JP2008021545A - Planar heating element - Google Patents

Planar heating element Download PDF

Info

Publication number
JP2008021545A
JP2008021545A JP2006192744A JP2006192744A JP2008021545A JP 2008021545 A JP2008021545 A JP 2008021545A JP 2006192744 A JP2006192744 A JP 2006192744A JP 2006192744 A JP2006192744 A JP 2006192744A JP 2008021545 A JP2008021545 A JP 2008021545A
Authority
JP
Japan
Prior art keywords
heating element
sheet
rubber
planar
planar heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006192744A
Other languages
Japanese (ja)
Inventor
Kanefusa Hayashi
兼芳 林
Mokichi Hayashi
茂吉 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankei Giken Co Ltd
Original Assignee
Sankei Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankei Giken Co Ltd filed Critical Sankei Giken Co Ltd
Priority to JP2006192744A priority Critical patent/JP2008021545A/en
Publication of JP2008021545A publication Critical patent/JP2008021545A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a planar heating element free from risk of a heating element and an insulating sheet part exfoliating at an adhesive interface even if expansion and contraction are repeated involving differences of degrees of the expansion and contraction due to bending or heat radiation at handling, especially, a planar heating element having flexibility. <P>SOLUTION: The planar heating element 1 is provided with an exothermic part 10, and sheet parts 20 covering the exothermic part 10. The exothermic part 10 consists of a thin-film heating element equipped with a plurality of through-holes, and the sheet parts 20 are arranged at a top face and a bottom face of the heating element 11 to cover the same 11, and are continued through the through-holes 111. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、薄膜状の発熱体素子を用いた面状発熱体に関する。   The present invention relates to a planar heating element using a thin film heating element.

近年、土木、建築分野において面状発熱体の活用が進められている。例えば、土木分野においては、特に融雪用として道路、橋梁、あるいは歩道橋等に用途開発が進み、また、建築分野においては、床暖房、屋根融雪用等に使用されている。加えてホームエレクトロニクスあるいはビルのインテリジェント化の進行で今後の面状発熱体の需要は大幅に増加することが予想される。   In recent years, the use of planar heating elements has been promoted in the fields of civil engineering and architecture. For example, in the civil engineering field, application development is progressing particularly for roads, bridges, and pedestrian bridges for melting snow, and in the building field, it is used for floor heating, melting snow on the roof, and the like. In addition, the demand for sheet heating elements is expected to increase significantly in the future as home electronics or buildings become more intelligent.

従来、面状発熱体としては、金属箔を樹脂フィルムに貼合し所定の加熱部分をプリントしてエッチングを行って配線したもの、合成樹脂にカーボン粉末、カーボン短繊維、アルミ粉末等の導電性充填剤を配合してシート状に成形したもの、ガラス繊維等の耐熱性繊維織物上にカーボン等の導電性物質をグラフト化した塗料を塗布し電極部を付けたもの等々が提案され(例えば、特許文献1、特許文献2、特許文献3他)、電熱カーペット、水道の凍結防止、温室の暖房、融雪用等に用いられている。   Conventionally, as a planar heating element, metal foil is bonded to a resin film, a predetermined heated portion is printed and etched and wired, and synthetic resin has carbon powder, carbon short fiber, aluminum powder, etc. Proposals have been proposed in which a filler is blended and formed into a sheet shape, a coating obtained by applying a conductive material such as carbon on a heat resistant fiber fabric such as glass fiber, and an electrode portion is attached (for example, Patent Document 1, Patent Document 2, Patent Document 3, and the like), electric heating carpets, water-freezing prevention, greenhouse heating, snow melting and the like.

これらの面状発熱体は、上記のような金属箔タイプ、金属粉塗料タイプ、カーボン粉末等の導電性充填剤練り込みタイプ等の発熱体素子の両面に絶縁性シートあるいはボード等を接着する、あるいは発熱体素子、電極部、絶縁層を一体成形する方法が一般的に採用されている。
特開平5−299159号公報 特開平7−242827号公報 特開昭48−21230号公報
These planar heating elements are bonded to an insulating sheet or board on both sides of a heating element such as a metal foil type, a metal powder paint type, a conductive filler kneading type such as carbon powder as described above, Or the method of integrally forming a heating element, an electrode part, and an insulating layer is generally adopted.
JP-A-5-299159 Japanese Patent Laid-Open No. 7-242827 JP-A-48-21230

しかしながら、これらの面状発熱体は、発熱体素子の両面に絶縁性シート部を接着して発熱体素子を被覆した構成なので、薄厚の可撓性を有するシート体とした場合、取り扱いの際における湾曲の繰り返しにより、発熱体素子と絶縁性シート部との接着界面で剥離が生じ易い。また、発熱体素子と絶縁性シート部とは、発熱による伸縮量が異なるために、接着界面には位相差が生ずるが、長期間の使用でこれが繰り返されることにより剥離がより生じ易くなる。また、発熱体素子とシート部とが接着性の悪い材質である場合にはプライマー処理等を行って接着性を向上させることが必要となるというような発熱体素子と被覆するシート部との間の接着性が問題となる。   However, these planar heating elements have a structure in which an insulating sheet portion is adhered to both sides of the heating element to cover the heating element. Therefore, when a thin flexible sheet is used, Due to the repeated curvature, peeling is likely to occur at the adhesive interface between the heating element and the insulating sheet. In addition, since the heating element and the insulating sheet portion have different amounts of expansion and contraction due to heat generation, a phase difference occurs at the adhesive interface, but peeling is more likely to occur when this is repeated over a long period of use. In addition, when the heating element and the sheet portion are made of a material having poor adhesion, it is necessary to perform primer treatment or the like to improve the adhesion between the heating element and the covering sheet portion. Adhesiveness is a problem.

