JP2008020189A - Refrigerating unit - Google Patents

Refrigerating unit Download PDF

Info

Publication number
JP2008020189A
JP2008020189A JP2007261002A JP2007261002A JP2008020189A JP 2008020189 A JP2008020189 A JP 2008020189A JP 2007261002 A JP2007261002 A JP 2007261002A JP 2007261002 A JP2007261002 A JP 2007261002A JP 2008020189 A JP2008020189 A JP 2008020189A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
heat exchanger
temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007261002A
Other languages
Japanese (ja)
Inventor
Daisuke Shimamoto
大祐 嶋本
Tomohiko Kasai
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007261002A priority Critical patent/JP2008020189A/en
Publication of JP2008020189A publication Critical patent/JP2008020189A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein an operation of a refrigerating unit is difficult to be stabilized and wherein trouble in the refrigerating unit is difficult to be evaded, by detecting a state of an inside of the refrigerating unit, since a state in a refrigerant circuit is difficult to be detected because a composition is included in a quantity of state of a refrigerant, in the refrigerating unit using a nonazeotropic refrigerant mixture. <P>SOLUTION: The circulation composition is detected in the refrigerating unit, and the state in the inside of the refrigerating unit is accurately detected using the circulation composition. The refrigerating unit is constituted to detect directly a value of the quantity of state, when the quantity of state not detected accurately exists because of an error of the detected circulation composition or the like. The trouble in the refrigerating unit is thereby detected accurately, and the state thereof is avoided thereby. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は非共沸混合冷媒等を用いた冷凍装置の冷媒回路や冷媒回路制御に関するものである。 The present invention relates to a refrigerant circuit and refrigerant circuit control of a refrigeration apparatus using a non-azeotropic refrigerant mixture.

図15は例えば特開平8−75280に示された従来の非共沸混合冷媒を用いた冷凍装置である。圧縮機1、凝縮器3、第1毛細管4、蒸発器5、アキュムレータ6を順番に配管で接続した非共沸混合冷媒が循環する冷媒回路及び、上記圧縮機1と凝縮器3の間からバイパスし、冷却手段9、第2毛細管10、上記圧縮機と蒸発器との間の配管に至るまでを順番に接続したバイパス配管8と上記第2毛細管出口部の温度及び圧力を検知する温度検知器12と圧力検知器13、上記温度検知器12と圧力検知器13で検知した信号から、上記冷媒回路内を循環する冷媒組成を演算する組成演算器14を設けている冷凍装置である。この冷凍装置によって、冷媒回路内を循環する冷媒組成が演算可能で、この冷媒組成によって、冷凍装置の運転制御を実施する。 FIG. 15 shows a conventional refrigeration apparatus using a non-azeotropic refrigerant mixture disclosed in JP-A-8-75280. Bypass from the compressor 1, the condenser 3, the first capillary 4, the evaporator 5, the refrigerant circuit in which the non-azeotropic refrigerant mixture circulates in the order connected by piping, and between the compressor 1 and the condenser 3 And a temperature detector for detecting the temperature and pressure of the bypass pipe 8 connected in order to the cooling means 9, the second capillary 10, the pipe between the compressor and the evaporator, and the outlet of the second capillary. 12 and a pressure detector 13, and a refrigeration apparatus provided with a composition calculator 14 that calculates a refrigerant composition circulating in the refrigerant circuit from signals detected by the temperature detector 12 and the pressure detector 13. With this refrigeration apparatus, the refrigerant composition circulating in the refrigerant circuit can be calculated, and the operation control of the refrigeration apparatus is performed with this refrigerant composition.

しかし従来の技術では同一温度においてR22よりR407Cの方が圧力高いので、R407Cを使用した冷凍装置ではR22を使用した冷凍装置より圧縮機吐出部圧力上昇過多による冷凍装置不具合が起こり易かった またR407C冷媒及びR407Cに使用する冷凍機油であるエステル油・エーテル油を使用する冷凍機においては、冷凍装置に悪影響をおよぼすスラッジが多く発生し易かった However, in the conventional technique, since the pressure of R407C is higher than that of R22 at the same temperature, the refrigeration apparatus using R407C is more likely to cause a refrigeration apparatus malfunction due to excessive compressor discharge section pressure rise than the refrigeration apparatus using R22 . In addition, in the refrigerator using ester oil / ether oil, which is the refrigerator oil used for R407C refrigerant and R407C, a lot of sludge that adversely affects the refrigeration apparatus is likely to occur .

本発明は、上記諸問題を解決することを目的とするものであって、非共沸混合冷媒(擬似共沸混合冷媒も含む)を冷凍装置に不具合なく使うことを目的とするものである。 An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to use a non-azeotropic refrigerant mixture (including a pseudo-azeotropic refrigerant mixture) in a refrigeration apparatus without problems.

この発明の冷凍装置は、冷媒として非共沸混合冷媒又は擬似共沸混合冷媒を使用する冷凍装置であって、圧縮機、熱源機側熱交換器、絞り装置、及び利用側熱交換器を配管接続した冷媒回路と、開閉弁及び減圧装置を有し、熱源機側熱交換器、絞り装置及び利用側熱交換器を迂回して、冷媒回路の圧縮機吐出側から吸入側へ非共沸混合冷媒又は擬似共沸混合冷媒を流通させるバイパス配管と、圧縮機の吐出温度又は圧力が所定値以上では開閉弁を開とし、所定値未満では開閉弁を閉とする開閉出力装置と、を備えたものである。The refrigeration apparatus of the present invention is a refrigeration apparatus that uses a non-azeotropic mixed refrigerant or a pseudo-azeotropic mixed refrigerant as a refrigerant, and is provided with a compressor, a heat source unit side heat exchanger, a throttling device, and a use side heat exchanger. Non-azeotropic mixing from the compressor discharge side to the suction side of the refrigerant circuit, bypassing the heat source side heat exchanger, the expansion device, and the use side heat exchanger A bypass pipe for circulating the refrigerant or the pseudo-azeotropic mixed refrigerant, and an opening / closing output device that opens the opening / closing valve when the discharge temperature or pressure of the compressor is equal to or higher than a predetermined value and closes the opening / closing valve when the discharge temperature or pressure is lower than the predetermined value. Is.

非共沸混合冷媒(擬似共沸混合冷媒も含む)を冷凍装置に不具合なく使うことができる。A non-azeotropic refrigerant mixture (including a pseudo-azeotropic refrigerant mixture) can be used in the refrigeration apparatus without problems.

参考例1 以下、この参考例を説明する。図1はこの参考例に関わる非共沸混合冷媒を用いた冷凍空調装置の一例である冷凍装置81を示すもので、容量可変の圧縮機1、四方弁2、利用側熱交換器である室内機熱交換器3、第一絞り装置4、熱源機側熱交換器である室外機熱交換器5、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成し、かつ四方弁の切り替えにより圧縮機1、四方弁2、室外機熱交換器5、第一絞り装置4、室内機熱交換器3、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成する。またその他に循環組成検知装置15及び圧縮機1の吐出管に第一圧力検知器16、圧縮機1の吸入管に第二圧力検知器13を有する。さらに室外熱交換器には能力可変のファン7が付いていて、このファン7の回転数と圧縮機1の周波数を出力するファン、圧縮機能力可変手段であるファン回転数・圧縮機周波数出力装置17を有する。能力可変手段は、ファン能力可変手段、圧縮機能力可変手段と別々のものとしてもよい。 また、この図1の冷凍装置81内には、R32/R125/R134aが23/25/52wt%の割合で混合されている非共沸混合冷媒であるR407Cが充填されている。 図において、点線は矢印方向へ制御値を出力することを示している。 Reference Example 1 Hereinafter, this reference example will be described. FIG. 1 shows a refrigerating apparatus 81 which is an example of a refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant according to this reference example, and includes a compressor 1 having a variable capacity, a four-way valve 2, and a use side heat exchanger. A refrigerant circuit in which the machine heat exchanger 3, the first expansion device 4, the outdoor unit heat exchanger 5, which is a heat source machine side heat exchanger, the accumulator 6, and the compressor 1 are connected in series in this order by piping; and Refrigerant in which the compressor 1, the four-way valve 2, the outdoor unit heat exchanger 5, the first expansion device 4, the indoor unit heat exchanger 3, the accumulator 6, and the compressor 1 are connected in series by piping in this order by switching the four-way valve. Configure the circuit. In addition, the first pressure detector 16 is provided in the circulation composition detector 15 and the discharge pipe of the compressor 1, and the second pressure detector 13 is provided in the suction pipe of the compressor 1. Further, the outdoor heat exchanger is provided with a variable capacity fan 7, a fan that outputs the rotation speed of the fan 7 and the frequency of the compressor 1, and a fan rotation speed / compressor frequency output device that is a compression function force variable means. 17. The capacity varying means may be separate from the fan capacity varying means and the compression function force varying means. 1 is filled with R407C, which is a non-azeotropic refrigerant mixture in which R32 / R125 / R134a is mixed at a ratio of 23/25/52 wt%. In the figure, the dotted line indicates that the control value is output in the direction of the arrow.

次に冷凍装置81の作用について説明する。暖房時は圧縮機1から吐出される高温、高圧の冷媒ガスは、四方弁2を経て室内機熱交換器3へ流入し、常温の空気などにより冷却されて凝縮液化する。室内機熱交換器3から出た冷媒は第一絞り装置4で減圧され、室外機熱交換器5へ流入する。室外機熱交換器5で低温を発生するとともに冷媒は蒸発しガス化して流出し、ガス冷媒が四方弁2を経てアキュムレータ6へ流入し、通過した後圧縮機1に吸入される。冷凍装置81内の余剰冷媒は液冷媒の形でアキュムレータ6に存在する。この時ファン7の回転数を変えたり圧縮機1の周波数を変え回転数を変えることによって室内機熱交換器の凝縮温度と室外機熱交換器の蒸発温度を変えることができる。冷房時は、圧縮機1から吐出される高温、高圧の冷媒ガスは、四方弁2を経て室外機熱交換器5へ流入し、常温の空気などにより冷却されて凝縮液化する。室外機熱交換器5から出た冷媒は絞り装置4で減圧され、室内機熱交換器3へ流入する。室内機熱交換器で低温を発生するとともに冷媒は蒸発しガス化して流出し、ガス冷媒が四方弁2を経てアキュムレータ6へ流入し、通過した後圧縮機1へ吸入される。この時ファン7の回転数を変えたり圧縮機1の周波数を変え回転数を変えることによって室外機熱交換器の凝縮温度と室内機熱交換器の蒸発温度を変えることができる。 Next, the operation of the refrigeration apparatus 81 will be described. During heating, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 flows into the indoor unit heat exchanger 3 through the four-way valve 2 and is cooled by room temperature air or the like to be condensed and liquefied. The refrigerant discharged from the indoor unit heat exchanger 3 is depressurized by the first expansion device 4 and flows into the outdoor unit heat exchanger 5. The outdoor unit heat exchanger 5 generates a low temperature and the refrigerant evaporates and gasifies and flows out. The gas refrigerant flows into the accumulator 6 through the four-way valve 2 and passes through the accumulator 6 and is then sucked into the compressor 1. Excess refrigerant in the refrigeration apparatus 81 exists in the accumulator 6 in the form of liquid refrigerant. At this time, the condensation temperature of the indoor unit heat exchanger and the evaporation temperature of the outdoor unit heat exchanger can be changed by changing the rotation speed of the fan 7 or changing the frequency of the compressor 1 to change the rotation speed. During cooling, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 flows into the outdoor unit heat exchanger 5 through the four-way valve 2 and is cooled by room temperature air or the like to be condensed and liquefied. The refrigerant discharged from the outdoor unit heat exchanger 5 is decompressed by the expansion device 4 and flows into the indoor unit heat exchanger 3. The indoor unit heat exchanger generates a low temperature, and the refrigerant evaporates and gasifies and flows out. The gas refrigerant flows into the accumulator 6 through the four-way valve 2, passes through, and is sucked into the compressor 1. At this time, the condensation temperature of the outdoor unit heat exchanger and the evaporation temperature of the indoor unit heat exchanger can be changed by changing the rotation speed of the fan 7 or changing the frequency of the compressor 1 to change the rotation speed.

