JP2008019463A - Thin film manufacturing apparatus - Google Patents

Thin film manufacturing apparatus Download PDF

Info

Publication number
JP2008019463A
JP2008019463A JP2006190396A JP2006190396A JP2008019463A JP 2008019463 A JP2008019463 A JP 2008019463A JP 2006190396 A JP2006190396 A JP 2006190396A JP 2006190396 A JP2006190396 A JP 2006190396A JP 2008019463 A JP2008019463 A JP 2008019463A
Authority
JP
Japan
Prior art keywords
voltage application
thin film
manufacturing apparatus
electrode
application electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006190396A
Other languages
Japanese (ja)
Other versions
JP4844881B2 (en
Inventor
Hitoshi Shimizu
均 清水
Takashi Ouchi
崇 大内
Masakazu Gekito
政和 鷁頭
Shin Shimozawa
慎 下沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2006190396A priority Critical patent/JP4844881B2/en
Publication of JP2008019463A publication Critical patent/JP2008019463A/en
Application granted granted Critical
Publication of JP4844881B2 publication Critical patent/JP4844881B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film manufacturing apparatus capable of supplying the high power of the high frequency range while suppressing the cost of the apparatus, enhancing the film deposition working efficiency while reliably forming the thin film of the excellent film thickness distribution, and sufficiently ensuring the installation space of an impedance matching box while suppressing the thickness of a shield body. <P>SOLUTION: The thin film manufacturing apparatus for depositing a thin film on a surface of a flexible substrate 1 by stopping the flexible substrate 1 to be conveyed in a vacuum chamber 13 in a film deposition chamber 5 in a vacuum state, and applying the voltage between a voltage applying electrode 21 and a grounding electrode 22 comprises a supporting frame 54 which is formed in a frame shape and insulates and fixes the voltage applying electrode 21, a metal diaphragm body 58 fixed to a face opposite to the voltage applying electrode 21 of the supporting frame 54, a power supply structural body 60 which is provided inside the supporting frame 54 to supply the power to the voltage applying electrode 21, a first grounding box 80 to be electrically connected to an inner surface of a wall body 15, and a second grounding body 90 to be electrically connected to the metal diaphragm body 58. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、送り室から巻取り室へ向けて搬送される可撓性基板の表面に薄膜を成膜する薄膜製造装置に関する。   The present invention relates to a thin film manufacturing apparatus for forming a thin film on the surface of a flexible substrate conveyed from a feeding chamber toward a winding chamber.

長尺の高分子材料板あるいはステンレス鋼などの金属板からなる可撓性基板(以下基板という)の表面に、a−Siを主材料とした光電変換層を含む各層を形成して薄膜光電変換素子を製造する方法は、生産性に優れた薄膜光電変換素子の製造方法として広く採用されている。
このような長尺の基板上に複数の層を成膜する方法として、各成膜室内を移動する基板上に層を成膜するロールツーロール方式と、成膜室内で停止させた基板上に成膜した後、成膜が終了した基板部分を成膜室外へ送り出すステッピングロール方式とがある。
Thin film photoelectric conversion by forming each layer including a photoelectric conversion layer mainly composed of a-Si on the surface of a flexible substrate (hereinafter referred to as substrate) made of a long polymer material plate or a metal plate such as stainless steel. The method for producing an element is widely adopted as a method for producing a thin film photoelectric conversion element excellent in productivity.
As a method for forming a plurality of layers on such a long substrate, a roll-to-roll method in which a layer is formed on a substrate moving in each film formation chamber and a substrate stopped in the film formation chamber are used. There is a stepping roll method in which after the film formation, the substrate portion on which film formation has been completed is sent out of the film formation chamber.

図6は、基板面を鉛直にして搬送される2枚の基板(可撓性基板)をそれぞれ並行して搬送し、各基板の一面上に薄膜を形成するようにしたステッピングロール方式の一般的な薄膜製造装置の一例を示す平面断面図である。図7は成膜室近傍の詳細を示す部分断面図であり、(A)は成膜時、(B)は基板搬送時を示している。
図6に示す薄膜製造装置100において、先ず送り室111内に配設された2つの搬入ロール102から基板101が引き出され、該基板101は予備真空室112を経て成膜用真空室113に入る。この成膜用真空室113内には、一つの電圧印加電極121の外側に2つの接地電極122がそれぞれ対向配置されており、これら電圧印加電極121と接地電極122との間に搬入された各基板101は成膜用真空室113内に形成された成膜室105で一旦停止されて表面への成膜が行われる。成膜終了後、アクチュエータ124が起動し、成膜された各基板101は巻取り室114内に配設された2つの搬送ロール103にそれぞれ巻き取られる。
FIG. 6 shows a general stepping roll method in which two substrates (flexible substrates) conveyed in parallel with each other are conveyed in parallel to form a thin film on one surface of each substrate. It is plane sectional drawing which shows an example of a thin film manufacturing apparatus. 7A and 7B are partial cross-sectional views showing details in the vicinity of the film formation chamber. FIG. 7A shows a state during film formation, and FIG.
In the thin film manufacturing apparatus 100 shown in FIG. 6, first, the substrate 101 is pulled out from two carry-in rolls 102 disposed in the feed chamber 111, and the substrate 101 enters the film forming vacuum chamber 113 through the preliminary vacuum chamber 112. . In the vacuum chamber 113 for film formation, two ground electrodes 122 are arranged opposite to each other on the outside of one voltage application electrode 121, and each carried in between the voltage application electrode 121 and the ground electrode 122. The substrate 101 is temporarily stopped in the film formation chamber 105 formed in the film formation vacuum chamber 113 and film formation is performed on the surface. After the film formation is completed, the actuator 124 is activated, and each substrate 101 on which the film has been formed is wound around two transport rolls 103 disposed in the winding chamber 114.

また、図7に示す薄膜製造装置100において、成膜用真空室113は壁体115によって外界と区切られており、図7(A)で示される成膜時には、搬送ローラ104に挟まれた基板101の外側に接地電極122が密着し、内側に成膜室壁151のシール材152がそれぞれ密着することにより、成膜室105が気密状態に保持される。
そして、電圧印加電極121と接地電極122との間に電圧が印加されてプラズマ106が生じ、接地電極122に内蔵されたヒータ123により加熱された基板101の表面上には、反応ガスの分解による薄膜が形成され、成膜が終了する。
Further, in the thin film manufacturing apparatus 100 shown in FIG. 7, the film forming vacuum chamber 113 is separated from the outside by a wall 115, and the substrate sandwiched between the transport rollers 104 at the time of film forming shown in FIG. When the ground electrode 122 is in close contact with the outer side of 101 and the sealing material 152 of the film forming chamber wall 151 is in close contact with the inner side, the film forming chamber 105 is kept airtight.
Then, a voltage is applied between the voltage application electrode 121 and the ground electrode 122 to generate plasma 106, and the reaction gas is decomposed on the surface of the substrate 101 heated by the heater 123 built in the ground electrode 122. A thin film is formed and film formation is completed.

かかる成膜の終了後、基板101を搬送する際には、搬送ローラ104及び各接地電極122を図6に示すアクチュエータ124によって外側方向(図7(A)の矢印A方向)に約1cm程度移動させる。図7(B)は、かかる移動が行われた後の状態を示している。
以上のようにして、基板101を成膜室壁151及び接地電極122に接触させることなく、巻取り室114への方向(図7(B)の矢印B方向)に搬送することが可能となる。
When the substrate 101 is transferred after the film formation is completed, the transfer roller 104 and each ground electrode 122 are moved about 1 cm outward (in the direction of arrow A in FIG. 7A) by the actuator 124 shown in FIG. Let FIG. 7B shows a state after such movement is performed.
As described above, the substrate 101 can be transported in the direction toward the winding chamber 114 (in the direction of arrow B in FIG. 7B) without contacting the film formation chamber wall 151 and the ground electrode 122. .