本発明は、このような課題に鑑み、取り扱い時の湾曲や発熱による発熱体素子と被覆層との伸縮度合の差を伴う伸び縮みが繰り返されても、発熱体素子と絶縁性シート部とが接着界面で剥離することがない面状発熱体、特に可撓性を有する面状発熱体を提供することを目的とする。   In view of such a problem, the present invention provides the heating element and the insulating sheet portion even when the heating element and the insulating sheet portion are repeatedly expanded and contracted due to the difference in the degree of expansion and contraction between the heating element and the coating layer due to bending or heat generation during handling. It is an object of the present invention to provide a planar heating element that does not peel at the adhesive interface, particularly a flexible planar heating element.

本発明者らは、薄膜状の面状発熱体素子をシート部で被覆してなる面状発熱体において、面状の発熱体素子に複数個の貫通穴を形成し、該貫通穴でシート部を連続させて一体化することで発熱体素子とシート部との剥離を防止できることを見出し、本発明を完成するに至った。   In the planar heating element formed by coating a thin sheet planar heating element with a sheet portion, the present invention forms a plurality of through holes in the planar heating element, and the sheet portion is formed by the through hole. As a result, it was found that peeling between the heating element and the sheet portion can be prevented by continuous integration, and the present invention has been completed.

より具体的には、本発明は以下のようなものを提供する。   More specifically, the present invention provides the following.

(1) 発熱部と、該発熱部を被覆するシート部と、を備える面状発熱体であって、前記発熱部は、複数個の貫通穴を有する薄膜状の発熱体素子からなり、前記シート部は、前記発熱体素子の上面及び下面とに配置されて該発熱体素子を被覆し、且つ、前記貫通穴で互いに連通している面状発熱体。   (1) A planar heating element comprising a heating part and a sheet part covering the heating part, wherein the heating part comprises a thin-film heating element having a plurality of through holes, and the sheet The sheet heating element is disposed on the upper and lower surfaces of the heating element, covers the heating element, and communicates with each other through the through hole.

(1)の発明における面状発熱体は、発熱部と、該発熱部を被覆するシート部と、を備える。また、発熱部は、薄膜状の発熱体素子からなり、該発熱体素子は、複数個の貫通穴を有し、前記発熱体素子の上面及び下面とに配置されて該発熱体素子を被覆しているシート部が、発熱体素子の貫通穴を通して連続されて一体化しているので、発熱体素子とシート部との接着性に優れ、発熱体素子とシート部の剥離が生じ難い。また、繰り返しの湾曲・折り曲げ作業や加熱による発熱体素子とシート部との伸縮が繰り返されても発熱体素子とシート部が剥離してくるおそれがない。   The planar heating element in the invention of (1) includes a heating part and a sheet part covering the heating part. Further, the heat generating part is formed of a thin film heat generating element, and the heat generating element has a plurality of through holes and is disposed on the upper surface and the lower surface of the heat generating element to cover the heat generating element. Since the sheet portion is continuous and integrated through the through-holes of the heating element, the adhesiveness between the heating element and the sheet portion is excellent, and the heating element and the sheet portion hardly peel off. Further, even if the heating element and the sheet portion are repeatedly expanded and contracted by repeated bending and bending operations or heating, there is no possibility that the heating element and the sheet portion are peeled off.

(2) 前記発熱体素子は、厚み100μm以下の金属箔である(1)に記載の面状発熱体。   (2) The sheet heating element according to (1), wherein the heating element is a metal foil having a thickness of 100 μm or less.

(2)の発明における面状発熱体は、発熱体素子が、その厚みが30〜100μmの薄膜状の金属箔であるので、発熱体素子は柔軟性を有することになる。柔軟に変形可能なシート部で被覆して用いることで、柔軟性を有する面状発熱体を構成することができる。面状発熱体を柔軟に変形可能とすることで、例えば、曲面を有する物や、人体などの動く物に装着可能に構成することができる。   In the planar heating element in the invention of (2), since the heating element is a thin metal foil having a thickness of 30 to 100 μm, the heating element has flexibility. By covering and using the sheet portion that can be flexibly deformed, a planar heating element having flexibility can be configured. By making the planar heating element deformable flexibly, for example, it can be configured so that it can be attached to an object having a curved surface or a moving object such as a human body.

(3) 前記シート部は、絶縁性を有する可撓性材料で形成されている(1)又は(2)に記載の面状発熱体。   (3) The sheet heating element according to (1) or (2), wherein the sheet portion is formed of an insulating flexible material.

(3)の発明による面状発熱体は、シート部が絶縁性を有する可撓性材料であるので、シート部は柔軟性を有することになる。上記(2)に記載の厚み30〜100μmの金属箔である発熱体素子とを組み合わせることで、柔軟で可撓性を有する面状発熱体となるため、面状発熱体は柔軟に変形可能となり、例えば、曲面を有する物や、人体などの動く物に装着可能に構成することができる。また、シート部自体が絶縁性を有するので、面状発熱体を絶縁材料で被覆する必要がないため面状発熱体を直接人体に当てても好適に使用することができる。また、経済的でもある。   In the sheet heating element according to the invention of (3), since the sheet portion is a flexible material having insulation properties, the sheet portion has flexibility. Combining the heating element, which is a metal foil having a thickness of 30 to 100 μm as described in (2) above, makes the sheet heating element flexible and flexible, so that the sheet heating element can be flexibly deformed. For example, it can be configured to be attachable to an object having a curved surface or a moving object such as a human body. Further, since the sheet portion itself has an insulating property, it is not necessary to coat the planar heating element with an insulating material, and therefore the sheet heating element can be suitably used even when the planar heating element is directly applied to a human body. It is also economical.

(4) 前記可撓性材料は、ゴム又は熱可塑性樹脂である(3)に記載の面状発熱体。   (4) The planar heating element according to (3), wherein the flexible material is rubber or a thermoplastic resin.