次に循環組成検知装置15の作用を説明する。図1において8は圧縮機1の吐出配管と圧縮機の吸入配管をバイパスするバイパス配管であり、9は第一二重管熱交換器、10は第一減圧装置、11は第一温度検知器、12は第二温度検知器、13は第二圧力検知器、14は組成演算器であり、これらバイパス配管8、第一二重熱交換器9、第一減圧装置10、第一温度検知器11、第二温度検知器12、第二圧力検知器及び組成演算器14とで循環組成検知装置15を構成する。 圧縮機1を出た高圧のガス冷媒の一部は、バイパス配管8を通り、第一二重管熱交換器9で低圧の冷媒と熱交換し、液化した後、第一減圧装置10で減圧し、低圧の二相冷媒となる。その後第一二重管熱交換器9で高圧の冷媒と熱交換して蒸発し、ガス化した後圧縮機1の吸入に戻る。この装置において、第一温度検知器11の液冷媒の温度、第二温度検知器12と第二圧力検知器13の二相冷媒の温度と圧力を検知し(第二圧力検知器13の値と第一減圧装置10出口圧力はほぼ等しいため、第一減圧装置10出口圧力を第二圧力検知器13の値とする)、その温度と圧力に基づいて冷凍装置81内の非共沸混合冷媒の冷媒循環組成を組成演算装置14で演算、検知する。またこの循環組成検知は、冷凍空調装置に電源が投入されている間、常時行われる。ここで、冷媒循環組成の演算の方法を説明する。R407Cは非共沸三種混合冷媒であり、三種類の冷媒循環組成は未知数であるため、3つの方程式を立てて、これを解けば未知である循環組成がわかる。しかし、三種類の各循環組成をたせば1となるため、R32はα32、R125はα125、R134aはα134aと表すと、 α32+α125+α134a=1 (1)が常に成り立つので、未知である二種類の循環組成に対して2つの方程式(上記α32+α125+α134a=1は除く)をたてて、これを解けば循環組成がわかる。例えばα32とα125を未知とする方程式が2つできれば循環組成がわかる。それでは、このα32とα125を未知とする方程式の立て方について説明する。 まず一つ目の方程式は、図1の循環組成検知装置15から立てることができる。図2は循環組成検知装置15における冷媒の状態変化を表したモリエル線図であるが、この図のなかで1)は圧縮機1を出た高圧のガス冷媒の状態、2)は二重管熱交換器9で低圧の冷媒と熱交換し、液化した状態、3)は減圧装置10で減圧し、低圧の二相冷媒となった状態、4)は二重管熱交換器9で高圧の冷媒と熱交換して蒸発し、ガス化した状態を示す。この図2の2)及び3)は同じエンタルピであるために、α32とα125を未知数とする2)エンタルピ及び3)のエンタルピが等しいとする方程式が立てることができる。すなわち2)のエンタルピをhl、3)のエンタルピをht、第一温度検知器11の温度をT11、第二温度検知器12の温度をT12、圧力検知器13の圧力をP13とすると、 hl(α32,α125,T11)=ht(α32,α125,T12,P13) (2)と立てることができる。 二つ目の方程式は、冷凍装置に最初に入れる充填組成がR407Cである限りにおいては、気液平衡が成り立ち、アキュムレータに液が滞留したり、冷媒漏れした後でも循環組成の各組成成分間には一定の関係がある。すなわち、A及びBを定数とすると α32=A×α125+B (3)とする気液平衡組成実験式を立てることができる。以上のようにして立てた二つの式(2)、(3)を解くことで、α32、α125及びα134aがわかる。 そして、α32=A×α125+Bの式及びα32+α125+α134a=1の式から、循環組成の三種類の成分の内一つの組成の値が既知であれば、他の組成の値もこれらの式からわかるので、以後α32を循環組成の代表値αとしても表現する。 Next, the operation of the circulating composition detection device 15 will be described. In FIG. 1, 8 is a bypass pipe that bypasses the discharge pipe of the compressor 1 and the suction pipe of the compressor, 9 is a first double pipe heat exchanger, 10 is a first pressure reducing device, and 11 is a first temperature detector. , 12 is a second temperature detector, 13 is a second pressure detector, 14 is a composition calculator, and these bypass pipe 8, first double heat exchanger 9, first pressure reducing device 10, first temperature detector 11, the second temperature detector 12, the second pressure detector and the composition calculator 14 constitute a circulating composition detector 15. A part of the high-pressure gas refrigerant exiting the compressor 1 passes through the bypass pipe 8, exchanges heat with the low-pressure refrigerant in the first double pipe heat exchanger 9, liquefies, and then depressurizes in the first decompression device 10. And it becomes a low-pressure two-phase refrigerant. Thereafter, the first double-tube heat exchanger 9 evaporates by exchanging heat with a high-pressure refrigerant, gasifies, and returns to the suction of the compressor 1. In this apparatus, the temperature of the liquid refrigerant of the first temperature detector 11 and the temperature and pressure of the two-phase refrigerant of the second temperature detector 12 and the second pressure detector 13 are detected (the value of the second pressure detector 13). Since the outlet pressure of the first decompression device 10 is substantially equal, the outlet pressure of the first decompression device 10 is set to the value of the second pressure detector 13), and the non-azeotropic refrigerant mixture in the refrigeration device 81 is based on the temperature and pressure. The composition circulation device 14 calculates and detects the refrigerant circulation composition. The circulation composition detection is always performed while the refrigeration air conditioner is powered on. Here, a method for calculating the refrigerant circulation composition will be described. Since R407C is a non-azeotropic three-type mixed refrigerant, and the three types of refrigerant circulation composition are unknown numbers, the unknown circulation composition can be found by solving three equations. However, if each of the three types of circulation composition is given, it will be 1, so if R32 is expressed as α32, R125 is expressed as α125, and R134a is expressed as α134a, then α32 + α125 + α134a = 1 (1) always holds. If two equations (excluding α32 + α125 + α134a = 1) are established and solved, the circulation composition can be obtained. For example, if two equations that make α32 and α125 unknown are found, the circulation composition can be known. Now, how to establish an equation in which α32 and α125 are unknown will be described. First, the first equation can be established from the circulating composition detection device 15 of FIG. FIG. 2 is a Mollier diagram showing the state change of the refrigerant in the circulating composition detector 15. In this figure, 1) shows the state of the high-pressure gas refrigerant leaving the compressor 1, and 2) shows the double pipe. The heat exchanger 9 heat-exchanges with the low-pressure refrigerant and is liquefied. 3) The pressure is reduced by the decompression device 10 and becomes a low-pressure two-phase refrigerant. 4) The double-tube heat exchanger 9 It shows a gasified state after evaporating through heat exchange with the refrigerant. Since 2) and 3) in FIG. 2 are the same enthalpy, an equation can be established in which α32 and α125 are unknowns, 2) enthalpy and 3) are equal. That is, if the enthalpy of 2) is hl, the enthalpy of 3) is ht, the temperature of the first temperature detector 11 is T11, the temperature of the second temperature detector 12 is T12, and the pressure of the pressure detector 13 is P13, hl ( α32, α125, T11) = ht (α32, α125, T12, P13) (2). The second equation shows that as long as the filling composition initially put into the refrigeration system is R407C, gas-liquid equilibrium is established, and even after the liquid stays in the accumulator or the refrigerant leaks, it is between the components of the circulating composition. Have a certain relationship. That is, when A and B are constants, an empirical formula for vapor-liquid equilibrium composition can be established: α32 = A × α125 + B (3). By solving the two expressions (2) and (3) established as described above, α32, α125, and α134a can be obtained. And, from the equation of α32 = A × α125 + B and the equation of α32 + α125 + α134a = 1, if the value of one of the three kinds of components of the circulation composition is known, the values of the other compositions are also known from these equations, Hereinafter, α32 is also expressed as a representative value α of the circulation composition.

また、本参考例では非共沸三種混合冷媒を使用しているが、非共沸二種混合冷媒では、気液平衡組成実験式以外の残りの式だけで循環組成が求まる。 Further, in this reference example , a non-azeotropic three-type mixed refrigerant is used, but in the non-azeotropic two-type mixed refrigerant, the circulation composition can be obtained only by the remaining formulas other than the vapor-liquid equilibrium composition empirical formula.

次に冷凍装置81における組成について説明する。アキュムレータ6内のガス冷媒の組成を含め冷凍サイクルを循環する冷媒の組成は、冷凍サイクル内を循環しているがために同じ組成の冷媒となる。従って暖房時には、アキュムレータ6内のガス冷媒、圧縮機1から吐出されたガス冷媒、室内機熱交換器3出口の液冷媒は同じ組成となる。また、冷房時でも、アキュムレータ6内のガス冷媒、圧縮機1から吐出されたガス冷媒、室外機熱交換器5出口の液冷媒は同じ組成となる。一方アキュムレータ
6のガス冷媒、液冷媒を考えると、アキュムレータ6で気液平衡関係が成立する。非共沸の混合冷媒において気液平衡が成立するとき、ガスは液よりも低沸点成分を多く含む冷媒となる。従って、アキュムレータ6内のガス冷媒は液冷媒よりも低沸点の冷媒R32、R125が多く含まれる冷媒となる。逆にアキュムレータ6内の液冷媒はガス冷媒よりも高沸点の冷媒R134aが多く含まれる冷媒となる。冷凍装置81内の全冷媒は冷凍装置81内を循環している冷媒とアキュムレータ6内の液冷媒を合わせた冷媒となり、合わせた冷媒の組成が充填した冷媒R407Cの組成と同じになるので、アキュムレータ6内に液冷媒が存在する場合は、アキュムレータ6内のガス冷媒の組成を含め、図1の冷凍サイクルを循環する冷媒の組成は充填した冷媒よりも低沸点の冷媒R32,R125が多く含まれる冷媒となり、アキュムレータ6内の液冷媒の組成は、充填した冷媒R407Cの組成よりも高沸点の冷媒R134aが多く含まれる冷媒となる。また、アキュムレータ6内に液冷媒が存在しない場合は、図1の冷凍装置81内を循環する冷媒の組成はR407Cと同じ組成となる。
Next, the composition in the refrigeration apparatus 81 will be described. The composition of the refrigerant circulating in the refrigeration cycle, including the composition of the gas refrigerant in the accumulator 6, circulates in the refrigeration cycle, so that the refrigerant has the same composition. Therefore, during heating, the gas refrigerant in the accumulator 6, the gas refrigerant discharged from the compressor 1, and the liquid refrigerant at the outlet of the indoor unit heat exchanger 3 have the same composition. Even during cooling, the gas refrigerant in the accumulator 6, the gas refrigerant discharged from the compressor 1, and the liquid refrigerant at the outlet of the outdoor unit heat exchanger 5 have the same composition. On the other hand, when considering the gas refrigerant and liquid refrigerant of the accumulator 6, the gas-liquid equilibrium relationship is established in the accumulator 6. When gas-liquid equilibrium is established in a non-azeotropic refrigerant mixture, the gas is a refrigerant containing more low-boiling components than liquid. Therefore, the gas refrigerant in the accumulator 6 is a refrigerant containing a larger amount of refrigerants R32 and R125 having a lower boiling point than the liquid refrigerant. Conversely, the liquid refrigerant in the accumulator 6 is a refrigerant containing a larger amount of refrigerant R134a having a higher boiling point than that of the gas refrigerant. The total refrigerant in the refrigeration apparatus 81 is a combination of the refrigerant circulating in the refrigeration apparatus 81 and the liquid refrigerant in the accumulator 6, and the composition of the combined refrigerant is the same as that of the refrigerant R407C filled. When the liquid refrigerant is present in the refrigerant 6, the composition of the refrigerant circulating in the refrigeration cycle in FIG. 1 including the composition of the gas refrigerant in the accumulator 6 contains more refrigerants R32 and R125 having a lower boiling point than the filled refrigerant. It becomes a refrigerant, and the composition of the liquid refrigerant in the accumulator 6 is a refrigerant containing a larger amount of refrigerant R134a having a higher boiling point than the composition of the filled refrigerant R407C. Further, when there is no liquid refrigerant in the accumulator 6, the composition of the refrigerant circulating in the refrigeration apparatus 81 in FIG. 1 is the same as that of R407C.

次にこの参考例の冷媒回路の凝縮温度及び蒸発温度のファン回転数、圧縮機周波数出力装置17の運転制御方法について説明する。冷凍装置運転中、ファン回転数、圧縮機周波数出力装置17は、第一圧力検知器16の検出値P16及び組成演算器14の演算、検知した循環組成検出値αを基にP16のガス飽和温度と液飽和温度の平均値を求め、この値を凝縮温度とし、第二圧力検知器13の検出値P13及び循環組成検出値αを基にP13のガス飽和温度と液飽和温度の平均値を求め、この値を蒸発温度とする。ただし、第二温度検知器12の値T12を蒸発温度としてもかまわない。ファン回転数・圧縮機周波数出力装置17は、このようにして求まった凝縮温度及び蒸発温度を内蔵するそれぞれの目標値と比較演算して、目標の値になるようにファン7の回転数及び圧縮機1の周波数をそれぞれファン7と圧縮機1に出力する。 ファン回転数、圧縮機周波数出力装置17の具体的な制御例としては、圧縮機1の周波数を増加(回転数増加)することによる凝縮温度の増加及び蒸発温度の低下または圧縮機1の周波数の低下(回転数低下)することによる凝縮温度の低下及び蒸発温度の増加と、ファン7の回転数の増加(ファン風量増加)による冷房時の凝縮温度の低下、暖房時の蒸発温度の増加またはファン7の回転数の低下(ファン風量低下)による冷房時の凝縮温度の増加、暖房時の蒸発温度の低下との組合わせで行う。 また、圧縮機1の周波数により回転数を変化させる制御は、いわゆる容量制御機構を付の圧縮機で容量制御してもよい。 また、前記参考例では、ファン回転数、圧縮機周波数出力装置17が凝縮温度及び蒸発温度を決定しているが、別途にそれぞれを決定する装置または両者を決定する装置を設けて、これらの装置により凝縮温度及び蒸発温度を決定し、ファン回転数、圧縮機周波数出力装置17へ出力するようにしてもよい。 また凝縮温度または蒸発温度の変化が大きくない定周波数・定室内機容量の運転をするユニットのような場合には、ファンのみの制御または圧縮機のみの制御をするといったように片方の制御のみでよい。 Next, the fan rotation speeds of the condensing temperature and evaporating temperature of the refrigerant circuit of this reference example and the operation control method of the compressor frequency output device 17 will be described. During the operation of the refrigeration system, the fan rotation speed and compressor frequency output device 17 determines the gas saturation temperature of P16 based on the detected value P16 of the first pressure detector 16 and the calculation of the composition calculator 14 and the detected circulating composition detection value α. The average value of the liquid saturation temperature and the liquid saturation temperature is obtained, and this value is set as the condensation temperature. Based on the detection value P13 of the second pressure detector 13 and the circulation composition detection value α, the average value of the gas saturation temperature and the liquid saturation temperature of P13 is obtained. This value is taken as the evaporation temperature. However, the value T12 of the second temperature detector 12 may be used as the evaporation temperature. The fan rotation speed / compressor frequency output device 17 compares the calculated condensation temperature and evaporation temperature with the respective target values incorporated therein, and calculates the rotation speed and compression of the fan 7 so that the target values are obtained. The frequency of the machine 1 is output to the fan 7 and the compressor 1, respectively. As a specific control example of the fan rotation speed and the compressor frequency output device 17, an increase in the condensation temperature and a decrease in the evaporation temperature or an increase in the frequency of the compressor 1 by increasing the frequency of the compressor 1 (increasing the rotation speed). Decrease in condensation temperature and increase in evaporation temperature due to lowering (reduction in rotational speed), decrease in condensation temperature during cooling due to increase in rotational speed of fan 7 (increase in fan air volume), increase in evaporation temperature during heating, or fan 7 in combination with an increase in the condensation temperature during cooling due to a decrease in the rotational speed (decrease in the fan air volume) and a decrease in the evaporation temperature during heating. Further, the control for changing the number of revolutions according to the frequency of the compressor 1 may be capacity control with a compressor provided with a so-called capacity control mechanism. In the reference example , the fan rotation speed and the compressor frequency output device 17 determine the condensing temperature and the evaporating temperature. However, a device for determining each of them or a device for determining both are provided, and these devices are provided. Thus, the condensing temperature and the evaporating temperature may be determined and output to the fan rotation speed and compressor frequency output device 17. In addition, in the case of a unit that operates at a constant frequency and constant indoor unit capacity where the change in condensation temperature or evaporation temperature is not large, only one of the controls, such as controlling only the fan or only the compressor, can be used. Good.

