の種類や多孔質膜の形成方法によって異なっている。例えば、延伸法による多孔質PTFE膜の場合には、多孔質構造は、それぞれPTFEからなる多数のフィブリルと該フィブリルによって互に連結された多数のノードとから形成されているので、その樹脂部は、これらのフィブリルとノードである。   The resin part having a porous structure means a skeleton part forming the porous structure of the porous film. The shape of the resin part having a porous structure differs depending on the type of porous film and the method of forming the porous film. For example, in the case of a porous PTFE membrane formed by a stretching method, the porous structure is formed of a large number of fibrils each made of PTFE and a large number of nodes connected to each other by the fibrils. These are fibrils and nodes.

多孔質構造の樹脂部に導電性金属を付着させて導通部を形成する。この際、導電性金属の付着量を適度に制御することによって、導通部での多孔質構造を保持することができる。本発明の異方性導電膜では、導電性金属が多孔質構造の樹脂部の表面に沿って付着しているため、導電性金属層が多孔質構造と一体となって多孔質状構造となっており、その結果、導通部が多孔質状となっているということができる。   A conductive metal is attached to the porous resin portion to form a conducting portion. Under the present circumstances, the porous structure in a conduction | electrical_connection part can be hold | maintained by controlling the adhesion amount of a conductive metal moderately. In the anisotropic conductive film of the present invention, since the conductive metal adheres along the surface of the porous resin part, the conductive metal layer is integrated with the porous structure to form a porous structure. As a result, it can be said that the conducting portion is porous.

無電解めっき法などを採用すると、導電性金属粒子が多孔質構造の樹脂部に付着する。本発明の異方性導電膜では、多孔質膜を構成する多孔質構造(多孔性)をある程度維持したまま、導電性金属粒子が付着した状態が得られる。多孔質構造の樹脂部の太さ(例えば、フィブリルの太さ)は、50μm以下であることが好ましい。導電性金属粒子の粒子径は、0.001〜5μm程度であることが好ましい。導電性金属粒子の付着量は、多孔性と弾性を維持するために、0.01〜4.0g/ml程度とすることが好ましい。基膜となる多孔質膜の気孔率にもよるが、導電性金属粒子の付着量が多すぎると、異方性導電膜の弾性が大きくなりすぎて、通常の使用圧縮荷重では、異方性導電膜の弾性回復性能が著しく低下する。導電性金属粒子の付着量が少なすぎると、圧縮荷重を加えても膜厚方向への導通を得ることが困難になる。   When an electroless plating method or the like is employed, the conductive metal particles adhere to the resin portion having a porous structure. In the anisotropic conductive film of the present invention, a state in which conductive metal particles are adhered is obtained while maintaining the porous structure (porosity) constituting the porous film to some extent. The thickness of the porous resin part (for example, the thickness of the fibril) is preferably 50 μm or less. The particle diameter of the conductive metal particles is preferably about 0.001 to 5 μm. The adhesion amount of the conductive metal particles is preferably about 0.01 to 4.0 g / ml in order to maintain porosity and elasticity. Although it depends on the porosity of the porous film that is the base film, if the amount of conductive metal particles attached is too large, the elasticity of the anisotropic conductive film becomes too large, and the normal use compression load causes anisotropy. The elastic recovery performance of the conductive film is significantly reduced. If the adhesion amount of the conductive metal particles is too small, it is difficult to obtain conduction in the film thickness direction even when a compressive load is applied.

貫通孔の壁面で多孔質構造の樹脂部に導電性金属を付着させる方法について、図面を参照しながら説明する。図1は、貫通孔が形成された多孔質膜の斜視図である。多孔質膜(基膜)1には、第一表面2から第二表面3にかけて貫通する貫通孔4が複数箇所に形成されている。これらの貫通孔は、一般に、所定のパターンで多孔質膜に形成される。図2は、図1のA−A′線に沿った断面図であり、貫通孔の壁面で多孔質構造の樹脂部に導電性金属粒子が付着して導通部を形成している状態を示している。図2において、多孔質膜6は、基膜となっており、所定の複数箇所に貫通孔4が設けられており、貫通孔壁面の多孔質構造の樹脂部には導電性金属粒子が付着して導通部5が形成されている。この導通部は、多孔質構造の樹脂部の表面に付着して形成されているため、多孔質としての特性を有しており、膜厚方向に圧力(圧縮荷重)を加えることにより、膜厚方向のみに導電性が付与される。圧力を除去すると、導通部を含む異方性導電膜全体が弾性回復するので、本発明の異方性導電膜は、繰り返して使用することができる。   A method of attaching a conductive metal to the resin portion having a porous structure on the wall surface of the through hole will be described with reference to the drawings. FIG. 1 is a perspective view of a porous membrane having through holes formed therein. The porous film (base film) 1 is formed with a plurality of through holes 4 penetrating from the first surface 2 to the second surface 3. These through holes are generally formed in the porous film in a predetermined pattern. FIG. 2 is a cross-sectional view taken along the line AA ′ in FIG. 1 and shows a state in which conductive metal particles adhere to the porous resin portion on the wall surface of the through hole to form a conductive portion. ing. In FIG. 2, a porous film 6 is a base film, and through holes 4 are provided at a plurality of predetermined locations, and conductive metal particles adhere to the resin portion of the porous structure on the wall surface of the through holes. Thus, the conductive portion 5 is formed. Since this conducting part is formed by adhering to the surface of the resin part having a porous structure, it has a characteristic as a porous material, and by applying pressure (compression load) in the film thickness direction, the film thickness Conductivity is imparted only in the direction. When the pressure is removed, the entire anisotropic conductive film including the conducting portion is elastically recovered, so that the anisotropic conductive film of the present invention can be used repeatedly.

図3は、図2の1つの導通部の拡大断面図であり、aは、貫通孔の直径を表わし、bは、導電性金属粒子が付着して形成された導通部(電極)の直径(外径)を表わす。導電性金属粒子は、貫通孔の壁面において、多孔質構造の中に若干浸透した状態で付着するため、導通部の直径bは、貫通孔の直径aより大きい。   FIG. 3 is an enlarged cross-sectional view of one conducting portion of FIG. 2, wherein a represents the diameter of the through hole, and b represents the diameter of the conducting portion (electrode) formed by adhering conductive metal particles ( Represents the outer diameter). Since the conductive metal particles adhere to the wall surface of the through hole in a state of slightly penetrating into the porous structure, the diameter b of the conducting portion is larger than the diameter a of the through hole.

本発明の異方性導電膜は、圧縮荷重が加えられていない状態では、導通部の抵抗値が大きく、所定の圧縮荷重を加えた時に導通部の抵抗値が0.5Ω以下となることが望ましい。導通部の抵抗値の測定は、図5に示す導通確認装置を用いて行うが、その詳細は、実施例において説明する。   In the anisotropic conductive film of the present invention, the resistance value of the conducting part is large when no compressive load is applied, and the resistance value of the conducting part may be 0.5Ω or less when a predetermined compressive load is applied. desirable. The resistance value of the conduction part is measured using the conduction confirmation device shown in FIG. 5, and details thereof will be described in the embodiment.

図1に示すように、多孔質膜の複数箇所に貫通孔を設けただけでは、無電解めっき法などで貫通孔の壁面のみに導電性金属を付着させることは困難である。例えば、多孔質膜として多孔質PTFE膜を使用すると、無電解めっきにより、貫通孔の壁面だけではなく、全体の多孔質構造の樹脂部に導電性金属粒子が析出してしまう。そこで、本発明では、例えば、マスク層を用いて、貫通孔の壁面のみに導電性金属を付着させる方法を提案する。具体的には、貫通孔の壁面のみに導電性金属を析出させるため、無電解めっきにおける化学還元反応を促進する触媒粒子が基膜の表面に付着しないよう、基膜の両表面にマスク層を形成する。   As shown in FIG. 1, it is difficult to attach a conductive metal only to the wall surface of a through-hole by electroless plating or the like only by providing a through-hole at a plurality of locations in the porous film. For example, when a porous PTFE film is used as the porous film, conductive metal particles are deposited not only on the wall surface of the through-hole but also on the entire resin portion of the porous structure due to electroless plating. Therefore, the present invention proposes a method of attaching a conductive metal only to the wall surface of the through hole using, for example, a mask layer. Specifically, since the conductive metal is deposited only on the wall surface of the through hole, mask layers are formed on both surfaces of the base film so that catalyst particles that promote the chemical reduction reaction in electroless plating do not adhere to the surface of the base film. Form.