(4)の発明による面状発熱体は、シート部が絶縁性及び可撓性を有するゴム又は熱可塑性樹脂であるので、柔軟性に優れると共に、絶縁性を有する。これにより、人体に直接当てるなどの使用が可能な面状発熱体を構成することができる。また、ゴム又は熱可塑性樹脂を用い、これらで発熱部を被覆し、これらをプレスしながら加熱処理することで、ゴムは加熱溶融して加硫され、また、熱可塑性樹脂は加熱溶融されて、発熱体素子に形成された貫通穴を通して発熱体素子の上下に配設されたゴム又は熱可塑性樹脂が接続し一体化される。これにより、発熱体素子とシート部との接着性がより向上し、剥離が生じ難くなる。   Since the sheet | seat part is the rubber | gum or thermoplastic resin which has insulation and flexibility, the planar heating element by invention of (4) is excellent in a softness | flexibility, and has insulation. Thereby, the planar heat generating body which can be used, such as being directly applied to a human body, can be comprised. Also, using rubber or a thermoplastic resin, covering the heat generating part with these, and heating them while pressing them, the rubber is heated and melted and vulcanized, and the thermoplastic resin is heated and melted, Rubber or thermoplastic resin disposed above and below the heating element is connected and integrated through a through hole formed in the heating element. Thereby, the adhesiveness of a heat generating element and a sheet | seat part improves more, and it becomes difficult to produce peeling.

(5) 複数個の貫通穴を有する薄膜状の発熱体素子からなる発熱部の上下面に、ゴム又は熱可塑性樹脂を配設し、次いで、加熱プレス処理して、前記ゴム又は熱可塑性樹脂を加硫又は溶融して成形する面状発熱体の製造方法。   (5) A rubber or a thermoplastic resin is disposed on the upper and lower surfaces of the heat generating portion made of a thin film-shaped heat generating element having a plurality of through holes, and then subjected to a hot press treatment, and the rubber or the thermoplastic resin is A method for producing a planar heating element that is molded by vulcanization or melting.

(6) 前期加熱プレス処理は、50〜250Kg/cmの圧力でプレスしながら、120〜300℃の温度で処理するものである(5)に記載の面状発熱体の製造方法。 (6) The method for producing a planar heating element according to (5), wherein the first-stage heat press treatment is performed at a temperature of 120 to 300 ° C. while pressing at a pressure of 50 to 250 Kg / cm 2 .

(5)及び(6)の発明による製造方法は、ゴム又は熱可塑性樹脂で複数個の貫通穴を有する薄膜状の発熱体素子からなる発熱部の上下面を被覆して、この積層物を加熱プレス処理することでゴム又は熱可塑性樹脂が加硫又は溶融されて面状発熱体が成形される。これによって、発熱体素子に形成された貫通穴に上記ゴム又は熱可塑性樹脂が充填されるので、発熱体素子の上下のゴム又は熱可塑性樹脂が接続し一体化された状態となり、発熱部との剥離が生じ難くなる。   In the manufacturing method according to the inventions of (5) and (6), the upper and lower surfaces of the heat generating portion composed of a thin film heating element having a plurality of through holes are covered with rubber or thermoplastic resin, and this laminate is heated. By pressing, rubber or thermoplastic resin is vulcanized or melted to form a planar heating element. As a result, the rubber or thermoplastic resin is filled in the through hole formed in the heating element, so that the upper and lower rubbers or thermoplastic resin of the heating element are connected and integrated, and the Peeling is less likely to occur.

本発明によれば、発熱体素子の上下面を被覆するシート部は発熱体素子に形成された貫通穴で連続して一体化されているので、発熱体素子とシート部との接着が難しい場合でも両者の高い接着強度を得ることができる。また、繰り返しの湾曲・折り曲げ作業や発熱時の発熱体素子とシート部との伸縮差等に起因する剥離が生じ難い。   According to the present invention, since the sheet portions covering the upper and lower surfaces of the heating element are continuously integrated by the through holes formed in the heating element, it is difficult to bond the heating element to the sheet portion. However, the high adhesive strength between the two can be obtained. Further, peeling due to repeated bending / bending operations and differences in expansion / contraction between the heating element and the sheet during heat generation is unlikely to occur.

本発明は電気エネルギーを利用した面状発熱体に適用されるものであって、複数個の貫通穴を有する薄膜状の発熱体素子からなる発熱部の上下面を絶縁性のシート部で被覆し、且つ該貫通穴を通してシート部が連続している面状発熱体である。   The present invention is applied to a planar heating element utilizing electric energy, and the upper and lower surfaces of a heating part composed of a thin film heating element having a plurality of through holes are covered with an insulating sheet part. And a sheet heating element in which the sheet portion is continuous through the through hole.

以下、図面を参照して本発明を実施するための最良の形態を説明するが、本発明がこれらにより限定されるものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings, but the present invention is not limited thereto.

図1は、本発明の面状発熱体における実施形態の平面図である。図2は、図1におけるA―A´断面図である。   FIG. 1 is a plan view of an embodiment of the planar heating element of the present invention. 2 is a cross-sectional view taken along the line AA ′ in FIG.

図1、2に示すように、面状発熱体1は、発熱部10と、該発熱部10を被覆するシート部20と、を備える。   As shown in FIGS. 1 and 2, the sheet heating element 1 includes a heating part 10 and a sheet part 20 that covers the heating part 10.

発熱部10は、複数個の貫通穴111が形成された薄膜状の発熱体素子11と、該発熱体素子11の両端に接続された電力供給線12a、12bと、から形成される。尚、電力供給線12a、12bの一方の先端は、発熱体素子11の端部にハンダ又はカシメ等の接合手段を用いて接続されている(図2の拡大図参照)。尚、図示していないが、電力供給線12a、12bの他方の先端には電力端子部が設けられており、該電力端子部から電力が供給される。   The heat generating part 10 is formed from a thin film-shaped heat generating element 11 in which a plurality of through holes 111 are formed, and power supply lines 12 a and 12 b connected to both ends of the heat generating element 11. Note that one end of each of the power supply lines 12a and 12b is connected to the end of the heating element 11 using a joining means such as solder or caulking (see an enlarged view of FIG. 2). Although not shown, a power terminal portion is provided at the other end of the power supply lines 12a and 12b, and power is supplied from the power terminal portion.