参考例2 参考例1は、一定の冷凍空調装置の能力を確保するために凝縮温度及び蒸発温度を一定にする制御であったが、冷媒循環組成が変化すると凝縮温度及び蒸発温度は一定であるが凝縮圧力及び蒸発圧力が変化する。このため第一絞り装置4の入り口出口の圧力差が変化し、冷媒回路の流量、第一絞り装置4の冷媒の流れ方向入り口サブクールが変化する。よって冷媒循環組成の変化によって第一絞り装置4の開度が一定のもとで冷媒回路の流量、第一絞り装置4の冷媒の流れ方向入り口サブクールが変化するので、最適な第一絞り装置4の開度の範囲は冷媒循環組成によって変化する。そこで参考例2として、冷媒回路の流量及び第一絞り装置4の冷媒の流れ方向入り口サブクールが確保できるような第一絞り装置4の最小開度を冷媒循環組成毎もしくは、冷媒循環組成の変化によって変化する第一絞り装置4の圧力差によって設定してもよい。 Reference Example 2 Reference Example 1 was control for keeping the condensation temperature and the evaporation temperature constant in order to ensure a constant capacity of the refrigerating and air-conditioning apparatus. However, when the refrigerant circulation composition changes, the condensation temperature and the evaporation temperature are constant. However, the condensation pressure and the evaporation pressure change. For this reason, the pressure difference at the inlet / outlet of the first expansion device 4 changes, and the flow rate of the refrigerant circuit and the refrigerant flow direction inlet subcool of the first expansion device 4 change. Accordingly, the flow rate of the refrigerant circuit and the subcooling direction inlet subcool of the first expansion device 4 change under the constant opening degree of the first expansion device 4 due to the change of the refrigerant circulation composition. The range of the opening varies depending on the refrigerant circulation composition. Therefore, as Reference Example 2, the minimum opening degree of the first throttle device 4 that can secure the flow rate of the refrigerant circuit and the inlet subcool of the first throttle device 4 in the flow direction of the refrigerant is determined for each refrigerant circulation composition or the change of the refrigerant circulation composition. You may set by the pressure difference of the 1st expansion device 4 which changes.

図3はこの参考例に関わる非共沸混合冷媒を用いた冷凍空調装置の一例である冷凍装置82を示すもので、容量可変の圧縮機1、四方弁2、利用側熱交換器である室内機熱交換器3、第一絞り装置4、熱源機側熱交換器である室外機熱交換器5、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成し、かつ四方弁の切り替えにより圧縮機1、四方弁2、室外機熱交換器5、第一絞り装置4、室内機熱交換器3、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成する。またその他に循環組成検知装置15及び圧縮機1の吐出管に第一圧力検知器16、圧縮機1の吸入管に第二圧力検知器13、第一絞り装置4の前後に第五温度検知器35及び第六温度検知器36、室内機熱交換器に室内温度を検知する第七温度検知器37を有する。さらに室外熱交換器5には能力可変のファン7が付いていて、このファン7の回転数と圧縮機1の周波数を出力するファン、圧縮機能力制御手段であるファン回転数・圧縮機周波数出力装置17及び、第一絞り装置4の最小開度を計算・出力する絞り装置最小開度計算器18、第一絞り装置4の前後の過冷却度を計算・出力するサブクール計算器38を有する。図3は、絞り装置最小開度計算器18、第五温度検知器35、第六温度検知器36、第七温度検知器37、サブクール計算器38が付いている以外は、参考例1と同じなので説明を省略する。 FIG. 3 shows a refrigerating apparatus 82 which is an example of a refrigerating and air-conditioning apparatus using a non-azeotropic refrigerant mixture related to this reference example . The compressor 1 having a variable capacity, the four-way valve 2, and a room which is a use side heat exchanger. A refrigerant circuit in which the machine heat exchanger 3, the first expansion device 4, the outdoor unit heat exchanger 5, which is a heat source machine side heat exchanger, the accumulator 6, and the compressor 1 are connected in series in this order by piping; and Refrigerant in which the compressor 1, the four-way valve 2, the outdoor unit heat exchanger 5, the first expansion device 4, the indoor unit heat exchanger 3, the accumulator 6, and the compressor 1 are connected in series by piping in this order by switching the four-way valve. Configure the circuit. In addition, the first pressure detector 16 is connected to the circulation composition detector 15 and the discharge pipe of the compressor 1, the second pressure detector 13 is connected to the suction pipe of the compressor 1, and the fifth temperature detector is provided before and after the first throttle device 4. 35 and a sixth temperature detector 36, and an indoor unit heat exchanger has a seventh temperature detector 37 for detecting the room temperature. Furthermore, the outdoor heat exchanger 5 is provided with a variable capacity fan 7, a fan that outputs the rotational speed of the fan 7 and the frequency of the compressor 1, and a fan rotational speed / compressor frequency output that is a compression function force control means. And a sub-cool calculator 38 for calculating and outputting the degree of supercooling before and after the first throttling device 4. FIG. 3 is the same as the reference example 1 except that the expansion device minimum opening calculator 18, the fifth temperature detector 35, the sixth temperature detector 36, the seventh temperature detector 37, and the subcool calculator 38 are provided. Therefore, explanation is omitted.

つぎに、サブクール計算器38、絞り装置最小開度計算器18について説明する。サブクール計算器38は、冷房運転時は第一圧力検知器16の値P16及び冷媒循環組成αでの凝縮温度から第五温度検知器35の値を引いた温度差、暖房運転時は第一圧力検知器16の値P16及び冷媒循環組成αでの凝縮温度から第六温度検知器36の値を引いた温度差を計算し、第一絞り装置4のサブク−ルを算出し、このサブク−ルを所定の目標の値にするように第一絞り装置4の開度を制御する。しかし、サブクール計算器38によって第一絞り装置4を制御すると、サブクールは確保できても冷媒流量が少なくなり、能力不足となる可能性があるため第一絞り装置4には最小開度を規定する必要がある。そのため絞り装置最小開度計算器18は、第一圧力検知器16の値P16と第二圧力検知器13の値P13、冷媒循環組成αを入力とし、以下の式によって絞り装置最小開度Xを出力し、第一絞り装置4がこのX以下にならないように制御し、絞り過ぎによる冷媒流量不足が生じることを防止する。即ち、絞り装置最小開度出力装置18は、前記のサブク−ル計算器38の第一絞り装置4の開度指令を受け、この開度指令がXより大であれば、サブク−ル計算器38の決めた開度指令の値とし、X以下である場合は、Xとする指令を第一絞り装置4に出力する。この冷媒循環組成αを考慮した制御により、冷媒量が少な過ぎず、かつサブクールが確保できる最適な第一絞り装置4の開度を確保する。 暖房時:X=K・(Tc−T37)/√(P16−P13) (4) 冷房時:X=K・(T37−Te)/√(P16−P13) (5) ここで、Kは絞り装置最小開度係数、TcはP16及びαから計算される凝縮温度、TeはP13及びαから計算される蒸発温度、T37は第七温度検知器37の検知する室内機熱交換器の室内温度である。上記(4)及び(5)の式は、次のようにして導かれる。室内機熱交換器3と室内機熱交換器3を流れる冷媒との熱交換量をQ1、室内機熱交換器3と室内機側空気との熱交換量をQ2、第一絞り装置4の開度をXaとすると、 Q1∝Xa・√(P16−P13) (6) 暖房時:Q2∝(Tc−T37) (7) 冷房時:Q2∝(T37−Te) (8)となり、またQ1=Q2となるため、 暖房時:Xa・√(P16−P13)∝(Tc−T37) (9) 冷房時:Xa・√(P16−P13)∝(T37−Te) (10) が成立する。この(9)、(10)を基に、最低レベルの冷媒流量が流れるXの式として、(4)、(5)を立てることができる。また、蒸発温度Te、凝縮温度Tcを一定とする制御では、√(P16−P13)がαの関数となるため、Kをαの関数K(α)として、 暖房時:X=K(α)・(Tc−T37) (11) 冷房時:X=K(α)・(T37−Te) (12)のようにしてもよい。 また、本参考例では、サブク−ル計算器38が凝縮温度を決定しているが、別途に凝縮温度決定装置を設け、サブク−ル計算器38へ出力するようにしてもよい。また、サブク−ル計算器38の開度指令と絞り装置最小開度計算器18の算出最小開度の出力を受けて両者を比較し、第一絞り装置4へ開度指令または算出最小開度出力をする装置を別途に設けてもよい。 Next, the subcool calculator 38 and the throttle device minimum opening calculator 18 will be described. The subcool calculator 38 is a temperature difference obtained by subtracting the value of the fifth temperature detector 35 from the value P16 of the first pressure detector 16 and the condensation temperature at the refrigerant circulation composition α during the cooling operation, and the first pressure during the heating operation. The temperature difference obtained by subtracting the value of the sixth temperature detector 36 from the value P16 of the detector 16 and the condensation temperature at the refrigerant circulation composition α is calculated, the subcooling of the first expansion device 4 is calculated, and this subcooling is calculated. The opening degree of the first expansion device 4 is controlled so as to be a predetermined target value. However, if the first throttling device 4 is controlled by the subcooling calculator 38, the refrigerant flow rate decreases even if the subcooling can be secured, and the capacity may become insufficient. There is a need. Therefore, the throttle device minimum opening calculator 18 receives the value P16 of the first pressure detector 16, the value P13 of the second pressure detector 13, and the refrigerant circulation composition α, and calculates the throttle device minimum opening X by the following equation. The output is controlled so that the first expansion device 4 does not become less than or equal to X to prevent the refrigerant flow from being insufficient due to excessive restriction. That is, the throttle device minimum opening output device 18 receives the opening command of the first throttle device 4 of the subcool calculator 38, and if this opening command is greater than X, the subcool calculator When the value is equal to or less than X, the command to set X is output to the first expansion device 4. By controlling in consideration of the refrigerant circulation composition α, the amount of refrigerant is not too small, and an optimal opening of the first expansion device 4 that can secure a subcool is ensured. During heating: X = K · (Tc-T37) / √ (P16-P13) (4) During cooling: X = K · (T37-Te) / √ (P16-P13) (5) where K is the aperture The minimum opening coefficient of the device, Tc is the condensation temperature calculated from P16 and α, Te is the evaporation temperature calculated from P13 and α, T37 is the indoor temperature of the indoor unit heat exchanger detected by the seventh temperature detector 37 is there. The equations (4) and (5) are derived as follows. The heat exchange amount between the indoor unit heat exchanger 3 and the refrigerant flowing through the indoor unit heat exchanger 3 is Q1, the heat exchange amount between the indoor unit heat exchanger 3 and the indoor unit side air is Q2, and the first expansion device 4 is opened. When the degree is Xa, Q1∝Xa · √ (P16−P13) (6) During heating: Q2∝ (Tc−T37) (7) During cooling: Q2∝ (T37−Te) (8) and Q1 = Since Q2, the heating time: Xa · √ (P16−P13) ∝ (Tc−T37) (9) The cooling time: Xa · √ (P16−P13) ∝ (T37−Te) (10) Based on (9) and (10), (4) and (5) can be established as an expression of X in which the lowest level refrigerant flow rate flows. In the control in which the evaporating temperature Te and the condensing temperature Tc are constant, √ (P16−P13) is a function of α, so that K is a function K (α) of α, and during heating: X = K (α) (Tc−T37) (11) During cooling: X = K (α) • (T37−Te) (12). In this reference example , the subcool calculator 38 determines the condensation temperature. However, a separate condensation temperature determination device may be provided and output to the subcool calculator 38. Further, the output of the opening instruction of the subcool calculator 38 and the output of the calculated minimum opening of the expansion device minimum opening calculator 18 is received and compared, and the opening command or the calculated minimum opening is sent to the first expansion device 4. A device for outputting the above may be provided separately.