図8は、図6及び図7に示される一般的なステッピングロール方式薄膜製造装置を改良した薄膜製造装置として、特許文献1(特開2005−256100号公報)にて提供されている薄膜製造装置の断面図である。
図8において、010はステッピングロール方式で成膜を行う薄膜製造装置、1は並行して搬送される2列の基板(可撓性基板)、02は対を成す電圧印加電極、03は内部にヒータ03aを備えた接地電極、04はシールド体、08は成膜室、09は壁体である。
051は壁体09の上部に設置されたインピーダンス整合器であり、該整合器051は前記電圧印加電極02からの反射波を最小にする制御を行うものである。
上記電圧印加電極02の間には、接地電位に保たれたシールド体04が配置されており、このシールド体04には、給電体06(06a,06b)を各電圧印加電極02の中央部02aに導くための貫通孔がそれぞれ設けられている。この貫通孔に各給電体06(06a,06b)をそれぞれ貫挿させて電圧印加電極02の中央部02aに給電することにより、中央部02aまで各給電体06(06a,06b)をシールド状態で導き、中央部02aにそれぞれ給電することを可能としている。
特開2005−256100号公報
FIG. 8 shows a thin film manufacturing apparatus provided in Patent Document 1 (Japanese Patent Laid-Open No. 2005-256100) as a thin film manufacturing apparatus improved from the general stepping roll type thin film manufacturing apparatus shown in FIGS. FIG.
In FIG. 8, 010 is a thin film manufacturing apparatus for forming a film by a stepping roll method, 1 is a two-row substrate (flexible substrate) conveyed in parallel, 02 is a pair of voltage application electrodes, and 03 is inside A ground electrode provided with a heater 03a, 04 is a shield body, 08 is a film forming chamber, and 09 is a wall body.
Reference numeral 051 denotes an impedance matching unit installed on the upper portion of the wall body 09. The matching unit 051 performs control to minimize the reflected wave from the voltage application electrode 02.
A shield body 04 maintained at a ground potential is disposed between the voltage application electrodes 02. A power supply body 06 (06a, 06b) is connected to the central portion 02a of each voltage application electrode 02 on the shield body 04. Each of the through holes is provided for guiding to the center. Each power feeder 06 (06a, 06b) is inserted into the through-hole to feed power to the central portion 02a of the voltage application electrode 02, whereby each power feeder 06 (06a, 06b) is shielded up to the central portion 02a. It is possible to feed power to the central portion 02a.
JP-A-2005-256100

ところで近年、可撓性基板の表面に薄膜を成膜する薄膜製造装置においては、高周波電源の周波数として、従来主として用いられてきた13.56MHzの周波数の2〜4倍程度の高周波数が利用され始めてきている。
前述のような高周波数域への移行が進行しつつある要因としては、
(1)薄膜の形成速度の上昇に加えて、薄膜の膜質の向上を図ることが可能になる。
(2)高い周波数によってプラズマを発生した場合、電圧印加電極及び接地電極の間に電子がトラップされ、低い印加電圧でプラズマを維持できるので、成膜中に基板に入射するエネルギー粒子によるダメージが軽減されることになる。
By the way, in recent years, in a thin film manufacturing apparatus for forming a thin film on the surface of a flexible substrate, a high frequency that is about 2 to 4 times the frequency of 13.56 MHz that has been mainly used conventionally is used as the frequency of the high frequency power source. It is starting.
As a factor that the transition to the high frequency range as described above is progressing,
(1) In addition to an increase in the formation speed of the thin film, it is possible to improve the film quality of the thin film.
(2) When plasma is generated at a high frequency, electrons are trapped between the voltage application electrode and the ground electrode, and the plasma can be maintained at a low application voltage, thus reducing damage caused by energetic particles incident on the substrate during film formation. Will be.

しかしながら、図8に示される従来技術にあっては、良好な膜厚分布を得るために、電圧印加電極02の中央部02aに給電体06の導体06aを接続する必要があることから、装置のレイアウト上、給電体06の長さが長くなってインダクタンスが増加し、高い周波数域の高電力を投入するには印加電圧が高くなるという、実用上の給電についての問題が生じていた。
また、かかる従来技術にあっては、前記電圧印加電極02からの反射波を最小にする制御を行うため、2つのインピーダンス整合器051を壁体09の上部の電圧印加電極02の中央部02aの直上に対応する場所に設置して、これに高周波電源052が接続されている。このため、給電体06の直上に2つのインピーダンス整合器051が対向して設置され、シールド体04の厚さが相応に厚くなる。これにより、成膜面積を大面積化した場合はシールド体04も大型になって重量が増加し、組立、施工性の悪化を招き易いという問題があった。
However, in the prior art shown in FIG. 8, it is necessary to connect the conductor 06a of the power feeder 06 to the central portion 02a of the voltage application electrode 02 in order to obtain a good film thickness distribution. Due to the layout, the length of the power supply body 06 is increased, the inductance is increased, and there is a problem in practical power supply that an applied voltage is increased to apply high power in a high frequency range.
Further, in this conventional technique, in order to perform control to minimize the reflected wave from the voltage application electrode 02, the two impedance matching devices 051 are connected to the central portion 02a of the voltage application electrode 02 on the upper side of the wall body 09. A high frequency power supply 052 is connected to a location directly above. For this reason, the two impedance matching devices 051 are installed directly above the power supply body 06, and the thickness of the shield body 04 is accordingly increased. As a result, when the film formation area is increased, the shield body 04 is also increased in size and weight, and there is a problem that assembly and workability are liable to be deteriorated.

本発明は、このような実情に鑑みてなされたものであって、その目的は、装置コストを抑制しつつ、高い周波数域の高電力を給電できるとともに良好な膜厚分布の薄膜形成を保持しながら成膜作業能率を向上させ、シールド体の厚みを抑えてインピーダンス整合器の設置スペースを十分に確保できる薄膜製造装置を提供することにある。   The present invention has been made in view of such a situation, and the object thereof is to maintain high-frequency thin film formation while being able to supply high power in a high frequency range while suppressing apparatus cost. An object of the present invention is to provide a thin film manufacturing apparatus capable of improving the film forming work efficiency and suppressing the thickness of the shield body to sufficiently secure an installation space for the impedance matching unit.

上記従来技術の有する課題を解決するために、請求項1の本発明は、真空室内を搬送される可撓性基板を、函状の壁体の内部に形成された真空の成膜室内に停止させ、前記真空の成膜室に臨んで設置され前記可撓性基板に対向して配置された電圧印加電極と接地電極との間に電圧を印加して前記可撓性基板の表面に薄膜を成膜する薄膜製造装置において、金属材料からなる枠形状に形成され前記電圧印加電極を絶縁して固定する支持枠と、該支持枠の前記電圧印加電極に対向する面に固定された金属隔膜体と、前記支持枠の内部に設けられて前記電圧印加電極に給電する給電構造体と、前記真空室内に設置されて前記壁体の内面に電気的に接続される第1接地箱体と、前記金属隔膜体と電気的に接続される第2接地箱体とを備えている。   In order to solve the above-described problems of the prior art, the present invention according to claim 1 stops a flexible substrate transported in a vacuum chamber in a vacuum film formation chamber formed inside a box-shaped wall. A thin film is formed on the surface of the flexible substrate by applying a voltage between a voltage applying electrode and a ground electrode which are disposed facing the flexible substrate and face the vacuum film forming chamber. In a thin film manufacturing apparatus for forming a film, a support frame that is formed in a frame shape made of a metal material and insulates and fixes the voltage application electrode, and a metal diaphragm fixed to a surface of the support frame facing the voltage application electrode A power supply structure that is provided inside the support frame and supplies power to the voltage application electrode, a first grounding box that is installed in the vacuum chamber and is electrically connected to the inner surface of the wall, and A second grounding box electrically connected to the metal diaphragm.

また、請求項1の発明に加えて、好ましくは本発明を請求項2のように構成する。
即ち、前記壁体と絶縁し且つシール材を介して外界と真空遮断して前記壁体に取付けられ、前記第1接地箱体内と外界とを電気的に接続する電気導入体と、該電気導入体の前記第1接地箱体側端部と前記給電構造体を構成する給電体の先端部とを電気的に接続する第1接続部材と、前記給電体の終端部と前記電圧印加電極とを電気的に接続する第2接続部材とを備え、前記外界から前記電気導入体、前記第1接続部材、及び前記第2接続部材を介して前記真空室内の前記電圧印加電極に給電可能に構成されている。
In addition to the first aspect of the present invention, preferably, the present invention is configured as in the second aspect.
That is, an electrical introduction body that is insulated from the wall body and is vacuum-blocked from the outside via a sealing material and attached to the wall body, and electrically connects the first grounding box body and the outside world, and the electrical introduction A first connecting member that electrically connects the first grounding box side end of the body and the tip of the power feeding body constituting the power feeding structure, a terminal end of the power feeding body, and the voltage application electrode. A second connection member that is electrically connected, and is configured to be able to supply power to the voltage application electrode in the vacuum chamber from the outside world via the electricity introduction body, the first connection member, and the second connection member. ing.

また、請求項1,2の発明において、具体的には本発明を請求項3のように構成するのが好ましい。
即ち、前記給電構造体は、金属材料からなる給電体と、金属材料からなり前記給電体の外周を囲むように配置された外周導体と、前記給電体と前記外周導体との間に形成される空間ギャップを保持し且つ絶縁して支持する絶縁支持体とを備え、前記外周導体の先端部が前記第1接地箱体を介して前記壁体と電気的に接続され、前記外周導体の終端部が前記第2接地箱体を介して前記金属隔膜体と接続して接地されている。
In the inventions of claims 1 and 2, specifically, the present invention is preferably configured as in claim 3.
That is, the power feeding structure is formed between a power feeding body made of a metal material, an outer peripheral conductor made of a metal material and disposed so as to surround an outer periphery of the power feeding body, and the power feeding body and the outer peripheral conductor. An insulating support that holds and insulates and supports the space gap, and a distal end portion of the outer peripheral conductor is electrically connected to the wall body via the first grounding box body, and an end portion of the outer peripheral conductor Is connected to the metal diaphragm through the second grounding box and is grounded.