例えば、基膜として延伸法による多孔質PTFE膜を使用する場合、マスク層として使用する材料は、基膜との密着性が良好であり、基膜と同時に貫通孔が形成でき、マスク層としての役割を終えたあとには基膜との剥離が容易であることから、基膜と同材料のPTFE膜であることが好ましい。また、貫通孔を形成するエッチング速度を高めることができ、マスク層としての役割を終えたあと基膜との剥離をさらに容易にすることができる点から、マスク層は多孔質PTFE膜であることがより好ましい。マスク層の多孔質PTFE膜は、剥離し易さの観点から、気孔率20〜80%程度のものが好ましく、その膜厚は、3mm以下であることが好ましく、1mm以下であることがより好ましく、100μm以下であることが特に好ましい。また、その平均孔径は、マスク層としての耐水性の観点から、10μm以下(あるいはバブルポイントが2kPa以上)であることが好ましい。   For example, when a porous PTFE film obtained by a stretching method is used as the base film, the material used as the mask layer has good adhesion to the base film, and through holes can be formed simultaneously with the base film. A PTFE film made of the same material as the base film is preferable because it can be easily peeled off from the base film after the role is finished. In addition, the mask layer is a porous PTFE film because the etching rate for forming the through-hole can be increased and the separation from the base film can be further facilitated after completing the role as the mask layer. Is more preferable. The porous PTFE film of the mask layer preferably has a porosity of about 20 to 80% from the viewpoint of easy peeling, and the film thickness is preferably 3 mm or less, more preferably 1 mm or less. , 100 μm or less is particularly preferable. Moreover, it is preferable that the average hole diameter is 10 micrometers or less (or a bubble point is 2 kPa or more) from a water resistant viewpoint as a mask layer.

延伸法により得られた多孔質PTFE膜(A)を基膜として使用し、同じ材質のPTFE膜、好ましくは多孔質PTFE膜(B)及び(C)をマスク層として使用する場合について、図4を参照しながら説明する。図4に示すように、多孔質PTFE膜(A)43からなる基膜の両面に、マスク層として多孔質PTFE膜(B)44及び(C)45を融着させて3層構成の積層体を形成する。より具体的に、これらの多孔質PTFE膜を図4に示すように3層に重ね合わせ、その両面を2枚のステンレス板41,42で挟む。各ステンレス板は、平行面を有している。各ステンレス板を320〜380℃の温度で30分間以上加熱することにより、3層の多孔質PTFE膜を互いに融着させる。多孔質PTFE膜の機械的強度を高めるために、加熱処理後は冷却水などで急冷することが好ましい。このようにして、3層構成の積層体を形成する。   When the porous PTFE membrane (A) obtained by the stretching method is used as a base membrane, and the PTFE membrane of the same material, preferably the porous PTFE membranes (B) and (C) are used as a mask layer, FIG. Will be described with reference to FIG. As shown in FIG. 4, the porous PTFE membranes (B) 44 and (C) 45 are fused as mask layers on both sides of the base membrane composed of the porous PTFE membrane (A) 43 to form a laminate having a three-layer structure. Form. More specifically, these porous PTFE membranes are superposed on three layers as shown in FIG. 4, and both surfaces thereof are sandwiched between two stainless steel plates 41 and 42. Each stainless steel plate has a parallel surface. By heating each stainless steel plate at a temperature of 320 to 380 ° C. for 30 minutes or more, three layers of porous PTFE membranes are fused to each other. In order to increase the mechanical strength of the porous PTFE membrane, it is preferable to rapidly cool it with cooling water after the heat treatment. In this manner, a laminate having a three-layer structure is formed.

多孔質膜の特定位置の膜厚方向に貫通孔を形成する方法としては、例えば、化学エッチング法、熱分解法、レーザ光や軟X線照射によるアブレーション法、超音波法などが挙げられる。基膜として延伸法による多孔質PTFE膜を使用する場合には、シンクロトロン放射光または波長250nm以下のレーザ光を照射する方法、及び超音波法が好ましい。   Examples of the method for forming the through hole in the film thickness direction at a specific position of the porous film include a chemical etching method, a thermal decomposition method, an ablation method using laser light or soft X-ray irradiation, and an ultrasonic method. When a porous PTFE film obtained by a stretching method is used as the base film, a method of irradiating synchrotron radiation or laser light having a wavelength of 250 nm or less, and an ultrasonic method are preferable.

多孔質PTFE膜を基膜として使用し、かつ、シンクロトロン放射光または波長250nm以下のレーザ光の照射により貫通孔を形成する工程を含む異方性導電膜の製造方法は、好ましくは、(1)多孔質ポリテトラフルオロエチレン膜(A)からなる基膜の両面に、マスク層としてポリテトラフルオロエチレン膜(B)及び(C)を融着させて3層構成の積層体を形成する工程、(2)一方のマスク層の表面から、所定のパターン状にそれぞれ独立した複数の光透過部を有する光遮蔽シートを介して、シンクロトロン放射光または波長250nm以下のレーザ光を照射することにより、積層体にパターン状の貫通孔を形成する工程、(3)貫通孔の壁面を含む積層体の全表面に化学還元反応を促進する触媒粒子を付着させる工程、(4)両面のマスク層を剥離する工程、及び(5)無電解めっきにより貫通孔の壁面で多孔質構造の樹脂部に導電性金属を付着させる工程を含む製造方法である。   The method for producing an anisotropic conductive film using a porous PTFE film as a base film and including a step of forming a through hole by irradiation with synchrotron radiation or laser light having a wavelength of 250 nm or less is preferably (1 ) Forming a three-layer laminate by fusing the polytetrafluoroethylene films (B) and (C) as mask layers on both sides of the base film made of the porous polytetrafluoroethylene film (A); (2) By irradiating synchrotron radiation or laser light having a wavelength of 250 nm or less from the surface of one mask layer through a light shielding sheet having a plurality of independent light transmission portions in a predetermined pattern, A step of forming a patterned through-hole in the laminate, (3) a step of attaching catalyst particles for promoting a chemical reduction reaction to the entire surface of the laminate including the wall surface of the through-hole, and (4) a mask layer on both sides A step of peeling, and (5) a production method comprising a step of adhering a conductive metal to the resin portion of the porous structure in the wall surface of the through-hole by electroless plating.

光遮蔽シートとしては、例えば、タングステンシートが好ましい。タングステンシートにパターン状の複数の開口部を形成して、該開口部を光透過部(以下、単に「開口部」ということがある)とする。光遮蔽シートの複数の開口部より光が透過し照射された箇所は、エッチングされて貫通孔が形成される。   As the light shielding sheet, for example, a tungsten sheet is preferable. A plurality of patterned openings are formed in the tungsten sheet, and the openings are referred to as light transmitting portions (hereinafter, simply referred to as “openings”). A portion where light is transmitted through and irradiated from a plurality of openings of the light shielding sheet is etched to form a through hole.

光遮断シートの開口部のパターンは、円形、星型、八角形、六角形、四角形、三角形など任意の形状が可能である。開口部の孔径は、一辺もしくは径が0.1μm以上で、使用する多孔質PTFE膜の平均孔径より大きければよい。貫通孔の孔径は、作製される異方性導電膜の導通部(電極)のサイズを決定するので、作製したい導通部のサイズに応じて適宜形成すればよいが、異方性導電膜を、例えば半導体ウェハのバーンイン試験用インターポーザとして使用する場合などには、5〜100μmが好ましく、5〜30μmがより好ましい。導通部(電極)間ピッチは、5〜100μmが好ましい。   The pattern of the opening part of the light shielding sheet can be any shape such as a circle, a star, an octagon, a hexagon, a quadrangle, and a triangle. The hole diameter of the opening may be one side or a diameter of 0.1 μm or more and larger than the average hole diameter of the porous PTFE membrane to be used. Since the hole diameter of the through-hole determines the size of the conductive part (electrode) of the anisotropic conductive film to be manufactured, it may be appropriately formed according to the size of the conductive part to be manufactured. For example, when used as an interposer for burn-in test of a semiconductor wafer, 5 to 100 μm is preferable, and 5 to 30 μm is more preferable. As for the pitch between conduction | electrical_connection parts (electrodes), 5-100 micrometers is preferable.

超音波法により、多孔質膜の特定位置の膜厚方向に貫通孔を形成するには、図10に示すように、先端部に少なくとも1本のロッド102を取り付けた超音波ヘッド101を用いて、該ロッド102の先端を多孔質膜103の表面に押付けて超音波エネルギーを加える。貫通孔を形成する工程では、多孔質膜103は、例えば、シリコン、セラミックス、ガラス等の硬質材料から形成された板状体104の上に載置する。板状体を用いる代わりに、多孔質膜の上下にロッド同士を対向させてもよい。   In order to form a through-hole in the film thickness direction at a specific position of the porous film by the ultrasonic method, as shown in FIG. 10, an ultrasonic head 101 having at least one rod 102 attached to the tip is used. The tip of the rod 102 is pressed against the surface of the porous membrane 103 to apply ultrasonic energy. In the step of forming the through hole, the porous film 103 is placed on the plate-like body 104 formed of a hard material such as silicon, ceramics, or glass. Instead of using a plate-like body, rods may be opposed to each other above and below the porous membrane.