参考例3 図4はこの参考例に関わる非共沸混合冷媒を用いた冷凍空調装置の一例である冷凍装置83を示すもので、圧縮機1、四方弁2、利用側熱交換器である室内機熱交換器3、第一絞り装置4、熱源機側熱交換器である室外機熱交換器5、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成し、かつ四方弁の切り替えにより圧縮機1、四方弁2、室外機熱交換器5、第一絞り装置4、室内機熱交換器3、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成する。またその他に循環組成検知装置15及び圧縮機1の吐出管に第一圧力検知器16、圧縮機1の吸入管に第二圧力検知器13を有する。さらに室外熱交換器にはファン7が付いていて、このファン7の回転数と圧縮機1の周波数を出力するファン回転数・圧縮機周波数出力装置17によってファン7の回転数及び圧縮機1の周波数を計算・変更する。また、圧縮機1の吐出管とアキュムレータ6を結ぶ開閉弁19及び第二減圧装置20装置を直列つないだバイパス配管、第二圧力検知器13の値によって開閉弁19の開閉を出力する第一開閉出力装置21を有する。図4は開閉弁19及び第二減圧装置20装置を直列つないだ配管及び第一開閉出力装置21以外は、参考例1と同じなので説明を省略する。 Reference Example 3 FIG. 4 shows a refrigeration apparatus 83 which is an example of a refrigeration air-conditioning apparatus using a non-azeotropic refrigerant mixture related to this reference example , and includes a compressor 1, a four-way valve 2, and a indoor heat exchanger. A refrigerant circuit in which the machine heat exchanger 3, the first expansion device 4, the outdoor unit heat exchanger 5, which is a heat source machine side heat exchanger, the accumulator 6, and the compressor 1 are connected in series in this order by piping; and Refrigerant in which the compressor 1, the four-way valve 2, the outdoor unit heat exchanger 5, the first expansion device 4, the indoor unit heat exchanger 3, the accumulator 6, and the compressor 1 are connected in series by piping in this order by switching the four-way valve. Configure the circuit. In addition, the first pressure detector 16 is provided in the circulation composition detector 15 and the discharge pipe of the compressor 1, and the second pressure detector 13 is provided in the suction pipe of the compressor 1. Further, the outdoor heat exchanger is provided with a fan 7, and the rotation speed of the fan 7 and the compressor 1 are output by a fan rotation speed / compressor frequency output device 17 that outputs the rotation speed of the fan 7 and the frequency of the compressor 1. Calculate and change the frequency. Further, a first opening and closing valve 19 that outputs the opening and closing of the opening and closing valve 19 according to the value of the second pressure detector 13, a bypass pipe connecting the discharge pipe of the compressor 1 and the accumulator 6 and the second pressure reducing device 20 in series. An output device 21 is included. FIG. 4 is the same as the reference example 1 except for the piping in which the on-off valve 19 and the second pressure reducing device 20 are connected in series and the first on-off output device 21, and thus the description thereof is omitted.

次に本参考例の制御及び作用について説明する。第一開閉出力装置21は、圧縮機1が運転中に第二圧力検知器13の値が吸入圧力が低下過ぎとみなされる所定値、例えば1kgf/cm2G未満では開閉弁19を開で、1kgf/cm2G以上では開閉弁19は閉の信号を開閉弁19に出し、開閉弁19はこの信号により開閉する。この制御により、圧縮機1の吐出部の高温・高圧ガスが第二減圧装置20装置で減圧された後にアキュムレータ内に供給される。この時アキュムレータ内に滞留した冷媒R407Cの内低沸点成分R32を多く含んだ冷媒が蒸発し、圧縮機1に冷媒が供給される。このR32を多く含んだ冷媒は同一温度での飽和圧力がR407C成分の冷媒より高い。このため、圧縮機1に冷媒を供給できるという点と供給する冷媒が飽和圧力の高い冷媒であるという二つの効果で、圧縮機1の吸入部の圧力を上昇させることができる。 Next, the control and operation of this reference example will be described. The first opening / closing output device 21 opens the opening / closing valve 19 when the value of the second pressure detector 13 is less than a predetermined value, for example, less than 1 kgf / cm 2 G, while the compressor 1 is in operation. Above cm2G, the on-off valve 19 sends a closing signal to the on-off valve 19, and the on-off valve 19 opens and closes by this signal. By this control, the high-temperature and high-pressure gas at the discharge portion of the compressor 1 is supplied to the accumulator after being reduced in pressure by the second pressure reducing device 20. At this time, the refrigerant containing a large amount of the low boiling point component R32 of the refrigerant R407C staying in the accumulator evaporates, and the refrigerant is supplied to the compressor 1. The refrigerant containing a large amount of R32 has a higher saturation pressure at the same temperature than the refrigerant of the R407C component. For this reason, the pressure of the suction part of the compressor 1 can be raised by the two effects that the refrigerant can be supplied to the compressor 1 and that the supplied refrigerant is a refrigerant having a high saturation pressure.

また、開閉弁19及び第二減圧装置20装置を直列つないだ配管とアキュムレータ6との接点を図5のようにバイパス管の先端部を横に曲げ、上に向かって開口するのではなく、横に向かって開口すると、開閉弁19及び第二減圧装置20を含むバイパス管にアキュムレータ内の液冷媒が入り込みにくく、アキュムレータに滞留した冷媒内に高温ガス冷媒を供給し易くなる。これによりアキュムレータに滞留した冷媒を発泡させ、効率的に滞留冷媒を蒸発させることができる。 なお、前記バイパス配管の一端はアキュムレ−タ6に接続されているが、圧縮機の吸入配管であればア
キュムレ−タ6の上流側または下流側配管に接続してもよい。
Further, the contact point between the pipe connecting the on-off valve 19 and the second pressure reducing device 20 and the accumulator 6 is not bent at the tip of the bypass pipe sideways as shown in FIG. When it opens, the liquid refrigerant in the accumulator does not easily enter the bypass pipe including the on-off valve 19 and the second pressure reducing device 20, and the high-temperature gas refrigerant is easily supplied into the refrigerant accumulated in the accumulator. Thereby, the refrigerant staying in the accumulator can be foamed, and the staying refrigerant can be efficiently evaporated. One end of the bypass pipe is connected to the accumulator 6, but it may be connected to the upstream or downstream pipe of the accumulator 6 as long as it is a suction pipe of the compressor.

実施の形態 温度が同じ場合のR22とR407Cの飽和圧力は温度50℃では、R407Cの方が2kgf/cm2以上高いので、R407Cでは圧縮機1の吐出部圧力が高くなる。そこで参考例3では、第二圧力検知器13の値が一定値未満で開閉弁19を開くことで、圧縮機1の吸入部圧力を上昇させたが、開閉弁19を開くことで圧縮機1の吐出部圧力を下げるようにして圧縮機1の保護を行っても良い。 When the temperature of the first embodiment is the same, the saturation pressure of R22 and R407C is higher by 2 kgf / cm 2 or more at a temperature of 50 ° C. Therefore, the discharge pressure of the compressor 1 is higher at R407C. Therefore, in Reference Example 3, when the value of the second pressure detector 13 is less than a certain value, the opening / closing valve 19 is opened to increase the suction portion pressure of the compressor 1, but when the opening / closing valve 19 is opened, the compressor 1 is opened. The compressor 1 may be protected by lowering the discharge section pressure.

図6はこの発明に関わる非共沸混合冷媒を用いた冷凍空調装置の一例である冷凍装置84を示すもので、圧縮機1、四方弁2、利用側熱交換器である室内機熱交換器3、第一絞り装置4、熱源機側熱交換器である室外機熱交換器5、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成し、かつ四方弁の切り替えにより圧縮機1、四方弁2、室外機熱交換器5、第一絞り装置4、室内機熱交換器3、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成する。またその他に循環組成検知装置15及び圧縮機1の吐出管に第一圧力検知器16、圧縮機1の吸入管に第二圧力検知器13を有する。さらに室外熱交換器にはファン7が付いていて、このファン7の回転数と圧縮機1の周波数を出力するファン回転数・圧縮機周波数出力装置17によってファン7の回転数及び圧縮機1の周波数を計算・変更する。また、圧縮機1の吐出管とアキュムレータ6を結ぶ開閉弁19及び第二減圧装置20装置を直列つないだ配管、第一圧力検知器16の値によって開閉弁19の開閉を出力する第二開閉出力装置22を有する。図6は開閉弁19及び第二減圧装置20装置を直列つないだ配管及び第二開閉出力装置22以外は、参考例1と同じなので説明を省略する。 FIG. 6 shows a refrigeration apparatus 84 which is an example of a refrigeration air-conditioning apparatus using a non-azeotropic refrigerant mixture according to the present invention. The compressor 1, the four-way valve 2, and an indoor unit heat exchanger which is a use side heat exchanger. 3. A first expansion device 4, an outdoor unit heat exchanger 5, which is a heat source side heat exchanger, an accumulator 6, and a compressor 1 are connected in series by piping in this order, and a four-way valve is switched. Thus, a refrigerant circuit in which the compressor 1, the four-way valve 2, the outdoor unit heat exchanger 5, the first expansion device 4, the indoor unit heat exchanger 3, the accumulator 6, and the compressor 1 are connected in series by piping in this order is configured. . In addition, the first pressure detector 16 is provided in the circulation composition detector 15 and the discharge pipe of the compressor 1, and the second pressure detector 13 is provided in the suction pipe of the compressor 1. Further, the outdoor heat exchanger is provided with a fan 7, and the rotation speed of the fan 7 and the compressor 1 are output by a fan rotation speed / compressor frequency output device 17 that outputs the rotation speed of the fan 7 and the frequency of the compressor 1. Calculate and change the frequency. Also, a second opening / closing output that outputs opening / closing of the opening / closing valve 19 according to the value of the first pressure detector 16, a pipe connecting the opening / closing valve 19 connecting the discharge pipe of the compressor 1 and the accumulator 6 and the second pressure reducing device 20 device in series. It has a device 22. Since FIG. 6 is the same as Reference Example 1 except for the piping in which the on-off valve 19 and the second pressure reducing device 20 are connected in series and the second on-off output device 22, the description thereof is omitted.

次に本発明の制御及び作用について説明する。第二開閉出力装置22は、圧縮機1が運転中に第一圧力検知器16の値がユニットの耐圧を考慮して決定した所定の圧力、例えば27kgf/cm2G未満では開閉弁19は閉で、27kgf/cm2G以上では開閉弁19を開く信号を開閉弁19に出し、開閉弁19はこの信号により開閉する。この制御により、圧縮機1の吐出部の高温・高圧ガスの一部が開閉弁19及び第二減圧装置20装置を直列つないだ配管を通ってアキュムレータにバイパスするために、圧縮機1の吐出部の圧力が減少する。 Next, the control and operation of the present invention will be described. When the compressor 1 is in operation, the second opening / closing output device 22 closes the opening / closing valve 19 when the value of the first pressure detector 16 is determined in consideration of the pressure resistance of the unit, for example, less than 27 kgf / cm 2 G. At 27 kgf / cm 2 G or more, a signal for opening the opening / closing valve 19 is sent to the opening / closing valve 19, and the opening / closing valve 19 is opened / closed by this signal. Due to this control, a part of the high-temperature / high-pressure gas in the discharge part of the compressor 1 bypasses the accumulator through a pipe connecting the on-off valve 19 and the second pressure reducing device 20 in series. The pressure of decreases.

また、別の実施の形態では、冷媒循環組成によって飽和圧力が変化することを考慮して、ユニットの耐圧の範囲内で開閉弁19の開閉圧力を冷媒循環組成αの関数としても良い。即ち、飽和圧力の大小により、開閉圧力を大小とし、特に、飽和圧力大の組成でのメイン回路への冷媒量の不足による能力低下を防止できる。 本実施の形態では、冷媒として、HFC系冷媒で、R22より同一温度での飽和圧力が高い冷媒が有効である。 In another embodiment, the opening / closing pressure of the on-off valve 19 may be a function of the refrigerant circulation composition α within the range of the pressure resistance of the unit, taking into account that the saturation pressure varies depending on the refrigerant circulation composition. That is, the open / close pressure is increased or decreased depending on the saturation pressure, and in particular, it is possible to prevent a decrease in capacity due to a shortage of the refrigerant amount to the main circuit with a composition having a large saturation pressure. In the present embodiment, an HFC refrigerant having a higher saturation pressure at the same temperature than R22 is effective as the refrigerant.

参考例4 冷媒R407Cは冷媒R22に比べて非誘電率が低いため圧縮機が真空運転をした場合には、R407Cの方がコロナ放電し易く(モ−タ部のショ−ト等)、この現象により圧縮機の損傷が起こり易い。 Reference Example 4 Refrigerant R407C has a lower non-dielectric constant than refrigerant R22. Therefore, when the compressor is operated in a vacuum, R407C is more susceptible to corona discharge (such as a motor section short), and this phenomenon. Therefore, the compressor is easily damaged.