また、請求項4の本発明において、前記電圧印加電極は、前記真空室内を左右に対をなして搬送される前記可撓性基板に対応して左右1対設けられ、各電圧印加電極には排気口がそれぞれ形成され、前記左右1対の電圧印加電極の間には、内部に排気通路を有する排気部材が各電圧印加電極に固定して設けられ、前記各電圧印加電極の排気口は前記排気部材の排気通路に連通し、前記成膜室内のガスを前記各電圧印加電極の排気口及び前記排気部材の排気通路を通して前記壁体の外界に排出するように構成されている。   Further, in the present invention according to claim 4, the voltage application electrodes are provided in a pair on the left and right sides corresponding to the flexible substrate conveyed in a pair in the left and right directions in the vacuum chamber. Exhaust ports are respectively formed, and between the pair of left and right voltage application electrodes, an exhaust member having an exhaust passage is fixedly provided to each voltage application electrode, and the exhaust port of each voltage application electrode is The gas is communicated with the exhaust passage of the exhaust member, and the gas in the film forming chamber is discharged to the outside of the wall through the exhaust port of each voltage application electrode and the exhaust passage of the exhaust member.

請求項1〜3の本発明によれば、金属材料からなる枠形状に形成され電圧印加電極を絶縁して固定する支持枠を設けるとともに、該支持枠の電圧印加電極に対向する面に金属隔膜体を固定して設け、また前記支持枠の内部に電圧印加電極に給電する給電構造体を設け、前記真空室内に前記壁体の内面に電気的に接続される第1接地箱体を設置するとともに、前記金属隔膜体と電気的に接続される第2接地箱体を設け、また前記給電構造体を、金属材料からなる給電体と、金属材料からなり前記給電体の外周を囲むように配置されて先端部が第1接地箱体を介して前記壁体と電気的に接続され、終端部が第2接地箱体を介して前記金属隔膜体と接続された外周導体と、これら給電体と外周導体との間に形成される空間ギャップを保持し且つ絶縁して支持する絶縁支持体とにより構成されているので、次の効果が得られる。
即ち、給電体が外周導体によってシールドされた状態で第1接地箱体の直下に配置されて、当該該給電体及び外周導体が給電位置までそれぞれ延設され、対をなす前記電圧印加電極の中央部に給電することで、各電圧印加電極に対して高周波電圧を最もバランス良く印加しながら、外周導体によるシールド効果によって高周波電流の流入を抑制することができる。
従って、各電圧印加電極内での電位差を抑制することが可能となり、成膜室でのプラズマ密度をより均一にすることができる。これにより、可撓性基板への薄膜形成速度の上昇などを目的として、例えば20MHz〜100MHz程度の高周波電圧を印加した場合でも、良好な膜厚分布の薄膜を得ることが可能となり、良好な膜厚分布の薄膜形成を保持しながら、成膜作業能率を向上させることができる。
According to the first to third aspects of the present invention, a support frame that is formed in a frame shape made of a metal material and insulates and fixes the voltage application electrode is provided, and a metal diaphragm is provided on a surface of the support frame that faces the voltage application electrode. A body is fixed, a power supply structure that supplies power to the voltage application electrode is provided inside the support frame, and a first grounding box that is electrically connected to the inner surface of the wall is installed in the vacuum chamber. And a second grounding box that is electrically connected to the metal diaphragm, and the power feeding structure is disposed so as to surround a power feeding body made of a metal material and an outer periphery of the power feeding body made of a metal material. An outer peripheral conductor whose tip is electrically connected to the wall through a first grounding box and whose terminal is connected to the metal diaphragm through a second grounding box; Maintain and insulate the spatial gap formed between the outer conductors Which is configured by a supporting insulating substrate, the following effects can be obtained.
That is, the power feeding body is arranged directly under the first grounding box body while being shielded by the outer peripheral conductor, and the power feeding body and the outer peripheral conductor are respectively extended to the power feeding position, and the center of the voltage application electrode forming a pair By supplying power to the part, it is possible to suppress the inflow of the high-frequency current by the shielding effect by the outer peripheral conductor while applying the high-frequency voltage to each voltage application electrode in the most balanced manner.
Therefore, the potential difference in each voltage application electrode can be suppressed, and the plasma density in the film forming chamber can be made more uniform. This makes it possible to obtain a thin film with a good film thickness distribution even when a high frequency voltage of, for example, about 20 MHz to 100 MHz is applied for the purpose of increasing the speed of forming a thin film on a flexible substrate. The film forming work efficiency can be improved while maintaining the thin film formation with the thickness distribution.

しかも、複数列で成膜する薄膜製造装置とした場合には、給電される高周波電流の経路として、往きは給電体を流れて負荷に至り、戻りは金属隔膜体を流れて外周導体の内径を流れる経路となり、他ラインに高周波電流が廻り込み干渉する経路が無いため、複数列同時にプラズマ放電させても干渉することなく、列毎に独立してプラズマ放電を制御することができる。
また、真空室内に高周波電力を導入する電気導入体を、可撓性基板の搬送方向の線対称としてオフセットした位置に設置でき、それぞれのインピーダンス整合器間の距離を適正に保持できて、高周波電流による複数列の薄膜製造装置での干渉を防止できる。
In addition, in the case of a thin film manufacturing apparatus that forms a film in a plurality of rows, as the path of the high-frequency current to be fed, the forward flows through the feeder and reaches the load, and the return flows through the metal diaphragm to determine the inner diameter of the outer conductor. Since there is no path through which a high-frequency current flows around and interferes with other lines, plasma discharge can be controlled independently for each column without interference even when plasma discharge is simultaneously performed on a plurality of columns.
In addition, an electrical lead that introduces high-frequency power into the vacuum chamber can be installed at a position offset as line symmetry in the conveyance direction of the flexible substrate, and the distance between the impedance matching units can be properly maintained, so that the high-frequency current can be maintained. Can prevent interference in a plurality of thin film manufacturing apparatuses.

そして、前記外周導体の先端部が第1接地箱体を介して前記壁体と電気的に接続され終端部が第2接地箱体を介して前記金属隔膜体と接続されて接地されるとともに、前記電気導入体と給電体の先端部とを電気的に接続する第1接続部材、前記給電体の終端部と電圧印加電極とを電気的に接続する第2接続部材がそれぞれ接地された第1接地箱体及び第2接地箱体によって囲むことにより、電圧印加電極への給電時に発生し易い反応室外への放電を防止できる。これにより安定した放電が可能となり、良好な薄膜形成が可能となる。   And the front-end | tip part of the said outer periphery conductor is electrically connected with the said wall body via a 1st earthing | grounding box body, and a termination | terminus part is connected with the said metal diaphragm body via a 2nd earthing | grounding box body, and is grounded, A first connection member that electrically connects the electricity introduction body and the tip of the power supply body, and a second connection member that electrically connects the terminal portion of the power supply body and the voltage application electrode are each grounded. By surrounding the grounding box body and the second grounding box body, it is possible to prevent discharge to the outside of the reaction chamber, which is likely to occur when power is supplied to the voltage application electrode. As a result, stable discharge is possible, and a good thin film can be formed.

一方、本発明を請求項2のように構成すれば、給電構造体を支持枠の内部に配置し、電圧印加電極に真空室の外界から給電する際において、前記真空室の壁体と絶縁し、シール材を介して外界と真空遮断し、第1接地箱体内と外界とを電気的に接続する電気導入体の前記第1接地箱体側端部と前記給電構造体を構成する給電体の先端部とを第1接続部材によって電気的に接続することにより、インピーダンス整合器を給電構造体直上に対してオフセットした位置に設置でき、前記支持枠の厚みを抑えてインピーダンス整合器の接地スペースを確保できる。これにより、支持枠の重量を軽減できて、薄膜製造装置の組立・施工性が大幅に向上する。   On the other hand, when the present invention is configured as in claim 2, the power feeding structure is disposed inside the support frame, and when the power is applied to the voltage application electrode from the outside of the vacuum chamber, it is insulated from the wall of the vacuum chamber. The power supply body constituting the power supply structure and the first grounding box side end of the electrical introduction body that vacuum-blocks the external environment via the sealing material and electrically connects the first grounding box body and the external world. By electrically connecting the tip portion with the first connecting member, the impedance matching unit can be installed at a position offset from directly above the feeding structure, and the grounding space of the impedance matching unit can be reduced by suppressing the thickness of the support frame. It can be secured. Thereby, the weight of a support frame can be reduced and the assembly and construction property of a thin film manufacturing apparatus are greatly improved.