発熱体素子11には、その両端部に接続される電力供給線12a、12bを介して電力が供給される。発熱部10を構成する発熱体素子11は、供給された電力により発熱する。これにより、面状発熱体1の全体が発熱する。また、該発熱部10は絶縁性を有するシート部20により被覆されていて、好適に、面状発熱体1を直接人体に当てることができるようになっている。   Electric power is supplied to the heating element 11 via power supply lines 12a and 12b connected to both ends thereof. The heat generating element 11 constituting the heat generating part 10 generates heat by the supplied power. As a result, the entire sheet heating element 1 generates heat. Further, the heat generating portion 10 is covered with a sheet portion 20 having an insulating property, and preferably, the planar heat generating element 1 can be directly applied to a human body.

シート部20は、発熱部10の下面を被覆する第1シート21と上面を被覆する第2シート22とからなり、第1シート21と第2シート22とは、発熱体素子11に形成された貫通穴111で接続されて一体化されている(図2の拡大図参照)。   The sheet unit 20 includes a first sheet 21 that covers the lower surface of the heat generating unit 10 and a second sheet 22 that covers the upper surface. The first sheet 21 and the second sheet 22 are formed in the heating element 11. They are connected and integrated by a through hole 111 (see an enlarged view of FIG. 2).

尚、本発明において、発熱体素子11の両端に接続された電力供給線12a、12bを介して電力が供給されて、発熱されることになっているが、発熱体素子11の両端に一対の電極部を配設して接続し、この電極部の端部に電力供給線を接続してもよい。これによって、発熱体素子11への電流がより均一に全域に流れることになるので、発熱体素子11の平面全域をより均一に発熱させることができるためより好ましい。また、電極部は、発熱体素子11の両端で全幅に亘って接続されているのがより一層好ましい。   In the present invention, power is supplied through the power supply lines 12 a and 12 b connected to both ends of the heating element 11 to generate heat. An electrode part may be disposed and connected, and a power supply line may be connected to the end of the electrode part. As a result, the current to the heating element 11 flows more uniformly over the entire area, which is more preferable because the entire planar area of the heating element 11 can be heated more uniformly. It is even more preferable that the electrode portions are connected across the entire width at both ends of the heating element 11.

この際に、電極部に使用される電極材料としては、電気抵抗値が充分低くて従来から一般的に電極部として使用されている銅、ニッケル等の金属が使用可能である。また、電極部の形状としては極細の金属繊維、合成繊維に対する金属メッキ繊維、若しくは合成繊維中に導電性材料を含有した繊維等の導電性繊維又は金属線などの線状材料、これら線状材料を金網若しくは布帛にしたもの、薄い金属板、又は金属箔などが使用できる。特に、導電性繊維、金属箔は軽量で柔軟性を有しているため好ましく使用できる。   At this time, as an electrode material used for the electrode part, metals such as copper and nickel, which have a sufficiently low electric resistance value and are conventionally used as an electrode part, can be used. In addition, as the shape of the electrode portion, a fine metal fiber, a metal plated fiber for a synthetic fiber, or a conductive fiber such as a fiber containing a conductive material in a synthetic fiber, or a linear material such as a metal wire, these linear materials A wire mesh or cloth, a thin metal plate, or a metal foil can be used. In particular, conductive fibers and metal foils are preferably used because they are lightweight and flexible.

更に、金属箔リボン等の帯状の形状とすることで、シーム溶接又はハンダ付け等の接合手段を用いて容易に発熱体素子11の両端全幅に亘って接続できるので特に好ましい。この金属箔リボンを電極部として使用する場合は、電気抵抗値が低い、厚み150μm程度の銅又はニッケル箔リボンがよく、特にこれらのリボンの電気抵抗値は、発熱体素子の電気抵抗値の1/10以下であれば、発熱体素子11の全幅に均等に電流を流すことができ、該発熱体素子11の平面全域を発熱させることが可能となる。   Furthermore, it is particularly preferable to use a strip-like shape such as a metal foil ribbon because it can be easily connected over the entire width of both ends of the heating element 11 using a joining means such as seam welding or soldering. When this metal foil ribbon is used as an electrode portion, a copper or nickel foil ribbon having a low electric resistance value and a thickness of about 150 μm is preferable. In particular, the electric resistance value of these ribbons is 1 of the electric resistance value of the heating element. If it is / 10 or less, it is possible to allow a current to flow evenly over the entire width of the heating element 11 and to generate heat over the entire plane of the heating element 11.

以下、上述した実施形態における各種構成物について説明する。   Hereinafter, various components in the above-described embodiment will be described.

[発熱体素子]
本発明において使用される発熱体素子11としては、金属箔、金属粉やカーボンブラック等の導電性粉末と合成樹脂やゴム等のマトリックスとの複合体、ガラス繊維等の耐熱性繊維織物上にカーボン等の導電性物質をグラフト化した塗料を塗布したシート体、金属繊維、炭素繊維、導電性繊維の抄紙あるいは他の絶縁パルプ、繊維等を含む数種の繊維の混抄紙及びこれらの複合体であれば特に限定されるものではないが、面状発熱体1の可撓性を付与するにはシート状であるのが好ましく、更には、貫通穴の加工性から薄膜状の金属箔が好ましい。
[Heating element]
The heating element 11 used in the present invention includes a metal foil, a composite of conductive powder such as metal powder or carbon black and a matrix such as synthetic resin or rubber, carbon on a heat resistant fiber fabric such as glass fiber. Sheet material coated with a paint grafted with a conductive material such as metal fiber, carbon fiber, paper made of conductive fiber or mixed paper of several kinds of fibers including other insulating pulp, fiber, etc. Although it will not specifically limit if it exists, it is preferable that it is a sheet form in order to provide the flexibility of the planar heating element 1, and further, a thin-film metal foil is preferable from the workability of a through-hole.