図7はこの参考例に関わる非共沸混合冷媒を用いた冷凍空調装置の一例である冷凍装置85を示すもので、圧縮機1、四方弁2、利用側熱交換器である室内機熱交換器3、第一絞り装置4、熱源機側熱交換器である室外機熱交換器5、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成し、かつ四方弁の切り替えにより圧縮機1、四方弁2、室外機熱交換器5、第一絞り装置4、室内機熱交換器3、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成する。またその他に循環組成検知装置15及び圧縮機1の吐出管に第一圧力検知器16、圧縮機1の吸入管に第二圧力検知器13を有する。さらに室外熱交換器にはファン7が付いていて、このファン7の回転数と圧縮機1の周波数を出力するファン回転数・圧縮機周波数出力装置17によってファン7の回転数及び圧縮機1の周波数を計算・変更する。また、第二圧力検知器13の値によって圧縮機1を停止する信号を出力する第一圧縮機停止出力装置23を有する。図7は第一圧縮機停止出力装置23以外は、参考例1と同じなので説明を省略する。 FIG. 7 shows a refrigeration apparatus 85 which is an example of a refrigeration air-conditioning apparatus using a non-azeotropic refrigerant mixture related to this reference example . The compressor 1, the four-way valve 2, and an indoor unit heat exchange which is a use side heat exchanger. A refrigerant circuit in which the condenser 3, the first expansion device 4, the outdoor unit heat exchanger 5, which is a heat source side heat exchanger, the accumulator 6, and the compressor 1 are connected in series by piping in this order, and the four-way valve By switching, a refrigerant circuit in which the compressor 1, the four-way valve 2, the outdoor unit heat exchanger 5, the first expansion device 4, the indoor unit heat exchanger 3, the accumulator 6, and the compressor 1 are connected in series by piping in this order is configured. To do. In addition, the first pressure detector 16 is provided in the circulation composition detector 15 and the discharge pipe of the compressor 1, and the second pressure detector 13 is provided in the suction pipe of the compressor 1. Further, the outdoor heat exchanger is provided with a fan 7, and the rotation speed of the fan 7 and the compressor 1 are output by a fan rotation speed / compressor frequency output device 17 that outputs the rotation speed of the fan 7 and the frequency of the compressor 1. Calculate and change the frequency. Moreover, it has the 1st compressor stop output device 23 which outputs the signal which stops the compressor 1 with the value of the 2nd pressure detector 13. FIG. Since FIG. 7 is the same as Reference Example 1 except for the first compressor stop output device 23, description thereof is omitted.

次に本参考例の制御及び作用について説明する。第二圧力検知器13の値が圧縮機が真空運転を行うことを示す圧力である、例えば0kgf/cm2G以下になった場合に、第一圧縮機停止出力装置23は圧縮機1の運転を停止する信号を出し、これを受けて圧縮機1が停止する。これにより、R407Cでは起こり易いコロナ放電による圧縮機の損傷は起こらない。 本参考例における冷媒としては、HFC系の冷媒でR22よりコロナ放電の起こり易い冷媒が有効である。 Next, the control and operation of this reference example will be described. The first compressor stop output device 23 stops the operation of the compressor 1 when the value of the second pressure detector 13 is a pressure indicating that the compressor performs a vacuum operation, for example, 0 kgf / cm 2 G or less. The compressor 1 is stopped in response to this signal. As a result, the compressor is not damaged by corona discharge that is likely to occur in R407C. As the refrigerant in this reference example , an HFC type refrigerant that is more susceptible to corona discharge than R22 is effective.

実施の形態 冷媒回路に絞り装置のつまり等の悪影響を及ぼすスラッジは、圧縮機の吐出温度が高いと増加し、冷媒にR407C、冷凍機油にエステル油またはエーテル油を使用している場合に多く発生する。そこで、本発明では圧縮機の吐出温度を一定値以上にならない制御を行う。 Second Embodiment Sludge that adversely affects the refrigerant circuit such as clogging of the throttle device increases when the discharge temperature of the compressor is high, and is often found when R407C is used as the refrigerant and ester oil or ether oil is used as the refrigerant oil. appear. Therefore, in the present invention, control is performed so that the discharge temperature of the compressor does not exceed a certain value.

図8はこの発明に関わる非共沸混合冷媒を用いた冷凍空調装置の一例である冷凍装置86を示すもので、圧縮機1、四方弁2、利用側熱交換器である室内機熱交換器3、第一絞り装置4、熱源機側熱交換器である室外機熱交換器5、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成し、かつ四方弁の切り替えにより圧縮機1、四方弁2、室外機熱交換器5、第一絞り装置4、室内機熱交換器3、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成する。またその他に循環組成検知装置15及び圧縮機1の吐出管に第一圧力検知器16と第三温度検知器24、圧縮機1の吸入管に第二圧力検知器13を有する。さらに室外熱交換器にはファン7が付いていて、このファン7の回転数と圧縮機1の周波数を出力するファン回転数・圧縮機周波数出力装置17によってファン7の回転数及び圧縮機1の周波数を計算・変更する。また、圧縮機1の吐出管とアキュムレータ6を結ぶ開閉弁19及び第二減圧装置20装置を直列つないだ配管を有する。また、第三温度検知器24の値によって開閉弁19の開閉を出力する第三開閉出力装置25を有する。図8は開閉弁19及び第二減圧装置20装置を直列つないだ配管、第三温度検知器24及び第三開閉出力装置25以外は、参考例1と同じなので説明を省略する。 FIG. 8 shows a refrigerating apparatus 86 as an example of a refrigerating and air-conditioning apparatus using a non-azeotropic refrigerant mixture according to the present invention. The compressor 1, the four-way valve 2, and an indoor unit heat exchanger that is a use side heat exchanger. 3. A first expansion device 4, an outdoor unit heat exchanger 5, which is a heat source side heat exchanger, an accumulator 6, and a compressor 1 are connected in series by piping in this order, and a four-way valve is switched. Thus, a refrigerant circuit in which the compressor 1, the four-way valve 2, the outdoor unit heat exchanger 5, the first expansion device 4, the indoor unit heat exchanger 3, the accumulator 6, and the compressor 1 are connected in series by piping in this order is configured. . In addition, the circulation composition detector 15 and the discharge pipe of the compressor 1 have a first pressure detector 16 and a third temperature detector 24, and the suction pipe of the compressor 1 has a second pressure detector 13. Further, the outdoor heat exchanger is provided with a fan 7, and the rotation speed of the fan 7 and the compressor 1 are output by a fan rotation speed / compressor frequency output device 17 that outputs the rotation speed of the fan 7 and the frequency of the compressor 1. Calculate and change the frequency. Moreover, it has the piping which connected the on-off valve 19 which connects the discharge pipe of the compressor 1 and the accumulator 6, and the 2nd pressure reduction apparatus 20 apparatus in series. Moreover, it has the 3rd opening / closing output apparatus 25 which outputs opening / closing of the on-off valve 19 by the value of the 3rd temperature detector 24. FIG. FIG. 8 is the same as Reference Example 1 except for the piping in which the on-off valve 19 and the second pressure reducing device 20 are connected in series, the third temperature detector 24, and the third on-off output device 25, and thus the description thereof is omitted.

次に本発明の制御及び作用について説明する。第三開閉出力装置25は、圧縮機1が運転中に第三温度検知器24の値が例えば120℃未満では開閉弁19は閉で、120℃以上では開閉弁19を開く信号を開閉弁19に出し、開閉弁19はこの信号により開閉する。この制御により、圧縮機1の吐出部の高温・高圧ガスの一部が開閉弁19及び第二減圧装置20装置を直列つないだ配管を通ってアキュムレータにバイパスするために、圧縮機1の吐出部の圧力・温度が減少し、スラッジの発生が減少する。 Next, the control and operation of the present invention will be described. When the compressor 1 is in operation, the third open / close output device 25 outputs a signal to open the open / close valve 19 when the value of the third temperature detector 24 is less than 120 ° C. The on-off valve 19 is opened and closed by this signal. Due to this control, a part of the high-temperature / high-pressure gas in the discharge part of the compressor 1 bypasses the accumulator through a pipe connecting the on-off valve 19 and the second pressure reducing device 20 in series. The pressure and temperature will decrease and sludge generation will decrease.

また別の方法として、圧縮機1が運転中に第三温度検知器25の値が120℃以上となった場合は圧縮機の運転を停止しても良い。 As another method, when the value of the third temperature detector 25 becomes 120 ° C. or higher while the compressor 1 is in operation, the operation of the compressor may be stopped.

参考例5 圧縮機の運転中に圧縮機吐出部の過熱度が低い場合は、圧縮機は冷媒を液圧縮しており、圧縮機が損傷する可能性がある。そこで、本参考例では圧縮機吐出部の過熱度を、圧縮機吐出管の圧力検知器及び温度検知器と冷媒循環組成の値から計算し、この値が一定値未満にならない制御を行う。 Reference Example 5 When the superheat degree of the compressor discharge section is low during the operation of the compressor, the compressor liquid-compresses the refrigerant, and the compressor may be damaged. Therefore, in this reference example , the degree of superheat of the compressor discharge section is calculated from the pressure detector and temperature detector of the compressor discharge pipe and the value of the refrigerant circulation composition, and control is performed so that this value does not become less than a certain value.

図9はこの参考例に関わる非共沸混合冷媒を用いた冷凍空調装置の一例である冷凍装置87を示すもので、圧縮機1、四方弁2、利用側熱交換器である室内機熱交換器3、第一絞り装置4、熱源機側熱交換器である室外機熱交換器5、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成し、かつ四方弁の切り替えにより圧縮機1、四方弁2、室外機熱交換器5、第一絞り装置4、室内機熱交換器3、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成する。またその他に循環組成検知装置15及び圧縮機1の吐出管に第一圧力検知器16と第三温度検知器24、圧縮機1の吸入管に第二圧力検知器13を有する。さらに室外熱交換器にはファン7が付いていて、このファン7の回転数と圧縮機1の周波数を出力するファン回転数・圧縮機周波数出力装置17によってファン7の回転数及び圧縮機1の周波数を計算・変更する。また、第三温度検知器24の値と第一圧力検知器16のガス飽和温度(液冷媒が全てガス冷媒になった時の温度で冷媒循環組成α及び第一圧力検知器16の値を入力)との差の値TdSHの値を計算し、この値によって圧縮機1の停止を出力する第二圧縮機停止出力装置26を有する。図9は第三温度検知器24、第二圧縮機停止出力装置26以外は、参考例1と同じなので説明を省略する。 FIG. 9 shows a refrigerating apparatus 87 which is an example of a refrigerating and air-conditioning apparatus using a non-azeotropic refrigerant mixture related to this reference example . The compressor 1, the four-way valve 2, and an indoor unit heat exchange which is a use side heat exchanger. A refrigerant circuit in which the condenser 3, the first expansion device 4, the outdoor unit heat exchanger 5, which is a heat source side heat exchanger, the accumulator 6, and the compressor 1 are connected in series by piping in this order, and the four-way valve By switching, a refrigerant circuit in which the compressor 1, the four-way valve 2, the outdoor unit heat exchanger 5, the first expansion device 4, the indoor unit heat exchanger 3, the accumulator 6, and the compressor 1 are connected in series by piping in this order is configured. To do. In addition, the circulation composition detector 15 and the discharge pipe of the compressor 1 have a first pressure detector 16 and a third temperature detector 24, and the suction pipe of the compressor 1 has a second pressure detector 13. Further, the outdoor heat exchanger is provided with a fan 7, and the rotation speed of the fan 7 and the compressor 1 are output by a fan rotation speed / compressor frequency output device 17 that outputs the rotation speed of the fan 7 and the frequency of the compressor 1. Calculate and change the frequency. In addition, the value of the third temperature detector 24 and the gas saturation temperature of the first pressure detector 16 (the refrigerant circulation composition α and the value of the first pressure detector 16 are input at the temperature when the liquid refrigerant is all gas refrigerant). And a second compressor stop output device 26 for outputting a stop of the compressor 1 based on this value. Since FIG. 9 is the same as Reference Example 1 except for the third temperature detector 24 and the second compressor stop output device 26, the description thereof is omitted.

次に本参考例の制御及び作用について説明する。第二圧縮機停止出力装置26は、圧縮機1が運転中に第三温度検知器24の値と第一圧力検知器16の圧力でガス飽和温度(液冷媒が全てガス冷媒になった時の温度で冷媒循環組成α及び第一圧力検知器16の値を入力)との差の値TdSHを計算し、この値が、所定の過熱度が得られない、即ち液圧縮があるとみなされる所定の値である20度以下の状態が所定の時間、例えば10分間続く場合には圧縮機1の運転を停止することで、圧縮機の損傷を防ぐ。 Next, the control and operation of this reference example will be described. The second compressor stop output device 26 is configured such that when the compressor 1 is in operation, the value of the third temperature detector 24 and the pressure of the first pressure detector 16 are used to adjust the gas saturation temperature (when the liquid refrigerant has become all gas refrigerant). The difference value TdSH between the refrigerant circulation composition α and the first pressure detector 16 is input at the temperature, and this value is a predetermined value at which a predetermined degree of superheat cannot be obtained, that is, there is liquid compression. If the state of 20 degrees or less, which is the value of, continues for a predetermined time, for example, 10 minutes, the compressor 1 is stopped to prevent the compressor from being damaged.