また、本発明を請求項3のように構成すれば、給電体と、該給電体の全周を囲むように配置された外周導体との間の空間ギャップを設定することで、給電体と接地電位間とで形成されるコンデンサの容量を容易に変更することができ、電圧印加電極及びプラズマ放電に係る負荷インピーダンスと給電構造体のインピーダンスとを合わせることにより、高周波数域で、高い投入電力の伝送路において投入損失の少ない給電が可能となる。   According to the third aspect of the present invention, by setting a spatial gap between the power feeding body and the outer peripheral conductor arranged so as to surround the entire circumference of the power feeding body, Capacitance of the capacitor formed between the potentials can be easily changed, and by combining the load impedance related to the voltage application electrode and the plasma discharge and the impedance of the feeding structure, high input power can be obtained in a high frequency range. It is possible to supply power with little input loss on the transmission line.

さらに、給電構造体の同軸管構造を丸状とし、給電体の外径をd、外周導体の内径をDとすると、給電構造体のインピーダンスZは、Z=138Log(D/d)で表わすことが可能となることから、給電体の外径d、外周導体の内径Dを選択して空間ギャップを変えることにより、給電体と外周導体の接地電位間とに形成されたコンデンサ容量が変更されて、給電構造体のインピーダンスZを容易に変更することができる。
従って、給電体の外径d、外周導体の内径Dを選択することで、コンデンサ容量を変更でき、電圧印加電極の面積・放電空間の容量等の負荷側インピーダンスに対し、給電構造体のインピーダンスZを最適な値に設定することが容易に行える。
Further, assuming that the coaxial tube structure of the feeding structure is round, the outer diameter of the feeding body is d, and the inner diameter of the outer conductor is D, the impedance Z of the feeding structure is expressed by Z = 138 Log (D / d). Therefore, by changing the space gap by selecting the outer diameter d of the power feeder and the inner diameter D of the outer conductor, the capacitance of the capacitor formed between the power feeder and the ground potential of the outer conductor is changed. The impedance Z of the power feeding structure can be easily changed.
Therefore, by selecting the outer diameter d of the power feeding body and the inner diameter D of the outer conductor, the capacitor capacity can be changed, and the impedance Z of the feeding structure with respect to the load side impedance such as the area of the voltage application electrode and the capacity of the discharge space. Can be easily set to an optimal value.

また、請求項4の本発明によれば、左右1対設けられた各電圧印加電極に排気口を形成するとともに、前記左右1対の電圧印加電極の間に、内部に排気通路が形成された排気部材を各電圧印加電極に固定して設け、前記成膜室内のガスを前記各電圧印加電極の排気口及び前記排気部材の排気通路を通して前記壁体の外界に排出するように構成したので、成膜室内のガスを前記各電圧印加電極の排気口及び排気部材の排気通路を通して壁体の外界に確実に排出できる。
すなわち、本発明においては、各電圧印加電極の排気口及び前記排気部材の排気通路を通して前記壁体の外界に排出するように構成したので、成膜室内の反応ガスを等分に排気できる領域が広がり、膜厚分布に悪影響を及ぼす成膜室内での反応ガスの流れの偏りを効果的に抑制することが可能となる。これにより、成膜室内での反応ガスの流れの偏りを広範囲で抑制することが可能となるので、より幅広なサイズの可撓性基板にも対応することができる。
また、前記各電圧印加電極同士を排気部材によって連結して一体化することで、前記各成膜室からガスを別々に排気する必要がなくなることから、排気構造が簡単化されて装置コストを低減できる。
According to the fourth aspect of the present invention, an exhaust port is formed in each of the left and right voltage application electrodes, and an exhaust passage is formed between the left and right voltage application electrodes. Since the exhaust member is fixedly provided to each voltage application electrode, the gas in the film forming chamber is configured to be discharged to the outside of the wall body through the exhaust port of each voltage application electrode and the exhaust passage of the exhaust member. The gas in the film forming chamber can be reliably discharged to the outside of the wall through the exhaust port of each voltage application electrode and the exhaust passage of the exhaust member.
That is, in the present invention, since it is configured to exhaust to the outside of the wall body through the exhaust port of each voltage application electrode and the exhaust passage of the exhaust member, there is a region where the reaction gas in the film forming chamber can be exhausted equally. It becomes possible to effectively suppress the deviation of the flow of the reaction gas in the film forming chamber that spreads and adversely affects the film thickness distribution. Accordingly, it is possible to suppress a deviation in the flow of the reaction gas in the film formation chamber in a wide range, and thus it is possible to deal with a flexible substrate having a wider size.
In addition, by connecting and integrating the voltage application electrodes with an exhaust member, there is no need to exhaust gas separately from the film forming chambers, thereby simplifying the exhaust structure and reducing the apparatus cost. it can.

以下、本発明に係る薄膜製造装置について、その実施形態を詳細に説明する。   Hereinafter, the embodiment of the thin film manufacturing apparatus according to the present invention will be described in detail.

図1は本発明の実施形態に係る薄膜製造装置の平面断面図である。また、図2は上記実施形態における図1のA−A線に沿う部分断面図、図3は上記実施形態における図1のB−B線に沿う部分断面図である。
この実施形態に係る薄膜製造装置は、ステッピングロール方式で成膜を行うものであり、図1〜図3において、1は可撓性基板(以下基板という)、100は薄膜製造装置であり、次のように構成されている。
FIG. 1 is a plan sectional view of a thin film manufacturing apparatus according to an embodiment of the present invention. 2 is a partial cross-sectional view taken along line AA of FIG. 1 in the above embodiment, and FIG. 3 is a partial cross-sectional view taken along line BB of FIG. 1 in the above embodiment.
The thin film manufacturing apparatus according to this embodiment forms a film by a stepping roll method. In FIGS. 1 to 3, 1 is a flexible substrate (hereinafter referred to as a substrate), 100 is a thin film manufacturing apparatus, It is configured as follows.

本発明の実施形態に係る薄膜製造装置100は、函状の壁体15を備えており、該壁体15の内部には、一端側から他端側へ向かって順に、送り室11、成膜用真空室13、及び巻取り室14が形成されている。送り室11内には2つの搬入ロール2が対向して配設され、巻取り室14内には2つの搬送ロール3が対向して配設されている。
かかる薄膜製造装置100は、搬送ロール11の搬入ロール2から引き出された2列の基板1は並行して搬送されて成膜用真空室13に入り、該成膜用真空室13の内部に形成された成膜室5で一旦停止されてそれぞれ表面への成膜が行われた後、巻取り室14内の2つの搬送ロール3にそれぞれ巻き取られるように構成されている。
A thin film manufacturing apparatus 100 according to an embodiment of the present invention includes a box-shaped wall body 15, and a feed chamber 11 and a film formation are formed inside the wall body 15 in order from one end side to the other end side. A vacuum chamber 13 and a winding chamber 14 are formed. Two carry-in rolls 2 are arranged facing each other in the feed chamber 11, and two transport rolls 3 are arranged facing each other in the winding chamber 14.
In the thin film manufacturing apparatus 100, two rows of substrates 1 drawn out from the carry-in roll 2 of the transport roll 11 are transported in parallel and enter the film-forming vacuum chamber 13, and are formed inside the film-forming vacuum chamber 13. The film forming chamber 5 is temporarily stopped to form films on the respective surfaces, and then wound around the two transport rolls 3 in the winding chamber 14.

また、薄膜製造装置100は、並行して搬送される2列の基板1の間にそれぞれ対向配置された電圧印加電極21及び接地電極22、各電圧印加電極21の間に配置されたシールド体57、後述するように当該電圧印加電極21に絶縁してねじ止めされる枠体54、並びに前記シールド体57の内部に貫挿された給電構造体60を備えている。シールド体57の一端は、図2に示すように、電圧印加電極21の中央部に第2接続板91を介して接続されている。接地電極22は、各電圧印加電極21の基板1と対向する側に対向配置され、また、接地電極22には基板1を加熱するためのヒータ23が内蔵されている。
以上の、電圧印加電極21及び接地電極22によって、成膜時に気密状態となる成膜室5に電圧が印加され、基板1の表面に薄膜を形成するためのプラズマが当該成膜室5内に生成されることになる。
In addition, the thin film manufacturing apparatus 100 includes a voltage application electrode 21 and a ground electrode 22 that are disposed to face each other between two rows of substrates 1 that are transported in parallel, and a shield body 57 that is disposed between the voltage application electrodes 21. As will be described later, a frame body 54 that is insulated and screwed to the voltage application electrode 21 and a power feeding structure 60 that is inserted into the shield body 57 are provided. As shown in FIG. 2, one end of the shield body 57 is connected to the central portion of the voltage application electrode 21 via a second connection plate 91. The ground electrode 22 is disposed opposite to the side of the voltage application electrode 21 facing the substrate 1, and the ground electrode 22 includes a heater 23 for heating the substrate 1.
The voltage application electrode 21 and the ground electrode 22 apply a voltage to the film formation chamber 5 that is airtight during film formation, and plasma for forming a thin film on the surface of the substrate 1 is generated in the film formation chamber 5. Will be generated.