ロッドとしては、金属、セラミックス、ガラス等の無機材料で形成された棒状体が好ましい。ロッドの直径は、特に限定されないが、ロッドの強度、作業性、所望とする貫通孔の孔径などの観点から、通常0.05〜0.5mmの範囲から選択される。ロッドの断面形状は、一般に円形であるが、それ以外に、星型、八角形、六角形、四角形、三角形など任意の形状であってもよい。超音波ヘッド101の先端部には、ロッド102を1本だけ取り付けるのではなく、多数本のロッドを取り付けて、多孔質膜に多数の開口部を一括加工により成形してもよい。   The rod is preferably a rod-like body formed of an inorganic material such as metal, ceramics, or glass. The diameter of the rod is not particularly limited, but is usually selected from the range of 0.05 to 0.5 mm from the viewpoint of the strength of the rod, workability, the desired hole diameter of the through hole, and the like. The cross-sectional shape of the rod is generally circular, but other shapes such as a star, octagon, hexagon, quadrangle, and triangle may be used. Instead of attaching only one rod 102 to the tip of the ultrasonic head 101, a large number of rods may be attached to form a large number of openings in the porous film by batch processing.

ロッド102の押付け圧力は、ロッド1本当り通常1gf〜1kgf、好ましくは1〜100gfの範囲内である。超音波の周波数は、通常5〜500kHz、好ましくは10〜50kHzの範囲内である。超音波の出力は、ロッド1本当り通常1〜100W、好ましくは5〜50Wの範囲内である。   The pressing pressure of the rod 102 is usually in the range of 1 gf to 1 kgf, preferably 1 to 100 gf per rod. The frequency of the ultrasonic waves is usually in the range of 5 to 500 kHz, preferably 10 to 50 kHz. The output of the ultrasonic wave is usually in the range of 1 to 100 W, preferably 5 to 50 W per rod.

ロッド102を多孔質膜103の表面に押し付けて超音波ヘッドを稼動させると、ロッドの先端が押し付けられた多孔質膜の付近のみに超音波エネルギーが加えられて、超音波による振動エネルギーによって局所的に温度が上昇し、その部分の樹脂成分が溶融、蒸発等により分解して、多孔質膜に貫通孔が形成される。   When the ultrasonic head is operated by pressing the rod 102 against the surface of the porous membrane 103, the ultrasonic energy is applied only to the vicinity of the porous membrane where the tip of the rod is pressed, and the ultrasonic vibration energy causes local localization. When the temperature rises, the resin component in the portion is decomposed by melting, evaporation, etc., and a through hole is formed in the porous film.

一般に、多孔質PTFE膜は、機械加工により貫通孔を形成することが困難である。例えば、通常のパンチング法により多孔質PTFE膜に貫通孔を形成すると、バリが発生して、綺麗で正確な形状の貫通孔を形成することが困難である。これに対して、前述の超音波法により加工すると、多孔質PTFE膜に容易かつ安価に所望の形状の貫通孔を形成することができる。   In general, it is difficult for a porous PTFE membrane to form through holes by machining. For example, when a through hole is formed in a porous PTFE film by a normal punching method, burrs are generated, and it is difficult to form a through hole having a clean and accurate shape. On the other hand, when processed by the ultrasonic method described above, a through hole having a desired shape can be easily and inexpensively formed in the porous PTFE membrane.

貫通孔の断面形状は、円形、星型、八角形、六角形、四角形、三角形など任意である。貫通孔の孔径は、小さな孔径が適した用途分野では、通常5〜100μm、好ましくは5〜30μm程度にすることができ、他方、比較的大きな孔径が適した分野では、通常100〜1000μm、好ましくは300〜800μm程度にすることができる。   The cross-sectional shape of the through hole is arbitrary such as a circle, a star, an octagon, a hexagon, a quadrangle, and a triangle. The diameter of the through-hole can be usually 5 to 100 μm, preferably about 5 to 30 μm in the field of application where a small hole diameter is suitable, while it is usually 100 to 1000 μm, preferably in a field where a relatively large hole diameter is suitable. Can be about 300 to 800 μm.

多孔質PTFE膜を基膜として使用し、かつ、超音波法により多孔質膜の特定位置の膜厚方向に貫通孔を形成する工程を含む異方性導電膜の製造方法は、好ましくは、(I)多孔質ポリテトラフルオロエチレン膜(A)からなる基膜の両面に、マスク層としてポリテトラフルオロエチレン膜(B)及び(C)を融着させて3層構成の積層体を形成する工程、(II)先端部に少なくとも1本のロッドを有する超音波ヘッドを用いて、該ロッドの先端を積層体の表面に押付けて超音波エネルギーを加えることにより、積層体にパターン状の貫通孔を形成する工程、(III)貫通孔の壁面を含む積層体の全表面に化学還元反応を促進する触媒粒子を付着させる工程、(IV)両面のマスク層を剥離する工程、及び(V)無電解めっきにより貫通孔の壁面で多孔質構造の樹脂部に導電性金属を付着させる工程を含む製造方法である。   The method for producing an anisotropic conductive film including a step of using a porous PTFE film as a base film and forming a through-hole in a film thickness direction at a specific position of the porous film by an ultrasonic method is preferably ( I) A step of forming a three-layer laminate by fusing the polytetrafluoroethylene films (B) and (C) as mask layers on both sides of a base film made of a porous polytetrafluoroethylene film (A) (II) Using an ultrasonic head having at least one rod at the tip, and applying ultrasonic energy by pressing the tip of the rod against the surface of the laminate, a patterned through-hole is formed in the laminate. A step of forming, (III) a step of attaching catalyst particles that promote a chemical reduction reaction to the entire surface of the laminate including the wall surface of the through-hole, (IV) a step of removing the mask layers on both sides, and (V) electroless Porous structure tree on the wall of the through hole by plating It is a manufacturing method including the step of depositing a conductive metal part.

多孔質PTFE膜を基膜として使用し、かつ、超音波法により多孔質膜の特定位置の膜厚方向に貫通孔を形成する工程を含む異方性導電膜の他の好ましい製造方法としては、例えば、(i)多孔質ポリテトラフルオロエチレン膜(A)からなる基膜の両面に、マスク層として多孔質ポリテトラフルオロエチレン膜(B)及び(C)を融着させて3層構成の積層体を形成する工程、(ii)積層体の多孔質内に液体を染み込ませて、該液体を凍結させる工程、(iii)先端部に少なくとも1本のロッドを有する超音波ヘッドを用いて、該ロッドの先端を積層体の表面に押付けて超音波エネルギーを加えることにより、積層体にパターン状の貫通孔を形成する工程、(iv)積層体を昇温して、多孔質内の凍結体を液体に戻して除去する工程、(V)貫通孔の壁面を含む積層体の全表面に化学還元反応を促進する触媒粒子を付着させる工程、(vi)両面のマスク層を剥離する工程、及び(vii)無電解めっきにより貫通孔の壁面で多孔質構造の樹脂部に導電性金属を付着させる工程を含む製造方法が挙げられる。   As another preferable manufacturing method of the anisotropic conductive film including the step of using a porous PTFE film as a base film and forming a through hole in the film thickness direction at a specific position of the porous film by an ultrasonic method, For example, (i) porous polytetrafluoroethylene films (B) and (C) are fused as mask layers on both sides of a base film made of a porous polytetrafluoroethylene film (A) to form a three-layer laminate Forming a body, (ii) impregnating a liquid into the porous body of the laminate and freezing the liquid, (iii) using an ultrasonic head having at least one rod at the tip, A step of forming a pattern-like through-hole in the laminated body by applying ultrasonic energy by pressing the tip of the rod against the surface of the laminated body; (iv) heating the laminated body and removing the frozen body in the porous body The process of returning to the liquid and removing it, (V) including the wall surface of the through hole A step of attaching catalyst particles for promoting a chemical reduction reaction to the entire surface of the layered body, (vi) a step of removing the mask layer on both sides, and (vii) a resin portion having a porous structure on the wall surface of the through hole by electroless plating The manufacturing method including the process of making a conductive metal adhere to is mentioned.

3層構成の積層体を用いる場合、図10に示す貫通孔の形成方法では、先端部に少なくとも1本のロッド102を取り付けた超音波ヘッド101を用いて、該ロッド102の先端を積層体(通常、3層構成の多孔質PTFE膜)103の表面に押付けて超音波エネルギーを加える。   In the case of using a three-layer laminate, the through hole forming method shown in FIG. 10 uses an ultrasonic head 101 in which at least one rod 102 is attached to the tip, and the tip of the rod 102 is laminated ( Usually, ultrasonic energy is applied by pressing against the surface of a three-layer porous PTFE membrane) 103.