また別の方法として図10のような冷凍装置に図11のような制御にしても良い。 図10はこの参考例に関わる非共沸混合冷媒を用いた冷凍空調装置の一例である冷凍装置88を示すもので、圧縮機1、四方弁2、利用側熱交換器である室内機熱交換器3、第一絞り装置4、熱源機側熱交換器である室外機熱交換器5、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成し、かつ四方弁の切り替えにより圧縮機1、四方弁2、室外機熱交換器5、第一絞り装置4、室内機熱交換器3、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成する。またその他に循環組成検知装置15及び圧縮機1の吐出管に第一圧力検知器16と第三温度検知器24、圧縮機1の吸入管に第二圧力検知器13を有する。さらに室外熱交換器にはファン7が付いていて、このファン7の回転数と圧縮機1の周波数を出力するファン回転数・圧縮機周波数出力装置17によってファン7の回転数及び圧縮機1の周波数を計算・変更する。また、第三温度検知器24の値と第一圧力検知器16のガス飽和温度(液冷媒が全てガス冷媒になった時の温度で冷媒循環組成α及び第一圧力検知器16の値を入力)との差の値TdSHの値を計算し、この値によって第一絞り装置4の開度を減少させる出力をする絞り装置開度減少出力装置27を有する。図10は第三温度検知器24、絞り装置開度減少出力装置27以外は、参考例1と同じなので説明を省略する。 As another method, the refrigeration apparatus as shown in FIG. 10 may be controlled as shown in FIG. FIG. 10 shows a refrigeration apparatus 88 which is an example of a refrigeration air-conditioning apparatus using a non-azeotropic refrigerant mixture related to this reference example . The compressor 1, the four-way valve 2, and an indoor unit heat exchange which is a use side heat exchanger. A refrigerant circuit in which the condenser 3, the first expansion device 4, the outdoor unit heat exchanger 5, which is a heat source side heat exchanger, the accumulator 6, and the compressor 1 are connected in series by piping in this order, and the four-way valve By switching, a refrigerant circuit in which the compressor 1, the four-way valve 2, the outdoor unit heat exchanger 5, the first expansion device 4, the indoor unit heat exchanger 3, the accumulator 6, and the compressor 1 are connected in series by piping in this order is configured. To do. In addition, the circulation composition detector 15 and the discharge pipe of the compressor 1 have a first pressure detector 16 and a third temperature detector 24, and the suction pipe of the compressor 1 has a second pressure detector 13. Further, the outdoor heat exchanger is provided with a fan 7, and the rotation speed of the fan 7 and the compressor 1 are output by a fan rotation speed / compressor frequency output device 17 that outputs the rotation speed of the fan 7 and the frequency of the compressor 1. Calculate and change the frequency. In addition, the value of the third temperature detector 24 and the gas saturation temperature of the first pressure detector 16 (the refrigerant circulation composition α and the value of the first pressure detector 16 are input at the temperature when the liquid refrigerant is all gas refrigerant). A throttle device opening reduction output device 27 is provided for calculating the value of the difference TdSH from the first throttle device 4 and reducing the opening of the first throttle device 4 by this value. FIG. 10 is the same as Reference Example 1 except for the third temperature detector 24 and the expansion device opening reduction output device 27, and therefore the description thereof is omitted.

次に本参考例の制御及び作用について説明する。図11において制御の内容は、絞り装置開度減少出力装置27が圧縮機1が運転中に第三温度検知器24の値と第一圧力検知器16のガス飽和温度(液冷媒が全てガス冷媒になった時の温度で冷媒循環組成α及び第一圧力検知器16の値を入力)との差の値TdSHを計算し(ステップ1)、その値が、所定の過熱度が得られない、即ち液圧縮があるとみなされる所定の値である、例えば20度以下の状態が10分間続くかを判断し(ステップ2)、その値が20度以下の状態が10分間続く場合に第一絞り装置4の開度を所定量、例えば10pulse閉じる(ステップ3)。そしてTdSHが20度より大きくなるまで第一の絞り装置4を閉じる。第一の絞り装置4を閉じることにより、圧縮機の吐出、吸入圧力の差を大きくし、圧縮機から冷媒に
供給されるエネルギ−を大きくすることにより、冷媒をガス化し易くする。
Next, the control and operation of this reference example will be described. In FIG. 11, the contents of the control are as follows: the throttle device opening reduction output device 27 operates while the compressor 1 is operating, the value of the third temperature detector 24 and the gas saturation temperature of the first pressure detector 16 (all liquid refrigerant is gas refrigerant). The value TdSH of the difference between the refrigerant circulation composition α and the first pressure detector 16 is input at the temperature when the temperature becomes (step 1), and the predetermined superheat degree cannot be obtained. That is, it is determined whether or not a state where the liquid compression is present, for example, a state of 20 degrees or less continues for 10 minutes (step 2). The opening degree of the device 4 is closed by a predetermined amount, for example, 10 pulses (step 3). Then, the first expansion device 4 is closed until TdSH becomes larger than 20 degrees. By closing the first expansion device 4, the difference between the discharge and suction pressure of the compressor is increased, and the energy supplied to the refrigerant from the compressor is increased, so that the refrigerant is easily gasified.

参考例6 圧縮機内の冷凍機油の温度が高くなると冷凍機油の潤滑性が低下し、圧縮機が損傷する可能性がある。しかし参考例4のような冷媒回路では、正確な冷凍機油の温度を把握できない(特にR407Cでは、冷媒循環組成の誤差の分冷凍機油検知の誤差に影響するためR22より冷凍機油の温度を把握しにくい)。そこで、本参考例では圧縮機本体の冷凍機油の温度が測ることのできる位置に温度検知器を設け、この温度検知器の温度が一定値以上長時間運転しないようにして、圧縮機を保護する制御を行う。 Reference Example 6 When the temperature of the refrigeration oil in the compressor increases, the lubricity of the refrigeration oil decreases and the compressor may be damaged. However, the refrigerant circuit as in Reference Example 4 cannot accurately determine the temperature of the refrigerating machine oil (particularly, in R407C, since the refrigerant circulation composition error affects the refrigerating machine oil detection error, the refrigerating machine oil temperature is obtained from R22. Hateful). Therefore, in this reference example , a temperature detector is provided at a position where the temperature of the refrigeration oil in the compressor body can be measured, and the temperature of the temperature detector is not operated for a long time beyond a certain value to protect the compressor. Take control.

図12はこの参考例に関わる非共沸混合冷媒を用いた冷凍空調装置の一例である冷凍装置89を示すもので、圧縮機1、四方弁2、利用側熱交換器である室内機熱交換器3、第一絞り装置4、熱源機側熱交換器である室外機熱交換器5、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成し、かつ四方弁の切り替えにより圧縮機1、四方弁2、室外機熱交換器5、第一絞り装置4、室内機熱交換器3、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成する。またその他に循環組成検知装置15及び圧縮機1の吐出管に第一圧力検知器16と圧縮機1本体下部の冷凍機油の温度が検知可能な位置に第四温度検知器28、圧縮機1の吸入管に第二圧力検知器13を有する。さらに室外熱交換器にはファン7が付いていて、このファン7の回転数と圧縮機1の周波数を出力するファン回転数・圧縮機周波数出力装置17によってファン7の回転数及び圧縮機1の周波数を計算・変更する。また、第四温度検知器28の値によって圧縮機1の停止を出力する第三圧縮機停止出力装置29を有する。また、図12は第四温度検知器28及び第三圧縮機停止出力装置29以外は、参考例1と同じなので説明を省略する。 FIG. 12 shows a refrigerating apparatus 89 which is an example of a refrigerating and air-conditioning apparatus using a non-azeotropic refrigerant mixture related to this reference example . The compressor 1, the four-way valve 2, and an indoor unit heat exchange which is a use side heat exchanger. A refrigerant circuit in which the condenser 3, the first expansion device 4, the outdoor unit heat exchanger 5, which is a heat source side heat exchanger, the accumulator 6, and the compressor 1 are connected in series by piping in this order, and the four-way valve By switching, a refrigerant circuit in which the compressor 1, the four-way valve 2, the outdoor unit heat exchanger 5, the first expansion device 4, the indoor unit heat exchanger 3, the accumulator 6, and the compressor 1 are connected in series by piping in this order is configured. To do. In addition, the fourth temperature detector 28 and the compressor 1 are disposed at positions where the temperature of the refrigerating machine oil at the lower part of the compressor 1 and the first pressure detector 16 can be detected in the circulation pipe 15 and the discharge pipe of the compressor 1. A second pressure detector 13 is provided in the suction pipe. Further, the outdoor heat exchanger is provided with a fan 7, and the rotation speed of the fan 7 and the compressor 1 are output by a fan rotation speed / compressor frequency output device 17 that outputs the rotation speed of the fan 7 and the frequency of the compressor 1. Calculate and change the frequency. Moreover, it has the 3rd compressor stop output device 29 which outputs the stop of the compressor 1 by the value of the 4th temperature detector 28. FIG. Further, FIG. 12 is the same as Reference Example 1 except for the fourth temperature detector 28 and the third compressor stop output device 29, and the description thereof will be omitted.

次に本参考例の制御及び作用について説明する。第三圧縮機停止出力装置29は、圧縮機1が運転中に第四温度検知器22の値が所定の値、例えば100℃以上になり、この状態が60分連続で続いたことを検知し、この場合に、圧縮機1の運転を停止する信号を出力し、圧縮機1は停止する。 Next, the control and operation of this reference example will be described. The third compressor stop output device 29 detects that the value of the fourth temperature detector 22 becomes a predetermined value, for example, 100 ° C. or more during the operation of the compressor 1, and this state continues for 60 minutes continuously. In this case, a signal for stopping the operation of the compressor 1 is output, and the compressor 1 stops.

参考例7 圧縮機内の冷凍機油の濃度が低くなると冷凍機油の潤滑性が低下し、圧縮機が損傷する可能性がある。そこで、本参考例では圧縮機本体の冷凍機油の濃度を冷凍機油の温度と圧縮機吸入側の圧力での冷媒のガス飽和温度との差として表現し、この値が一定値以上長時間運転しないようにして、圧縮機を保護する制御を行う。 Reference Example 7 When the concentration of the refrigerating machine oil in the compressor becomes low, the lubricity of the refrigerating machine oil decreases and the compressor may be damaged. Therefore, in this reference example , the concentration of the refrigeration oil in the compressor body is expressed as the difference between the temperature of the refrigeration oil and the gas saturation temperature of the refrigerant at the pressure on the compressor suction side, and this value does not operate for a long time beyond a certain value. In this way, control for protecting the compressor is performed.

図13はこの参考例に関わる非共沸混合冷媒を用いた冷凍空調装置の一例である冷凍装置89を示すもので、圧縮機1、四方弁2、利用側熱交換器である室内機熱交換器3、第一絞り装置4、熱源機側熱交換器である室外機熱交換器5、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成し、かつ四方弁の切り替えにより圧縮機1、四方弁2、室外機熱交換器5、第一絞り装置4、室内機熱交換器3、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成する。またその他に循環組成検知装置15及び圧縮機1の吐出管に第一圧力検知器16と圧縮機1本体下部の冷凍機油の温度が検知可能な位置に第四温度検知器28、圧縮機1の吸入管に第二圧力検知器13を有する。さらに室外熱交換器5にはファン7が付いていて、このファン7の回転数と圧縮機1の周波数を出力するファン回転数・圧縮機周波数出力装置17によってファン7の回転数及び圧縮機1の周波数を計算・変更する。また、第四温度検知器28の値と第二圧力検知器13のガス飽和温度(液冷媒が全てガス冷媒になった時の温度で冷媒循環組成α及び第二圧力検知器13の値を入力)との差の値TsSHの値を計算し、この値によって圧縮機1の運転を停止する出力をする第四圧縮機停止出力装置30を有する。また、図13は第四温度検知器28及び第四圧縮機停止出力装置30以外は、参考例1と同じなので説明を省略する。 FIG. 13 shows a refrigeration apparatus 89 which is an example of a refrigeration air-conditioning apparatus using a non-azeotropic refrigerant mixture related to this reference example . The compressor 1, the four-way valve 2, and an indoor unit heat exchange which is a use side heat exchanger. A refrigerant circuit in which the condenser 3, the first expansion device 4, the outdoor unit heat exchanger 5, which is a heat source side heat exchanger, the accumulator 6, and the compressor 1 are connected in series by piping in this order, and the four-way valve By switching, a refrigerant circuit in which the compressor 1, the four-way valve 2, the outdoor unit heat exchanger 5, the first expansion device 4, the indoor unit heat exchanger 3, the accumulator 6, and the compressor 1 are connected in series by piping in this order is configured. To do. In addition, the fourth temperature detector 28 and the compressor 1 are disposed at positions where the temperature of the refrigerating machine oil at the lower part of the compressor 1 and the first pressure detector 16 can be detected in the circulation pipe 15 and the discharge pipe of the compressor 1. A second pressure detector 13 is provided in the suction pipe. Further, the outdoor heat exchanger 5 is provided with a fan 7, and the rotation speed of the fan 7 and the compressor 1 are output by a fan rotation speed / compressor frequency output device 17 that outputs the rotation speed of the fan 7 and the frequency of the compressor 1. Calculate and change the frequency. Further, the value of the fourth temperature detector 28 and the gas saturation temperature of the second pressure detector 13 (the refrigerant circulation composition α and the value of the second pressure detector 13 are input at the temperature when all the liquid refrigerant becomes gas refrigerant). And a fourth compressor stop output device 30 for outputting an output for stopping the operation of the compressor 1 based on the value TsSH. FIG. 13 is the same as Reference Example 1 except for the fourth temperature detector 28 and the fourth compressor stop output device 30, and thus the description thereof is omitted.