各電圧印加電極21の内側には、排気のための中空部72を有する排気部材9が配置されており、該排気部材9は、成膜時に供給される反応ガスをこれに穿孔された中空部72を通して排気するために用いられたものである。即ち、図3に示すように、排気部材9の中空部72は、互いに直交する2つの孔によって構成されている。
また、本実施の形態の各電圧印加電極21には、図1及び図3に示すように、成膜室5内からのガスを排気するための排気口72aがそれぞれ設けられている。そして、図3に示すように、各排気口72aは、排気部材9の中空部72の両側端部に接続されている。これにより、相対する前記排気口72a同士は、排気部材9の中空部72に連通される構造となり、反応ガスは各電圧印加電極21の排気口72aから排気部材9の中空部72を通って壁体15の外界に排出されることになる。
さらに、排気部材9の電圧印加電極21と接触する面には、シール材9aが設けられており、該シール材9aによって当該接触面を流体密にシールしている。
このように、各電圧印加電極21同士を排気部材9によって連結して一体化することで、各成膜室5からガスを別々に排気する必要がなくなるので、排気構造が簡単化されて装置コストの低減化を図ることができる。
An exhaust member 9 having a hollow portion 72 for exhaust is disposed inside each voltage application electrode 21, and the exhaust member 9 is a hollow portion in which a reaction gas supplied during film formation is perforated. 72 used to evacuate through. That is, as shown in FIG. 3, the hollow portion 72 of the exhaust member 9 is configured by two holes that are orthogonal to each other.
Further, as shown in FIGS. 1 and 3, each voltage applying electrode 21 of the present embodiment is provided with an exhaust port 72 a for exhausting gas from the film forming chamber 5. As shown in FIG. 3, each exhaust port 72 a is connected to both end portions of the hollow portion 72 of the exhaust member 9. As a result, the exhaust ports 72a facing each other communicate with the hollow portion 72 of the exhaust member 9, and the reaction gas passes from the exhaust port 72a of each voltage application electrode 21 through the hollow portion 72 of the exhaust member 9 to the wall. It will be discharged to the outside of the body 15.
Further, a sealing material 9a is provided on the surface of the exhaust member 9 that contacts the voltage application electrode 21, and the contact surface is fluid-tightly sealed by the sealing material 9a.
As described above, the voltage application electrodes 21 are connected and integrated by the exhaust member 9, so that it is not necessary to separately exhaust the gas from each film forming chamber 5, so that the exhaust structure is simplified and the apparatus cost is reduced. Can be reduced.

一方、上記枠体54は、例えばステンレス鋼などの導電性の部材からなり、絶縁性及びシール性を兼ね備えた間隔材53を挟んで、各電圧印加電極21の外側にそれぞれ配置されている。また、枠体54及び電圧印加電極21の前記間隔材53との接触面には溝が刻設されており、該溝にはシール材53a及び53bが設けられて当該接触面を流体密にシールしている。
このようにして配置された各枠体54は、図3に示すように、電圧印加電極21に対して電気的絶縁を保持するための絶縁管が被せられたねじ54aによって、それぞれねじ止めされ、またシールド体57に対してはねじ54cによってねじ止めされている。
これにより、枠体54は、シールド体57に対しては導電的に結合され、シールド体57と同様に接地電位に保持されることになる。
シールド体57は、例えばアルミニウム等の導電性材料からなり、上記のように対向配置された電圧印加電極21の間に配設されており、枠状に切り抜いた形状に形成されることにより電圧印加電極21の側面を覆って配置されている。
また、成膜用真空室13と外部とを区切る前記壁体15は接地電位にあり、シールド体57はこの壁体15に接続されることで接地電位に保たれている。
さらに、対向配置された電圧印加電極21の間には、図3に示すように、金属隔膜体58が配置されており、該金属隔膜体58は例えばアルミニウム等の導電性材料からなり、電圧印加電極21とは電気的に絶縁される空間を保ち得る間隔を保持するとともに、両端部がシールド体57に接続されて、壁体15の接地電位とされている。
On the other hand, the frame body 54 is made of a conductive member such as stainless steel, for example, and is disposed outside each voltage application electrode 21 with a spacing member 53 having both insulating properties and sealing properties interposed therebetween. Further, grooves are formed on the contact surfaces of the frame body 54 and the voltage application electrode 21 with the spacing member 53, and seal members 53a and 53b are provided in the grooves to seal the contact surfaces in a fluid-tight manner. is doing.
As shown in FIG. 3, each frame body 54 arranged in this way is screwed by a screw 54a covered with an insulating tube for holding electrical insulation with respect to the voltage application electrode 21, respectively. The shield body 57 is screwed with a screw 54c.
As a result, the frame body 54 is conductively coupled to the shield body 57 and is held at the ground potential similarly to the shield body 57.
The shield body 57 is made of, for example, a conductive material such as aluminum, and is disposed between the voltage application electrodes 21 arranged to face each other as described above. The shield body 57 is applied with a voltage by being cut into a frame shape. The electrode 21 is disposed so as to cover the side surface.
The wall 15 separating the film forming vacuum chamber 13 from the outside is at the ground potential, and the shield 57 is connected to the wall 15 so as to be kept at the ground potential.
Further, as shown in FIG. 3, a metal diaphragm 58 is arranged between the voltage application electrodes 21 arranged opposite to each other, and the metal diaphragm 58 is made of a conductive material such as aluminum, for example. The electrode 21 maintains a space that can maintain an electrically insulated space, and both ends thereof are connected to the shield body 57 to be the ground potential of the wall body 15.

給電構造体60は、図2に示すように、例えば銅またはアルミニウムなどの導電性の部材からなる給電体61と、例えば銅またはアルミニウムなどの導電性の部材からなり該給電体61の全周を囲む外周導体62との間の空間ギャップを、上下端部に配置され絶縁材料からなる絶縁支持体63a,63bによって保持してなる同軸構造に構成されている。
給電構造体60の同軸構造は、図4(図2のC−C線断面図)に示すように、給電体61の全周を管状の外周導体62で囲む丸形状とされており、給電体61の外径をd、外周導体62の内径をDとすると、給電構造体60のインピーダンスZは次の(1)式で表わすことが可能である。このため、給電体61の外径d、外周導体62の内径Dを選択して空間ギャップを変えることにより(図4(A)のような外径d及び内径Dが小径のものから、図4(B)のような外径d及び内径Dが大径のものまで変化させることにより、)、給電体61と外周導体62の接地電位間とに形成されたコンデンサ容量を変更でき、給電構造体60のインピーダンスZを容易に変更することができる。
従って、給電体61の外径d、外周導体62の内径Dを選択することで、コンデンサ容量を変更でき、電圧印加電極21の面積・放電空間の容量等の負荷側インピーダンスに対し、給電構造体60のインピーダンスZを最適な値に設定することが容易となる。
Z=138Log(D/d) (Ω) (1)
As shown in FIG. 2, the power feeding structure 60 is composed of a power feeding body 61 made of a conductive member such as copper or aluminum, and a power feeding body 61 made of a conductive member such as copper or aluminum. A space gap between the outer peripheral conductor 62 and the surrounding outer conductor 62 is formed in a coaxial structure that is held by insulating supports 63a and 63b made of an insulating material and disposed at upper and lower ends.
As shown in FIG. 4 (a cross-sectional view taken along the line CC in FIG. 2), the coaxial structure of the power feeding structure 60 has a round shape surrounding the entire circumference of the power feeding body 61 with a tubular outer conductor 62. When the outer diameter of 61 is d and the inner diameter of the outer conductor 62 is D, the impedance Z of the power feeding structure 60 can be expressed by the following equation (1). Therefore, by selecting the outer diameter d of the power feeder 61 and the inner diameter D of the outer conductor 62 and changing the space gap (from the one having the outer diameter d and the inner diameter D as shown in FIG. By changing the outer diameter d and the inner diameter D to a larger one as in (B), the capacitor capacity formed between the power supply 61 and the ground potential of the outer peripheral conductor 62 can be changed, and the power supply structure The impedance Z of 60 can be easily changed.
Therefore, by selecting the outer diameter d of the power feeding body 61 and the inner diameter D of the outer circumferential conductor 62, the capacitor capacity can be changed, and the power feeding structure body with respect to the load side impedance such as the area of the voltage application electrode 21 and the capacity of the discharge space. It becomes easy to set the impedance Z of 60 to an optimum value.
Z = 138 Log (D / d) (Ω) (1)

図5は上記給電構造体60の種々の断面形状を示しており、図5(A)の例では、円筒状の外周導体62により丸棒状の給電体61を囲うように構成されている。
また、図5(B)の例では、角型状の外周導体62により板状の給電体61を囲うように構成されている。さらに、図5(C)の例では、角型状の外周導体62により丸棒状の給電体61を囲うように構成されている。なお、前記外周導体62および給電体61の形状は、必ずしも図5に示す形状である必要はなく、例えば多角形状のものでも良い。
FIG. 5 shows various cross-sectional shapes of the power feeding structure 60. In the example of FIG. 5A, a cylindrical bar-shaped power feeding body 61 is surrounded by a cylindrical outer conductor 62. FIG.
In the example of FIG. 5B, the plate-shaped power feeding body 61 is surrounded by a rectangular outer peripheral conductor 62. Further, in the example of FIG. 5C, a round bar-shaped power supply body 61 is surrounded by a rectangular outer peripheral conductor 62. The shapes of the outer peripheral conductor 62 and the power feeding body 61 are not necessarily the shapes shown in FIG. 5, and may be polygonal, for example.