積層体の多孔質内に液体を染み込ませて、該液体を凍結させる工程を含む製造方法では、3層構成の多孔質PTFE膜からなる積層体の多孔質内部に水またはアルコール(例えば、メタノール、エタノール、イソプロパノールなどの低級アルコール)等の有機溶媒などの液体を染み込ませ、冷却して液体を凍結させる。染み込ませた液体が凍結状態にある間に、先端部に少なくとも1本のロッドを有する超音波ヘッドを用いて、該ロッドの先端を積層体の表面に押付けて超音波エネルギーを加えることにより、加工性が改善され、パターン状の貫通孔を綺麗に形成することができる。冷却温度は、液体として水を使用する場合、零度以下、好ましくは−10℃以下にまで冷却して凍結させると、加工性が良好となる。アルコール等の有機溶媒の場合には、−50℃以下、望ましくは液体窒素温度まで冷却すると、加工性が良好となる。有機溶媒は、常温で液体であるものが好ましい。アルコール等の有機溶媒は、2種以上の混合物であってもよく、あるいは水を含有しているものでもよい。   In the production method including the step of immersing a liquid in the porous body of the laminate and freezing the liquid, water or alcohol (for example, methanol, for example) is contained in the porous body of the laminate composed of a porous PTFE membrane having a three-layer structure. A liquid such as an organic solvent such as a lower alcohol such as ethanol or isopropanol) is soaked and cooled to freeze the liquid. While the soaked liquid is in a frozen state, an ultrasonic head having at least one rod at the tip is used to press the tip of the rod against the surface of the laminate to apply ultrasonic energy. And the pattern-like through-hole can be formed beautifully. When water is used as the liquid, when the cooling temperature is zero degrees or lower, preferably -10 ° C. or lower and frozen, workability is improved. In the case of an organic solvent such as alcohol, workability is improved by cooling to −50 ° C. or lower, preferably to a liquid nitrogen temperature. The organic solvent is preferably a liquid at room temperature. The organic solvent such as alcohol may be a mixture of two or more kinds, or may contain water.

電気絶縁性の多孔質膜を導電化する方法としては、スパッタ法、イオンプレーティング法、無電解めっき法などが挙げられるが、多孔質構造の樹脂部に導電性金属を析出させて付着させるには、無電解めっき法が好ましい。無電解めっき法では、通常、めっきを析出させたい箇所に化学還元反応を促進する触媒を付与する必要がある。多孔質膜の特定の箇所の多孔質構造の樹脂部のみにめっきを行うには、当該箇所のみに触媒を付与する方法が有効である。   Examples of a method for making an electrically insulating porous film conductive include sputtering, ion plating, and electroless plating. In order to deposit and attach a conductive metal to a resin portion having a porous structure. Is preferably an electroless plating method. In the electroless plating method, it is usually necessary to apply a catalyst for promoting a chemical reduction reaction to a portion where plating is desired to be deposited. In order to perform plating only on the resin portion having a porous structure at a specific location of the porous membrane, a method of applying a catalyst only to the location is effective.

例えば、膜厚方向に任意の形の微細な貫通孔が形成された多孔質PTFE膜の壁面(孔壁)のみを無電解銅めっきにて導電性を付与する場合、マスク層を形成した3層融着状態の積層体に貫通孔を形成し、そして、この積層体をパラジウム−スズコロイド触媒付与液に十分撹拌しながら浸漬する。触媒付与液に浸漬後、両表面のマスク層(B)及び(C)を剥離すると、貫通孔の壁面のみに触媒コロイド粒子が付着した多孔質PTFE膜(A)を得ることができる。該多孔質PTFE膜(A)をめっき液に浸漬することにより、貫通孔の壁面のみに銅を析出させることができ、それによって、筒状の導通部(電極)が形成される。銅以外に、ニッケル、銀、金、ニッケル合金などでも、同様の方法により導通部を形成することができるが、特に高導電性が必要な場合は、銅を使用することが好ましい。3層構成の積層体に貫通孔を形成する方法としては、シンクロトロン放射光もしくは250mm以下のレーザ光を照射する方法、及び超音波法が好ましい。   For example, in the case where only the wall surface (hole wall) of a porous PTFE film in which fine through-holes of an arbitrary shape are formed in the film thickness direction is imparted with electroless copper plating, three layers in which a mask layer is formed A through-hole is formed in the laminated body in a fused state, and this laminated body is immersed in the palladium-tin colloid catalyst application liquid with sufficient stirring. When the mask layers (B) and (C) on both surfaces are peeled after being immersed in the catalyst application liquid, a porous PTFE membrane (A) in which catalyst colloidal particles are attached only to the wall surfaces of the through holes can be obtained. By immersing the porous PTFE membrane (A) in the plating solution, copper can be deposited only on the wall surface of the through hole, whereby a cylindrical conductive portion (electrode) is formed. In addition to copper, nickel, silver, gold, nickel alloy, and the like can form the conductive portion by the same method, but it is preferable to use copper particularly when high conductivity is required. As a method for forming a through-hole in a three-layer laminate, a method of irradiating synchrotron radiation or laser light of 250 mm or less, and an ultrasonic method are preferable.

めっき粒子(結晶粒)は、初め多孔質PTFE膜の貫通孔の壁面に露出した微細繊維(フィブリル)に絡むように析出するので、めっき時間をコントロールすることにより、導電性金属の付着状態をコントロールすることができる。無電解めっき時間が短すぎると、膜厚方向への導電性を得ることが困難になる。無電解めっき時間が長すぎると、導電性金属が多孔質状ではなく金属塊になり、通常の使用圧縮荷重では弾性回復が困難になる。適度なめっき量とすることにより、多孔質状の導電性金属層が形成され、弾性とともに膜厚方向への導電性も与えることが可能となる。   Plating particles (crystal grains) initially precipitate so as to get entangled with fine fibers (fibrils) exposed on the wall surface of the porous PTFE membrane, so the conductive metal adhesion state is controlled by controlling the plating time. can do. If the electroless plating time is too short, it is difficult to obtain conductivity in the film thickness direction. If the electroless plating time is too long, the conductive metal is not porous and becomes a metal lump, and it becomes difficult to recover elastically under normal use compression load. By setting it to an appropriate plating amount, a porous conductive metal layer is formed, and it is possible to give conductivity in the film thickness direction as well as elasticity.

上記のように作製された筒状の導通部(電極)は、酸化防止及び電気的接触性を高めるため、酸化防止剤を使用するか、貴金属もしくは貴金属の合金で被覆しておくことが好ましい。貴金属としては、電気抵抗の小さい点で、パラジウム、ロジウム、金が好ましい。貴金属等の被覆層の厚さは、0.005〜0.5μmが好ましく、0.01〜0.1μmがより好ましい。この被覆層の厚みが薄すぎると、電気的接触性の改善効果が小さく、厚すぎると、被覆層が剥離しやすくなるため、いずれも好ましくない。例えば、導通部を金で被覆する場合、8nm程度のニッケルで導電性金属層を被覆した後、置換金めっきを行う方法が効果的である。   The cylindrical conductive part (electrode) produced as described above is preferably used with an antioxidant or coated with a noble metal or a noble metal alloy in order to improve oxidation prevention and electrical contact. As the noble metal, palladium, rhodium, and gold are preferable from the viewpoint of low electric resistance. The thickness of the coating layer of noble metal or the like is preferably 0.005 to 0.5 μm, and more preferably 0.01 to 0.1 μm. If the thickness of the coating layer is too thin, the effect of improving electrical contact is small, and if the thickness is too thick, the coating layer tends to peel off, which is not preferable. For example, when the conductive part is coated with gold, a method of performing displacement gold plating after coating the conductive metal layer with nickel of about 8 nm is effective.

以下に実施例及び比較例を挙げて、本発明についてより具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。物性の測定法は、以下の通りである。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited only to these examples. The physical properties are measured as follows.

(1)バブルポイント(BP):
延伸法による多孔質PTFE膜のバブルポイントは、イソプロピルアルコールを使用して、ASTM−F−316−76に従って測定した。
(1) Bubble point (BP):
The bubble point of the porous PTFE membrane by the stretching method was measured according to ASTM-F-316-76 using isopropyl alcohol.

(2)気孔率:
延伸法による多孔質PTFE膜の気孔率は、ASTM D−792に従って測定した。
(2) Porosity:
The porosity of the porous PTFE membrane by the stretching method was measured according to ASTM D-792.

(3)導通開始荷重:
図5に示す導通確認装置を用いて、異方性導電膜の導通開始荷重を測定した。図5に示す導通確認装置において、異方性導電膜51を、金めっきを施した銅板(「Au板」と呼ぶ)52上に置く、その全体を重量計56上に載置する。プローブとして外径3mmφの銅柱53を使用し、荷重を加える。異方性導電膜の抵抗値を4針法により測定する。抵抗値が0.5Ω以下を示した荷重から押圧荷重圧を算出し、導通開始荷重圧とした。図5において、54は定電流電源を示し、55は電圧計を示す。
(3) Conduction start load:
The conduction start load of the anisotropic conductive film was measured using the conduction confirmation apparatus shown in FIG. 5, the anisotropic conductive film 51 is placed on a gold-plated copper plate (referred to as “Au plate”) 52, and the whole is placed on a weighing scale 56. A copper pillar 53 having an outer diameter of 3 mmφ is used as a probe, and a load is applied. The resistance value of the anisotropic conductive film is measured by the 4-needle method. A pressing load pressure was calculated from a load having a resistance value of 0.5Ω or less, and was defined as a conduction start load pressure. In FIG. 5, 54 indicates a constant current power source, and 55 indicates a voltmeter.

(4)導通試験回数:
異方性導電膜を5mm角に切り取り、試料とした。セイコーインスツルメンツ(株)製TMA/SS120Cを使用し、常温、窒素ガス雰囲気下、3mmφの石英を押し込みプローブとして使用し、針入法により弾性回復性能を検証した。各異方性導電膜が導通するように、膜厚歪みが38%となる荷重で加重と未加重を10回繰り返し、その後の膜厚変化と導通開始荷重での再導通試験を行った。
(4) Number of continuity tests:
An anisotropic conductive film was cut into 5 mm squares to prepare samples. TMA / SS120C manufactured by Seiko Instruments Inc. was used, and 3 mmφ quartz was used as an indentation probe at room temperature and in a nitrogen gas atmosphere, and the elastic recovery performance was verified by a penetration method. Weighting and unloading were repeated 10 times with a load at which the film thickness distortion was 38% so that each anisotropic conductive film was conducted, and then a reconducting test was performed with a change in film thickness and a conduction start load.

[実施例1]
面積10cm角で、気孔率60%、平均孔径0.1μm(BP=150kPa)、膜厚30μmの延伸法による多孔質PTFE膜3枚を重ね合わせて、厚さ3mm、縦150mm、横100mmのステンレス板2枚の間に挟み、ステンレス板の荷重とともに350℃で30分間加熱処理した。加熱後、ステンレス板の上から水にて急冷し、3層に融着された多孔質PTFE膜の積層体を得た。
[Example 1]
Stainless steel of 3mm thickness, 150mm length and 100mm width by superposing three porous PTFE membranes by stretching method with an area of 10cm square, porosity of 60%, average pore diameter of 0.1μm (BP = 150kPa) and film thickness of 30μm The sample was sandwiched between two plates and heat-treated at 350 ° C. for 30 minutes together with the load of the stainless plate. After heating, it was quenched with water from the top of the stainless steel plate to obtain a laminate of porous PTFE membranes fused in three layers.

次いで、開口率9%、開口径15μmφ、ピッチ80μmで均等配列に開口したタングステンシートを積層体の片面に重ねて、シンクロトロン放射光を照射して、膜厚さ方向へ孔径15μmφ、80μmピッチで均等に配置された貫通孔を形成した。   Next, a tungsten sheet having an aperture ratio of 9%, an aperture diameter of 15 μmφ, and a pitch of 80 μm is arranged on one side of the laminated body, and irradiated with synchrotron radiation, and in the film thickness direction, the hole diameter is 15 μmφ and the pitch of 80 μm. Evenly arranged through holes were formed.

15μmφの貫通孔を形成した積層体をエタノールに1分間浸漬して親水化した後、100ml/Lに希釈したメルテックス(株)製メルプレートPC−321に、60℃の温度で4分間浸漬し脱脂処理を行った。さらに、積層体を10%硫酸に1分間浸漬した後、プレディップとして、0.8%塩酸にメルテックス(株)製エンプレートPC−236を180g/Lの割合で溶解した液に2分間浸漬した。   The laminate with 15 μmφ through-holes made hydrophilic by immersing in ethanol for 1 minute, and then immersed in Melplate PC-321 made by Meltex for 4 minutes at a temperature of 60 ° C. diluted to 100 ml / L. Degreasing treatment was performed. Further, after immersing the laminate in 10% sulfuric acid for 1 minute, as a pre-dip, immersed in 0.8% hydrochloric acid for 2 minutes in a solution of Meltex Co., Ltd. Enplate PC-236 dissolved at a rate of 180 g / L. did.

さらに、積層体を、メルテックス(株)製エンプレートアクチベータ444を3%、エンプレートアクチベータアディティブを1%、塩酸を3%溶解した水溶液にメルテックス(株)製エンプレートPC−236を150g/Lの割含で溶解した液に5分間浸漬して、触媒粒子を積層体の表面及び貫通孔の壁面に付着させた。次に、積層体をメルテックス(株)製エンプレートPA−360の5%溶液に5分間浸漬し、パラジウム触媒核の活性化を行った。その後、第1層と第3膚のマスク層を剥離して、貫通孔の壁面のみに触媒パラジウム粒子が付着した多孔質PTFE膜(基膜)を得た。   Further, the laminate was prepared by adding 150% of Enplate PC-236 manufactured by Meltex Co., Ltd. in an aqueous solution prepared by dissolving 3% of Enplate Activator 444 manufactured by Meltex Co., Ltd., 1% of Enplate Activator Additive, and 3% of hydrochloric acid. The catalyst particles were adhered to the surface of the laminate and the wall surface of the through hole by immersing in a solution dissolved with the inclusion of L for 5 minutes. Next, the laminate was immersed in a 5% solution of Enplate PA-360 manufactured by Meltex Co., Ltd. for 5 minutes to activate the palladium catalyst nucleus. Thereafter, the first layer and the third skin mask layer were peeled off to obtain a porous PTFE membrane (base membrane) in which catalytic palladium particles adhered only to the wall surface of the through hole.

メルテックス(株)製メルプレートCu−3000A、メルプレートCu−3000B、メルプレートCu−3000C、メルプレートCu−3000Dをそれぞれ5%、メルプレートCu−3000スタビライザーを0.1%で建浴した無電解銅めっき液に、十分エアー撹拌を行いながら、上記基膜を20分間浸漬して、15μmφの貫通孔の壁面のみを銅粒子にて導電化した(電極の外径=25μm)。さらに、5ml/Lで建浴したメルテックス(株)製エンテックCu−56に30秒間浸漬して、防錆処理して、多孔質PTFE膜を基膜とする異方性導電膜を得た。   Meltex Co., Ltd. Melplate Cu-3000A, Melplate Cu-3000B, Melplate Cu-3000C, Melplate Cu-3000D are each 5%, and Melplate Cu-3000 Stabilizer is 0.1%. The base film was immersed for 20 minutes in the electrolytic copper plating solution with sufficient air stirring, and only the wall surface of the 15 μmφ through hole was made conductive with copper particles (electrode outer diameter = 25 μm). Furthermore, it was immersed in Entex Cu-56 manufactured by Meltex Co., Ltd., which was bathed at 5 ml / L, for 30 seconds and subjected to rust prevention treatment to obtain an anisotropic conductive film having a porous PTFE film as a base film.

めっき工程において、無電解鋼めっきのプレディップ工程と触媒付与工程の間以外の各液浸漬後は、蒸留水にて30秒間から1分間程度水洗を行った。各液の温度は、脱脂処理を除いて全て常温(20〜30℃)で行った。   In the plating process, after immersion in each liquid other than between the pre-dip process and the catalyst application process of electroless steel plating, the plate was washed with distilled water for about 30 seconds to 1 minute. The temperature of each solution was all normal temperature (20-30 degreeC) except the degreasing process.

上記のようにして得られた多孔質PTFE膜を基膜とする異方性導電膜を10mm角に切り取り、図5に示す装置にて導通開始荷重を測定した。プローブは、3mmφの銅柱を使用し、抵抗値を4針法にて測定した。低抗値が0.5Ω以下となった荷重から押圧荷重を算出し、導通開始荷重圧とすることとした。その結果、導通開始荷重圧は6kPaであった。   The anisotropic conductive film having the porous PTFE film obtained as described above as a base film was cut into a 10 mm square, and the conduction start load was measured with the apparatus shown in FIG. The probe used a 3 mmφ copper column, and the resistance value was measured by the 4-needle method. The pressing load was calculated from the load having a low resistance value of 0.5Ω or less, and was determined as the conduction start load pressure. As a result, the conduction start load pressure was 6 kPa.

また、異方性導電膜を5mm角に切り取り、セイコーインスツルメンツ(株)製TMA/SS120Cを使用し、常温、窒素ガス雰囲気下、石英3mmφを押し込みプローブとして使用し、針入法により弾性回復性能を検証した。合計10回の加重と未加重を繰り返し、その各回で膜厚変位と膜厚方向導通試験を行った。抵抗値は、上記同様0.5Ω以下を示せば導通ありとした。その結果、導通開始荷重圧は、6kPaであった。十分な導通が得られ、かつ、膜厚歪みが38%となる荷重圧の27.7kPaで10回の加重と未加重を繰り返した後も、未加重時は試験前の膜厚を実質的に維持し、導通開始荷重圧の6kPaでも導通が確認できた。   In addition, the anisotropic conductive film was cut into 5 mm squares, and TMA / SS120C manufactured by Seiko Instruments Inc. was used. Quartz 3 mmφ was used as an indentation probe at room temperature and in a nitrogen gas atmosphere. Verified. A total of 10 weightings and unweightings were repeated, and film thickness displacement and film thickness direction continuity tests were performed each time. If the resistance value is 0.5Ω or less as in the above case, it is considered to be conductive. As a result, the conduction start load pressure was 6 kPa. Even after repeated weighting and unloading 10 times at a load pressure of 27.7 kPa at which the film thickness distortion is 38%, sufficient conduction is obtained, and the film thickness before the test is substantially reduced when unweighted. It was maintained and conduction was confirmed even at a conduction starting load pressure of 6 kPa.