次に本参考例の制御及び作用について説明する。第四圧縮機停止出力装置30は、圧縮機1が運転中に第四温度検知器28の値と第二圧力検知器13のガス飽和温度(液冷媒が全てガス冷媒になった時の温度で冷媒循環組成α及び第二圧力検知器13の値を入力)との差の値TsSHが冷凍機油中に冷媒が多く混入していることを示す所定の値である、例えば10度以下になりこの状態が60分連続で続いたことを検知し、この場合に、圧縮機1の運転を停止する信号を出力し、圧縮機1は停止する。 Next, the control and operation of this reference example will be described. The fourth compressor stop output device 30 is the value of the fourth temperature detector 28 and the gas saturation temperature of the second pressure detector 13 during the operation of the compressor 1 (the temperature when all the liquid refrigerant becomes gas refrigerant). The difference value TsSH between the refrigerant circulation composition α and the second pressure detector 13) is a predetermined value indicating that a large amount of refrigerant is mixed in the refrigerating machine oil. It is detected that the state has continued for 60 minutes. In this case, a signal for stopping the operation of the compressor 1 is output, and the compressor 1 stops.

参考例8 図14はこの参考例に関わる非共沸混合冷媒を用いた冷凍空調装置の一例である冷凍装置85を示すもので、圧縮機1、四方弁2、利用側熱交換器である室内機熱交換器3、第一絞り装置4、熱源機側熱交換器である室外機熱交換器5、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成し、かつ四方弁の切り替えにより圧縮機1、四方弁2、室外機熱交換器5、第一絞り装置4、室内機熱交換器3、アキュムレータ6、圧縮機1をこの順で配管により直列に接続した冷媒回路を構成する。またその他に循環組成検知装置15及び圧縮機1の吐出管に第一圧力検知器16、圧縮機1の吸入管に第二圧力検知器13を有する。さらに室外熱交換器にはファン7が付いていて、このファン7の回転数と圧縮機1の周波数を出力するファン回転数・圧縮機周波数出力装置17によってファン7の回転数及び圧縮機1の周波数を計算・変更する。また室外機熱交換器5と第一絞り装置4の間に存在する第一の分岐点31及び四方弁2とアキュムレータ6の間に存在する第二の分岐点32を結び、第二の絞り装置33及び室外機熱交換器5と第一分岐点31の間の一部と熱交換する第二二重管熱交換器34を直列に配管でつないだ冷媒回路を有する。前記の第一の分岐点31、第二の分岐点32、第二の絞り装置33及び第二二重管熱交換器34とで過冷却装置を構成する。図14では、室外機熱交換器5と第一絞り装置4の間に存在する第一の分岐点31及び四方弁2とアキュムレータ6の間に存在する第二の分岐点32を結び、第二の絞り装置33及び室外機熱交換器5と第一分岐点31の間の一部と熱交換する第二二重管熱交換器34を直列に配管でつないだ冷媒回路以外は、参考例1と同じなので説明を省略する。 Reference Example 8 FIG. 14 shows a refrigeration apparatus 85 which is an example of a refrigeration air-conditioning apparatus using a non-azeotropic refrigerant mixture related to this reference example , and includes a compressor 1, a four-way valve 2, and a room which is a use side heat exchanger. A refrigerant circuit in which the machine heat exchanger 3, the first expansion device 4, the outdoor unit heat exchanger 5, which is a heat source machine side heat exchanger, the accumulator 6, and the compressor 1 are connected in series in this order by piping; and Refrigerant in which the compressor 1, the four-way valve 2, the outdoor unit heat exchanger 5, the first expansion device 4, the indoor unit heat exchanger 3, the accumulator 6, and the compressor 1 are connected in series by piping in this order by switching the four-way valve. Configure the circuit. In addition, the first pressure detector 16 is provided in the circulation composition detector 15 and the discharge pipe of the compressor 1, and the second pressure detector 13 is provided in the suction pipe of the compressor 1. Further, the outdoor heat exchanger is provided with a fan 7, and the rotation speed of the fan 7 and the compressor 1 are output by a fan rotation speed / compressor frequency output device 17 that outputs the rotation speed of the fan 7 and the frequency of the compressor 1. Calculate and change the frequency. Further, a first branch point 31 existing between the outdoor unit heat exchanger 5 and the first throttle device 4 and a second branch point 32 existing between the four-way valve 2 and the accumulator 6 are connected, and the second throttle device is connected. 33 and the outdoor unit heat exchanger 5 and a part between the first branch point 31 have a refrigerant circuit in which a second double pipe heat exchanger 34 for exchanging heat is connected in series with a pipe. The first branch point 31, the second branch point 32, the second expansion device 33, and the second double pipe heat exchanger 34 constitute a supercooling device. In FIG. 14, the first branch point 31 existing between the outdoor unit heat exchanger 5 and the first expansion device 4 and the second branch point 32 existing between the four-way valve 2 and the accumulator 6 are connected. Except for the refrigerant circuit in which the expansion device 33 and the outdoor unit heat exchanger 5 and the second double-tube heat exchanger 34 that exchanges heat with a part between the first branch point 31 are connected in series by a pipe, Reference Example 1 The explanation is omitted because it is the same.

次に本参考例の作用について説明する。冷房時に室外機熱交換器5で熱交換した冷媒は、第一分岐点から第二絞り装置を通って減圧された低圧二相冷媒と二重管熱交換器26で熱交換することで、過冷却度を確保する。このとき過冷却度は、R407Cの場合その場の圧力での液飽和温度からその場の温度を引いた値となり、R22ではその場の圧力での飽和温度からその場の温度を引いた値となる。このため、R407Cでは過冷却度が確保しにくいので本参考例が効果的となる。過冷却度を確保することにより、室内機絞り装置(第一絞り装置4)で冷媒音の発生を防止できる。 Next, the operation of this reference example will be described. The refrigerant heat-exchanged by the outdoor unit heat exchanger 5 during cooling is exchanged with the low-pressure two-phase refrigerant depressurized from the first branch point through the second expansion device by the double-tube heat exchanger 26. Ensure the degree of cooling. At this time, in the case of R407C, the degree of supercooling is a value obtained by subtracting the in-situ temperature from the liquid saturation temperature at the in-situ pressure, and in R22, a value obtained by subtracting the in-situ temperature from the saturation temperature at the in-situ pressure. Become. For this reason, since it is difficult to secure the degree of supercooling in R407C, this reference example is effective. By ensuring the degree of supercooling, generation of refrigerant noise can be prevented in the indoor unit expansion device (first expansion device 4).

前記の各実施の形態では冷媒として主としてR407Cの場合で説明したが、本発明は、例えば非共沸混合冷媒であるR404A、R407Aにおいても、また、擬似共沸混合冷媒であるR410A、R410Bでも成立する。 In each of the above-described embodiments, the description has been given mainly for the case of R407C as the refrigerant. However, the present invention can be applied to, for example, R404A and R407A that are non-azeotropic mixed refrigerants, and R410A and R410B that are pseudo-azeotropic mixed refrigerants. To do.

参考例1における冷媒回路図である。 6 is a refrigerant circuit diagram in Reference Example 1. FIG. 参考例1における循環組成検知回路内の冷媒の変化を示すモリエル線図である。It is a Mollier diagram which shows the change of the refrigerant | coolant in the circulation composition detection circuit in the reference example 1. FIG. 参考例2における冷媒回路図である。 6 is a refrigerant circuit diagram in Reference Example 2. FIG. 参考例3における冷媒回路図である。FIG. 6 is a refrigerant circuit diagram in Reference Example 3 . 本発明の実施の形態おけるアキュムレータ及び高温ガス冷媒バイパス管の接続部の図である。It is a diagram of the connection of the accumulator and the hot gas refrigerant bypass pipe definitive to the embodiment of the present invention. 本発明の実施の形態おける冷媒回路図である。It is a refrigerant circuit diagram definitive to an embodiment of the present invention. 参考例4における冷媒回路図である。FIG. 6 is a refrigerant circuit diagram in Reference Example 4 . 本発明の実施の形態おける冷媒回路図である。It is a refrigerant circuit diagram definitive to an embodiment of the present invention. 参考例5における冷媒回路図である。FIG. 9 is a refrigerant circuit diagram in Reference Example 5 . 参考例5における別の冷媒回路図である。 10 is another refrigerant circuit diagram in Reference Example 5. FIG. 参考例5における制御フローチャート図である。FIG. 10 is a control flowchart in Reference Example 5 . 参考例6における冷媒回路図である。FIG. 9 is a refrigerant circuit diagram in Reference Example 6 . 参考例7における冷媒回路図である。It is a refrigerant circuit figure in reference example 7 . 参考例8における冷媒回路図である。 10 is a refrigerant circuit diagram in Reference Example 8. FIG. 従来の技術における冷媒回路である。It is a refrigerant circuit in a prior art.

符号の説明Explanation of symbols

1 圧縮機、3 利用側熱交換器、4 絞り装置、5 熱源機側熱交換器、7 ファン、13 第二圧力検知器、15 循環組成検知装置、16 第一圧力検知器、17 ファン、圧縮機能力制御手段、18 絞り装置最小開度出力装置、19 開閉弁、20 減圧装置、21 第一開閉出力装置、22 第二開閉出力装置、23 第一圧縮機停止出力装置、24 第三温度検知器、25 第三開閉出力装置、26 第二圧縮機停止出力装置、27 絞り装置開度減少出力装置、28 第四温度検知器、29 第三圧縮機停止出力装置、30 第四圧縮機停止出力装置、31〜34 過冷却装置、35、36 温度検知器、38 サブク−ル計算器、 DESCRIPTION OF SYMBOLS 1 Compressor, 3 Use side heat exchanger, 4 Expansion device, 5 Heat source side heat exchanger, 7 Fan, 13 2nd pressure detector, 15 Circulating composition detection device, 16 1st pressure detector, 17 Fan, compression Functional force control means, 18 throttle device minimum opening output device, 19 open / close valve, 20 pressure reducing device, 21 first open / close output device, 22 second open / close output device, 23 first compressor stop output device, 24 third temperature detection 25, third open / close output device, 26 second compressor stop output device, 27 throttle device opening reduction output device, 28 fourth temperature detector, 29 third compressor stop output device, 30 fourth compressor stop output Device, 31-34 supercooling device, 35, 36 temperature detector, 38 subcool calculator,

Claims (11)

容量可変の圧縮機、熱源機側熱交換器、絞り装置、利用側熱交換器を配管接続した冷媒回路と、前記熱源機側熱交換器用の能力可変のファンと、前記圧縮機の吐出管の第一圧力検知器と、前記圧縮機の吸入管の第二圧力検知器と、冷媒の循環組成検知装置とを備え、非共沸混合冷媒を使用する冷凍装置において、
前記循環組成検知装置の検知した冷媒循環組成と前記第一圧力検知器の検出圧力とから前記熱源機側熱交換器または前記利用側熱交換器の凝縮温度を決定し、また、前記循環組成検知装置の検知した冷媒循環組成と前記第二圧力検知器の検出圧力とから前記熱源機側熱交換器または前記利用側熱交換器の蒸発温度を決定し、前記凝縮温度及び前記蒸発温度がそれぞれの所定の目的値となるように、前記圧縮機の容量及び前記熱源機側熱交換器用のファンの能力を制御するファン、圧縮機能力制御手段を備えたことを特徴とする冷凍装置。
A variable capacity compressor, a heat source machine side heat exchanger, a throttling device, a refrigerant circuit piped to a use side heat exchanger, a variable capacity fan for the heat source machine side heat exchanger, and a discharge pipe of the compressor In a refrigeration apparatus comprising a first pressure detector, a second pressure detector of a suction pipe of the compressor, and a refrigerant circulation composition detection device, and using a non-azeotropic refrigerant mixture,
The condensation temperature of the heat source unit side heat exchanger or the use side heat exchanger is determined from the refrigerant circulation composition detected by the circulation composition detection device and the detection pressure of the first pressure detector, and the circulation composition detection The evaporating temperature of the heat source machine side heat exchanger or the use side heat exchanger is determined from the refrigerant circulation composition detected by the apparatus and the detected pressure of the second pressure detector, and the condensing temperature and the evaporating temperature are respectively determined. A refrigeration apparatus comprising a fan for controlling the capacity of the compressor and the capacity of the heat source machine side heat exchanger so as to have a predetermined target value, and a compression function force control means.
圧縮機、熱源機側熱交換器、絞り装置、利用側熱交換器を配管接続した冷媒回路と、前記圧縮機の吐出管の第一圧力検知器と、前記圧縮機の吸入管の第二圧力検知器と、冷媒の循環組成検知装置と、前記絞り装置の上流側の冷媒温度を検知する温度検知器とを備え、非共沸混合冷媒を使用する冷凍装置において、
前記循環組成検知装置の検知した冷媒循環組成と前記第一圧力検知器の検出圧力とから前記熱源機側熱交換器または利用側熱交換器の凝縮温度を決定し、この凝縮温度と前記温度検知機の検出温度とから絞り装置に入る冷媒のサブク−ル値を算出し、このサブク−ル値が所定の目標値になるように前記絞り装置の開度指令を出すサブク−ル計算器と、
前記循環組成検知装置の検知した冷媒循環組成、前記第一圧力検知器の検出圧力及び前記第二圧力検知器の検出圧力より前記絞り装置の最小開度を算出し、算出最小開度と前記サブク−ル計算器からの開度指令とを比較し、開度指令が算出最小開度より大であれば、開度指令を、開度指令が算出最小開度以下であれば、算出最小開度を絞り装置に出力する絞り装置最小開度出力装置とを有することを特徴とする冷凍装置。
A refrigerant circuit in which a compressor, a heat source side heat exchanger, a throttling device, and a use side heat exchanger are connected by piping; a first pressure detector of a discharge pipe of the compressor; and a second pressure of a suction pipe of the compressor In a refrigeration apparatus comprising a detector, a refrigerant circulation composition detection device, and a temperature detector for detecting a refrigerant temperature upstream of the expansion device, and using a non-azeotropic refrigerant mixture,
The condensation temperature of the heat source apparatus side heat exchanger or the use side heat exchanger is determined from the refrigerant circulation composition detected by the circulation composition detection device and the detected pressure of the first pressure detector, and the condensation temperature and the temperature detection are determined. A subcool calculator for calculating a subcooling value of the refrigerant entering the expansion device from the detected temperature of the compressor, and issuing an opening degree command of the expansion device so that the subcooling value becomes a predetermined target value;
The minimum opening of the throttling device is calculated from the refrigerant circulation composition detected by the circulation composition detection device, the detection pressure of the first pressure detector, and the detection pressure of the second pressure detector. -If the opening command is larger than the calculated minimum opening, the opening command is compared.If the opening command is less than the calculated minimum opening, the calculated minimum opening is compared. And a throttling device minimum opening degree output device for outputting a squeezing device to the throttling device.
圧縮機、熱源機側熱交換器、絞り装置、利用側熱交換器を配管接続した冷媒回路と、前記圧縮機の吸入管の第二圧力検知器と、開閉弁、減圧装置付きで、圧縮機の吐出配管と吸入配管とを接続するバイパス配管とを備え、非共沸混合冷媒を使用する冷凍装置において、
前記第二圧力検知器の検出圧力が所定値未満では前記開閉弁を開とし、所定値以上では前記開閉弁を閉とする第一開閉出力装置を備えたことを特徴とする冷凍装置。
Compressor, heat source side heat exchanger, expansion device, refrigerant circuit with pipe connection of use side heat exchanger, second pressure detector of suction pipe of compressor, on-off valve, pressure reducing device, compressor In a refrigeration apparatus comprising a bypass pipe connecting the discharge pipe and the suction pipe, and using a non-azeotropic refrigerant mixture,
A refrigeration apparatus comprising a first on-off output device that opens the on-off valve when the detected pressure of the second pressure detector is less than a predetermined value and closes the on-off valve when the detected pressure is higher than a predetermined value.
圧縮機、熱源機側熱交換器、絞り装置、利用側熱交換器を配管接続した冷媒回路と、前記圧縮機の吐出管の第一圧力検知器と、開閉弁、減圧装置付きで、圧縮機の吐出配管と吸入配管とを接続するバイパス配管とを備え、冷媒としてHFC系冷媒でR22より同一温度での飽和圧力が高い冷媒を使用する冷凍装置において、
前記第一圧力検知器の検出圧力が所定値以上では前記開閉弁を開とし、所定値未満では前記開閉弁を閉とする第二開閉出力装置を備えたことを特徴とする冷凍装置。
Compressor, heat source side heat exchanger, expansion device, refrigerant circuit connected by piping, first pressure detector of discharge pipe of the compressor, on-off valve, pressure reducing device, compressor In a refrigeration apparatus comprising a bypass pipe connecting the discharge pipe and the suction pipe, and using a refrigerant having a higher saturation pressure at the same temperature than R22 as an HFC refrigerant,
A refrigeration apparatus comprising a second on-off output device that opens the on-off valve when the detected pressure of the first pressure detector is equal to or higher than a predetermined value and closes the on-off valve when the detected pressure is less than the predetermined value.
圧縮機、熱源機側熱交換器、絞り装置、利用側熱交換器を配管接続した冷媒回路と、前記圧縮機の吸入管の第二圧力検知器とを備え、冷媒としてHFC系冷媒でR22よりコロナ放電の起こり易い冷媒を使用する冷凍装置において、
前記第二圧力検知器の検出圧力が圧縮機が真空運転を行うことを示す所定値以下となった場合、前記圧縮機の運転を停止する第一圧縮機停止出力装置を備えたことを特徴とする冷凍装置。
A refrigerant circuit having a compressor, a heat source side heat exchanger, a throttling device, and a use side heat exchanger connected by piping; and a second pressure detector of the suction pipe of the compressor. In a refrigeration system that uses a refrigerant that is prone to corona discharge,
A first compressor stop output device is provided to stop the operation of the compressor when the detected pressure of the second pressure detector is equal to or less than a predetermined value indicating that the compressor performs a vacuum operation. Refrigeration equipment.
圧縮機、熱源機側熱交換器、絞り装置、利用側熱交換器を配管接続した冷媒回路と、前記圧縮機の吐出管の第三温度検知器と、開閉弁、減圧装置付きで、圧縮機の吐出配管と吸入配管とを接続するバイパス配管とを備え、冷媒としてHFC系冷媒を使用する冷凍装置において、
前記第三温度検知器の検出値が所定値以上では前記開閉弁を開とし、所定値未満では前記開閉弁を閉とする第三開閉出力装置を備えたことを特徴とする冷凍装置。
Compressor, heat source side heat exchanger, expansion device, refrigerant circuit connected with piping, use side heat exchanger, third temperature detector of discharge pipe of the compressor, on-off valve, pressure reducing device, compressor In a refrigeration apparatus comprising a bypass pipe connecting the discharge pipe and the suction pipe, and using an HFC refrigerant as a refrigerant,
A refrigeration apparatus comprising a third on-off output device that opens the on-off valve when a detection value of the third temperature detector is equal to or greater than a predetermined value, and closes the on-off valve when the detection value is less than the predetermined value.
圧縮機、熱源機側熱交換器、絞り装置、利用側熱交換器を配管接続した冷媒回路と、前記圧縮機の吸出管の第一圧力検知器と、前記圧縮機の吐出管の第三温度検知器と、冷媒の循環組成検知装置とを備え、非共沸混合冷媒を使用する冷凍装置において、
前記第一圧力検知器、前記第三温度検知器及び前記冷媒の循環組成検知装置の各検知値から前記圧縮機の吐出管の過熱度を算出し、この過熱度が所定の値以下である状態が所定時間続いた場合、前記圧縮機の運転を停止する第二圧縮機停止出力装置を備えたことを特徴とする冷凍装置。
A refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion device, and a use side heat exchanger are connected by piping, a first pressure detector of a suction pipe of the compressor, and a third temperature of a discharge pipe of the compressor In a refrigeration apparatus comprising a detector and a circulating composition detection device for refrigerant and using a non-azeotropic refrigerant mixture,
The superheat degree of the discharge pipe of the compressor is calculated from the detected values of the first pressure detector, the third temperature detector, and the refrigerant circulation composition detector, and the superheat degree is a predetermined value or less. Is provided with a second compressor stop output device for stopping the operation of the compressor when it continues for a predetermined time.
圧縮機、熱源機側熱交換器、絞り装置、利用側熱交換器を配管接続した冷媒回路と、前記圧縮機の吸出管の第一圧力検知器と、前記圧縮機の吐出管の第三温度検知器と、冷媒の循環組成検知装置とを備え、非共沸混合冷媒を使用する冷凍装置において、
前記第一圧力検知器、前記第三温度検知器及び前記冷媒の循環組成検知装置の各検知値から前記圧縮機の吐出管の過熱度を算出し、この過熱度が所定の値以下である状態が所定時間続いた場合、前記絞り装置の開度を所定量閉める絞り装置開度減少出力装置を備えたことを特徴とする冷凍装置。
A refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion device, and a use side heat exchanger are connected by piping, a first pressure detector of a suction pipe of the compressor, and a third temperature of a discharge pipe of the compressor In a refrigeration apparatus comprising a detector and a circulating composition detection device for refrigerant and using a non-azeotropic refrigerant mixture,
The superheat degree of the discharge pipe of the compressor is calculated from the detected values of the first pressure detector, the third temperature detector, and the refrigerant circulation composition detector, and the superheat degree is a predetermined value or less. A refrigeration apparatus comprising: a throttle device opening reduction output device that closes the opening of the throttle device by a predetermined amount when the operation continues for a predetermined time.
圧縮機、熱源機側熱交換器、絞り装置、利用側熱交換器を配管接続した冷媒回路を備え、非共沸混合冷媒を使用する冷凍装置において、
前記圧縮機内に冷凍機油の温度を検知する第四温度検知器を備え、前記第四温度検知器の検知値が所定の値以上となり、この所定の値以上の状態が所定の時間続いた場合、前記圧縮機の運転を停止させる第三圧縮機停止出力装置を備えたことを特徴とする冷凍装置。
In a refrigeration system comprising a refrigerant circuit in which a compressor, a heat source machine side heat exchanger, a throttling device, and a use side heat exchanger are connected by piping, and using a non-azeotropic refrigerant mixture,
When a fourth temperature detector for detecting the temperature of the refrigerating machine oil is included in the compressor, the detection value of the fourth temperature detector is a predetermined value or more, and when the state of the predetermined value or more continues for a predetermined time, A refrigeration apparatus comprising a third compressor stop output device for stopping the operation of the compressor.
圧縮機、熱源機側熱交換器、絞り装置、利用側熱交換器を配管接続した冷媒回路と、前記圧縮機の吸入管の第二圧力検知器と、冷媒の循環組成検知装置とを備え、非共沸混合冷媒を使用する冷凍装置において、
前記圧縮機内の第四温度検知器が検知した冷凍機油の温度と前記冷媒の循環組成検知装置の検知組成で、前記第二圧力検知器の検知圧力でのガス飽和温度との差が所定の値以下になり、この状態が所定の時間続いた場合、前記圧縮機の運転を停止する第四圧縮機停止出力装置を備えたことを特徴とする冷凍装置。
A compressor, a heat source side heat exchanger, a throttling device, a refrigerant circuit piped to the use side heat exchanger, a second pressure detector of the suction pipe of the compressor, and a refrigerant circulation composition detection device, In refrigeration equipment using non-azeotropic refrigerant mixture,
The difference between the temperature of the refrigerating machine oil detected by the fourth temperature detector in the compressor and the gas saturation temperature at the detected pressure of the second pressure detector is a predetermined value in the detected composition of the circulating composition detector of the refrigerant. A refrigeration apparatus comprising: a fourth compressor stop output device that stops the operation of the compressor when this state continues for a predetermined time.
圧縮機、熱源機側熱交換器、絞り装置、利用側熱交換器を配管接続した冷媒回路を備え、非共沸混合冷媒を使用する冷凍装置において、
冷房運転時に、前記熱源機側熱交換器と前記絞り装置との間で冷媒を過冷却する過冷却装置を備えたことを特徴とする冷凍装置。
In a refrigeration system comprising a refrigerant circuit in which a compressor, a heat source machine side heat exchanger, a throttling device, and a use side heat exchanger are connected by piping, and using a non-azeotropic refrigerant mixture,
A refrigeration apparatus comprising a supercooling device that supercools a refrigerant between the heat source unit side heat exchanger and the expansion device during a cooling operation.
JP2007261002A 2007-10-04 2007-10-04 Refrigerating unit Pending JP2008020189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007261002A JP2008020189A (en) 2007-10-04 2007-10-04 Refrigerating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007261002A JP2008020189A (en) 2007-10-04 2007-10-04 Refrigerating unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP35749297A Division JP4200532B2 (en) 1997-12-25 1997-12-25 Refrigeration equipment

Publications (1)

Publication Number Publication Date
JP2008020189A true JP2008020189A (en) 2008-01-31

Family

ID=39076253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261002A Pending JP2008020189A (en) 2007-10-04 2007-10-04 Refrigerating unit

Country Status (1)

Country Link
JP (1) JP2008020189A (en)

Similar Documents

Publication Publication Date Title
JP4200532B2 (en) Refrigeration equipment
JP6475346B2 (en) Refrigeration cycle equipment
US6581397B1 (en) Refrigerating device
JP5318099B2 (en) Refrigeration cycle apparatus and control method thereof
US10508826B2 (en) Refrigeration cycle apparatus
JP6656402B2 (en) Refrigeration cycle device
US10082324B2 (en) Refrigeration apparatus having leakage or charge deficiency determining feature
CN111201411A (en) Refrigerating device
JP2001227822A (en) Refrigerating air conditioner
JPWO2014192140A1 (en) Air conditioner
US11293647B2 (en) Air conditioner
WO2014049673A1 (en) Combined air-conditioning and hot-water supply system
US11920841B2 (en) Air-conditioning apparatus
WO2013027232A1 (en) Refrigeration cycle device
JPWO2016121068A1 (en) Refrigeration cycle equipment
JP6902390B2 (en) Refrigeration cycle equipment
JP5487831B2 (en) Leakage diagnosis method and leak diagnosis apparatus
JP2011106688A (en) Condensation pressure detecting system and refrigeration cycle system
JP4548502B2 (en) Refrigeration equipment
JP6410935B2 (en) Air conditioner
JP2008020189A (en) Refrigerating unit
EP4317840A1 (en) Heat pump device
WO2024047832A1 (en) Refrigeration cycle device and air conditioning device
WO2024047954A1 (en) Refrigeration cycle apparatus and air-conditioner
WO2024047833A1 (en) Refrigeration cycle device and air conditioning device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624