上記成膜用真空室13内の上部には、図2に示すように、第一接地箱体80が配置されている。この第一接地箱体80は、例えばアルミニウムなどの導電性の部材からなり、接地電位である壁体15の内面に固定して接地されているとともに、下部が給電構造体60の外周導体62と接続、接地されている。また、第一接地箱体80内は、電気導入体65により壁体15と絶縁リング64を介して絶縁され、シール材を介して成膜用真空室13と外界とを区切って真空遮断しながら電気的に外界と連通されるようになっている。さらに、第一接地箱体80は、給電構造体60の外周導体62と接続、接地され、給電体61は当該第一接地箱体80内に貫通配置されている。   As shown in FIG. 2, a first ground box 80 is disposed in the upper part of the film forming vacuum chamber 13. The first grounding box 80 is made of, for example, a conductive member such as aluminum, and is fixed to the inner surface of the wall 15 having the ground potential and grounded. Connected and grounded. Further, the inside of the first grounding box body 80 is insulated by the electric introduction body 65 via the wall body 15 and the insulating ring 64, and the film forming vacuum chamber 13 is separated from the outside by a sealing material while blocking the vacuum. It is designed to communicate with the outside world electrically. Further, the first grounding box 80 is connected to and grounded with the outer peripheral conductor 62 of the power feeding structure 60, and the power feeding body 61 is disposed through the first grounding box 80.

第一接地箱体80内には、図2に示すように、第一接続板81が配置されている。この第一接続板81は、例えば銅またはアルミニウムなどの導電性の部材からなり、第一接地箱体80内に連通された電気導入体65と、第一接地箱体80を貫通された前記給電体61とを第一接地箱体80内で接続している。これにより、成膜用真空室13の外界に設備されている高周波電源52から送電された高周波電力が、インピーダンス整合器51及び電気導入体65及び第一接続板81を介して、給電構造体60に伝送されるようになっている。
一方、シールド体57側には、図2に示すように、第二接地箱体90が配置されている。この第二接地箱体90は、例えばアルミニウムなどの導電性の部材からなり、金属隔膜体58に設けた孔形状と同一箱形状とし、金属隔膜体58と接続され、シールド体57を介して接地電位である壁体15と接続、接地されている。また、第二接地箱体90は、給電構造体60の外周導体62とも接続、接地されており、給電体61は第二接地箱体90内に貫通配置されている。
第二接地箱体90の上方には、図2に示すように、第二接続板91が配置されている。この第二接続板91は、例えば銅またはアルミニウムなどの導電性の部材からなり、第二接地箱体90内に貫通された給電体61と電圧印加電極21とを当該第二接続板91を介して第二接地箱体90の内側で接続し、成膜用真空室13の外界に設備された高周波電源52から送電された高周波電力が、給電構造体60及び第二接続板91を介して電圧印加電極21に伝送されるようになっている。
As shown in FIG. 2, a first connection plate 81 is disposed in the first ground box 80. The first connection plate 81 is made of, for example, a conductive member such as copper or aluminum, and the power introduction body 65 communicated in the first grounding box body 80 and the power feed that penetrates the first grounding box body 80. The body 61 is connected in the first grounding box body 80. As a result, the high frequency power transmitted from the high frequency power source 52 installed outside the vacuum chamber for film formation 13 is fed through the impedance matching unit 51, the electric introduction body 65, and the first connection plate 81 to the power feeding structure 60. To be transmitted.
On the other hand, as shown in FIG. 2, the second grounding box 90 is disposed on the shield body 57 side. The second grounding box 90 is made of a conductive member such as aluminum, has the same box shape as the hole provided in the metal diaphragm 58, is connected to the metal diaphragm 58, and is grounded through the shield 57. It is connected to the wall 15 which is a potential and is grounded. The second grounding box 90 is also connected to and grounded with the outer peripheral conductor 62 of the power feeding structure 60, and the power feeding body 61 is disposed through the second grounding box 90.
A second connection plate 91 is disposed above the second grounding box 90 as shown in FIG. The second connection plate 91 is made of a conductive member such as copper or aluminum, for example, and the power supply body 61 and the voltage application electrode 21 penetrating into the second grounding box 90 are connected via the second connection plate 91. The high-frequency power connected from the inside of the second grounding box 90 and transmitted from the high-frequency power source 52 installed in the outside of the film-forming vacuum chamber 13 is a voltage via the power supply structure 60 and the second connection plate 91. It is transmitted to the application electrode 21.

上記のように構成された薄膜製造装置100では、図2に示すように、第二接続板91が接続される電圧印加電極21の中央部の直上に対応する部位の壁体15の上部側に、インピーダンス整合器51が設置されており、該インピーダンス整合器51に対して高周波電源52が接続されている。なお、このインピーダンス整合器51は、電圧印加電極21からの反射波を最小にする制御を行うものである。
また、シールド体57には、図2に示すように、その上面側のインピーダンス整合器51に対応する位置から、鉛直下方向の第二接続板91を電圧印加電極21の中央部に接続する位置に向かって、その内部を貫通する貫通孔57aが、電圧印加電極21に対応してそれぞれ設けられている。この貫通孔57aは、これに貫挿された給電構造体60を電圧印加電極21の中央部接続位置まで導く機能を有しており、各給電構造体60をこの貫通孔57aにそれぞれ貫挿させることで、電圧印加電極21の中央部へ給電可能としている。
さらに、図2に示すように、給電構造体60を構成する給電体61は棒形状をなしており、上端部がインピーダンス整合器51に電気導入体65及び第一接続板81を介してインピーダンス整合器51に接続されている。そして、各給電構造体60の給電体61は、接地電位に保たれた外周導体62によってシールドされた状態でシールド体57の貫通孔57aを貫挿して、当該貫通孔57aの直下に配され、上記のように第二接続板91に接続されている。このようにして、インピーダンス整合器51の鉛直下方向に配された各給電体61は、その状態を保ったままで、その下部が第二接続板91を介して各電圧印加電極21の給電位置とそれぞれ接続されることとなる。以上のような接続態様によって、各給電構造体60を介して各電圧印加電極21の中央部への給電が行われることになる。
In the thin film manufacturing apparatus 100 configured as described above, as shown in FIG. 2, on the upper side of the wall body 15 at a portion corresponding to a position directly above the central portion of the voltage application electrode 21 to which the second connection plate 91 is connected. The impedance matching unit 51 is installed, and a high frequency power source 52 is connected to the impedance matching unit 51. The impedance matching unit 51 performs control to minimize the reflected wave from the voltage application electrode 21.
In addition, as shown in FIG. 2, the shield body 57 is connected to the central portion of the voltage application electrode 21 from the position corresponding to the impedance matching device 51 on the upper surface side thereof. A through hole 57 a penetrating through the inside thereof is provided corresponding to the voltage application electrode 21. The through hole 57a has a function of guiding the power feeding structure 60 inserted through the through hole 57a to the connection position of the central portion of the voltage application electrode 21, and each power feeding structure 60 is inserted through the through hole 57a. Thus, power can be supplied to the central portion of the voltage application electrode 21.
Further, as shown in FIG. 2, the power feeding body 61 constituting the power feeding structure 60 has a rod shape, and the upper end portion is impedance-matched to the impedance matching device 51 via the electric introduction body 65 and the first connection plate 81. Connected to the device 51. The power feeding body 61 of each power feeding structure 60 is inserted through the through-hole 57a of the shield body 57 while being shielded by the outer peripheral conductor 62 maintained at the ground potential, and is disposed immediately below the through-hole 57a. It is connected to the second connection plate 91 as described above. In this way, the power feeders 61 arranged in the vertically downward direction of the impedance matching device 51 are maintained in the state, and the lower portion thereof is connected to the power feeding position of each voltage application electrode 21 via the second connection plate 91. Each will be connected. With the above connection mode, power is supplied to the central portion of each voltage application electrode 21 through each power supply structure 60.