[実施例2]
実施例1と同様の方法、同様の条件にて、多孔質PTFE膜3枚を融着して積層体を形成した。この積層体に10μmφの貫通孔を形成し、次いで、めっき前処理を行った。マスク層の剥離後、無電解銅めっき液に十分エアー撹拌を行いながら基膜を20分間浸漬し、10μmφの貫通孔の壁面のみに銅粒子を付着させて導電化し(電極の外径=17μm)、さらに実施例1と同様の防錆処理を施して、延伸法による多孔質PTFE膜を基膜とする異方性導電膜を得た。得られた異方性導電膜を用いて、実施例1と同様の試験を行ったところ、導通開始荷重圧は、6kPaであった。十分な導通が得られ、かつ、膜厚歪みが38%となる荷重圧の27.7kPaで10回の加重と未加重を繰り返した後も、未加重時は試験前の膜厚を実質的に維持し、導通開始荷重圧の6kPaでも導通が確認できた。
[Example 2]
A porous body was formed by fusing three porous PTFE films under the same method and the same conditions as in Example 1. A through-hole of 10 μmφ was formed in this laminate, and then a pretreatment for plating was performed. After the mask layer is peeled off, the base film is immersed for 20 minutes in the electroless copper plating solution with sufficient air agitation, and the copper particles are attached only to the wall surface of the 10 μmφ through hole to make it conductive (electrode outer diameter = 17 μm). Further, the same antirust treatment as in Example 1 was performed to obtain an anisotropic conductive film having a porous PTFE film by a stretching method as a base film. When the same test as Example 1 was done using the obtained anisotropic conductive film, the conduction start load pressure was 6 kPa. Even after repeated weighting and unloading 10 times at a load pressure of 27.7 kPa at which the film thickness distortion is 38%, sufficient conduction is obtained, and the film thickness before the test is substantially reduced when unweighted. It was maintained and conduction was confirmed even at a conduction starting load pressure of 6 kPa.

[比較例1]
面積10cm角で、気孔率60%、平均孔径0.1μm(BP=150kPa)、膜厚30μmの延伸法による多孔質PTFE膜3枚を積層し、厚さ3mm、縦150mm、横100mmのステンレス板2枚の間に挟み、ステンレス板の荷重とともに350℃で30分間加熱処理した。加熱後、ステンレス板の上から水にて急冷し、3枚が融着し積層体を得た。
[Comparative Example 1]
Three stainless steel PTFE membranes with an area of 10 cm square, porosity of 60%, average pore diameter of 0.1 μm (BP = 150 kPa), and a film thickness of 30 μm are laminated to have a thickness of 3 mm, a length of 150 mm, and a width of 100 mm. The sample was sandwiched between two sheets and heat-treated at 350 ° C. for 30 minutes together with the load on the stainless steel plate. After heating, it was quenched with water from the top of the stainless steel plate, and three sheets were fused to obtain a laminate.

次いで、開口率9%、開口径25μmφ、ピッチ60μmで均等配列に開口したタングステンシートを積層体の片面に重ねて、シンクロトロン放射光を照射して、膜厚方向へ孔径25μmφ、60μmピッチで均等に配置された貫通孔を形成した。   Next, a tungsten sheet having an aperture ratio of 9%, an aperture diameter of 25 μmφ, and a pitch of 60 μm, which is uniformly arranged, is overlapped on one side of the laminate, and irradiated with synchrotron radiation. The through-hole arrange | positioned in was formed.

25μmφの孔を形成した積層体をエタノールに1分間浸漬し親水化した後、100ml/Lに希釈したメルテックス(株)製メルプレートPC−321に、水温60℃で4分間浸漬し、脱脂処理を行った。さらに、積層体を10%硫酸に1分間浸漬した後、プレディップとして0.8%塩酸にメルテックス(株)製エンプレートPC−236を180g/Lの割合で溶解した液に2分間浸漬した。   Degrease treatment by immersing the laminate with 25 μmφ holes in ethanol for 1 minute to make it hydrophilic and then immersing it in Melplate PC-321 manufactured by Meltex Co., Ltd. diluted to 100 ml / L for 4 minutes at a water temperature of 60 ° C. Went. Further, after immersing the laminate in 10% sulfuric acid for 1 minute, the laminate was immersed in 0.8% hydrochloric acid as a pre-dip for 2 minutes in a solution obtained by dissolving Meltex Co., Ltd. Enplate PC-236 at a rate of 180 g / L. .

次に、メルテックス(株)製エンプレートアクチベータ444を3%、エンプレートアクチベータアディティブを1%、塩酸を3%溶解した水溶液にメルテックス(株)製エンプレートPC−236を150g/Lの割合で溶解した液に、積層体を5分間浸漬して、触媒粒子を積層体の表面及び貫通孔の壁面に付着させた。さらに、積層体をメルテックス(株)製エンプレートPA−360の5%溶液に2分間浸漬し、パラジウム触媒核の活性化を行った。   Next, a ratio of 150 g / L of Meltex Co., Ltd. Enplate PC-236 in an aqueous solution in which Meltex Co., Ltd. Enplate Activator 444 is dissolved by 3%, Enplate Activator Additive is 1%, and hydrochloric acid is dissolved by 3%. The laminate was immersed in the solution dissolved in 5 minutes to adhere the catalyst particles to the surface of the laminate and the wall surface of the through hole. Further, the laminate was immersed in a 5% solution of Enplate PA-360 manufactured by Meltex Co., Ltd. for 2 minutes to activate the palladium catalyst nucleus.

メルテックス(株)製メルプレートCu−3000A、メルプレートCu−3000B、メルプレートCu−3000C、メルプレートCu−3000Dをそれぞれ5%、メルプレートCu−3000スタビライザーを0.1%で建浴した無電解銅めっき液に十分エアー撹拌を行いながら上記積層体を5分間浸漬し、表面及び貫通孔の壁面を銅粒子にて導電化した。   Meltex Co., Ltd. Melplate Cu-3000A, Melplate Cu-3000B, Melplate Cu-3000C, Melplate Cu-3000D are each 5%, and Melplate Cu-3000 Stabilizer is 0.1%. The laminate was immersed for 5 minutes in the electrolytic copper plating solution with sufficient air stirring, and the surface and wall surfaces of the through holes were made conductive with copper particles.

次いで、電気銅めっき液として、メルテックス(株)製カッパークリームCLXを使用し、電流密度2A/dmにて30分間、電気銅めっきにて貫通孔を銅で充填した。マスク表面への過剰めっきを10%硫酸溶液に目視でマスク層の表面が見えるまで浸漬しエッチングしてから手で裂くようにマスク層を剥離し、膜厚方向に導通する外径25μmφの電極によって膜厚方向へのみ導電性を有し、かつ、膜表面に7μmの突起電極をもった異方性導電膜を得た。 Subsequently, as an electrolytic copper plating solution, Meltex Co., Ltd. copper cream CLX was used, and the through holes were filled with copper by electrolytic copper plating at a current density of 2 A / dm 2 for 30 minutes. Excess plating on the mask surface is immersed in a 10% sulfuric acid solution until the surface of the mask layer is visually observed and etched, then the mask layer is peeled off so as to tear by hand, and an electrode having an outer diameter of 25 μmφ that conducts in the film thickness direction. An anisotropic conductive film having conductivity only in the film thickness direction and having a protruding electrode of 7 μm on the film surface was obtained.

この異方性導電膜を5ml/Lで建浴したメルテックス(株)製エンテックCu−56に30秒間浸漬して防錆処理し、延伸法による多孔質PTFE膜を基膜とし、各貫通孔に導電性金属が充填された異方性導電膜を得た。   This anisotropic conductive film was immersed in Meltex Co., Ltd. Entec Cu-56, which was built at 5 ml / L, for 30 seconds to prevent rust, and a porous PTFE film formed by stretching was used as the base film. An anisotropic conductive film filled with a conductive metal was obtained.

めっき工程において、無電解銅めっきのプレディップ工程と触媒付与工程の間以外の各液浸漬後は、蒸留水にて30秒間から1分間程度水洗を行った。各液の温度は、脱脂処理を除いて全て常温(20〜30℃)で行った。   In the plating process, after immersion in each liquid other than between the pre-dip process and the catalyst application process of electroless copper plating, the plate was washed with distilled water for about 30 seconds to 1 minute. The temperature of each solution was all normal temperature (20-30 degreeC) except the degreasing process.

このようにして、図8に示すように、多孔質PTFE膜83を基膜とし、各貫通孔に導電性金属が充填され、かつ、両面に突起がある導通部(電極)82を有する異方性導電膜81を得た。この異方性導電膜を用いて、実施例1と同様の試験を行ったところ、導通開始荷重圧は3kPaであった。十分な導通が得られ、かつ、膜厚歪みが38%となる荷重圧の37.0kPaで10回の加重と未加重を繰り返した後は、膜厚が6.1μm減少し、導通開始荷重圧の3kPaでは導通が得られなかった。   In this way, as shown in FIG. 8, an anisotropic having a conductive portion (electrode) 82 with a porous PTFE film 83 as a base film, each through hole filled with a conductive metal, and having protrusions on both sides. The conductive film 81 was obtained. When the same test as Example 1 was done using this anisotropic conductive film, the conduction start load pressure was 3 kPa. After sufficient conduction and repeated loading and unloading 10 times at a load pressure of 37.0 kPa at which the film thickness distortion becomes 38%, the film thickness decreases by 6.1 μm, and the conduction start load pressure No conduction was obtained at 3 kPa.

[比較例2]
所定量の架橋剤を添加したシリコーンゴム〔信越ポリマー(株)製、付加型RTVゴム KE1206〕にニッケル粒子〔日本アトマイズ加工(株)製、平均粒径10μm〕が80vol%となるように室温で配合し混合した。このコンパウンドをガラス板上にギャップ25μmのドクターナイフでキャスティング後、80℃の恒温槽内で1時間硬化させ、厚さ約22μmの金属粒子がシリコーンエラストマー中に分散した異方性導電膜を得た。
[Comparative Example 2]
At room temperature, nickel particles (manufactured by Nippon Atomizing Co., Ltd., average particle size 10 μm) are added to silicone rubber (manufactured by Shin-Etsu Polymer Co., Ltd., addition type RTV rubber KE1206) to which a predetermined amount of a crosslinking agent has been added. Blended and mixed. This compound was cast on a glass plate with a doctor knife having a gap of 25 μm and then cured in a thermostatic bath at 80 ° C. for 1 hour to obtain an anisotropic conductive film in which metal particles having a thickness of about 22 μm were dispersed in a silicone elastomer. .

このようにして、図9に示すように、シリコーンゴムからなる基膜92の中に導電性粒子93が分散した構造の異方性導電膜91を得た。この異方性導電膜を用いて、実施例1と同様の試験を行ったところ、導通開始荷重圧は25kPaであった。十分な導通が得られ、かつ、膜厚歪みが38%となる荷重圧の28.0kPaで10回の加重と未加重を繰り返した後は、膜厚が0.7μm減少し、導通開始荷重圧の25kPaでは導通が得られなかった。   Thus, as shown in FIG. 9, an anisotropic conductive film 91 having a structure in which conductive particles 93 are dispersed in a base film 92 made of silicone rubber was obtained. When the same test as Example 1 was done using this anisotropic conductive film, the conduction start load pressure was 25 kPa. After repeated loading and unloading 10 times at a load pressure of 28.0 kPa at which the film thickness distortion becomes 38%, sufficient film conduction is obtained, the film thickness decreases by 0.7 μm, and the conduction start load pressure No conduction was obtained at 25 kPa.

Figure 2008021658
Figure 2008021658

(脚注)比較例1の膜厚は、導通部の突起高さを含む。 (Footnote) The film thickness of Comparative Example 1 includes the protrusion height of the conductive portion.

本発明の異方性導電膜は、膜厚方向に弾力性があり、低圧縮荷重で膜厚方向の導通が可能で、さらには、弾性回復が可能で、頻回の使用に適している異方性導電膜である。また、本発明の異方性導電膜は、各導通部の大きさやピッチなどをファイン化することができる異方性導電膜である。   The anisotropic conductive film of the present invention is elastic in the film thickness direction, can conduct in the film thickness direction with a low compressive load, and can be elastically recovered, making it suitable for frequent use. It is a isotropic conductive film. In addition, the anisotropic conductive film of the present invention is an anisotropic conductive film capable of refining the size and pitch of each conductive portion.

このため、本発明の異方性導電膜は、半導体ディバイスの初期故障を取り除くスクリーニング手法の一つとしてのバーンイン試験のためのコンタクトシートなどに使用される。   For this reason, the anisotropic conductive film of the present invention is used for a contact sheet for a burn-in test as one of screening methods for removing an initial failure of a semiconductor device.

図1は、貫通孔が形成された多孔質膜の斜視図である。FIG. 1 is a perspective view of a porous membrane having through holes formed therein. 図2は、本発明の異方性導電膜において、各貫通孔の壁面で多孔質構造の樹脂部に導電性金属粒子が付着して導通部を形成している状態を示す断面図である。FIG. 2 is a cross-sectional view showing a state in which conductive metal particles are attached to a resin portion having a porous structure on the wall surface of each through hole to form a conductive portion in the anisotropic conductive film of the present invention. 図3は、貫通孔の直径aと導通部(電極)の外径bとの関係を示す説明図である。FIG. 3 is an explanatory diagram showing the relationship between the diameter a of the through hole and the outer diameter b of the conducting portion (electrode). 図4は、基膜を中心層とする積層体の製造工程を示す断面図である。FIG. 4 is a cross-sectional view showing a manufacturing process of a laminate having a base film as a central layer. 図5は、異方性導電膜の導通確認装置の断面略図である。FIG. 5 is a schematic cross-sectional view of an anisotropic conductive film conduction confirmation device. 図6は、従来の異方性導電膜の一例を示す断面図である。FIG. 6 is a cross-sectional view showing an example of a conventional anisotropic conductive film. 図7は、従来の異方性導電膜の他の一例を示す断面図である。FIG. 7 is a cross-sectional view showing another example of a conventional anisotropic conductive film. 比較例1で作製した異方性導電シートの断面図である。3 is a cross-sectional view of an anisotropic conductive sheet produced in Comparative Example 1. FIG. 比較例2で作製した異方性導電シートの断面図である。6 is a cross-sectional view of an anisotropic conductive sheet produced in Comparative Example 2. FIG. 超音波法により、多孔質膜に貫通孔を形成する方法を示す説明図である。It is explanatory drawing which shows the method of forming a through-hole in a porous membrane by the ultrasonic method.

符号の説明Explanation of symbols

1:多孔質膜(基膜)、2:第一表面、3:第二表面、
4:貫通孔、5:導電性金属が付着した導通部、6:多孔質膜、
41,42:SUS板、43:基膜、44,45:マスク層、
51:異方性導電膜、52:Au板、53:銅柱、
54:定電流電源、55:電圧計、56:重量計、
61:異方性導電膜、62:導電性金属の塊(導通部)、63:多孔質膜、
71:異方性導電膜、72:導電路形成部、
73:カプセル型導電性粒子、74:熱硬化性樹脂からなる絶縁部、
81:異方性導電膜、82:導電性金属の塊(導通部)、83:多孔質膜、
91:異方性導電膜、92:シリコーンゴム、93:導電粒子、
101:超音波ヘッド、102:ロッド、103:多孔質膜、104:板状体。
1: porous membrane (base membrane), 2: first surface, 3: second surface,
4: through-hole, 5: conductive part to which conductive metal is attached, 6: porous film,
41, 42: SUS plate, 43: base film, 44, 45: mask layer,
51: anisotropic conductive film, 52: Au plate, 53: copper pillar,
54: Constant current power supply, 55: Voltmeter, 56: Weigh scale,
61: anisotropic conductive film, 62: lump of conductive metal (conductive portion), 63: porous film,
71: anisotropic conductive film, 72: conductive path forming part,
73: Capsule-type conductive particles, 74: Insulating part made of thermosetting resin,
81: anisotropic conductive film, 82: lump of conductive metal (conductive portion), 83: porous film,
91: anisotropic conductive film, 92: silicone rubber, 93: conductive particles,
101: Ultrasonic head, 102: Rod, 103: Porous film, 104: Plate-like body.

Claims (14)

合成樹脂から形成された電気絶縁性の多孔質膜を基膜とし、該基膜の複数箇所に、第一表面から第二表面に貫通する、多孔質膜の膜厚方向に貫通孔を形成する工程により形成された貫通孔の壁面で多孔質構造の樹脂部に付着した導電性金属により形成され、膜厚方向にのみ導電性を付与することが可能な導通部がそれぞれ独立して設けられ、かつ、各導通部が、多孔質膜の多孔質構造を保持した状態で、各貫通孔の壁面における多孔質構造の樹脂部に付着した導電性金属により形成されていることを特徴とする異方性導電膜。   Using an electrically insulating porous film formed of a synthetic resin as a base film, through holes are formed in a plurality of locations of the base film from the first surface to the second surface in the film thickness direction of the porous film. A conductive portion formed by a conductive metal attached to the resin portion of the porous structure at the wall surface of the through hole formed by the process, and each of the conductive portions capable of imparting conductivity only in the film thickness direction are provided independently, In addition, each of the conductive portions is formed of a conductive metal attached to the resin portion of the porous structure on the wall surface of each through-hole while maintaining the porous structure of the porous membrane. Conductive film. 各導通部が、各貫通孔の壁面における多孔質構造の樹脂部に付着した導電性金属の粒子により形成されている請求項1記載の異方性導電膜。   The anisotropic conductive film according to claim 1, wherein each conducting portion is formed of conductive metal particles attached to a porous resin portion on the wall surface of each through hole. 導電性金属の粒子が、導電性金属の無電解めっき粒子である請求項2記載の異方性導電膜。   The anisotropic conductive film according to claim 2, wherein the conductive metal particles are electroless plated particles of conductive metal. 多孔質膜が、多孔質ポリテトラフルオロエチレン膜である請求項1乃至3のいずれか1項に記載の異方性導電膜。   The anisotropic conductive film according to any one of claims 1 to 3, wherein the porous film is a porous polytetrafluoroethylene film. 多孔質構造の樹脂部が、それぞれポリテトラフルオロエチレンからなるフィブリルと該フィブリルによって互に連結されたノードとから形成された多孔質構造の該フィブリルとノードである請求項4記載の異方性導電膜。   5. The anisotropic conductive material according to claim 4, wherein the resin portion of the porous structure is a fibril and a node of the porous structure formed from fibrils made of polytetrafluoroethylene and nodes connected to each other by the fibrils. film. 膜厚方向に圧力を加えることにより、各導通部において膜厚方向にのみ導電性が付与される請求項1乃至5のいずれか1項に記載の異方性導電膜。   The anisotropic conductive film according to claim 1, wherein by applying pressure in the film thickness direction, conductivity is imparted only in the film thickness direction in each conduction portion. 合成樹脂から形成された電気絶縁性の多孔質膜からなる基膜の複数箇所に、多孔質膜の膜厚方向に貫通孔を形成する工程により、第一表面から第二表面に貫通する貫通孔を形成し、次いで、該貫通孔の壁面における多孔質構造の樹脂部に導電性金属を多孔質構造を保持するように付着させて、膜厚方向にのみ導電性を付与することが可能な導通部をそれぞれ独立して設けることを特徴とする異方性導電膜の製造方法。   Through-holes penetrating from the first surface to the second surface by forming the through-holes in the film thickness direction of the porous film at a plurality of locations of the base film made of a synthetic resin and made of an electrically insulating porous film Next, a conductive metal can be attached to the porous resin portion on the wall surface of the through hole so as to hold the porous structure, and conductivity can be imparted only in the film thickness direction. A method for producing an anisotropic conductive film, wherein the portions are provided independently. 該基膜の複数箇所に、シンクロトロン放射光もしくは波長250nm以下のレーザ光を照射して、第一表面から第二表面に貫通する貫通孔を形成する請求項7記載の製造方法。   The manufacturing method according to claim 7, wherein a plurality of portions of the base film are irradiated with synchrotron radiation light or laser light having a wavelength of 250 nm or less to form through holes penetrating from the first surface to the second surface. 該基膜の複数箇所に、超音波加工により、第一表面から第二表面に貫通する貫通孔を形成する請求項7記載の製造方法。   The manufacturing method according to claim 7, wherein through holes penetrating from the first surface to the second surface are formed at a plurality of locations of the base film by ultrasonic processing. 各貫通孔の壁面における多孔質構造の樹脂部に導電性金属の粒子を付着させることにより、導通部を設ける請求項7乃至9のいずれか1項に記載の製造方法。   The manufacturing method of any one of Claims 7 thru | or 9 which provides a conduction | electrical_connection part by making the particle | grains of a conductive metal adhere to the resin part of the porous structure in the wall surface of each through-hole. 各貫通孔の壁面における多孔質構造の樹脂部に、無電解めっきにより導電性金属を付着させる請求項7乃至10のいずれか1項に記載の製造方法。   The manufacturing method of any one of Claims 7 thru | or 10 which adheres a conductive metal to the resin part of the porous structure in the wall surface of each through-hole by electroless plating. 各貫通孔の壁面における多孔質構造の樹脂部に、化学還元反応を促進する触媒粒子を付着させた後、化学還元反応による無電解めっきにより導電性金属を付着させる請求項11記載の製造方法。   The manufacturing method according to claim 11, wherein after the catalyst particles that promote the chemical reduction reaction are attached to the resin portion having a porous structure on the wall surface of each through-hole, the conductive metal is attached by electroless plating based on the chemical reduction reaction. 多孔質膜が、多孔質ポリテトラフルオロエチレン膜である請求項7乃至12のいずれか1項に記載の製造方法。   The manufacturing method according to claim 7, wherein the porous film is a porous polytetrafluoroethylene film. 多孔質構造の樹脂部に導電性金属を付着させるに際し、粒子径0.001〜5μmの導電性金属粒子を付着量0.001〜4.0g/mlで付着させる請求項7乃至13のいずれか1項に記載の製造方法。   The conductive metal particles having a particle diameter of 0.001 to 5 μm are adhered at a deposition amount of 0.001 to 4.0 g / ml when the conductive metal is adhered to the porous resin portion. 2. The production method according to item 1.
JP2007243305A 2002-12-03 2007-09-20 Anisotropic conductive film and manufacturing method thereof Expired - Fee Related JP4428431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007243305A JP4428431B2 (en) 2002-12-03 2007-09-20 Anisotropic conductive film and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002351490 2002-12-03
JP2007243305A JP4428431B2 (en) 2002-12-03 2007-09-20 Anisotropic conductive film and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003096173A Division JP4039293B2 (en) 2002-12-03 2003-03-31 Method for manufacturing anisotropic conductive film

Publications (2)

Publication Number Publication Date
JP2008021658A true JP2008021658A (en) 2008-01-31
JP4428431B2 JP4428431B2 (en) 2010-03-10

Family

ID=39077444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007243305A Expired - Fee Related JP4428431B2 (en) 2002-12-03 2007-09-20 Anisotropic conductive film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4428431B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113963855A (en) * 2021-09-21 2022-01-21 北京大华博科智能科技有限公司 Z-axis conductor and Z-axis conductive film, and preparation method and application thereof
CN115257208A (en) * 2021-12-29 2022-11-01 山东华滋自动化技术股份有限公司 Method and device for manufacturing low-temperature electrothermal film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113963855A (en) * 2021-09-21 2022-01-21 北京大华博科智能科技有限公司 Z-axis conductor and Z-axis conductive film, and preparation method and application thereof
CN115257208A (en) * 2021-12-29 2022-11-01 山东华滋自动化技术股份有限公司 Method and device for manufacturing low-temperature electrothermal film
CN115257208B (en) * 2021-12-29 2023-12-05 山东华滋自动化技术股份有限公司 Manufacturing method and manufacturing device of low-temperature electrothermal film

Also Published As

Publication number Publication date
JP4428431B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP4039293B2 (en) Method for manufacturing anisotropic conductive film
KR101011923B1 (en) Anisotropic conductive film and manufacturing method thereof
JP4604893B2 (en) Composite porous resin substrate and method for producing the same
TWI387158B (en) Porous resin material, method for manufacturing the same, and multi-layer substrate
TW200536068A (en) Manufacturing method of pattern machined porosity object or non-weaving cloth and electrical circuit component
JP4428431B2 (en) Anisotropic conductive film and manufacturing method thereof
JP4075637B2 (en) Method for producing anisotropic conductive sheet
JP2007220512A (en) Connector, conductive connection structure and probe member
JP4715601B2 (en) Electrical connection parts
WO2007058101A1 (en) Anisotropic conductive sheet, its production method, connection method and inspection method
TW200848746A (en) Sheet-like probe and method for manufacturing the same
JP2008066076A (en) Anisotropic conductive sheet and forming method therefor, laminated sheet object, and inspection unit
JP2008075103A (en) Method for forming porous resin material
JP2005142111A (en) Anisotropic conduction sheet
JP2008077873A (en) Porous resin material, its forming method, laminated sheet object, and inspection unit
JP4826905B2 (en) Anisotropic conductive film and manufacturing method thereof
JP4715600B2 (en) Sheet connector and manufacturing method thereof
JP2008241641A (en) Interposer and manufacturing method therefor
JP2008066077A (en) Anisotropic conductive sheet and forming method therefor, laminated sheet object, and inspection unit
JP2008063415A (en) Porous resin material, method for producing the same, laminate sheet material and inspection unit
JP2008258032A (en) Anisotropic conductive sheet and its manufacturing method
JP4788521B2 (en) Anisotropic conductive film and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04