発熱体素子11として薄膜状の金属箔を使用する場合、金属箔としては、例えば、オーステナイト系ステンレス鋼、フェライト系ステンレス鋼等のステンレス鋼や、ニッケルクロム合金等のニッケル系合金、アルミ、銅などの金属箔に打ち抜き加工を施すことにより所定の貫通穴が形成されたものである。貫通穴を施すことにより、所望の抵抗値及び発熱量が得られるように所定のパターンに形成される。また、後述するようにシート部20が連続して一体化される。   When a thin film-like metal foil is used as the heating element 11, examples of the metal foil include stainless steel such as austenitic stainless steel and ferritic stainless steel, nickel alloy such as nickel chrome alloy, aluminum, copper, and the like. A predetermined through hole is formed by punching the metal foil. By providing the through hole, the pattern is formed in a predetermined pattern so as to obtain a desired resistance value and heat generation amount. Moreover, the sheet | seat part 20 is integrated integrally so that it may mention later.

これらの金属箔の厚さとしては、面状発熱体の用途により適宜決定することができるが、100μm以下、好ましくは3〜100μm程度、より好ましくは30〜100μmのものが用いられる。   The thickness of these metal foils can be appropriately determined depending on the use of the planar heating element, but is 100 μm or less, preferably about 3 to 100 μm, more preferably 30 to 100 μm.

また、発熱体素子11に形成された貫通穴111の形状は、円形、方形、多角形等いずれでもよく、また、その大きさ及び個数は、発熱体素子11の大きさや厚み及び発熱体素子11とシート部20との接着力等から適宜決定される。尚、発熱体素子11の面積に対する貫通穴111の総面積の割合(開穴率ともいう)は、10〜70%であるのが好ましく、30〜60%であるのがより好ましい。この開穴率が上記の範囲内であれば、シート部20が発熱体素子11に形成された貫通穴111を通じて接続されて好ましい接着力を有することになる。また、発熱させた場合、局部発熱を小さくすることができる。   The shape of the through-hole 111 formed in the heating element 11 may be any of a circle, a square, a polygon, and the like, and the size and the number thereof are the size and thickness of the heating element 11 and the heating element 11. And appropriately determined from the adhesive force between the sheet portion 20 and the like. Note that the ratio of the total area of the through holes 111 to the area of the heating element 11 (also referred to as an opening ratio) is preferably 10 to 70%, and more preferably 30 to 60%. If the hole area ratio is within the above range, the sheet portion 20 is connected through the through hole 111 formed in the heating element 11 and has a preferable adhesive force. In addition, when heat is generated, local heat generation can be reduced.

尚、発熱体素子11の抵抗値は開穴によって大きくなるので、開穴率を上げることで抵抗値が大きくなり発熱量が増大することになる。従って、発熱体素子11の電気特性の設計の際には、発熱体素子として用いる材質や形状(特に厚さ)に加えて開穴率による抵抗率変化を考慮するのが好ましい。   In addition, since the resistance value of the heat generating element 11 is increased by opening, increasing the opening ratio increases the resistance value and increases the amount of heat generation. Therefore, when designing the electrical characteristics of the heating element 11, it is preferable to consider the resistivity change due to the hole area ratio in addition to the material and shape (particularly the thickness) used as the heating element.

発熱体素子11に開穴する方法は、使用する発熱体素子11の材質、性状によって異なるが、フレキシブルタイプ又は箔である場合はパンチング等の機械加工で行うのが一般的である。金属粉やカーボンブラック等の導電性粉末と合成樹脂やゴム等のマトリックスとの複合体等である場合は、得られた複合体を上記のような機械加工してもよいが、成形時に予め開穴部が形成できる形状の型を使用して成形する等の方法であってもよい。   The method of making holes in the heating element 11 varies depending on the material and properties of the heating element 11 to be used, but in the case of a flexible type or foil, it is generally performed by machining such as punching. In the case of a composite of conductive powder such as metal powder or carbon black and a matrix such as synthetic resin or rubber, the obtained composite may be machined as described above. It may be a method such as molding using a mold having a shape capable of forming a hole.

[シート部]
本発明において、シート部20とは、絶縁性や熱伝導性を有する可撓性材料の素材で形成されている。このような素材としては、例えば、天然ゴムやイソプレンゴム、ポリブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、エチレン−プロピレンゴム(EPDMなど)、シリコンゴム、フッ素ゴム、アクリルゴム、ウレタンゴム、熱可塑性エラストマー(ポリオレフィン系,ポリエステル系,ポリアミド系エラストマー他)などの合成ゴム等の各種ゴム、あるいはポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン・ビニルアルコール共重合体、ポリアクリロニトリル、ポリアミド、アクリル酸エステル又はメタクリ酸エステルを主成分とするアクリル樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル、ポリアセタール、アセチル・ジセルロース又はアセチル・トリセルロースの繊維素誘導体等の熱可塑性樹脂が挙げられる。
[Sheet part]
In this invention, the sheet | seat part 20 is formed with the raw material of the flexible material which has insulation and heat conductivity. Examples of such materials include natural rubber, isoprene rubber, polybutadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, ethylene-propylene rubber (EPDM, etc.), silicon rubber, fluorine rubber, acrylic rubber, urethane rubber, and thermoplastic elastomer. Various rubbers such as synthetic rubbers (polyolefin, polyester, polyamide elastomer, etc.), polyolefin resins such as polyethylene and polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene / vinyl alcohol copolymer Acrylic resin, polyethylene terephthalate, polybutylene terephthalate, polyester, mainly composed of coalesced polyacrylonitrile, polyamide, acrylic ester or methacrylic ester Polyesters such as polyalkylene naphthalate, polyacetals include thermoplastic resins such as cellulose derivatives of acetyl-di cellulose or acetyl tri cellulose.

尚、ゴムの場合には、未加硫のものを用いて発熱部10を被覆し、これをプレスしながら加熱して加硫させることで、発熱部10を被覆しているシート部20が発熱体素子11に形成された貫通穴111を通して連続して一体化されるので、接着性がより向上し、剥離が生じ難くなるので、特に好ましい。   In the case of rubber, an unvulcanized material is used to coat the heat generating portion 10, and the sheet portion 20 covering the heat generating portion 10 generates heat by being heated and vulcanized while pressing. Since it is continuously integrated through the through-holes 111 formed in the body element 11, it is particularly preferable because the adhesion is further improved and peeling is less likely to occur.