以上のように、本発明の実施形態によれば、各電圧印加電極21の中央部まで給電体61をシールド状態で導き、当該中央部にそれぞれ給電することが可能となるので、電圧印加電極21への印加電圧が最も均等に配される給電状態を実現しつつ、給電体61からの電磁波の伝播及び給電体61と電圧印加電極21との間に生じる浮遊キャパシタンスの影響を抑制し、各電圧印加電極21への高周波電流の流入を抑制することができる。   As described above, according to the embodiment of the present invention, the power supply body 61 can be guided in a shielded state to the central portion of each voltage application electrode 21 and can be supplied to the central portion. While realizing the power supply state in which the voltage applied to the power supply is evenly distributed, the propagation of electromagnetic waves from the power supply 61 and the influence of the stray capacitance generated between the power supply 61 and the voltage application electrode 21 are suppressed, and each voltage Inflow of high-frequency current to the application electrode 21 can be suppressed.

次に、本発明の実施形態に係る薄膜製造装置100での成膜時の作用について、その概略を説明する。
図1において、成膜時には、アクチュエータ24によって、各接地電極22及び成膜室5で停止された各可撓性基板1が枠体54に向かってそれぞれ移動し、枠体54と可撓性基板1とが、該枠体54の可撓性基板1と接触する面に保持されたシール材54aを介して密着する。これにより、気密状態の成膜室5が電圧印加電極21及び可撓性基板1の間にそれぞれ形成される。
そして、上記のようにして接続された各給電構造体60によって、高周波電源52の出力電圧が各電圧印加電極21の中央部に給電され、電圧印加電極21及び接地電極22の間に高周波電圧がそれぞれ印加される。これによって各成膜室5内にプラズマが発生し、図示しない導入管から導入された反応ガスが分解され、接地電極22のヒータ23によって加熱された可撓性基板1の表面上に薄膜がそれぞれ形成される。
Next, the outline of the action at the time of film formation in the thin film manufacturing apparatus 100 according to the embodiment of the present invention will be described.
In FIG. 1, at the time of film formation, the flexible substrate 1 stopped in each ground electrode 22 and the film formation chamber 5 is moved toward the frame body 54 by the actuator 24, and the frame body 54 and the flexible substrate are moved. 1 adheres to each other through a sealing material 54a held on the surface of the frame body 54 that contacts the flexible substrate 1. Thereby, the film forming chamber 5 in an airtight state is formed between the voltage applying electrode 21 and the flexible substrate 1, respectively.
The power supply structure 60 connected as described above feeds the output voltage of the high frequency power supply 52 to the center of each voltage application electrode 21, and a high frequency voltage is generated between the voltage application electrode 21 and the ground electrode 22. Each is applied. As a result, plasma is generated in each film forming chamber 5, the reaction gas introduced from an introduction pipe (not shown) is decomposed, and a thin film is formed on the surface of the flexible substrate 1 heated by the heater 23 of the ground electrode 22. It is formed.

この時、各成膜室5に供給された反応ガスは、図示しない真空ポンプによって、図3に示すように、各電圧印加電極21に設けられた排気口72aを介して排気部材9の中空部72に排気されてから、シールド体57に設けられた排気ポート57bを通って外部に排気され、これによって各成膜室5内の圧力が維持される。
この際、図1における装置中心線(A−A線)99に対して対称となる位置に排気口72aをそれぞれ設けたことで、成膜室5内の反応ガスを等分に排気できる領域が広がり、膜厚分布に悪影響を及ぼす成膜室5内での反応ガスの流れの偏りを抑制することが可能となる。なお、さらに排気口72aを上記装置中心線(A−A線)99に対して対称となるように複数設けることで、上記のような反応ガスの流れの偏りをより効果的に抑制できる。
このように、本発明の実施形態の薄膜製造装置100では、成膜室5内での反応ガスの流れの偏りを広範囲で抑制することが可能となるので、より幅広なサイズの可撓性基板1にも対応することができ、汎用性に優れている。
At this time, the reaction gas supplied to each film forming chamber 5 is discharged from a hollow portion of the exhaust member 9 through an exhaust port 72a provided in each voltage application electrode 21, as shown in FIG. After being evacuated to 72, the air is exhausted outside through an exhaust port 57b provided in the shield body 57, whereby the pressure in each film forming chamber 5 is maintained.
At this time, by providing the exhaust ports 72a at positions symmetrical to the apparatus center line (AA line) 99 in FIG. 1, there is a region where the reaction gas in the film forming chamber 5 can be exhausted equally. It becomes possible to suppress unevenness of the flow of the reaction gas in the film forming chamber 5 which spreads and adversely affects the film thickness distribution. Further, by providing a plurality of exhaust ports 72a so as to be symmetric with respect to the apparatus center line (AA line) 99, it is possible to more effectively suppress the above-described deviation in the reactant gas flow.
As described above, in the thin film manufacturing apparatus 100 according to the embodiment of the present invention, it is possible to suppress the deviation of the flow of the reaction gas in the film forming chamber 5 in a wide range, so that a flexible substrate having a wider size. 1 and is excellent in versatility.

以上、本発明の実施の形態につき述べたが、本発明は既述の実施の形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。
例えば、既述の実施形態ではステッピングロール方式の薄膜製造装置としたが、ロールツーロール方式の薄膜製造装置としてもよい。
While the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made based on the technical idea of the present invention.
For example, in the above-described embodiment, a stepping roll type thin film manufacturing apparatus is used, but a roll-to-roll type thin film manufacturing apparatus may be used.

本発明の実施形態に係る薄膜製造装置を示す平面断面図である。It is a plane sectional view showing the thin film manufacturing device concerning the embodiment of the present invention. 上記実施形態における図1のA−A線に沿う部分断面図である。It is a fragmentary sectional view which follows the AA line of FIG. 1 in the said embodiment. 上記実施形態における図1のB−B線に沿う部分断面図である。It is a fragmentary sectional view which follows the BB line of FIG. 1 in the said embodiment. (A),(B)は上記実施形態における給電構造体の容量設計を示す説明図(図2のC−C線断面図)である。(A), (B) is explanatory drawing (CC sectional view taken on the line of FIG. 2) which shows the capacity | capacitance design of the electric power feeding structure in the said embodiment. (A),(B),(C)は上記実施形態における種々の給電構造体を示す断面図である。(A), (B), (C) is sectional drawing which shows the various electric power feeding structure in the said embodiment. ステッピングロール方式の一般的な薄膜製造装置の一例を示す平面断面図である。It is a plane sectional view showing an example of a general thin film manufacturing device of a stepping roll method. 図6に示す一般的な薄膜製造装置の成膜室近傍の詳細を示す部分断面図であって、(A)は成膜時、(B)は基板搬送時を示している。FIG. 7 is a partial cross-sectional view showing details in the vicinity of a film forming chamber of the general thin film manufacturing apparatus shown in FIG. 6, where (A) shows a film forming time and (B) shows a substrate transport time. 従来技術に係る薄膜製造装置を示す断面図である。It is sectional drawing which shows the thin film manufacturing apparatus which concerns on a prior art.

符号の説明Explanation of symbols

1 可撓性基板
2 搬入ロール
3 搬出ロール
5 成膜室
9 排気部材
11 送り室
13 成膜用真空室
14 巻き取り室
15 壁体
21 電圧印加電極
22 接地電極
23 ヒータ
24 アクチュエータ
51 インピーダンス整合器
52 高周波電源
54 枠体
57 シールド体
57a 貫通孔
58 金属隔膜体
60 給電構造体
61 給電体
62 外周導体
63a,63b 絶縁支持体
64 絶縁リング
65 電気導入体
72 中空部
72a 排気口
80 第一接地箱体
81 第一接続板
90 第二接地箱体
91 第二接続板
100 薄膜製造装置
DESCRIPTION OF SYMBOLS 1 Flexible substrate 2 Carry-in roll 3 Carry-out roll 5 Film-forming chamber 9 Exhaust member 11 Feeding chamber 13 Film-forming vacuum chamber 14 Winding chamber 15 Wall body 21 Voltage application electrode 22 Ground electrode 23 Heater 24 Actuator 51 Impedance matching device 52 High-frequency power supply 54 Frame body 57 Shield body 57a Through hole 58 Metal diaphragm body 60 Power supply structure 61 Power supply body 62 Outer conductor 63a, 63b Insulation support body 64 Insulation ring 65 Electric introduction body 72 Hollow part 72a Exhaust port 80 First grounding box body 81 1st connection board 90 2nd grounding box 91 2nd connection board 100 Thin film manufacturing apparatus

Claims (4)