[製造方法]
本発明の面状発熱体1は、発熱部10を絶縁性のシート部20で被覆することで製造されるが、発熱部10をシート部20で被覆する方法としては、シート部20を構成する可撓性材料の素材を発熱部10の上下面にカレンダー成形法、プレス成形法等で施すことで行われる。
[Production method]
The planar heating element 1 of the present invention is manufactured by covering the heat generating part 10 with the insulating sheet part 20. As a method of covering the heat generating part 10 with the sheet part 20, the sheet part 20 is configured. A flexible material is applied to the upper and lower surfaces of the heat generating portion 10 by a calendar molding method, a press molding method, or the like.

例えば、素材がゴムの場合は、未加硫のゴムシートを用いて、発熱部10を被覆するように上下面に該ゴムシートを配置して、これをゴム加硫成形金型に組み込み、ゴム加硫機で高温高圧で加熱プレス処理して製造する。この際、未加硫ゴムシートは徐々に加硫が進み、相対する上下面の未加硫のゴムシートが、貫通穴111を通じて流動しながら発熱体素子11を覆い込み一体成形が行われる。   For example, when the material is rubber, an unvulcanized rubber sheet is used, and the rubber sheet is arranged on the upper and lower surfaces so as to cover the heat generating portion 10, and this is incorporated into a rubber vulcanization molding die. Manufactured by heat pressing at high temperature and pressure in a vulcanizer. At this time, the vulcanization of the unvulcanized rubber sheet proceeds gradually, and the unvulcanized rubber sheets on the upper and lower surfaces facing each other cover the heating element 11 while flowing through the through-holes 111 and are integrally molded.

また、素材が熱可塑性樹脂の場合は、ゴムと同様に発熱部10を被覆するように上下面に該熱可塑性樹脂を配置して、これをプレス機に組み込み、加熱プレス処理して製造する。この際、熱可塑性樹脂は溶解して、相対する上下面の熱可塑性樹脂が、貫通穴111を通じて流動しながら発熱体素子11を覆い込み一体化される。   Further, when the material is a thermoplastic resin, the thermoplastic resin is arranged on the upper and lower surfaces so as to cover the heat generating portion 10 as in the case of rubber, and this is incorporated into a press machine, and is manufactured by heat pressing. At this time, the thermoplastic resin is melted, and the thermoplastic resin on the upper and lower surfaces facing each other covers the heating element 11 and is integrated while flowing through the through hole 111.

これによって、発熱体素子11に形成された貫通穴111にゴム又は熱可塑性樹脂が充填されて、相対する上下面のゴム又は熱可塑性樹脂が連続して一体化された状態となるので、接着性がより優れることになり、発熱部との剥離が生じ難くなる。   As a result, the through-hole 111 formed in the heating element 11 is filled with rubber or thermoplastic resin, and the opposing upper and lower rubber or thermoplastic resin is continuously integrated. Is more excellent, and peeling from the heat generating portion is less likely to occur.

加熱プレス処理の条件としては、未加硫ゴムシートの場合は、使用するゴムシートの種類によって適宜選定されるが、好ましくは50〜250Kg/cm、より好ましくは100〜200Kg/cmの圧力でプレスしながら、好ましくは120〜180℃、より好ましくは140〜160℃の温度で、好ましくは10〜60分、より好ましくは15〜30分処理する。また、熱可塑性樹脂の場合は、使用する熱可塑性樹脂の種類によって適宜選定されるが、好ましくは50〜250Kg/cm、より好ましくは100〜200Kg/cmの圧力でプレスしながら、好ましくは120〜300℃、より好ましくは140〜180℃の温度で、好ましくは10〜60分、より好ましくは15〜30分処理する。 As the conditions for the heat press treatment, in the case of an unvulcanized rubber sheet, it is appropriately selected depending on the type of rubber sheet to be used, but it is preferably a pressure of 50 to 250 Kg / cm 2 , more preferably 100 to 200 Kg / cm 2 . Is preferably processed at a temperature of 120 to 180 ° C., more preferably 140 to 160 ° C., preferably for 10 to 60 minutes, more preferably for 15 to 30 minutes. In the case of a thermoplastic resin, it is appropriately selected depending on the type of thermoplastic resin to be used, but preferably while pressing at a pressure of 50 to 250 Kg / cm 2 , more preferably 100 to 200 Kg / cm 2 , The treatment is performed at a temperature of 120 to 300 ° C., more preferably 140 to 180 ° C., preferably 10 to 60 minutes, more preferably 15 to 30 minutes.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

<実施例1>
ステンレススチール箔に、円形状で、穴と穴との間隔=4mm、半径=1mmの貫通穴が形成された(開穴率40%)幅100mm、長さ300mm、厚さ50μmの金属箔を発熱体素子とし、この発熱体素子の両端の略中央部に電力供給線をハンダで接続して、発熱部を形成した。この発熱部の上下面に幅110mm、長さ310mm、厚さ1.0mmの未加硫のシリコンゴムシートを重ね合わせた。次に、この発熱部とゴムシートとの積層物を150Kg/cmの圧力でプレスし、150℃の温度で20分程度加熱してゴムシートを加硫して、幅110mm、長さ310mm、厚さ2.0mmの面状発熱体を得た。得られた面状発熱体の層間剥離強度は20Kg/25mmであった。
<Example 1>
A stainless steel foil with a circular shape and through-holes with a hole-to-hole distance of 4 mm and a radius of 1 mm was formed (opening ratio 40%). A metal foil with a width of 100 mm, a length of 300 mm, and a thickness of 50 μm was heated. A heating element was formed by connecting a power supply line to the substantially central part of both ends of the heating element with solder. An unvulcanized silicon rubber sheet having a width of 110 mm, a length of 310 mm, and a thickness of 1.0 mm was superimposed on the upper and lower surfaces of the heat generating portion. Next, the laminate of the heat generating portion and the rubber sheet was pressed at a pressure of 150 kg / cm 2 and heated at a temperature of 150 ° C. for about 20 minutes to vulcanize the rubber sheet to have a width of 110 mm, a length of 310 mm, A planar heating element having a thickness of 2.0 mm was obtained. The obtained sheet heating element had a delamination strength of 20 kg / 25 mm.

以上のようにして得られた面状発熱体5枚に、100Vの交流電圧を通電し、発熱体の表面温度が280℃となるように温度調節しながら2時間通電後、2時間室温下で放置する加熱サイクルを繰り返し、面状発熱体の耐久性を観察した。その結果、繰り返し回数250回後において、いずれの面状発熱体も抵抗値の変化、金属の破断、ゴムシートと発熱体素子との剥がれ、及び変形は認められなかった。また、耐久性試験後の面状発熱体5枚について、5000V、1分の条件で耐電圧性能を測定したが、いずれの面状発熱体も絶縁破壊は生じなかった。更に、前記面状発熱体5枚について柔軟性試験を行った結果、R3mmに湾曲が可能であった。   The five sheet heating elements obtained as described above were energized with an AC voltage of 100 V and the temperature was adjusted so that the surface temperature of the heating element was 280 ° C., and then for 2 hours, at room temperature for 2 hours. The heating cycle was repeated, and the durability of the planar heating element was observed. As a result, after 250 repetitions, no change in resistance value, breakage of metal, peeling between the rubber sheet and the heating element, and deformation were observed in any of the planar heating elements. Further, with respect to five sheet heating elements after the durability test, the withstand voltage performance was measured under the condition of 5000 V for 1 minute, but no dielectric breakdown occurred in any of the sheet heating elements. Furthermore, as a result of conducting a flexibility test on the five sheet heating elements, it was possible to bend to R3 mm.

<比較例1>
実施例1において、ステンレススチール箔には貫通穴を開けずに、他は同様な方法で成形して幅110mm、長さ310mm、厚さ2.0mmの面状発熱体を得た。得られた面状発熱体の層間剥離強度は10Kg/25mmであった。
<Comparative Example 1>
In Example 1, a stainless steel foil was not formed with a through hole, and the others were molded by the same method to obtain a planar heating element having a width of 110 mm, a length of 310 mm, and a thickness of 2.0 mm. The obtained sheet heating element had a delamination strength of 10 kg / 25 mm.

比較例1について、実施例1と同様の方法で面状発熱体の耐久性を観察した。その結果、繰り返し回数250回後において、いずれの面状発熱体も抵抗値の変化、金属の破断、ゴムシートと発熱体素子との剥がれ、及び変形は認められた。また、耐久性試験後の面状発熱体5枚についても、同様にして耐電圧性能を測定したが、一部の面状発熱体に絶縁破壊が生じた。   For Comparative Example 1, the durability of the planar heating element was observed in the same manner as in Example 1. As a result, after 250 repetitions, changes in resistance value, breakage of metal, peeling of the rubber sheet and the heating element, and deformation were observed in any of the planar heating elements. In addition, with respect to five sheet heating elements after the durability test, the withstand voltage performance was measured in the same manner, but dielectric breakdown occurred in some sheet heating elements.

この結果より、本発明の面状発熱体は、層間剥離強度に優れ、耐久性にも優れることが確認された。   From this result, it was confirmed that the planar heating element of the present invention was excellent in delamination strength and excellent in durability.

本発明の面状発熱体における実施形態の平面図である。It is a top view of embodiment in the planar heat generating body of this invention. 図1におけるA―A´断面図である。FIG. 2 is a cross-sectional view taken along line AA ′ in FIG. 1.

符号の説明Explanation of symbols

1 面状発熱体
10 発熱部
11 発熱体素子
20 シート部
111 貫通穴
DESCRIPTION OF SYMBOLS 1 Planar heating element 10 Heating part 11 Heating element 20 Sheet | seat part 111 Through-hole

Claims (6)

発熱部と、該発熱部を被覆するシート部と、を備える面状発熱体であって、
前記発熱部は、複数個の貫通穴を有する薄膜状の発熱体素子からなり、
前記シート部は、前記発熱体素子の上面及び下面に配置されて該発熱体素子を被覆し、且つ、前記貫通穴で互いに連通している面状発熱体。
A sheet heating element comprising a heating part and a sheet part covering the heating part,
The heating part is composed of a thin-film heating element having a plurality of through holes,
The sheet heating element is a planar heating element that is disposed on an upper surface and a lower surface of the heating element, covers the heating element, and communicates with each other through the through hole.
前記発熱体素子は、厚み100μm以下の金属箔である請求項1に記載の面状発熱体
The planar heating element according to claim 1, wherein the heating element is a metal foil having a thickness of 100 μm or less.
前記シート部は、絶縁性を有する可撓性材料で形成されている請求項1又は2に記載の面状発熱体。   The sheet heating element according to claim 1, wherein the sheet portion is formed of a flexible material having insulating properties. 前記可撓性材料は、ゴム又は熱可塑性樹脂である請求項3に記載の面状発熱体。   The planar heating element according to claim 3, wherein the flexible material is rubber or a thermoplastic resin. 複数個の貫通穴を有する薄膜状の発熱体素子からなる発熱部の上下面に、ゴム又は熱可塑性樹脂を配設し、次いで、加熱プレス処理して、前記ゴム又は熱可塑性樹脂を加硫又は溶融して成形する面状発熱体の製造方法。   Rubber or thermoplastic resin is disposed on the upper and lower surfaces of the heat generating portion made of a thin film-shaped heating element having a plurality of through holes, and then subjected to heat press treatment to vulcanize or rub the rubber or thermoplastic resin. A method for producing a sheet heating element that is melted and molded. 前期加熱プレス処理は、50〜250Kg/cmの圧力でプレスしながら、120〜300℃の温度で処理するものである請求項5に記載の面状発熱体の製造方法。
The method for producing a planar heating element according to claim 5, wherein the first heat press treatment is performed at a temperature of 120 to 300 ° C while pressing at a pressure of 50 to 250 Kg / cm 2 .
JP2006192744A 2006-07-13 2006-07-13 Planar heating element Pending JP2008021545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006192744A JP2008021545A (en) 2006-07-13 2006-07-13 Planar heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006192744A JP2008021545A (en) 2006-07-13 2006-07-13 Planar heating element

Publications (1)

Publication Number Publication Date
JP2008021545A true JP2008021545A (en) 2008-01-31

Family

ID=39077352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006192744A Pending JP2008021545A (en) 2006-07-13 2006-07-13 Planar heating element

Country Status (1)

Country Link
JP (1) JP2008021545A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077508A (en) * 2011-09-30 2013-04-25 Covalent Materials Corp Planar heater
CN103604153A (en) * 2013-11-23 2014-02-26 包头市山川圣阳热能科技有限公司 Temperature-controlled electric-heating film heating device and manufacturing method thereof
JP2015122212A (en) * 2013-12-24 2015-07-02 日本バルカー工業株式会社 Planar heater
KR102183076B1 (en) * 2020-04-17 2020-11-25 주식회사 에코피앤씨 Road pavement method using carbon nanotube planar heating element
KR102287045B1 (en) * 2020-10-30 2021-08-09 한국전자기술연구원 Curved heater manufacturing method
KR102362414B1 (en) * 2021-02-10 2022-02-14 지명국 Metal weaving plane heating element, manufacturing method thereof and blind heater containing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100691A (en) * 1979-01-25 1980-07-31 Tokyo Tokushu Densen Kk Panel heater and method of clamping same
JPS5968191A (en) * 1982-10-12 1984-04-18 日本金属株式会社 Panel heater
JPH01260780A (en) * 1988-04-09 1989-10-18 Higashi Kagaku:Kk Surface heating element
JPH02112192A (en) * 1988-10-21 1990-04-24 Kawasaki Steel Corp Foil heater
JPH06231869A (en) * 1993-02-08 1994-08-19 Uizumu Internatl:Kk Composite rubber heating body product and manufacture thereof
JPH0757854A (en) * 1993-08-20 1995-03-03 Toyo Ink Mfg Co Ltd Panel heater
JP2004281191A (en) * 2003-03-14 2004-10-07 Sekisui Plastics Co Ltd Warmth generator and its manufacturing method
JP2005063886A (en) * 2003-08-19 2005-03-10 Okamoto Ind Inc Heat generating rubber sheet and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100691A (en) * 1979-01-25 1980-07-31 Tokyo Tokushu Densen Kk Panel heater and method of clamping same
JPS5968191A (en) * 1982-10-12 1984-04-18 日本金属株式会社 Panel heater
JPH01260780A (en) * 1988-04-09 1989-10-18 Higashi Kagaku:Kk Surface heating element
JPH02112192A (en) * 1988-10-21 1990-04-24 Kawasaki Steel Corp Foil heater
JPH06231869A (en) * 1993-02-08 1994-08-19 Uizumu Internatl:Kk Composite rubber heating body product and manufacture thereof
JPH0757854A (en) * 1993-08-20 1995-03-03 Toyo Ink Mfg Co Ltd Panel heater
JP2004281191A (en) * 2003-03-14 2004-10-07 Sekisui Plastics Co Ltd Warmth generator and its manufacturing method
JP2005063886A (en) * 2003-08-19 2005-03-10 Okamoto Ind Inc Heat generating rubber sheet and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077508A (en) * 2011-09-30 2013-04-25 Covalent Materials Corp Planar heater
CN103604153A (en) * 2013-11-23 2014-02-26 包头市山川圣阳热能科技有限公司 Temperature-controlled electric-heating film heating device and manufacturing method thereof
JP2015122212A (en) * 2013-12-24 2015-07-02 日本バルカー工業株式会社 Planar heater
KR102183076B1 (en) * 2020-04-17 2020-11-25 주식회사 에코피앤씨 Road pavement method using carbon nanotube planar heating element
KR102287045B1 (en) * 2020-10-30 2021-08-09 한국전자기술연구원 Curved heater manufacturing method
KR102362414B1 (en) * 2021-02-10 2022-02-14 지명국 Metal weaving plane heating element, manufacturing method thereof and blind heater containing the same

Similar Documents

Publication Publication Date Title
JP2008021545A (en) Planar heating element
US7223948B2 (en) Covered conductor and heater formed therewith
US6667100B2 (en) Ultra-thin flexible expanded graphite heating element
CN111936370B (en) Capacitive sensor, method for manufacturing same, and soft mesh electrode for capacitive sensor
US20180093455A1 (en) Substrates, laminates, and assemblies for flexible heaters, flexible heaters, and methods of manufacture
JP2007115702A (en) Heating element, its manufacturing method and utilization
WO2014176084A1 (en) Self-corrugating laminates useful in the manufacture of thermoelectric devices and corrugated structures therefrom
CN105336841A (en) Electrothermal actuator
US20030208894A1 (en) Method for decreasing the thickness of flexible expanded graphite sheet
CN105336843A (en) Electrothermal actuator
CN110678704A (en) Fluid heater and method for producing a fluid heater
TW200912959A (en) Metal-integral conductive rubber component
CN106206088A (en) A kind of electric contact and manufacture method thereof
CN105336844A (en) Manufacturing method of electrothermal actuator
WO2011062045A1 (en) Flexible hose and manufacturing method for same
KR102287045B1 (en) Curved heater manufacturing method
JP2009199794A (en) Planar heating element
JP2015210927A (en) Conductive film and conductive tape member and electronic part using the same
CN206076060U (en) A kind of polymer matrix composite
JP7042423B2 (en) Fixed structure of wiring member
EP3780903A1 (en) Film heater
JP7121513B2 (en) film heater
CN107531020B (en) Sandwich board, method for manufacturing the same, and sandwich board structure
JP4867403B2 (en) Manufacturing method of resin integrated piping
JP3127850U (en) Sheet heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A02 Decision of refusal

Effective date: 20120306

Free format text: JAPANESE INTERMEDIATE CODE: A02