真空室内を搬送される可撓性基板を、函状の壁体の内部に形成された真空の成膜室内に停止させ、前記真空の成膜室に臨んで設置され前記可撓性基板に対向して配置された電圧印加電極と接地電極との間に電圧を印加して前記可撓性基板の表面に薄膜を成膜する薄膜製造装置において、金属材料からなる枠形状に形成され前記電圧印加電極を絶縁して固定する支持枠と、該支持枠の前記電圧印加電極に対向する面に固定された金属隔膜体と、前記支持枠の内部に設けられて前記電圧印加電極に給電する給電構造体と、前記真空室内に設置されて前記壁体の内面に電気的に接続される第1接地箱体と、前記金属隔膜体と電気的に接続される第2接地箱体とを備えたことを特徴とする薄膜製造装置。   The flexible substrate transported in the vacuum chamber is stopped in the vacuum film formation chamber formed inside the box-shaped wall, and is placed facing the vacuum film formation chamber and faces the flexible substrate. In the thin film manufacturing apparatus for forming a thin film on the surface of the flexible substrate by applying a voltage between the voltage applying electrode and the ground electrode, the voltage application is formed in a frame shape made of a metal material. A support frame that insulates and fixes the electrode; a metal diaphragm fixed to a surface of the support frame facing the voltage application electrode; and a power supply structure that is provided inside the support frame and supplies power to the voltage application electrode A first grounding box that is installed in the vacuum chamber and is electrically connected to the inner surface of the wall, and a second grounding box that is electrically connected to the metal diaphragm. A thin film manufacturing apparatus characterized by 前記壁体と絶縁し且つシール材を介して外界と真空遮断して前記壁体に取付けられ、前記第1接地箱体内と外界とを電気的に接続する電気導入体と、該電気導入体の前記第1接地箱体側端部と前記給電構造体を構成する給電体の先端部とを電気的に接続する第1接続部材と、前記給電体の終端部と前記電圧印加電極とを電気的に接続する第2接続部材とを備え、前記外界から前記電気導入体、前記第1接続部材、及び前記第2接続部材を介して前記真空室内の前記電圧印加電極に給電可能に構成されていることを特徴とする請求項1に記載の薄膜製造装置。   An electric introduction body which is insulated from the wall body and is vacuum-blocked from the outside through a sealing material and attached to the wall body, and electrically connects the first grounding box body and the outside world, and the electric introduction body A first connection member that electrically connects the end portion on the first grounding box side and the tip end portion of the power feeding body constituting the power feeding structure, and the terminal portion of the power feeding body and the voltage application electrode are electrically connected And a second connecting member connected to the external power supply, and configured to be able to supply power to the voltage application electrode in the vacuum chamber from the outside world via the electric introduction body, the first connecting member, and the second connecting member. The thin film manufacturing apparatus according to claim 1. 前記給電構造体は、金属材料からなる給電体と、金属材料からなり前記給電体の外周を囲むように配置された外周導体と、前記給電体と前記外周導体との間に形成される空間ギャップを保持し且つ絶縁して支持する絶縁支持体とを備え、前記外周導体の先端部が前記第1接地箱体を介して前記壁体と電気的に接続され、前記外周導体の終端部が前記第2接地箱体を介して前記金属隔膜体と接続して接地されていることを特徴とする請求項1または2に記載の薄膜製造装置。   The power feeding structure includes a power feeding body made of a metal material, an outer peripheral conductor made of a metal material and arranged to surround an outer periphery of the power feeding body, and a spatial gap formed between the power feeding body and the outer peripheral conductor. An insulating support that holds and insulates and supports, the tip of the outer conductor is electrically connected to the wall through the first grounding box, and the end of the outer conductor is the end 3. The thin film manufacturing apparatus according to claim 1, wherein the thin film manufacturing apparatus is connected to the metal diaphragm through a second grounding box and is grounded. 前記電圧印加電極は、前記真空室内を左右に対をなして搬送される前記可撓性基板に対応して左右1対設けられ、各電圧印加電極には排気口がそれぞれ形成され、前記左右1対の電圧印加電極の間には、内部に排気通路を有する排気部材が各電圧印加電極に固定して設けられ、前記各電圧印加電極の排気口は前記排気部材の排気通路に連通し、前記成膜室内のガスを前記各電圧印加電極の排気口及び前記排気部材の排気通路を通して前記壁体の外界に排出するように構成されていることを特徴とする請求項1〜3のいずれかに記載の薄膜製造装置。   The voltage application electrodes are provided in a pair of left and right sides corresponding to the flexible substrate that is conveyed in a pair in the left and right directions in the vacuum chamber, and each voltage application electrode has an exhaust port formed therein. Between the pair of voltage application electrodes, an exhaust member having an exhaust passage inside is fixed to each voltage application electrode, and an exhaust port of each voltage application electrode communicates with an exhaust passage of the exhaust member, The gas in the film forming chamber is configured to be discharged to the outside of the wall body through an exhaust port of each voltage application electrode and an exhaust passage of the exhaust member. The thin film manufacturing apparatus described.
JP2006190396A 2006-07-11 2006-07-11 Thin film manufacturing equipment Expired - Fee Related JP4844881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006190396A JP4844881B2 (en) 2006-07-11 2006-07-11 Thin film manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006190396A JP4844881B2 (en) 2006-07-11 2006-07-11 Thin film manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2008019463A true JP2008019463A (en) 2008-01-31
JP4844881B2 JP4844881B2 (en) 2011-12-28

Family

ID=39075647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006190396A Expired - Fee Related JP4844881B2 (en) 2006-07-11 2006-07-11 Thin film manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4844881B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111900A (en) * 2008-11-05 2010-05-20 Fuji Electric Holdings Co Ltd Plasma cvd system
JP2010121156A (en) * 2008-11-18 2010-06-03 Fuji Electric Holdings Co Ltd Capacitance-coupling type plasma cvd apparatus
JP2010185105A (en) * 2009-02-12 2010-08-26 Fuji Electric Systems Co Ltd Thin-film-forming apparatus
JP2010255017A (en) * 2009-04-21 2010-11-11 Fuji Electric Systems Co Ltd Film deposition apparatus and film deposition method, method for designing film deposition apparatus, and method for manufacturing film deposition apparatus
JP2011086716A (en) * 2009-10-14 2011-04-28 Fuji Electric Holdings Co Ltd Plasma processing apparatus and plasma processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331996A (en) * 1999-05-21 2000-11-30 Tokyo Electron Ltd Plasma processing device
JP2005256100A (en) * 2004-03-12 2005-09-22 Fuji Electric Holdings Co Ltd Thin film manufacturing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331996A (en) * 1999-05-21 2000-11-30 Tokyo Electron Ltd Plasma processing device
JP2005256100A (en) * 2004-03-12 2005-09-22 Fuji Electric Holdings Co Ltd Thin film manufacturing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111900A (en) * 2008-11-05 2010-05-20 Fuji Electric Holdings Co Ltd Plasma cvd system
JP2010121156A (en) * 2008-11-18 2010-06-03 Fuji Electric Holdings Co Ltd Capacitance-coupling type plasma cvd apparatus
JP2010185105A (en) * 2009-02-12 2010-08-26 Fuji Electric Systems Co Ltd Thin-film-forming apparatus
JP2010255017A (en) * 2009-04-21 2010-11-11 Fuji Electric Systems Co Ltd Film deposition apparatus and film deposition method, method for designing film deposition apparatus, and method for manufacturing film deposition apparatus
JP2011086716A (en) * 2009-10-14 2011-04-28 Fuji Electric Holdings Co Ltd Plasma processing apparatus and plasma processing method

Also Published As

Publication number Publication date
JP4844881B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
US11276562B2 (en) Plasma processing using multiple radio frequency power feeds for improved uniformity
US9947511B2 (en) Antenna for plasma generation and plasma processing device having the same
KR101591404B1 (en) Plasma generating apparatus and plasma processing apparatus
WO2011033927A1 (en) Film formation apparatus
JP4623422B2 (en) Plasma processing equipment
JP4844881B2 (en) Thin film manufacturing equipment
JP4158726B2 (en) Thin film manufacturing equipment
JP5733460B1 (en) Antenna for generating plasma and plasma processing apparatus including the same
TW201143550A (en) Plasma processing apparatus
JP2012133899A (en) Plasma processing device
JP4893235B2 (en) Film forming apparatus and film forming method
JP4727377B2 (en) Vacuum processing apparatus and high-frequency power supply method in vacuum processing apparatus
JP2017004602A (en) Antenna for plasma generation and plasma processing apparatus comprising the same
JP2018156864A (en) Plasma processing apparatus
JP4875527B2 (en) Plasma generator and thin film forming apparatus using the same
JP3089336B2 (en) Manufacturing equipment for thin-film photoelectric conversion elements
JP4289246B2 (en) Thin film forming equipment
JP5135720B2 (en) Plasma processing equipment
KR101129675B1 (en) Plasma generation apparatus and transformer
JP4576190B2 (en) Plasma processing equipment
JP5286733B2 (en) Plasma processing equipment
JP5124982B2 (en) Thin film manufacturing apparatus and thin film manufacturing method
JP4981387B2 (en) Thin film manufacturing apparatus and solar cell manufacturing method
JP5417963B2 (en) Film forming apparatus, film forming method, film forming apparatus design method, and film forming apparatus manufacturing method
JP2006336040A (en) Plasma cvd apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110929

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees