JP2008019225A - Fluorine-containing compound, method for producing fluorine-containing compound and application thereof - Google Patents

Fluorine-containing compound, method for producing fluorine-containing compound and application thereof Download PDF

Info

Publication number
JP2008019225A
JP2008019225A JP2006194580A JP2006194580A JP2008019225A JP 2008019225 A JP2008019225 A JP 2008019225A JP 2006194580 A JP2006194580 A JP 2006194580A JP 2006194580 A JP2006194580 A JP 2006194580A JP 2008019225 A JP2008019225 A JP 2008019225A
Authority
JP
Japan
Prior art keywords
group
cfch
compound
atom
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006194580A
Other languages
Japanese (ja)
Other versions
JP5199552B2 (en
Inventor
Tomoyuki Asai
智之 淺井
Tomoko Sugita
知子 杉田
Hidemasa Ko
英昌 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Seimi Chemical Ltd
Original Assignee
AGC Seimi Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Seimi Chemical Ltd filed Critical AGC Seimi Chemical Ltd
Priority to JP2006194580A priority Critical patent/JP5199552B2/en
Publication of JP2008019225A publication Critical patent/JP2008019225A/en
Application granted granted Critical
Publication of JP5199552B2 publication Critical patent/JP5199552B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0459Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the linking chain being a -CF=CF- chain, e.g. 1,2-difluoroethen-1,2-diyl

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new fluorine-containing compound useful for a functional material such as a liquid crystal material; to provide a composition containing the compound, and a liquid crystal electro-optical element containing the composition; and to provide an industrially applicable method for producing the compound. <P>SOLUTION: The fluorine-containing compound is represented by R<SP>1</SP>-(A<SP>1</SP>-Z<SP>1</SP>)<SB>m</SB>-(A<SP>2</SP>-Z<SP>2</SP>)<SB>n</SB>-A<SP>3</SP>-(CH<SB>2</SB>)<SB>p</SB>-CF=CF-(CH<SB>2</SB>)<SB>q</SB>-A<SP>4</SP>-(Z<SP>3</SP>-A<SP>5</SP>)<SB>r</SB>-(Z<SP>4</SP>-A<SP>6</SP>)<SB>s</SB>-R<SP>2</SP>(1) (wherein, R<SP>1</SP>and R<SP>2</SP>are mutually independently a hydrogen atom, a halogen atom or a 1-10C monovalent aliphatic hydrocarbon group; A<SP>1</SP>to A<SP>6</SP>are mutually independently a phenylene group or a cyclohexylene group; Z<SP>1</SP>to Z<SP>4</SP>are mutually independently a single bond, -O-, -S- or a 1-4C divalent aliphatic hydrocarbon group; m, n, r and s are mutually independently 0 or 1; p and q are mutually independently an integer of 0-3; with the proviso that p+q is ≥1). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、新規な含フッ素化合物、該化合物を含有する液晶組成物、該液晶組成物を含有する液晶電気光学素子、および該化合物の製造方法に関する。   The present invention relates to a novel fluorine-containing compound, a liquid crystal composition containing the compound, a liquid crystal electro-optical element containing the liquid crystal composition, and a method for producing the compound.

液晶素子は携帯電話やPDAのような携帯機器、複写機やパソコンモニタのようなOA機器用表示装置、液晶テレビなどの家電製品用表示装置をはじめ、時計、電卓、測定器、自動車用計器、カメラなどの用途に使用されており、広い動作温度範囲、低動作電圧、高速応答性、化学的安定性等の種々の性能が要求されている。
このような液晶素子には液晶相を示す材料が使用されているが、現在のところ、これら全ての特性を単独の化合物で満たすわけではなく、一つまたは二つ以上の特性の優れた複数の液晶化合物や非液晶性化合物を混合して液晶組成物として要求性能を満たしている。
液晶素子の分野において、液晶組成物に使用される化合物に要求される種々の特性の中でも、他の液晶材料または非液晶材料との相溶性に優れ、化学的にも安定であり、かつ液晶素子に用いた場合に広い温度範囲で高速応答性に優れ低電圧駆動できる性質を有する化合物を提供することは重要な課題である。
Liquid crystal elements include mobile devices such as mobile phones and PDAs, display devices for office automation equipment such as copiers and personal computer monitors, display devices for home appliances such as liquid crystal televisions, clocks, calculators, measuring instruments, automotive meters, It is used for applications such as cameras, and various performances such as a wide operating temperature range, a low operating voltage, high-speed response, and chemical stability are required.
In such a liquid crystal element, a material exhibiting a liquid crystal phase is used, but at present, not all of these characteristics are satisfied by a single compound, and a plurality of excellent one or more characteristics are provided. Liquid crystal compounds and non-liquid crystal compounds are mixed to satisfy the required performance as a liquid crystal composition.
Among various properties required for compounds used in liquid crystal compositions in the field of liquid crystal elements, the liquid crystal elements have excellent compatibility with other liquid crystal materials or non-liquid crystal materials, are chemically stable, and are liquid crystal elements. It is an important problem to provide a compound having a property of being excellent in high-speed response and being driven at a low voltage in a wide temperature range when used in the above.

このような課題の解決策として、例えば、CF=CF連結基を有するスチルベン化合物などが報告されている(特許文献1)。この化合物は粘性が低く液晶表示素子に用いた場合は応答速度が速いという特長が有るが、光に対して不安定であり紫外線カットフィルターなどを併用しなければならないという問題が有る。   As a solution to such a problem, for example, a stilbene compound having a CF═CF linking group has been reported (Patent Document 1). This compound has a feature that the viscosity is low and the response speed is high when used in a liquid crystal display device, but there is a problem that it is unstable with respect to light and an ultraviolet cut filter or the like must be used in combination.

このように、液晶組成物などに用いられる化合物は、特定の性能を向上させると他の性能が犠牲になることが多いため、特定の性能を向上させつつ他の性能が大幅に低下しない化合物の開発が望まれている。   As described above, a compound used for a liquid crystal composition or the like often has a sacrifice of other performance when the specific performance is improved. Development is desired.

特開平03−294386号公報Japanese Patent Laid-Open No. 03-294386

本発明は、液晶材料等の機能性材料として有用な、新規な含フッ素化合物を提供することを目的とする。また、該化合物を含有する液晶組成物および該液晶組成物を含有する液晶電気光学素子を提供することも目的とする。さらに、該化合物の工業的に利用可能な製造方法を提供することも目的とする。   An object of the present invention is to provide a novel fluorine-containing compound useful as a functional material such as a liquid crystal material. Another object of the present invention is to provide a liquid crystal composition containing the compound and a liquid crystal electro-optical element containing the liquid crystal composition. Furthermore, it aims at providing the manufacturing method which can utilize this compound industrially.

本明細書においては、式(1)で表される化合物を化合物(1)と記し、他の式で表される化合物も同様に記す。   In the present specification, a compound represented by the formula (1) is referred to as a compound (1), and compounds represented by other formulas are also described in the same manner.

本発明は、上記の目的を達成するため、化合物(1)を提供する。
1-(A1-Z1)m-(A2-Z2)n-A3-(CH2)p-CF=CF-(CH2)q-A4-(Z3-A5)r-(Z4-A6)s-R2 (1)
(ただし、式中の記号は以下の意味を示す。
1、R2:相互に独立して、水素原子、ハロゲン原子、または炭素数1〜10の一価の脂肪族炭化水素基。ただし、該脂肪族炭化水素基中の1つ以上の水素原子がハロゲン原子で置換されていてもよく、該脂肪族炭化水素基中の炭素−炭素原子間または該脂肪族炭化水素基の結合末端に、エーテル性酸素原子またはチオエーテル性硫黄原子が挿入されていてもよい。
1、A2、A3、A4、A5、A6:相互に独立して、フェニレン基またはシクロヘキシレン基。ただし、A1、A2、A3、A4、A5およびA6の基中の1つ以上の水素原子がハロゲン原子で置換されていてもよく、該基中に存在する1つまたは2つの−CH=が窒素原子に置換されていてもよく、該基中に存在する1つまたは2つの−CH2−がエーテル性酸素原子またはチオエーテル性硫黄原子に置換されていてもよい。ただし、2つの−CH2−が連続してエーテル性酸素原子またはチオエーテル性硫黄原子に置換されることはない。
1、Z2、Z3、Z4:相互に独立して、単結合、−O−、−S−、または炭素数1〜4の二価の脂肪族炭化水素基。ただし、該脂肪族炭化水素基中の1つ以上の水素原子がハロゲン原子で置換されていてもよく、該脂肪族炭化水素基中の炭素−炭素原子間または該脂肪族炭化水素基の結合末端に、エーテル性酸素原子またはチオエーテル性硫黄原子が挿入されていてもよい。
m、n、r、s:相互に独立して0または1。
p、q:相互に独立して0〜3の整数。ただし、p+qは1以上。)
In order to achieve the above object, the present invention provides compound (1).
R 1 - (A 1 -Z 1 ) m - (A 2 -Z 2) n -A 3 - (CH 2) p -CF = CF- (CH 2) q -A 4 - (Z 3 -A 5) r- (Z 4 -A 6 ) s -R 2 (1)
(However, the symbols in the formula have the following meanings.
R 1 and R 2 : independently of each other, a hydrogen atom, a halogen atom, or a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms. However, one or more hydrogen atoms in the aliphatic hydrocarbon group may be substituted with a halogen atom, and the bond terminal of the aliphatic hydrocarbon group or between carbon-carbon atoms in the aliphatic hydrocarbon group In addition, an etheric oxygen atom or a thioetheric sulfur atom may be inserted.
A 1 , A 2 , A 3 , A 4 , A 5 , A 6 : independently of one another, a phenylene group or a cyclohexylene group. However, one or more hydrogen atoms in the groups A 1 , A 2 , A 3 , A 4 , A 5 and A 6 may be substituted with a halogen atom, and one or two existing in the group One —CH═ may be substituted with a nitrogen atom, and one or two —CH 2 — present in the group may be substituted with an etheric oxygen atom or a thioetheric sulfur atom. However, two —CH 2 — are not continuously substituted by an etheric oxygen atom or a thioetheric sulfur atom.
Z 1 , Z 2 , Z 3 , Z 4 : each independently a single bond, —O—, —S—, or a divalent aliphatic hydrocarbon group having 1 to 4 carbon atoms. However, one or more hydrogen atoms in the aliphatic hydrocarbon group may be substituted with a halogen atom, and the bond terminal of the aliphatic hydrocarbon group or between carbon-carbon atoms in the aliphatic hydrocarbon group In addition, an etheric oxygen atom or a thioetheric sulfur atom may be inserted.
m, n, r, s: 0 or 1 independently of each other.
p, q: An integer of 0 to 3 independently of each other. However, p + q is 1 or more. )

化合物(1)は、m+n+r+sが2以下であることが好ましい。   In the compound (1), m + n + r + s is preferably 2 or less.

また、化合物(1)は、pとqが共に1であることも好ましい。   In the compound (1), both p and q are preferably 1.

また、化合物(1)は、Z1、Z2、Z3およびZ4が全て単結合であることも好ましい。 In the compound (1), it is also preferred that Z 1 , Z 2 , Z 3 and Z 4 are all single bonds.

また、化合物(1)は、A1、A2、A3、A4、A5およびA6が相互に独立して、1,4−シクロヘキシレン基または1,4−フェニレン基であることも好ましい。該1,4−フェニレン基中に存在する水素原子の1つ以上がフッ素原子で置換されていてもよい。 In the compound (1), A 1 , A 2 , A 3 , A 4 , A 5 and A 6 may be independently 1,4-cyclohexylene group or 1,4-phenylene group. preferable. One or more hydrogen atoms present in the 1,4-phenylene group may be substituted with a fluorine atom.

また、本発明は化合物(1)の製造方法を提供する。
化合物(2)をメタル化し、これとテトラフルオロエチレンとを反応させて化合物(3)を合成し、化合物(4)を同様にメタル化した化合物を化合物(3)と反応させることによる、化合物(1)を製造する。
1-(A1-Z1)m-(A2-Z2)n-A3-(CH2)p-X (2)
1-(A1-Z1)m-(A2-Z2)n-A3-(CH2)p-CF=CF2(3)
X-(CH2)q-A4-(Z3-A5)r-(Z4-A6)s-R2 (4)
1-(A1-Z1)m-(A2-Z2)n-A3-(CH2)p-CF=CF-(CH2)q-A4-(Z3-A5)r-(Z4-A6)s-R2 (1)
(ただし、Xは塩素原子、臭素原子またはヨウ素原子であり、R1、R2、A1、A2、A3、A4、A5、A6、Z1、Z2、Z3、Z4、m、n、p、q、r、sは前記と同じ意味を示す。)
The present invention also provides a process for producing compound (1).
Compound (2) is metalated, this is reacted with tetrafluoroethylene to synthesize compound (3), and compound (4) is similarly reacted with compound (3) to react with compound (3). 1) is manufactured.
R 1- (A 1 -Z 1 ) m- (A 2 -Z 2 ) n -A 3- (CH 2 ) p -X (2)
R 1- (A 1 -Z 1 ) m- (A 2 -Z 2 ) n -A 3- (CH 2 ) p -CF = CF 2 (3)
X- (CH 2) q -A 4 - (Z 3 -A 5) r - (Z 4 -A 6) s -R 2 (4)
R 1 - (A 1 -Z 1 ) m - (A 2 -Z 2) n -A 3 - (CH 2) p -CF = CF- (CH 2) q -A 4 - (Z 3 -A 5) r- (Z 4 -A 6 ) s -R 2 (1)
(Wherein, X is chlorine atom, a bromine atom or an iodine atom, R 1, R 2, A 1, A 2, A 3, A 4, A 5, A 6, Z 1, Z 2, Z 3, Z 4 , m, n, p, q, r, and s have the same meaning as described above.)

また、本発明は、化合物(1)を含有する液晶組成物を提供する。   The present invention also provides a liquid crystal composition containing the compound (1).

また、本発明は、化合物(1)を含有する液晶組成物を、電極付き基板間に挟持した液晶電気光学素子を提供する。   The present invention also provides a liquid crystal electro-optical element in which a liquid crystal composition containing the compound (1) is sandwiched between substrates with electrodes.

本発明の化合物は、工業的にも容易かつ簡便に合成することができるものであり、液晶組成物などに用いることができる。また、本発明の化合物の構造から、粘性の低下、弾性定数の適正化、耐光性の向上などの効果の発現が期待できる。   The compound of the present invention can be synthesized easily and simply industrially, and can be used for liquid crystal compositions and the like. Further, from the structure of the compound of the present invention, it can be expected that effects such as a decrease in viscosity, optimization of elastic constants, and improvement of light resistance can be achieved.

化合物(1)において、R1およびR2は、相互に独立して、水素原子、ハロゲン原子、または炭素数1〜10の一価の脂肪族炭化水素基である。ただし、該脂肪族炭化水素基は1つ以上の水素原子がハロゲン原子で置換されていてもよい。また、該脂肪族炭化水素基中の炭素−炭素原子間または該脂肪族炭化水素基の結合末端に、エーテル性酸素原子またはチオエーテル性硫黄原子が挿入されていてもよい。なお、ハロゲン原子による置換と、エーテル性酸素原子またはチオエーテル性硫黄原子の挿入は、同一の脂肪族炭化水素基に同時に行われていてもよい。 In the compound (1), R 1 and R 2 are each independently a hydrogen atom, a halogen atom, or a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms. However, in the aliphatic hydrocarbon group, one or more hydrogen atoms may be substituted with a halogen atom. Further, an etheric oxygen atom or a thioetheric sulfur atom may be inserted between carbon-carbon atoms in the aliphatic hydrocarbon group or at the bond terminal of the aliphatic hydrocarbon group. Note that the substitution with a halogen atom and the insertion of an etheric oxygen atom or a thioetheric sulfur atom may be simultaneously performed on the same aliphatic hydrocarbon group.

炭素数1〜10の一価の脂肪族炭化水素基としては、アルキル基、アルケニル基、アルキニル基が挙げられる。また、これらの基中の1つ以上の水素原子がハロゲン原子に置換した基としては、フルオロアルキル基、クロロアルキル基が挙げられる。更に、これらの基中の炭素−炭素原子間にエーテル性酸素原子やチオエーテル性硫黄原子が挿入された基としてはアルコキシアルキル基またはアルキルチオアルキル基が挙げられる。また、基の結合末端にエーテル性酸素原子またはチオエーテル性硫黄原子が挿入された基としてはアルコキシ基またはアルキルチオ基が挙げられる。また、ハロゲン原子による置換とエーテル性酸素原子の挿入が同一の脂肪族炭化水素基に行われた基としてはフルオロアルコキシ基が挙げられる。これらの基は、直鎖状と分岐状のどちらでもかまわないが直鎖状が好ましい。   Examples of the monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms include an alkyl group, an alkenyl group, and an alkynyl group. Examples of the group in which one or more hydrogen atoms in these groups are substituted with a halogen atom include a fluoroalkyl group and a chloroalkyl group. Furthermore, examples of the group in which an etheric oxygen atom or a thioetheric sulfur atom is inserted between carbon-carbon atoms in these groups include alkoxyalkyl groups and alkylthioalkyl groups. Examples of the group in which an etheric oxygen atom or a thioetheric sulfur atom is inserted at the bond terminal of the group include an alkoxy group and an alkylthio group. Further, examples of the group in which substitution with a halogen atom and insertion of an etheric oxygen atom are performed on the same aliphatic hydrocarbon group include a fluoroalkoxy group. These groups may be either linear or branched, but are preferably linear.

炭素数1〜10のアルキル基としては、炭素数1〜5のアルキル基が好ましく、特にエチル基、プロピル基、またはペンチル基が好ましい。炭素数1〜10のアルコキシ基としては、炭素数1〜5のアルコキシ基が好ましく、特にメトキシ基またはエトキシ基が好ましい。炭素数1〜10のフルオロアルキル基としては、炭素数1〜5のフルオロアルキル基が好ましく、特にトリフルオロメチル基が好ましい。炭素数1〜10のフルオロアルコキシ基としては、炭素数1〜5のフルオロアルコキシ基が好ましく、特にトリフルオロメトキシ基が好ましい。ハロゲン原子としては、フッ素原子または塩素原子が好ましく、特にフッ素原子が好ましい。   As a C1-C10 alkyl group, a C1-C5 alkyl group is preferable, and an ethyl group, a propyl group, or a pentyl group is especially preferable. As an alkoxy group having 1 to 10 carbon atoms, an alkoxy group having 1 to 5 carbon atoms is preferable, and a methoxy group or an ethoxy group is particularly preferable. The fluoroalkyl group having 1 to 10 carbon atoms is preferably a fluoroalkyl group having 1 to 5 carbon atoms, and particularly preferably a trifluoromethyl group. The fluoroalkoxy group having 1 to 10 carbon atoms is preferably a fluoroalkoxy group having 1 to 5 carbon atoms, and particularly preferably a trifluoromethoxy group. As the halogen atom, a fluorine atom or a chlorine atom is preferable, and a fluorine atom is particularly preferable.

1およびR2としては、ハロゲン原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、または炭素数2〜10のアルキニル基が好ましい。該アルキル基、アルケニル基またはアルケニル基中の1つ以上の水素原子がフッ素原子で置換されていてもよく、基中の炭素−炭素原子間または基の結合末端にエーテル性酸素原子またはチオエーテル性硫黄原子が挿入されていてもよい。
特に、フッ素原子、直鎖状で炭素数1〜10のアルキル基、アルコキシ基、フルオロアルキル基またはフルオロアルコキシ基が好ましい。また、フッ素原子、直鎖状で炭素数1〜5のアルキル基、アルコキシ基、フルオロアルキル基またはフルオロアルコキシ基がより好ましい。
R 1 and R 2 are preferably a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl group having 2 to 10 carbon atoms. One or more hydrogen atoms in the alkyl group, alkenyl group, or alkenyl group may be substituted with a fluorine atom, and an etheric oxygen atom or a thioetheric sulfur at a bond between the carbon-carbon atoms or the group in the group An atom may be inserted.
In particular, a fluorine atom, a linear alkyl group having 1 to 10 carbon atoms, an alkoxy group, a fluoroalkyl group, or a fluoroalkoxy group is preferable. Further, a fluorine atom, a linear alkyl group having 1 to 5 carbon atoms, an alkoxy group, a fluoroalkyl group, or a fluoroalkoxy group is more preferable.

化合物(1)において、A1、A2、A3、A4、A5およびA6は、相互に独立して、フェニレン基またはシクロヘキシレン基である。ただし、該基中の1つ以上の水素原子がハロゲン原子で置換されていてもよく、該基中に存在する1つまたは2つの−CH=が窒素原子に置換されていてもよく、該基中に存在する1つまたは2つの−CH2−がエーテル性酸素原子またはチオエーテル性硫黄原子に置換されていてもよい。ただし、2つの−CH2−が連続してエーテル性酸素原子またはチオエーテル性硫黄原子に置換されることはない。 In the compound (1), A 1 , A 2 , A 3 , A 4 , A 5 and A 6 are each independently a phenylene group or a cyclohexylene group. However, one or more hydrogen atoms in the group may be substituted with a halogen atom, and one or two —CH═ present in the group may be substituted with a nitrogen atom. One or two —CH 2 — present therein may be substituted with an etheric oxygen atom or a thioetheric sulfur atom. However, two —CH 2 — are not continuously substituted by an etheric oxygen atom or a thioetheric sulfur atom.

1、A2、A3、A4、A5およびA6は、化合物が直線的な構造となり、液晶用として用いやすいことから、1,4−シクロヘキシレン基、1,4−フェニレン基が好ましい。また、液晶用として用いた場合の相溶性や誘電率異方性の観点からは、1,4−フェニレン基は1つ以上のフッ素原子で置換されていることも好ましい。1つ以上のフッ素原子で置換された1,4−フェニレン基としては、3−フルオロ−1,4−フェニレン基、3,5−ジフルオロ−1,4−フェニレン基、2,3−ジフルオロ−1,4−フェニレン基が好ましい。 Since A 1 , A 2 , A 3 , A 4 , A 5 and A 6 have a linear structure and are easy to use for liquid crystals, 1,4-cyclohexylene group and 1,4-phenylene group are preferable. From the viewpoint of compatibility and dielectric anisotropy when used for liquid crystals, it is also preferred that the 1,4-phenylene group is substituted with one or more fluorine atoms. Examples of the 1,4-phenylene group substituted with one or more fluorine atoms include 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group, and 2,3-difluoro-1 A 4-phenylene group is preferred.

1、Z2、Z3およびZ4は、相互に独立して、単結合、−O−、−S−、または炭素数1〜4の二価の脂肪族炭化水素基である。ただし、該脂肪族炭化水素基中の1つ以上の水素原子がハロゲン原子で置換されていてもよく、該脂肪族炭化水素基中の炭素−炭素原子間または該脂肪族炭化水素基に、エーテル性酸素原子またはチオエーテル性硫黄原子が挿入されていてもよい。なお、ハロゲン原子による置換と、エーテル性酸素原子またはチオエーテル性硫黄原子の挿入は、同一の脂肪族炭化水素基に同時に行われていてもよい。 Z 1 , Z 2 , Z 3 and Z 4 are each independently a single bond, —O—, —S—, or a divalent aliphatic hydrocarbon group having 1 to 4 carbon atoms. However, one or more hydrogen atoms in the aliphatic hydrocarbon group may be substituted with a halogen atom, and an ether group may be bonded between carbon-carbon atoms in the aliphatic hydrocarbon group or in the aliphatic hydrocarbon group. Oxygen atoms or thioetheric sulfur atoms may be inserted. Note that the substitution with a halogen atom and the insertion of an etheric oxygen atom or a thioetheric sulfur atom may be simultaneously performed on the same aliphatic hydrocarbon group.

1が単結合である場合にはZ1の両側の環基は直接結合することを意味する。例えば、Z1が単結合でありnが0の場合はA1とA3とは直接結合する。また、Z1が単結合でありnが1の場合はA1とA2とは直接結合する。Z2、Z3およびZ4においても同様である。 When Z 1 is a single bond, it means that the ring groups on both sides of Z 1 are directly bonded. For example, when Z 1 is a single bond and n is 0, A 1 and A 3 are directly bonded. When Z 1 is a single bond and n is 1, A 1 and A 2 are directly bonded. The same applies to Z 2 , Z 3 and Z 4 .

炭素数1〜4の二価の脂肪族炭化水素基としては、炭素数1〜4のアルキレン基、炭素数2〜4のアルケニレン基、または炭素数2〜4のアルキニレン基が挙げられる。また、これらの基中の1つ以上の水素原子がハロゲン原子で置換された基としては、フルオロアルキレン基、クロロアルキレン基、またはフルオロアルケニレン基が挙げられる。更に、これらの基中の炭素−炭素原子間または基の結合末端に、エーテル性酸素原子またはチオエーテル性硫黄原子が挿入された基としては、オキシアルキレン基、アルキルオキシアルキレン基、チオアルキレン基、オキシフルオロアルキレン基、またはチオフルオロアルキレン基が挙げられる。   Examples of the divalent aliphatic hydrocarbon group having 1 to 4 carbon atoms include an alkylene group having 1 to 4 carbon atoms, an alkenylene group having 2 to 4 carbon atoms, and an alkynylene group having 2 to 4 carbon atoms. Examples of the group in which one or more hydrogen atoms in these groups are substituted with a halogen atom include a fluoroalkylene group, a chloroalkylene group, and a fluoroalkenylene group. Further, groups in which an etheric oxygen atom or a thioetheric sulfur atom is inserted between carbon-carbon atoms in these groups or at the bond terminal of the group include oxyalkylene groups, alkyloxyalkylene groups, thioalkylene groups, oxyalkylene groups, A fluoroalkylene group or a thiofluoroalkylene group can be mentioned.

炭素数1〜4のアルキレン基としては、−CH2−、−CH2CH2−、−CH2CH2CH2−、または−CH2CH2CH2CH2−が挙げられ、特に−CH2−または−CH2CH2−が好ましい。 The alkylene group having 1 to 4 carbon atoms, -CH 2 -, - CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, or -CH 2 CH 2 CH 2 CH 2 - . In particular -CH 2 - or -CH 2 CH 2 - is preferred.

炭素数2〜4のアルケニレン基としては、−CH=CH−、−CH=CH−CH2−、−CH=CH−CH2−CH2−、−CH=CH−CH=CH−、または−CH2−CH=CH−CH2−が挙げられ、特に−CH=CH−が好ましい。 Examples of the alkenylene group having 2 to 4 carbon atoms include —CH═CH—, —CH═CH—CH 2 —, —CH═CH—CH 2 —CH 2 —, —CH═CH—CH═CH—, or — CH 2 —CH═CH—CH 2 — can be mentioned, and —CH═CH— is particularly preferable.

炭素数2〜4のアルキニレン基としては、−C≡C−、−C≡C−CH2−、−C≡C−CH2−CH2−、−C≡C−C≡C−、または−CH2−C≡C−CH2−が挙げられ、特に−C≡C−が好ましい。また、−CH=CH−C≡C−のように、二重結合と三重結合が混在しても構わない。 Examples of the alkynylene group having 2 to 4 carbon atoms include —C≡C—, —C≡C—CH 2 —, —C≡C—CH 2 —CH 2 —, —C≡C—C≡C—, or — CH 2 —C≡C—CH 2 — can be mentioned, and —C≡C— is particularly preferable. Further, double bonds and triple bonds may be mixed as in —CH═CH—C≡C—.

炭素数1〜4のフルオロアルキレン基、クロロアルキレン基およびフルオロアルケニレン基としては、−CF2−、−CF2CF2−、−CF2CF2CF2CF2−、−CH2CF2−、−CF=CF−、−CCl2CH2−、または−CF=CF−C≡C−が挙げられ、特に−CF2CF2−または−CF=CF−が好ましい。 The fluoroalkylene group, chloro alkylene groups and fluoro alkenylene group having 1 to 4 carbon atoms, -CF 2 -, - CF 2 CF 2 -, - CF 2 CF 2 CF 2 CF 2 -, - CH 2 CF 2 -, —CF═CF—, —CCl 2 CH 2 —, or —CF═CF—C≡C— can be mentioned, and —CF 2 CF 2 — or —CF═CF— is particularly preferable.

炭素数1〜4のオキシアルキレン基、チオアルキレン基、アルキルオキシアルキレン基、オキシフルオロアルキレン基およびチオフルオロアルキレン基としては、−OCH2−、−CH2O−、−SCH2−、−CH2S−、−CH2CH2OCH2−、−OCF2−、−SCF2−、−CF2O−、または−CF2S−が挙げられ、−OCF2−または−CF2O−が好ましい。 Examples of the oxyalkylene group having 1 to 4 carbon atoms, thioalkylene group, alkyloxyalkylene group, oxyfluoroalkylene group, and thiofluoroalkylene group include —OCH 2 —, —CH 2 O—, —SCH 2 —, —CH 2. S -, - CH 2 CH 2 OCH 2 -, - OCF 2 -, - SCF 2 -, - CF 2 O-, or -CF 2 S- can be cited, -OCF 2 - or -CF 2 O-are preferred .

1、Z2、Z3およびZ4は、フェニレン基と結合する場合は、化合物の安定性の面から結合する部分に二重結合などの不飽和結合を持たない構造であることが好ましい。 When Z 1 , Z 2 , Z 3 and Z 4 are bonded to a phenylene group, it is preferable that the bonded portion has a structure having no unsaturated bond such as a double bond from the viewpoint of stability of the compound.

1、Z2、Z3およびZ4は、化合物の安定性と合成の容易さから、単結合、−O−、−S−、または炭素数1〜4のアルキレン基が好ましい。該アルキレン基中の1つ以上の水素原子はフッ素原子で置換されていてもよく、該アルキレン基中の炭素−炭素原子間または基の結合末端に、エーテル性酸素原子またはチオエーテル性硫黄原子が挿入されていてもよい。特に単結合または炭素数1〜4のアルキレン基が好ましく、単結合がより好ましい。 Z 1 , Z 2 , Z 3 and Z 4 are preferably a single bond, —O—, —S—, or an alkylene group having 1 to 4 carbon atoms from the viewpoint of stability of the compound and ease of synthesis. One or more hydrogen atoms in the alkylene group may be substituted with a fluorine atom, and an etheric oxygen atom or a thioetheric sulfur atom is inserted between carbon-carbon atoms in the alkylene group or at the bond terminal of the group. May be. In particular, a single bond or an alkylene group having 1 to 4 carbon atoms is preferable, and a single bond is more preferable.

化合物(1)において、m、n、r、sは相互に独立して0または1である。粘性があまり高くならないことから、m+n+r+sは2以下であることが好ましい。   In the compound (1), m, n, r and s are each independently 0 or 1. Since the viscosity is not so high, m + n + r + s is preferably 2 or less.

化合物(1)において、p、qは相互に独立して0〜3の整数である。ただし、p+qは1以上である。pとqは共に1であることが好ましい。   In the compound (1), p and q are each independently an integer of 0 to 3. However, p + q is 1 or more. It is preferable that p and q are both 1.

化合物(1)としては、化合物(1−1)が好ましく、化合物(1−2)がより好ましく、化合物(1−3)が特に好ましい。   As the compound (1), the compound (1-1) is preferable, the compound (1-2) is more preferable, and the compound (1-3) is particularly preferable.

11-(A11-Z11)m-(A21-Z21)n-A31-(CH2)p-CF=CF-(CH2)q-A41-(Z31-A51)r-(Z41-A61)s-R21 (1−1)
(ただし、式中の記号は以下の意味を示す。
11、R21:相互に独立して、ハロゲン原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、または炭素数2〜10のアルキニル基。ただし、基中の1つ以上の水素原子がフッ素原子で置換されていてもよく、基中の炭素−炭素原子間または基の結合末端にエーテル性酸素原子またはチオエーテル性硫黄原子が挿入されていてもよい。
11、A21、A31、A41、A51、A61:相互に独立して、1,4−シクロヘキシレン基または1,4−フェニレン基。ただし該1,4−フェニレン基中に存在する水素原子の1つ以上がフッ素原子に置換されていてもよい。
11、Z21、Z31、Z41:相互に独立して、単結合、−O−、−S−、または炭素数1〜4のアルキレン基。ただし、該基中の1つ以上の水素原子がハロゲン原子で置換されていてもよく、該基中の炭素−炭素原子間または該基の結合末端に、エーテル性酸素原子またはチオエーテル性硫黄原子が挿入されていてもよい。
m、n、p、q、r、sは前記と同じ意味を示す。)
R 11 - (A 11 -Z 11 ) m - (A 21 -Z 21) n -A 31 - (CH 2) p -CF = CF- (CH 2) q -A 41 - (Z 31 -A 51) r- (Z 41 -A 61 ) s -R 21 (1-1)
(However, the symbols in the formula have the following meanings.
R 11 and R 21 are each independently a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl group having 2 to 10 carbon atoms. However, one or more hydrogen atoms in the group may be substituted with fluorine atoms, and an etheric oxygen atom or a thioetheric sulfur atom is inserted between carbon-carbon atoms in the group or at the bond terminal of the group. Also good.
A 11 , A 21 , A 31 , A 41 , A 51 , A 61 : each independently 1,4-cyclohexylene group or 1,4-phenylene group. However, one or more hydrogen atoms present in the 1,4-phenylene group may be substituted with fluorine atoms.
Z 11 , Z 21 , Z 31 , Z 41 : each independently a single bond, —O—, —S—, or an alkylene group having 1 to 4 carbon atoms. However, one or more hydrogen atoms in the group may be substituted with a halogen atom, and an etheric oxygen atom or a thioetheric sulfur atom is present between carbon-carbon atoms in the group or at the bond terminal of the group. It may be inserted.
m, n, p, q, r, and s have the same meaning as described above. )

12-(A11-Z12)m-(A21-Z22)n-A31-(CH2)p-CF=CF-(CH2)q-A41-(Z32-A51)r-(Z42-A61)s-R22 (1−2)
(ただし、式中の記号は以下の意味を示す。
12、R22:相互に独立して、フッ素原子、直鎖状の炭素数1〜10のアルキル基、アルコキシ基、フルオロアルキル基、またはフルオロアルコキシ基。
12、Z22、Z32、Z42:相互に独立して、単結合または炭素数1〜4のアルキレン基。
11、A21、A31、A41、A51、A61、m、n、p、q、r、sは前記と同じ意味を示す。)
R 12 - (A 11 -Z 12 ) m - (A 21 -Z 22) n -A 31 - (CH 2) p -CF = CF- (CH 2) q -A 41 - (Z 32 -A 51) r- (Z 42 -A 61 ) s -R 22 (1-2)
(However, the symbols in the formula have the following meanings.
R 12 and R 22 are each independently a fluorine atom, a linear alkyl group having 1 to 10 carbon atoms, an alkoxy group, a fluoroalkyl group, or a fluoroalkoxy group.
Z 12 , Z 22 , Z 32 , Z 42 : each independently a single bond or an alkylene group having 1 to 4 carbon atoms.
A 11 , A 21 , A 31 , A 41 , A 51 , A 61 , m, n, p, q, r, and s have the same meaning as described above. )

13-(A11)m-A31-(CH2)p-CF=CF-(CH2)q-A41-(A61)s-R23 (1−3)
(ただし、式中の記号は以下の意味を示す。
13、R23:相互に独立して、フッ素原子、直鎖状の炭素数1〜5のアルキル基、アルコキシ基、フルオロアルキル基またはフルオロアルコキシ基。
11、A31、A41、A61、m、p、q、sは前記と同じ意味を示す。)
R 13 - (A 11) m -A 31 - (CH 2) p -CF = CF- (CH 2) q -A 41 - (A 61) s -R 23 (1-3)
(However, the symbols in the formula have the following meanings.
R 13 and R 23 are each independently a fluorine atom, a linear alkyl group having 1 to 5 carbon atoms, an alkoxy group, a fluoroalkyl group, or a fluoroalkoxy group.
A 11 , A 31 , A 41 , A 61 , m, p, q, and s have the same meaning as described above. )

化合物(1)の具体例としては以下の化合物が挙げられる。   Specific examples of the compound (1) include the following compounds.

CH3−Cy−CH2CF=CFCH2−Cy−C37
25−Cy−CH2CF=CFCH2−Cy−C25
25−Cy−CH2CF=CFCH2−Cy−C37
25−Cy−CH2CF=CFCH2−Cy−C511
37−Cy−CH2CF=CFCH2−Cy−C49
37−Cy−CH2CF=CFCH2−Cy−C511
511−Cy−CH2CF=CFCH2−Cy−C511
37−Cy−CH2CF=CFCH2−Cy−OCH3
CH 3 -Cy-CH 2 CF = CFCH 2 -Cy-C 3 H 7
C 2 H 5 -Cy-CH 2 CF = CFCH 2 -Cy-C 2 H 5
C 2 H 5 -Cy-CH 2 CF = CFCH 2 -Cy-C 3 H 7
C 2 H 5 -Cy-CH 2 CF = CFCH 2 -Cy-C 5 H 11
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Cy-C 4 H 9
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Cy-C 5 H 11
C 5 H 11 -Cy-CH 2 CF = CFCH 2 -Cy-C 5 H 11
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Cy-OCH 3

CH3−Cy−CH2CF=CFCH2−Ph−C37
25−Cy−CH2CF=CFCH2−Ph−C25
25−Cy−CH2CF=CFCH2−Ph−C37
25−Cy−CH2CF=CFCH2−Ph−C511
37−Cy−CH2CF=CFCH2−Ph−C25
37−Cy−CH2CF=CFCH2−Ph−C37
37−Cy−CH2CF=CFCH2−Ph−C49
37−Cy−CH2CF=CFCH2−Ph−C511
511−Cy−CH2CF=CFCH2−Ph−C25
511−Cy−CH2CF=CFCH2−Ph−C37
511−Cy−CH2CF=CFCH2−Ph−C511
37−Cy−CH2CF=CFCH2−Ph−OCH3
37−Cy−CH2CF=CFCH2−Ph−CF3
37−Cy−CH2CF=CFCH2−Ph−OCF3
25−Cy−CH2CF=CFCH2−Ph−F
37−Cy−CH2CF=CFCH2−Ph−F
37−Cy−CH2CF=CFCH2−Ph(3F)−F
37−Cy−CH2CF=CFCH2−Ph(3F,5F)−F
37−Cy−CH2CF=CFCH2−Ph(2F,3F)−F
CH 3 -Cy-CH 2 CF = CFCH 2 -Ph-C 3 H 7
C 2 H 5 -Cy-CH 2 CF = CFCH 2 -Ph-C 2 H 5
C 2 H 5 -Cy-CH 2 CF = CFCH 2 -Ph-C 3 H 7
C 2 H 5 -Cy-CH 2 CF = CFCH 2 -Ph-C 5 H 11
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-C 2 H 5
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-C 3 H 7
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-C 4 H 9
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-C 5 H 11
C 5 H 11 -Cy-CH 2 CF = CFCH 2 -Ph-C 2 H 5
C 5 H 11 -Cy-CH 2 CF = CFCH 2 -Ph-C 3 H 7
C 5 H 11 -Cy-CH 2 CF = CFCH 2 -Ph-C 5 H 11
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-OCH 3
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-CF 3
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-OCF 3
C 2 H 5 -Cy-CH 2 CF = CFCH 2 -Ph-F
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-F
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph (3F) -F
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph (3F, 5F) -F
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph (2F, 3F) -F

CH3−Cy−CH2CF=CFCH2−Ph−Ph−C37
25−Cy−CH2CF=CFCH2−Ph−Ph−C25
25−Cy−CH2CF=CFCH2−Ph−Ph−C37
25−Cy−CH2CF=CFCH2−Ph−Ph−C511
37−Cy−CH2CF=CFCH2−Ph−Ph−C25
37−Cy−CH2CF=CFCH2−Ph−Ph−C37
37−Cy−CH2CF=CFCH2−Ph−Ph−C49
37−Cy−CH2CF=CFCH2−Ph−Ph−C511
511−Cy−CH2CF=CFCH2−Ph−Ph−C25
511−Cy−CH2CF=CFCH2−Ph−Ph−C37
511−Cy−CH2CF=CFCH2−Ph−Ph−C511
37−Cy−CH2CF=CFCH2−Ph−Ph−OCH3
37−Cy−CH2CF=CFCH2−Ph−Ph−CF3
37−Cy−CH2CF=CFCH2−Ph−Ph−OCF3
25−Cy−CH2CF=CFCH2−Ph−Ph−F
37−Cy−CH2CF=CFCH2−Ph−Ph−F
37−Cy−CH2CF=CFCH2−Ph−Ph(3F)−F
37−Cy−CH2CF=CFCH2−Ph−Ph(3F,5F)−F
37−Cy−CH2CF=CFCH2−Ph−Ph(2F,3F)−F
37−Cy−CH2CF=CFCH2−Ph(3F,5F)−Ph(3F,5F)−F
CH 3 -Cy-CH 2 CF = CFCH 2 -Ph-Ph-C 3 H 7
C 2 H 5 -Cy-CH 2 CF = CFCH 2 -Ph-Ph-C 2 H 5
C 2 H 5 -Cy-CH 2 CF = CFCH 2 -Ph-Ph-C 3 H 7
C 2 H 5 -Cy-CH 2 CF = CFCH 2 -Ph-Ph-C 5 H 11
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-Ph-C 2 H 5
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-Ph-C 3 H 7
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-Ph-C 4 H 9
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-Ph-C 5 H 11
C 5 H 11 -Cy-CH 2 CF = CFCH 2 -Ph-Ph-C 2 H 5
C 5 H 11 -Cy-CH 2 CF = CFCH 2 -Ph-Ph-C 3 H 7
C 5 H 11 -Cy-CH 2 CF = CFCH 2 -Ph-Ph-C 5 H 11
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-Ph-OCH 3
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-Ph-CF 3
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-Ph-OCF 3
C 2 H 5 -Cy-CH 2 CF = CFCH 2 -Ph-Ph-F
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-Ph-F
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-Ph (3F) -F
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-Ph (3F, 5F) -F
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-Ph (2F, 3F) -F
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph (3F, 5F) -Ph (3F, 5F) -F

CH3−Cy−CH2CF=CFCH2−Cy−Ph−C37
25−Cy−CH2CF=CFCH2−Cy−Ph−C25
25−Cy−CH2CF=CFCH2−Cy−Ph−C37
25−Cy−CH2CF=CFCH2−Cy−Ph−C511
37−Cy−CH2CF=CFCH2−Cy−Ph−C25
37−Cy−CH2CF=CFCH2−Cy−Ph−C37
37−Cy−CH2CF=CFCH2−Cy−Ph−C49
37−Cy−CH2CF=CFCH2−Cy−Ph−C511
511−Cy−CH2CF=CFCH2−Cy−Ph−C25
511−Cy−CH2CF=CFCH2−Cy−Ph−C37
511−Cy−CH2CF=CFCH2−Cy−Ph−C511
37−Cy−CH2CF=CFCH2−Cy−Ph−OCH3
37−Cy−CH2CF=CFCH2−Cy−Ph−CF3
37−Cy−CH2CF=CFCH2−Cy−Ph−OCF3
25−Cy−CH2CF=CFCH2−Cy−Ph−F
37−Cy−CH2CF=CFCH2−Cy−Ph−F
37−Cy−CH2CF=CFCH2−Cy−Ph(3F)−F
37−Cy−CH2CF=CFCH2−Cy−Ph(3F,5F)−F
37−Cy−CH2CF=CFCH2−Cy−Ph(2F,3F)−F
CH 3 -Cy-CH 2 CF = CFCH 2 -Cy-Ph-C 3 H 7
C 2 H 5 -Cy-CH 2 CF = CFCH 2 -Cy-Ph-C 2 H 5
C 2 H 5 -Cy-CH 2 CF = CFCH 2 -Cy-Ph-C 3 H 7
C 2 H 5 -Cy-CH 2 CF = CFCH 2 -Cy-Ph-C 5 H 11
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Cy-Ph-C 2 H 5
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Cy-Ph-C 3 H 7
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Cy-Ph-C 4 H 9
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Cy-Ph-C 5 H 11
C 5 H 11 -Cy-CH 2 CF = CFCH 2 -Cy-Ph-C 2 H 5
C 5 H 11 -Cy-CH 2 CF = CFCH 2 -Cy-Ph-C 3 H 7
C 5 H 11 -Cy-CH 2 CF = CFCH 2 -Cy-Ph-C 5 H 11
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Cy-Ph-OCH 3
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Cy-Ph-CF 3
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Cy-Ph-OCF 3
C 2 H 5 -Cy-CH 2 CF = CFCH 2 -Cy-Ph-F
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Cy-Ph-F
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Cy-Ph (3F) -F
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Cy-Ph (3F, 5F) -F
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Cy-Ph (2F, 3F) -F

CH3−Cy−Cy−CH2CF=CFCH2−Cy−C37
25−Cy−Cy−CH2CF=CFCH2−Cy−C25
25−Cy−Cy−CH2CF=CFCH2−Cy−C37
25−Cy−Cy−CH2CF=CFCH2−Cy−C511
37−Cy−Cy−CH2CF=CFCH2−Cy−C25
37−Cy−Cy−CH2CF=CFCH2−Cy−C37
37−Cy−Cy−CH2CF=CFCH2−Cy−C49
37−Cy−Cy−CH2CF=CFCH2−Cy−C511
511−Cy−Cy−CH2CF=CFCH2−Cy−C25
511−Cy−Cy−CH2CF=CFCH2−Cy−C37
511−Cy−Cy−CH2CF=CFCH2−Cy−C511
37−Cy−Cy−CH2CF=CFCH2−Cy−OCH3
CH 3 -Cy-Cy-CH 2 CF = CFCH 2 -Cy-C 3 H 7
C 2 H 5 -Cy-Cy- CH 2 CF = CFCH 2 -Cy-C 2 H 5
C 2 H 5 -Cy-Cy- CH 2 CF = CFCH 2 -Cy-C 3 H 7
C 2 H 5 -Cy-Cy- CH 2 CF = CFCH 2 -Cy-C 5 H 11
C 3 H 7 -Cy-Cy- CH 2 CF = CFCH 2 -Cy-C 2 H 5
C 3 H 7 -Cy-Cy- CH 2 CF = CFCH 2 -Cy-C 3 H 7
C 3 H 7 -Cy-Cy- CH 2 CF = CFCH 2 -Cy-C 4 H 9
C 3 H 7 -Cy-Cy- CH 2 CF = CFCH 2 -Cy-C 5 H 11
C 5 H 11 -Cy-Cy- CH 2 CF = CFCH 2 -Cy-C 2 H 5
C 5 H 11 -Cy-Cy- CH 2 CF = CFCH 2 -Cy-C 3 H 7
C 5 H 11 -Cy-Cy- CH 2 CF = CFCH 2 -Cy-C 5 H 11
C 3 H 7 -Cy-Cy- CH 2 CF = CFCH 2 -Cy-OCH 3

CH3−Cy−Cy−CH2CF=CFCH2−Ph−C37
25−Cy−Cy−CH2CF=CFCH2−Ph−C25
25−Cy−Cy−CH2CF=CFCH2−Ph−C37
25−Cy−Cy−CH2CF=CFCH2−Ph−C511
37−Cy−Cy−CH2CF=CFCH2−Ph−C25
37−Cy−Cy−CH2CF=CFCH2−Ph−C37
37−Cy−Cy−CH2CF=CFCH2−Ph−C49
37−Cy−Cy−CH2CF=CFCH2−Ph−C511
511−Cy−Cy−CH2CF=CFCH2−Ph−C25
511−Cy−Cy−CH2CF=CFCH2−Ph−C37
511−Cy−Cy−CH2CF=CFCH2−Ph−C511
37−Cy−Cy−CH2CF=CFCH2−Ph−OCH3
37−Cy−Cy−CH2CF=CFCH2−Ph−CF3
37−Cy−Cy−CH2CF=CFCH2−Ph−OCF3
25−Cy−Cy−CH2CF=CFCH2−Ph−F
37−Cy−Cy−CH2CF=CFCH2−Ph−F
37−Cy−Cy−CH2CF=CFCH2−Ph(3F)−F
37−Cy−Cy−CH2CF=CFCH2−Ph(3F,5F)−F
37−Cy−Cy−CH2CF=CFCH2−Ph(2F,3F)−F
CH 3 -Cy-Cy-CH 2 CF = CFCH 2 -Ph-C 3 H 7
C 2 H 5 -Cy-Cy- CH 2 CF = CFCH 2 -Ph-C 2 H 5
C 2 H 5 -Cy-Cy- CH 2 CF = CFCH 2 -Ph-C 3 H 7
C 2 H 5 -Cy-Cy- CH 2 CF = CFCH 2 -Ph-C 5 H 11
C 3 H 7 -Cy-Cy- CH 2 CF = CFCH 2 -Ph-C 2 H 5
C 3 H 7 -Cy-Cy- CH 2 CF = CFCH 2 -Ph-C 3 H 7
C 3 H 7 -Cy-Cy- CH 2 CF = CFCH 2 -Ph-C 4 H 9
C 3 H 7 -Cy-Cy- CH 2 CF = CFCH 2 -Ph-C 5 H 11
C 5 H 11 -Cy-Cy- CH 2 CF = CFCH 2 -Ph-C 2 H 5
C 5 H 11 -Cy-Cy- CH 2 CF = CFCH 2 -Ph-C 3 H 7
C 5 H 11 -Cy-Cy- CH 2 CF = CFCH 2 -Ph-C 5 H 11
C 3 H 7 -Cy-Cy- CH 2 CF = CFCH 2 -Ph-OCH 3
C 3 H 7 -Cy-Cy- CH 2 CF = CFCH 2 -Ph-CF 3
C 3 H 7 -Cy-Cy- CH 2 CF = CFCH 2 -Ph-OCF 3
C 2 H 5 -Cy-Cy- CH 2 CF = CFCH 2 -Ph-F
C 3 H 7 -Cy-Cy- CH 2 CF = CFCH 2 -Ph-F
C 3 H 7 -Cy-Cy- CH 2 CF = CFCH 2 -Ph (3F) -F
C 3 H 7 -Cy-Cy- CH 2 CF = CFCH 2 -Ph (3F, 5F) -F
C 3 H 7 -Cy-Cy- CH 2 CF = CFCH 2 -Ph (2F, 3F) -F

CH3−Cy−Ph−CH2CF=CFCH2−Ph−C37
25−Cy−Ph−CH2CF=CFCH2−Ph−C25
25−Cy−Ph−CH2CF=CFCH2−Ph−C37
25−Cy−Ph−CH2CF=CFCH2−Ph−C511
37−Cy−Ph−CH2CF=CFCH2−Ph−C25
37−Cy−Ph−CH2CF=CFCH2−Ph−C37
37−Cy−Ph−CH2CF=CFCH2−Ph−C49
37−Cy−Ph−CH2CF=CFCH2−Ph−C511
511−Cy−Ph−CH2CF=CFCH2−Ph−C25
511−Cy−Ph−CH2CF=CFCH2−Ph−C37
511−Cy−Ph−CH2CF=CFCH2−Ph−C511
37−Cy−Ph−CH2CF=CFCH2−Ph−OCH3
37−Cy−Ph−CH2CF=CFCH2−Ph−CF3
37−Cy−Ph−CH2CF=CFCH2−Ph−OCF3
25−Cy−Ph−CH2CF=CFCH2−Ph−F
37−Cy−Ph−CH2CF=CFCH2−Ph−F
37−Cy−Ph−CH2CF=CFCH2−Ph(3F)−F
37−Cy−Ph−CH2CF=CFCH2−Ph(3F,5F)−F
37−Cy−Ph−CH2CF=CFCH2−Ph(2F,3F)−F
CH 3 -Cy-Ph-CH 2 CF = CFCH 2 -Ph-C 3 H 7
C 2 H 5 -Cy-Ph- CH 2 CF = CFCH 2 -Ph-C 2 H 5
C 2 H 5 -Cy-Ph- CH 2 CF = CFCH 2 -Ph-C 3 H 7
C 2 H 5 -Cy-Ph- CH 2 CF = CFCH 2 -Ph-C 5 H 11
C 3 H 7 -Cy-Ph- CH 2 CF = CFCH 2 -Ph-C 2 H 5
C 3 H 7 -Cy-Ph- CH 2 CF = CFCH 2 -Ph-C 3 H 7
C 3 H 7 -Cy-Ph- CH 2 CF = CFCH 2 -Ph-C 4 H 9
C 3 H 7 -Cy-Ph- CH 2 CF = CFCH 2 -Ph-C 5 H 11
C 5 H 11 -Cy-Ph- CH 2 CF = CFCH 2 -Ph-C 2 H 5
C 5 H 11 -Cy-Ph- CH 2 CF = CFCH 2 -Ph-C 3 H 7
C 5 H 11 -Cy-Ph- CH 2 CF = CFCH 2 -Ph-C 5 H 11
C 3 H 7 -Cy-Ph- CH 2 CF = CFCH 2 -Ph-OCH 3
C 3 H 7 -Cy-Ph- CH 2 CF = CFCH 2 -Ph-CF 3
C 3 H 7 -Cy-Ph- CH 2 CF = CFCH 2 -Ph-OCF 3
C 2 H 5 -Cy-Ph- CH 2 CF = CFCH 2 -Ph-F
C 3 H 7 -Cy-Ph- CH 2 CF = CFCH 2 -Ph-F
C 3 H 7 -Cy-Ph- CH 2 CF = CFCH 2 -Ph (3F) -F
C 3 H 7 -Cy-Ph- CH 2 CF = CFCH 2 -Ph (3F, 5F) -F
C 3 H 7 -Cy-Ph- CH 2 CF = CFCH 2 -Ph (2F, 3F) -F

CH3−Cy−Ph−CH2CF=CFCH2−Cy−C37
25−Cy−Ph−CH2CF=CFCH2−Cy−C25
25−Cy−Ph−CH2CF=CFCH2−Cy−C37
25−Cy−Ph−CH2CF=CFCH2−Cy−C511
37−Cy−Ph−CH2CF=CFCH2−Cy−C25
37−Cy−Ph−CH2CF=CFCH2−Cy−C37
37−Cy−Ph−CH2CF=CFCH2−Cy−C49
37−Cy−Ph−CH2CF=CFCH2−Cy−C511
511−Cy−Ph−CH2CF=CFCH2−Cy−C25
511−Cy−Ph−CH2CF=CFCH2−Cy−C37
511−Cy−Ph−CH2CF=CFCH2−Cy−C511
37−Cy−Ph−CH2CF=CFCH2−Cy−OCH3
CH 3 -Cy-Ph-CH 2 CF = CFCH 2 -Cy-C 3 H 7
C 2 H 5 -Cy-Ph- CH 2 CF = CFCH 2 -Cy-C 2 H 5
C 2 H 5 -Cy-Ph- CH 2 CF = CFCH 2 -Cy-C 3 H 7
C 2 H 5 -Cy-Ph- CH 2 CF = CFCH 2 -Cy-C 5 H 11
C 3 H 7 -Cy-Ph- CH 2 CF = CFCH 2 -Cy-C 2 H 5
C 3 H 7 -Cy-Ph- CH 2 CF = CFCH 2 -Cy-C 3 H 7
C 3 H 7 -Cy-Ph- CH 2 CF = CFCH 2 -Cy-C 4 H 9
C 3 H 7 -Cy-Ph- CH 2 CF = CFCH 2 -Cy-C 5 H 11
C 5 H 11 -Cy-Ph- CH 2 CF = CFCH 2 -Cy-C 2 H 5
C 5 H 11 -Cy-Ph- CH 2 CF = CFCH 2 -Cy-C 3 H 7
C 5 H 11 -Cy-Ph- CH 2 CF = CFCH 2 -Cy-C 5 H 11
C 3 H 7 -Cy-Ph- CH 2 CF = CFCH 2 -Cy-OCH 3

ただし、式中の記号は以下の意味を示す。
Cy:トランス−1,4−シクロヘキシレン基。
Ph:1,4−フェニレン基。
Ph(3F):3−フルオロ−1,4−フェニレン基。
Ph(3F,5F):3,5−ジフルオロ−1,4−フェニレン基。
Ph(2F,3F):2,3−ジフルオロ−1,4−フェニレン基。
However, the symbols in the formulas have the following meanings.
Cy: trans-1,4-cyclohexylene group.
Ph: 1,4-phenylene group.
Ph (3F): 3-fluoro-1,4-phenylene group.
Ph (3F, 5F): 3,5-difluoro-1,4-phenylene group.
Ph (2F, 3F): 2,3-difluoro-1,4-phenylene group.

本発明の化合物(1)は、以下の方法で合成することができる。式中の記号は前記と同じ意味を示す。
1-(A1-Z1)m-(A2-Z2)n-A3-(CH2)p-X (2)

1-(A1-Z1)m-(A2-Z2)n-A3-(CH2)p-CF=CF2 (3)
↓ X-(CH2)q-A4-(Z3-A5)r-(Z4-A6)s-R2 (4)
1-(A1-Z1)m-(A2-Z2)n-A3-(CH2)p-CF=CF-(CH2)q-A4-(Z3-A5)r-(Z4-A6)s-R2 (1)
Compound (1) of the present invention can be synthesized by the following method. The symbols in the formula have the same meaning as described above.
R 1- (A 1 -Z 1 ) m- (A 2 -Z 2 ) n -A 3- (CH 2 ) p -X (2)

R 1- (A 1 -Z 1 ) m- (A 2 -Z 2 ) n -A 3- (CH 2 ) p -CF = CF 2 (3)
↓ X- (CH 2) q -A 4 - (Z 3 -A 5) r - (Z 4 -A 6) s -R 2 (4)
R 1 - (A 1 -Z 1 ) m - (A 2 -Z 2) n -A 3 - (CH 2) p -CF = CF- (CH 2) q -A 4 - (Z 3 -A 5) r- (Z 4 -A 6 ) s -R 2 (1)

化合物(2)をメタル化した後、テトラフルオロエチレンと反応させて化合物(3)を合成する。また、化合物(4)も同様にメタル化し、これと化合物(3)とを反応させることで化合物(1)を得ることができる。化合物(2)または化合物(4)のメタル化としては、金属リチウムなどでリチオ化する方法や、金属マグネシウムとの反応によりグリニャール試薬とする方法が挙げられる。   Compound (2) is metalized and then reacted with tetrafluoroethylene to synthesize compound (3). In addition, compound (4) is similarly metallized, and compound (1) can be obtained by reacting this with compound (3). Examples of the metalation of compound (2) or compound (4) include a method of lithiation with metallic lithium or the like, and a method of using a Grignard reagent by reaction with metallic magnesium.

金属リチウムを用いてリチオ化する場合、電子移動剤を共存させてリチオ化を実施してもよい。電子移動剤としては芳香環が2個以上または縮合環となっている化合物が使用される。具体的にはナフタレン、ビフェニル、2,6−ジ−tert−ブチルナフタレン、2,7−ジ−tert−ブチルナフタレン、4,4’−ジ−tert−ブチルビフェニル、アントラセン等が挙げられるが、好ましくはナフタレン、ビフェニル、4,4’−ジ−tert−ブチルビフェニルである。電子移動剤の使用量は、化合物(2)または化合物(4)に対して0.01倍モルから4倍モル、好ましくは0.1倍モルから2.5倍モルである。   When lithiation is performed using metallic lithium, lithiation may be performed in the presence of an electron transfer agent. As the electron transfer agent, a compound having two or more aromatic rings or a condensed ring is used. Specific examples include naphthalene, biphenyl, 2,6-di-tert-butylnaphthalene, 2,7-di-tert-butylnaphthalene, 4,4′-di-tert-butylbiphenyl, and anthracene. Are naphthalene, biphenyl, 4,4′-di-tert-butylbiphenyl. The amount of the electron transfer agent used is 0.01 to 4 times mol, preferably 0.1 to 2.5 times mol with respect to compound (2) or compound (4).

また、金属リチウムの使用量は化合物(2)または化合物(4)に対して2倍モルから5倍モル、好ましくは2倍モルから3倍モルである。金属マグネシウムとの反応によりグリニャール試薬を調整する場合、金属マグネシウムの使用量は1倍モルから5倍モル、好ましくは1倍モルから1.5倍モルである。   The amount of metallic lithium used is 2 to 5 times, preferably 2 to 3 times the mol of the compound (2) or compound (4). When the Grignard reagent is prepared by reaction with metallic magnesium, the amount of metallic magnesium used is 1 to 5 moles, preferably 1 to 1.5 moles.

メタル化反応は溶媒中で実施される。反応溶媒としてはベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素系溶媒、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒、テトラヒドロフラン、ジエチルエーテル、ジブチルエーテル、t-ブチルメチルエーテル等のエーテル系溶媒、石油エーテル類あるいは上記溶媒の適当な混合溶媒などを用いることができるが、特にエーテル系溶媒またはエーテル系溶媒と脂肪族炭化水素系溶媒の混合溶媒が好ましい。溶媒量は、合成の規模により大きく異なり、適宜変更することが可能である。例えばラボスケールの場合は、化合物(2)または化合物(4)1モルに対し、0.1倍から10000倍の体積(mL)を使用するのが好ましく、0.5倍から3000倍の体積(mL)を使用するのがより好ましい。   The metalation reaction is carried out in a solvent. Reaction solvents include aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, tetrahydrofuran, diethyl ether, dibutyl ether, t-butyl methyl ether, etc. Ether solvents, petroleum ethers, or a suitable mixed solvent of the above solvents can be used, and ether solvents or a mixed solvent of an ether solvent and an aliphatic hydrocarbon solvent is particularly preferable. The amount of solvent varies greatly depending on the scale of synthesis, and can be changed as appropriate. For example, in the case of a lab scale, it is preferable to use a volume (mL) of 0.1 to 10,000 times with respect to 1 mol of compound (2) or compound (4), and a volume of 0.5 to 3000 times ( More preferably, mL) is used.

メタル化反応の反応温度は−100℃から100℃が好ましく、特に−80℃から70℃が好ましい。   The reaction temperature of the metalation reaction is preferably from -100 ° C to 100 ° C, particularly preferably from -80 ° C to 70 ° C.

メタル化反応の反応時間は0.5時間から48時間が好ましく、特に0.5時間から8時間が好ましい。   The reaction time of the metalation reaction is preferably 0.5 hours to 48 hours, particularly preferably 0.5 hours to 8 hours.

化合物(2)のメタル化の後、単離することなく連続的にテトラフルオロエチレンとの反応を実施することで化合物(3)を得ることができる。すなわち、メタル化が終了した反応液中にテトラフルオロエチレンガスを導通することで実施される。テトラフルオロエチレンの使用量は化合物(2)に対し1倍モルから10倍モル、好ましくは1倍モルから3倍モルである。所望によりテトラフルオロエチレンは窒素、アルゴンなどの不活性ガスで希釈して用いてもよい。希釈割合は任意であるが、安全性、効率の観点からテトラフルオロエチレンの割合は30〜70%が好ましい。   After the metallation of the compound (2), the compound (3) can be obtained by continuously reacting with tetrafluoroethylene without isolation. That is, it is carried out by passing tetrafluoroethylene gas through the reaction liquid after completion of metalation. The amount of tetrafluoroethylene to be used is 1 to 10 times mol, preferably 1 to 3 times mol, of compound (2). If desired, tetrafluoroethylene may be diluted with an inert gas such as nitrogen or argon. Although the dilution ratio is arbitrary, the ratio of tetrafluoroethylene is preferably 30 to 70% from the viewpoint of safety and efficiency.

メタル化物とテトラフルオロエチレンとの反応において、リチオ化物とテトラフルオロエチレンとの反応温度は−100℃〜25℃が好ましく、特に−80℃〜0℃が好ましい。グリニャール試薬とテトラフルオロエチレンの反応温度は−100℃〜80℃が好ましく、特に0℃〜50℃が好ましい。   In the reaction between the metallized product and tetrafluoroethylene, the reaction temperature between the lithiated product and tetrafluoroethylene is preferably -100 ° C to 25 ° C, and particularly preferably -80 ° C to 0 ° C. The reaction temperature of the Grignard reagent and tetrafluoroethylene is preferably -100 ° C to 80 ° C, particularly preferably 0 ° C to 50 ° C.

メタル化物とテトラフルオロエチレンとの反応において、反応時間は0.5時間〜48時間が好ましく、特に0.5時間〜24時間が好ましい。   In the reaction between the metalated product and tetrafluoroethylene, the reaction time is preferably 0.5 to 48 hours, particularly preferably 0.5 to 24 hours.

反応後、通常の後処理作業、精製作業を実施することにより化合物(3)を得ることができる。   After the reaction, the compound (3) can be obtained by carrying out usual post-treatment operations and purification operations.

化合物(3)と化合物(4)のメタル化物を反応させることで化合物(1)が得られる。これには先に説明したように別途調整した化合物(4)のメタル化反応液に化合物(3)を加えてもよいし、化合物(3)に別途調整した化合物(4)のメタル化反応液を加えてもよい。   Compound (1) can be obtained by reacting compound (3) with the metalated product of compound (4). To this, the compound (3) may be added to the compound (4) metallation reaction solution prepared separately as described above, or the compound (4) metalation reaction solution prepared separately to the compound (3). May be added.

化合物(3)はあらかじめ溶媒で希釈しておいてもよい。希釈溶媒としてはベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素系溶媒、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒、テトラヒドロフラン、ジエチルエーテル、ジブチルエーテル、t-ブチルメチルエーテル等のエーテル系溶媒、石油エーテル類あるいは上記溶媒の適当な混合溶媒などを用いることができるが、特にエーテル系溶媒またはエーテル系溶媒と脂肪族炭化水素系溶媒の混合溶媒が好ましい。希釈溶媒量は、合成の規模により大きく異なり、適宜変更することが可能である。例えばラボスケールの場合は、化合物(3)1モルに対し、0.1倍から2000倍の体積(mL)を使用するのが好ましく、0.5倍から1000倍の体積(mL)を使用するのがより好ましい。   Compound (3) may be diluted with a solvent in advance. Diluting solvents include aromatic hydrocarbon solvents such as benzene, toluene, xylene and ethylbenzene, aliphatic hydrocarbon solvents such as pentane, hexane, heptane and octane, tetrahydrofuran, diethyl ether, dibutyl ether, t-butyl methyl ether, etc. Ether solvents, petroleum ethers, or a suitable mixed solvent of the above solvents can be used, and ether solvents or a mixed solvent of an ether solvent and an aliphatic hydrocarbon solvent is particularly preferable. The amount of diluting solvent varies greatly depending on the scale of synthesis and can be changed as appropriate. For example, in the case of a lab scale, it is preferable to use a volume (mL) of 0.1 to 2000 times, and a volume (mL) of 0.5 to 1000 times with respect to 1 mol of compound (3). Is more preferable.

反応温度は−100℃から100℃が好ましく、化合物(4)のリチオ化物の場合には、特に−80℃〜25℃が好ましく、化合物(4)のグリニャール試薬の場合には、特に0℃〜70℃が好ましい。   The reaction temperature is preferably from -100 ° C to 100 ° C. In the case of a lithiated compound (4), -80 ° C to 25 ° C is particularly preferable, and in the case of the Grignard reagent of compound (4), particularly from 0 ° C to 70 ° C. is preferred.

反応時間は0.5時間から48時間が好ましく、特に0.5時間から24時間が好ましい。   The reaction time is preferably 0.5 hours to 48 hours, particularly preferably 0.5 hours to 24 hours.

反応後、通常の後処理作業、精製作業を実施することにより化合物(1)で表わされる新規な含フッ素化合物を得ることができる。   After the reaction, a new fluorine-containing compound represented by the compound (1) can be obtained by carrying out usual post-treatment operations and purification operations.

化合物(2)は、例えば化合物(2−1)の場合、下記化合物(5)を還元して化合物(6)とした後、ハロゲン化して合成するなどの公知の方法で得ることができる。
R−Cy−Cy−COOH (5)
R−Cy−Cy−CH2OH (6)
R−Cy−Cy−CH2Cl (2−1)
For example, in the case of the compound (2-1), the compound (2) can be obtained by a known method, for example, by reducing the following compound (5) to obtain the compound (6), followed by halogenation and synthesis.
R-Cy-Cy-COOH (5)
R-Cy-Cy-CH 2 OH (6)
R-Cy-Cy-CH 2 Cl (2-1)

本発明の化合物(1)はその少なくとも1種を、他の液晶化合物および/または非液晶化合物と混合することにより、優れた性能を有する液晶組成物を得ることができる。例えば、従来の液晶組成物に化合物(1)を添加した場合、粘性の低下や弾性定数の適正化などの効果が期待できる。   The compound (1) of the present invention can obtain a liquid crystal composition having excellent performance by mixing at least one of them with other liquid crystal compounds and / or non-liquid crystal compounds. For example, when compound (1) is added to a conventional liquid crystal composition, effects such as a reduction in viscosity and optimization of elastic constants can be expected.

液晶組成物中の化合物(1)の量は、液晶組成物100重量部に対して、0.1〜30重量部が好ましく、1〜10重量部が特に好ましい。   0.1-30 weight part is preferable with respect to 100 weight part of liquid crystal compositions, and, as for the quantity of the compound (1) in a liquid-crystal composition, 1-10 weight part is especially preferable.

液晶組成物中の化合物(1)以外の化合物としては、液晶組成物の用途、要求性能などにより異なるが、通常は液晶化合物および該液晶化合物に類似の構造を有する化合物を主成分とし、これに必要に応じた他の化合物を添加するのが好ましい。   The compound other than the compound (1) in the liquid crystal composition varies depending on the use and required performance of the liquid crystal composition, but usually contains a liquid crystal compound and a compound having a structure similar to the liquid crystal compound as a main component. It is preferable to add other compounds as required.

他の化合物の具体例としては、誘電異方性を向上させる成分、高温で液晶性を示す成分、低粘性成分、屈折率異方性値を調製する成分、コレステリック性を付与する成分、2色性を示す成分、導電性を付与する成分等が挙げられる。液晶組成物中に含ませ得る他の化合物の例としては、以下の具体例が挙げられる。なお、下式におけるR3、R4 は、それぞれ同一であっても異なっていてもよく、アルキル基、アルケニル基、アルキニル基、アルコキシ基、ハロゲン原子、またはシアノ基等の基を表し、PhおよびCyは前記と同じ意味を示す。 Specific examples of other compounds include components that improve dielectric anisotropy, components that exhibit liquid crystallinity at high temperatures, low viscosity components, components that adjust refractive index anisotropy, components that impart cholesteric properties, two colors Components exhibiting electrical properties, components imparting electrical conductivity, and the like. Examples of other compounds that can be included in the liquid crystal composition include the following specific examples. R 3 and R 4 in the following formulas may be the same or different and each represents a group such as an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, a halogen atom, or a cyano group, and Ph and Cy has the same meaning as described above.

3−Cy−Cy−R4
3−Cy−Ph−R4
3−Ph−Ph−R4
3−Ph−C≡C−Ph−R4
3−Cy−COO−Ph−R4
3−Ph−COO−Ph−R4
3−Cy−CH=CH−Ph−R4
3−Cy−CH2CH2−Ph−R4
3−Ph−CH2CH2−Ph−R4
3−Cy−Cy−Ph−R4
3−Cy−Ph−Ph−R4
3−Cy−Ph−C≡C−Ph−R4
3−Ph−Ph−Ph−R4
3−Cy−Ph−Ph−Cy−R4
3−Ph−Ph−C≡C−Ph−R4
3−Cy−COO−Ph−Ph−R4
3−Cy−Ph−COO−Ph−R4
3−Cy−COO−Ph−COO−Ph−R4
3−Ph−COO−Ph−COO−Ph−R4
3−Ph−COO−Ph−OCO−Ph−R4
R 3 -Cy-Cy-R 4
R 3 -Cy-Ph-R 4
R 3 -Ph-Ph-R 4
R 3 —Ph—C≡C—Ph—R 4
R 3 -Cy-COO-Ph-R 4
R 3 —Ph—COO—Ph—R 4
R 3 —Cy—CH═CH—Ph—R 4
R 3 -Cy-CH 2 CH 2 -Ph-R 4
R 3 -Ph-CH 2 CH 2 -Ph-R 4
R 3 -Cy-Cy-Ph-R 4
R 3 -Cy-Ph-Ph-R 4
R 3 -Cy-Ph-C≡C-Ph-R 4
R 3 -Ph-Ph-Ph-R 4
R 3 -Cy-Ph-Ph-Cy-R 4
R 3 —Ph—Ph—C≡C—Ph—R 4
R 3 -Cy-COO-Ph- Ph-R 4
R 3 -Cy-Ph-COO- Ph-R 4
R 3 -Cy-COO-Ph- COO-Ph-R 4
R 3 -Ph-COO-Ph- COO-Ph-R 4
R 3 -Ph-COO-Ph- OCO-Ph-R 4

また、液晶組成物中に含ませる他の化合物としては、上記化合物に限定されない。例えば、上記化合物の環構造または末端基の水素原子は、ハロゲン原子、シアノ基、またはメチル基等へ置換されていてもよく、また、上記化合物の環構造または末端基の水素原子は、シクロヘキサン環、ベンゼン環、ピリミジン環、またはジオキサン環等の他の六員環または五員環等へ置換されていてもよい。また、環と環との間に存在する結合基を他の結合基に変更してもよい。これらの置換または変更は、目的とする性能に合わせて適宜選択すればよい。   Moreover, as another compound included in a liquid-crystal composition, it is not limited to the said compound. For example, the ring structure or terminal group hydrogen atom of the compound may be substituted with a halogen atom, a cyano group, or a methyl group, and the ring structure or terminal group hydrogen atom of the compound is a cyclohexane ring. , A benzene ring, a pyrimidine ring, or another 6-membered ring such as a dioxane ring or a 5-membered ring. Moreover, you may change the coupling group which exists between a ring into another coupling group. These substitutions or changes may be appropriately selected according to the target performance.

本発明の化合物(1)を含む液晶組成物は、液晶セルに注入するなどして、電極付の基板間に挟持され、液晶電気光学素子を構成する。代表的な液晶セルとしては、TN型液晶電気光学素子がある。なお、ここで液晶電気光学素子と表現しているのは、表示用途以外、たとえば、調光窓、光シャッタ、偏光交換素子等にも使用できることを明らかにしているためである。   A liquid crystal composition containing the compound (1) of the present invention is sandwiched between substrates with electrodes, for example, by being injected into a liquid crystal cell to constitute a liquid crystal electro-optical element. As a typical liquid crystal cell, there is a TN liquid crystal electro-optical element. Note that the expression “liquid crystal electro-optical element” is used here for the purpose of clarifying that the liquid crystal electro-optical element can be used for, for example, a dimming window, an optical shutter, and a polarization exchange element other than the display application.

上記液晶電気光学素子は、TN方式、STN方式、ゲスト・ホスト(GH)方式、動的散乱方式、フェーズチェンジ方式、DAP方式、二周波駆動方式、強誘電性液晶表示方式など種々のモードで使用できる。   The liquid crystal electro-optical element is used in various modes such as TN, STN, guest-host (GH), dynamic scattering, phase change, DAP, dual frequency drive, and ferroelectric liquid crystal display. it can.

以下に、液晶電気光学素子の構成および製法の具体例を示す。プラスチック、ガラス等の基板上に、必要に応じてSiO2、Al23等のアンダーコート層やカラーフィルタ層を形成し、In23−SnO2(ITO)、SnO2等の電極を設け、パターニングした後、必要に応じてポリイミド、ポリアミド、SiO2、Al23等のオーバーコート層を形成し、配向処理し、これにシール材を印刷し、電極面が相対向するように配して周辺をシールし、シール材を硬化して空セルを形成する。 Hereinafter, a specific example of the configuration and manufacturing method of the liquid crystal electro-optical element will be described. If necessary, an undercoat layer such as SiO 2 or Al 2 O 3 or a color filter layer is formed on a substrate such as plastic or glass, and electrodes such as In 2 O 3 —SnO 2 (ITO) or SnO 2 are formed. After providing and patterning, if necessary, an overcoat layer of polyimide, polyamide, SiO 2 , Al 2 O 3, etc. is formed, aligned, printed with a sealing material, and the electrode surfaces are opposed to each other Disposed to seal the periphery and harden the sealing material to form an empty cell.

この空セルに、本発明の化合物を含む組成物を注入し、注入口を封止剤で封止して液晶セルを構成する。この液晶セルに必要に応じて偏光板、カラー偏光板、光源、カラーフィルタ、半透過反射板、反射板、導光板、紫外線カットフィルタ等を積層する、文字、図形等を印刷する、ノングレア加工するなどして液晶電気光学素子とする。   A composition containing the compound of the present invention is injected into this empty cell, and the injection port is sealed with a sealant to form a liquid crystal cell. If necessary, this liquid crystal cell is laminated with a polarizing plate, a color polarizing plate, a light source, a color filter, a transflective plate, a reflecting plate, a light guide plate, an ultraviolet cut filter, etc., printing characters, figures, etc., and non-glare processing. To obtain a liquid crystal electro-optical element.

なお、上記の説明は、液晶素子の基本的な構成及び製法を説明したものであり、他の構成も採用出来る。例えば、2層電極を用いた基板、2層の液晶層を形成した2層液晶セル、反射電極を用いた基板、TFT、MIM等の能動素子を形成したアクティブマトリクス基板を用いたアクティブマトリクス素子等、種々の構成のものが使用できる。特に本発明の組成物は、TFT、MIM等のアクティブマトリクス素子にも好適である。   Note that the above description describes the basic configuration and manufacturing method of the liquid crystal element, and other configurations can be employed. For example, a substrate using a two-layer electrode, a two-layer liquid crystal cell having a two-layer liquid crystal layer, a substrate using a reflective electrode, an active matrix device using an active matrix substrate having an active element such as a TFT or MIM, etc. Various configurations can be used. In particular, the composition of the present invention is also suitable for active matrix devices such as TFT and MIM.

さらに、前記したTN型以外のモード、即ち、高ツイスト角のスーパーツイストネマチック(STN)型液晶素子や、多色性色素を用いたゲスト−ホスト(GH)型液晶素子、横方向の電界で液晶分子を基板に対して平行に駆動させるインプレーンスイッチング(IPS)型液晶素子、液晶分子を基板に対して垂直配向させるVA型液晶素子、強誘電性液晶素子等、種々の方式で使用することが出来る。また、電気的に書き込みをする方式ではなく、熱により書き込みをする方式に用いることもできる。   Furthermore, modes other than the TN type described above, that is, a super twist nematic (STN) type liquid crystal element having a high twist angle, a guest-host (GH) type liquid crystal element using a polychromatic dye, and a liquid crystal with a horizontal electric field. In-plane switching (IPS) type liquid crystal element that drives molecules parallel to the substrate, VA type liquid crystal element that aligns liquid crystal molecules vertically with respect to the substrate, ferroelectric liquid crystal element, etc. I can do it. Further, it can be used not only in a method of electrically writing but also in a method of writing by heat.

以下に、実施例を用いて本発明を具体的に説明する。ただし、以下に示す実施例は本発明の例示を目的とするものであり、本発明はこれに限定されない。また、PhおよびCyは前記と同じ意味を示す。   Hereinafter, the present invention will be specifically described with reference to examples. However, the examples shown below are intended to illustrate the present invention, and the present invention is not limited thereto. Ph and Cy have the same meaning as described above.

(実施例1)
化合物(2−a)から化合物(3−a)を合成し、化合物(3−a)から化合物(1−a)を合成した。
37−Cy−Cy−CH2Cl (2−a)
37−Cy−Cy−CH2CF=CF2 (3−a)
37−Cy−Cy−CH2CF=CFCH2−Cy−C49 (1−a)
(Example 1)
Compound (3-a) was synthesized from compound (2-a), and compound (1-a) was synthesized from compound (3-a).
C 3 H 7 -Cy-Cy- CH 2 Cl (2-a)
C 3 H 7 -Cy-Cy- CH 2 CF = CF 2 (3-a)
C 3 H 7 -Cy-Cy- CH 2 CF = CFCH 2 -Cy-C 4 H 9 (1-a)

(工程1)
化合物(3−a)の合成
アルゴン置換した2Lの四口フラスコに、金属リチウム3.3g、4,4’−ジ−tert−ブチルビフェニル12.5g、THF400mLを加え室温で攪拌した。3時間後、反応液を−10℃に冷却し、公知の方法で合成した化合物(2−a)40g(0.156mol)のTHF溶液40mLを加え、3時間攪拌した。次いで−70℃に冷却した後、反応液中に60%テトラフルオロエチレン/窒素ガス7.5Lを導通し、1時間攪拌した。反応液を徐々に0℃まで昇温し、2N塩酸水溶液400mLを加え、ヘキサン500mLで抽出した。ヘキサン溶液を水200mL、重曹水200mL、水200mLの順で洗浄した後、溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物(3−a)35.4g(0.117mol 収率70%)を得た。
(Process 1)
Synthesis of Compound (3-a) 3.3 g of metallic lithium, 12.5 g of 4,4′-di-tert-butylbiphenyl and 400 mL of THF were added to a 2 L four-necked flask substituted with argon, and the mixture was stirred at room temperature. Three hours later, the reaction solution was cooled to −10 ° C., 40 mL of a THF solution containing 40 g (0.156 mol) of the compound (2-a) synthesized by a known method was added, and the mixture was stirred for 3 hours. Next, after cooling to -70 ° C., 7.5 L of 60% tetrafluoroethylene / nitrogen gas was passed through the reaction solution and stirred for 1 hour. The reaction solution was gradually warmed to 0 ° C., 400 mL of 2N hydrochloric acid aqueous solution was added, and the mixture was extracted with 500 mL of hexane. The hexane solution was washed with 200 mL of water, 200 mL of sodium bicarbonate water, and 200 mL of water in this order, and then the solvent was distilled off. The obtained residue was purified by silica gel column chromatography to obtain 35.4 g of compound (3-a) (0.117 mol, yield 70%).

H−NMR(300MHz,CDCl)0.84−1.80(m,19H),1.71−1.80(m,8H),2.06−2.19(m,2H)
19F−NMR(283MHz,CFCl)−106.31(dd,J=33.63Hz,91.58Hz,1F),−125.49(dd,J=91.58Hz,112.78Hz,1F),−172.26(ddt,J=24.31Hz,30.53Hz,112.78Hz,1F)
1 H-NMR (300 MHz, CDCl 3 ) 0.84-1.80 (m, 19H), 1.71-1.80 (m, 8H), 2.06-2.19 (m, 2H)
19 F-NMR (283 MHz, CFCl 3 ) -106.31 (dd, J = 33.63 Hz, 91.58 Hz, 1F), −125.49 (dd, J = 91.58 Hz, 112.78 Hz, 1F), −172.26 (ddt, J = 24.31 Hz, 30.53 Hz, 112.78 Hz, 1F)

(工程2)
化合物(1−a)の合成
アルゴン置換した300mLの四口フラスコに金属リチウム0.30g、4,4’−ジ−tert−ブチルビフェニル1.1g、THF36mLを加え室温で攪拌した。3時間後、−10℃に冷却し、公知の方法で合成したtrans−4−ブチル−シクロヘキシルメチルクロリド2.61g(0.014mol)のTHF溶液5.3mLを加え、3時間攪拌した。次いで化合物(3−a)3.57g(0.012mol)のTHF溶液8mLを加えた。−70℃で1時間攪拌した後、徐々に室温まで昇温した。反応液に2N塩酸水溶液30mLを加え、ヘキサン30mLで2回抽出した。ヘキサン溶液を水20mL、重曹水20mL、水20mLの順で洗浄した後、溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒ヘキサン)で精製し、化合物(1−a)2.65g(0.006mol 収率50%)を得た。
(Process 2)
Synthesis of Compound (1-a) 0.30 g of metallic lithium, 1.1 g of 4,4′-di-tert-butylbiphenyl and 36 mL of THF were added to a 300 mL four-necked flask substituted with argon, and the mixture was stirred at room temperature. After 3 hours, the mixture was cooled to −10 ° C., 5.3 mL of a solution of trans-4-butyl-cyclohexylmethyl chloride synthesized by a known method (2.61 g, 0.014 mol) in THF was added, and the mixture was stirred for 3 hours. Next, 8 mL of a THF solution containing 3.57 g (0.012 mol) of the compound (3-a) was added. After stirring at -70 ° C for 1 hour, the temperature was gradually raised to room temperature. 30 mL of 2N hydrochloric acid aqueous solution was added to the reaction liquid, and extracted twice with 30 mL of hexane. The hexane solution was washed with water (20 mL), sodium bicarbonate water (20 mL), and water (20 mL) in this order, and then the solvent was distilled off. The obtained residue was purified by silica gel column chromatography (developing solvent hexane) to obtain 2.65 g of compound (1-a) (0.006 mol yield 50%).

H−NMR(300MHz,CDCl)0.84−1.28(m,34H),1.47−1.76(m,12H),2.14−2.27(m,4H)
19F−NMR(283MHz,CFCl3)−152.69(m,2F)
1 H-NMR (300 MHz, CDCl 3 ) 0.84-1.28 (m, 34H), 1.47-1.76 (m, 12H), 2.14-2.27 (m, 4H)
19 F-NMR (283 MHz, CFCl 3 ) -152.69 (m, 2F)

化合物(1−a)の、C−Sm転移温度は70.9℃、Sm−Ne転移温度は80.3℃、Ne−I転移温度は82.0℃であった。なお、Cは結晶相、Smはスメクチック相、Neはネマチック相、Iは等方性液体相である。   Compound (1-a) had a C-Sm transition temperature of 70.9 ° C, an Sm-Ne transition temperature of 80.3 ° C, and an Ne-I transition temperature of 82.0 ° C. C is a crystal phase, Sm is a smectic phase, Ne is a nematic phase, and I is an isotropic liquid phase.

(実施例2)
化合物(2−b)から化合物(3−b)を合成し、化合物(3−b)から化合物(1−b)を合成した。
37−Cy−CH2Cl (2−b)
37−Cy−CH2CF=CF2 (3−b)
37−Cy−CH2CF=CFCH2−Ph−F (1−b)
(Example 2)
Compound (3-b) was synthesized from compound (2-b), and compound (1-b) was synthesized from compound (3-b).
C 3 H 7 -Cy-CH 2 Cl (2-b)
C 3 H 7 -Cy-CH 2 CF = CF 2 (3-b)
C 3 H 7 -Cy-CH 2 CF = CFCH 2 -Ph-F (1-b)

(工程1)
化合物(3−b)の合成
アルゴン置換した2Lの四口フラスコに金属リチウム9.52g、4,4’−ジ−tert−ブチルビフェニル36.5g、THF800mLを加え室温で攪拌した。3時間後、−10℃に冷却し、公知の方法で合成した化合物(2−b)80g(0.458mol)のTHF溶液240mLを加え、3時間攪拌した。次いで−70℃に冷却した後、反応液中に60%テトラフルオロエチレン/窒素ガス21Lを導通し、1時間攪拌した。反応液を徐々に0℃まで昇温し、2N塩酸水溶液800mLを加え、ヘキサン500mLで抽出した。ヘキサン溶液を水270mL、重曹水270mL、水270mLの順で洗浄した後、溶媒を留去した。蒸留精製を行い化合物(3−b)59.7g(0.271mol 収率60%)を得た。
(Process 1)
Synthesis of Compound (3-b) 9.52 g of metal lithium, 36.5 g of 4,4′-di-tert-butylbiphenyl and 800 mL of THF were added to a 2 L four-necked flask substituted with argon, and the mixture was stirred at room temperature. After 3 hours, the mixture was cooled to −10 ° C., 240 mL of a THF solution containing 80 g (0.458 mol) of the compound (2-b) synthesized by a known method was added, and the mixture was stirred for 3 hours. Next, after cooling to -70 ° C., 21 L of 60% tetrafluoroethylene / nitrogen gas was passed through the reaction solution and stirred for 1 hour. The reaction solution was gradually warmed to 0 ° C., added with 2N aqueous hydrochloric acid (800 mL), and extracted with hexane (500 mL). The hexane solution was washed with 270 mL of water, 270 mL of sodium bicarbonate water, and 270 mL of water in this order, and then the solvent was distilled off. Purification by distillation gave 59.7 g (0.271 mol, yield 60%) of compound (3-b).

b.p.86.0℃〜87.4℃
1H−NMR(300MHz,CDCl3)0.85−1.34(m,19H),1.53−1.77(m,8H),2.07−2.20(m,2H)
19F−NMR(283MHz,CFCl3)−106.39(dd,J=30.52Hz,88.47Hz,1F),−125.49(dd,J=85.36Hz,109.67Hz,1F),−172.27(ddt,J=24.31Hz,30.53Hz,115.89Hz,1F)
b. p. 86.0 ° C to 87.4 ° C
1 H-NMR (300 MHz, CDCl 3 ) 0.85-1.34 (m, 19H), 1.53-1.77 (m, 8H), 2.07-2.20 (m, 2H)
19 F-NMR (283 MHz, CFCl 3 ) -106.39 (dd, J = 30.52 Hz, 88.47 Hz, 1F), −125.49 (dd, J = 85.36 Hz, 109.67 Hz, 1F), 172.27 (ddt, J = 24.31 Hz, 30.53 Hz, 115.89 Hz, 1F)

(工程2)
化合物(1−b)の合成
窒素置換した300mL四口フラスコに金属マグネシウム665mg、THF5mL、ヨウ素1かけらを加え、室温で攪拌した。次いで、公知の方法で合成したp−フルオロベンジルクロリド3.95g(0.027mol)のTHF溶液25mLの滴下を開始した。滴下中は反応温度が45℃以下になるように制御した。滴下終了後、40℃で更に1時間攪拌した。反応液を室温まで冷却した後、(3−b)2.0g(0.009mol)のTHF溶液10mLを滴下し、50℃で48時間攪拌した。反応液を冷却し2N塩酸水溶液30mLを加え、ヘキサン30mLで2回抽出した。ヘキサン溶液を水20mL、重曹水20mL、水20mLの順で洗浄した後、溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒ヘキサン)で精製し、化合物(1−b)1.27g(0.004mol 収率44%)を得た。
(Process 2)
Synthesis of Compound (1-b) 665 mg of magnesium metal, 5 mL of THF, and 1 piece of iodine were added to a nitrogen-substituted 300 mL four-necked flask and stirred at room temperature. Then, dropwise addition of 25 mL of a THF solution of 3.95 g (0.027 mol) of p-fluorobenzyl chloride synthesized by a known method was started. During the dropwise addition, the reaction temperature was controlled to be 45 ° C. or lower. After completion of dropping, the mixture was further stirred at 40 ° C. for 1 hour. After cooling the reaction solution to room temperature, 10 mL of a THF solution of 2.0 g (0.009 mol) of (3-b) was added dropwise and stirred at 50 ° C. for 48 hours. The reaction solution was cooled, 30 mL of 2N aqueous hydrochloric acid solution was added, and the mixture was extracted twice with 30 mL of hexane. The hexane solution was washed with water (20 mL), sodium bicarbonate water (20 mL), and water (20 mL) in this order, and then the solvent was distilled off. The obtained residue was purified by silica gel column chromatography (developing solvent hexane) to obtain 1.27 g (0.004 mol, yield 44%) of compound (1-b).

1H−NMR(300MHz,CDCl3)0.85−1.76(m,17H),2.20−2.31(m,2H),3.59−3.68(m,2H),6.96−7.25(m,4H)
19F−NMR(283MHz,CFCl3)−116.93(d,J=6.22Hz,1F),−151.82(dt,J=24.59Hz,124.93Hz,1F),−154.72(dt,J=24.31Hz,125.21Hz,1F)
1 H-NMR (300 MHz, CDCl 3 ) 0.85-1.76 (m, 17H), 2.20-2.31 (m, 2H), 3.59-3.68 (m, 2H), 6 .96-7.25 (m, 4H)
19 F-NMR (283 MHz, CFCl 3 ) -116.93 (d, J = 6.22 Hz, 1F), −151.82 (dt, J = 24.59 Hz, 124.93 Hz, 1F), −154.72. (Dt, J = 24.31 Hz, 125.21 Hz, 1F)

(実施例3)
化合物(2−c)から化合物(3−c)を合成し、化合物(3−c)から化合物(1−c)を合成した。
25−Cy−Ph−CH2Cl (2−c)
25−Cy−Ph−CH2CF=CF2 (3−c)
25−Cy−Ph−CH2CF=CFCH2−Ph−F (1−c)
(Example 3)
Compound (3-c) was synthesized from compound (2-c), and compound (1-c) was synthesized from compound (3-c).
C 2 H 5 -Cy-Ph- CH 2 Cl (2-c)
C 2 H 5 -Cy-Ph- CH 2 CF = CF 2 (3-c)
C 2 H 5 -Cy-Ph- CH 2 CF = CFCH 2 -Ph-F (1-c)

(工程1)
化合物(3−c)の合成
窒素置換した200mLの四口フラスコに金属マグネシウム1.02g、THF10mL、ヨウ素1かけらを加え、室温で攪拌した。次いで、公知の方法で合成した化合物(2−c)10g(0.042mol)のTHF溶液90mLの滴下を開始した。滴下中は反応温度が45℃以下になるように制御した。滴下終了後、40℃で更に1時間攪拌した。反応液を−30℃に冷却し、反応液中に60%テトラフルオロエチレン/窒素ガス2Lを導通した。反応液を徐々に室温まで昇温し、24時間攪拌した。反応液に2N塩酸水溶液50mLを加え、ヘキサン100mLで抽出した。ヘキサン溶液を水50mL、重曹水50mL、水50mLの順で洗浄した後、溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒ヘキサン)で精製し、化合物(3−c)5.01g(0.018mol 収率43%)を得た。
(Process 1)
Synthesis of Compound (3-c) 1.02 g of metal magnesium, 10 mL of THF, and 1 piece of iodine were added to a 200 mL four-necked flask purged with nitrogen, and stirred at room temperature. Next, dropwise addition of 90 mL of a THF solution of 10 g (0.042 mol) of the compound (2-c) synthesized by a known method was started. During the dropwise addition, the reaction temperature was controlled to be 45 ° C. or lower. After completion of dropping, the mixture was further stirred at 40 ° C. for 1 hour. The reaction solution was cooled to −30 ° C., and 2 L of 60% tetrafluoroethylene / nitrogen gas was passed through the reaction solution. The reaction was gradually warmed to room temperature and stirred for 24 hours. 50 mL of 2N hydrochloric acid aqueous solution was added to the reaction solution, and the mixture was extracted with 100 mL of hexane. The hexane solution was washed with 50 mL of water, 50 mL of sodium bicarbonate water, and 50 mL of water in this order, and then the solvent was distilled off. The obtained residue was purified by silica gel column chromatography (developing solvent hexane) to obtain 5.01 g of compound (3-c) (0.018 mol yield 43%).

19F−NMR(283MHz,CFCl3)−106.12(dd,J=33.63Hz,88.47Hz,1F),−125.06(dd,J=85.36Hz,115.89Hz,1F),−172.69(ddt,J=24.31Hz,30.53Hz,112.78Hz,1F) 19 F-NMR (283 MHz, CFCl 3 ) -106.12 (dd, J = 33.63 Hz, 88.47 Hz, 1F), −125.06 (dd, J = 85.36 Hz, 115.89 Hz, 1F), -172.69 (ddt, J = 24.31 Hz, 30.53 Hz, 112.78 Hz, 1F)

(工程2)
化合物(1−c)の合成
窒素置換した200mLの四口フラスコに金属マグネシウム3.44g、THF50mL、ヨウ素1かけらを加え、室温で攪拌した。次いで、公知の方法で合成したp−フルオロベンジルクロリド12.8g(0.088mol)のTHF溶液50mLの滴下を開始した。滴下中は反応温度が45℃以下になるように制御した。滴下終了後、40℃で更に1時間攪拌した。反応液を室温まで冷却した後、化合物(3−c)4.3g(0.015mol)のTHF溶液10mLを滴下し、50℃で24時間攪拌した。反応液を冷却し2N塩酸水溶液50mLを加え、ヘキサン50mLで2回抽出した。ヘキサン溶液を水50mL、重曹水50mL、水50mLの順で洗浄した後、溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒ヘキサン)で精製し、化合物(1−c)1.81g(0.005mol 収率33%)を得た。
(Process 2)
Synthesis of Compound (1-c) 3.44 g of metal magnesium, 50 mL of THF, and 1 piece of iodine were added to a nitrogen-substituted 200 mL four-necked flask and stirred at room temperature. Subsequently, dropwise addition of 50 mL of a THF solution of 12.8 g (0.088 mol) of p-fluorobenzyl chloride synthesized by a known method was started. During the dropwise addition, the reaction temperature was controlled to be 45 ° C. or lower. After completion of dropping, the mixture was further stirred at 40 ° C. for 1 hour. After cooling the reaction solution to room temperature, 10 mL of a THF solution of 4.3 g (0.015 mol) of compound (3-c) was added dropwise, and the mixture was stirred at 50 ° C. for 24 hours. The reaction solution was cooled, 50 mL of 2N hydrochloric acid solution was added, and the mixture was extracted twice with 50 mL of hexane. The hexane solution was washed with 50 mL of water, 50 mL of sodium bicarbonate water, and 50 mL of water in this order, and then the solvent was distilled off. The obtained residue was purified by silica gel column chromatography (developing solvent hexane) to obtain 1.81 g (0.005 mol, yield 33%) of compound (1-c).

1H−NMR(300MHz,CDCl3)0.88−1.90(m,9H),2.41−3.70(m,4H)6.96−7.25(m,8H)
19F−NMR(283MHz,CFCl3)−116.73(d,7.07Hz,1F),−152.92(dt,J=24.59Hz,128.04Hz,1F),−154.37(dt,J=24.30Hz,124.93Hz,1F)
1 H-NMR (300 MHz, CDCl 3 ) 0.88-1.90 (m, 9H), 2.41-3.70 (m, 4H) 6.96-7.25 (m, 8H)
19 F-NMR (283 MHz, CFCl 3 ) -116.73 (d, 7.07 Hz, 1F), −152.92 (dt, J = 24.59 Hz, 128.04 Hz, 1F), −154.37 (dt , J = 24.30Hz, 124.93Hz, 1F)

本発明の含フッ素化合物は、工業的に容易かつ簡便に合成することができ、更に液晶組成物などの機能性を必要とする用途に用いることができる。   The fluorine-containing compound of the present invention can be synthesized industrially easily and simply, and can be used for applications requiring functionality such as liquid crystal compositions.

Claims (8)

下式(1)で表される含フッ素化合物。
1-(A1-Z1)m-(A2-Z2)n-A3-(CH2)p-CF=CF-(CH2)q-A4-(Z3-A5)r-(Z4-A6)s-R2 (1)
(ただし、式中の記号は以下の意味を示す。
1、R2:相互に独立して、水素原子、ハロゲン原子、または炭素数1〜10の一価の脂肪族炭化水素基。ただし、該脂肪族炭化水素基中の1つ以上の水素原子がハロゲン原子で置換されていてもよく、該脂肪族炭化水素基中の炭素−炭素原子間または該脂肪族炭化水素基の結合末端に、エーテル性酸素原子またはチオエーテル性硫黄原子が挿入されていてもよい。
1、A2、A3、A4、A5、A6:相互に独立して、フェニレン基またはシクロヘキシレン基。ただし、A1、A2、A3、A4、A5およびA6の基中の1つ以上の水素原子がハロゲン原子で置換されていてもよく、該基中に存在する1つまたは2つの−CH=が窒素原子に置換されていてもよく、該基中に存在する1つまたは2つの−CH2−がエーテル性酸素原子またはチオエーテル性硫黄原子に置換されていてもよい。ただし、2つの−CH2−が連続してエーテル性酸素原子またはチオエーテル性硫黄原子に置換されることはない。
1、Z2、Z3、Z4:相互に独立して、単結合、−O−、−S−、または炭素数1〜4の二価の脂肪族炭化水素基。ただし、該脂肪族炭化水素基中の1つ以上の水素原子がハロゲン原子で置換されていてもよく、該脂肪族炭化水素基中の炭素−炭素原子間または該脂肪族炭化水素基の結合末端に、エーテル性酸素原子またはチオエーテル性硫黄原子が挿入されていてもよい。
m、n、r、s:相互に独立して0または1。
p、q:相互に独立して0〜3の整数。ただし、p+qは1以上。)
A fluorine-containing compound represented by the following formula (1).
R 1 - (A 1 -Z 1 ) m - (A 2 -Z 2) n -A 3 - (CH 2) p -CF = CF- (CH 2) q -A 4 - (Z 3 -A 5) r- (Z 4 -A 6 ) s -R 2 (1)
(However, the symbols in the formula have the following meanings.
R 1 and R 2 : independently of each other, a hydrogen atom, a halogen atom, or a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms. However, one or more hydrogen atoms in the aliphatic hydrocarbon group may be substituted with a halogen atom, and the bond terminal of the aliphatic hydrocarbon group or between carbon-carbon atoms in the aliphatic hydrocarbon group In addition, an etheric oxygen atom or a thioetheric sulfur atom may be inserted.
A 1 , A 2 , A 3 , A 4 , A 5 , A 6 : independently of one another, a phenylene group or a cyclohexylene group. However, one or more hydrogen atoms in the groups A 1 , A 2 , A 3 , A 4 , A 5 and A 6 may be substituted with a halogen atom, and one or two existing in the group One —CH═ may be substituted with a nitrogen atom, and one or two —CH 2 — present in the group may be substituted with an etheric oxygen atom or a thioetheric sulfur atom. However, two —CH 2 — are not continuously substituted by an etheric oxygen atom or a thioetheric sulfur atom.
Z 1 , Z 2 , Z 3 , Z 4 : each independently a single bond, —O—, —S—, or a divalent aliphatic hydrocarbon group having 1 to 4 carbon atoms. However, one or more hydrogen atoms in the aliphatic hydrocarbon group may be substituted with a halogen atom, and the bond terminal of the aliphatic hydrocarbon group or between carbon-carbon atoms in the aliphatic hydrocarbon group In addition, an etheric oxygen atom or a thioetheric sulfur atom may be inserted.
m, n, r, s: 0 or 1 independently of each other.
p, q: An integer of 0 to 3 independently of each other. However, p + q is 1 or more. )
式(1)で表される化合物において、m+n+r+sが2以下である、請求項1に記載の含フッ素化合物。   The fluorine-containing compound according to claim 1, wherein m + n + r + s is 2 or less in the compound represented by formula (1). 式(1)で表される化合物において、pとqが共に1である、請求項1または2に記載の含フッ素化合物。   The fluorine-containing compound according to claim 1 or 2, wherein in the compound represented by the formula (1), p and q are both 1. 式(1)で表される化合物において、Z1、Z2、Z3およびZ4が全て単結合である、請求項1ないし3のいずれかに記載の含フッ素化合物。 The fluorine-containing compound according to any one of claims 1 to 3, wherein in the compound represented by the formula (1), Z 1 , Z 2 , Z 3 and Z 4 are all single bonds. 式(1)で表される化合物において、A1、A2、A3、A4、A5およびA6が相互に独立して、1,4−シクロヘキシレン基または1,4−フェニレン基であり、該1,4−フェニレン基中に存在する水素原子の1つ以上がフッ素原子で置換されていてもよい、請求項1ないし4のいずれかに記載の含フッ素化合物。 In the compound represented by the formula (1), A 1 , A 2 , A 3 , A 4 , A 5 and A 6 are each independently a 1,4-cyclohexylene group or a 1,4-phenylene group. The fluorine-containing compound according to any one of claims 1 to 4, wherein one or more hydrogen atoms present in the 1,4-phenylene group may be substituted with a fluorine atom. 式(2)で表される化合物をメタル化し、これとテトラフルオロエチレンとを反応させて式(3)で表される化合物を合成し、式(4)で表される化合物を同様にメタル化した化合物を式(3)で表される化合物と反応させることによる、式(1)で表される化合物の製造方法。
1-(A1-Z1)m-(A2-Z2)n-A3-(CH2)p-X (2)
1-(A1-Z1)m-(A2-Z2)n-A3-(CH2)p-CF=CF2(3)
X-(CH2)q-A4-(Z3-A5)r-(Z4-A6)s-R2 (4)
1-(A1-Z1)m-(A2-Z2)n-A3-(CH2)p-CF=CF-(CH2)q-A4-(Z3-A5)r-(Z4-A6)s-R2 (1)
(ただし、Xは塩素原子、臭素原子またはヨウ素原子であり、R1、R2、A1、A2、A3、A4、A5、A6、Z1、Z2、Z3、Z4、m、n、p、q、r、sは前記と同じ意味を示す。)
The compound represented by formula (2) is metallized, this is reacted with tetrafluoroethylene to synthesize the compound represented by formula (3), and the compound represented by formula (4) is similarly metallized. The manufacturing method of the compound represented by Formula (1) by making the obtained compound react with the compound represented by Formula (3).
R 1- (A 1 -Z 1 ) m- (A 2 -Z 2 ) n -A 3- (CH 2 ) p -X (2)
R 1- (A 1 -Z 1 ) m- (A 2 -Z 2 ) n -A 3- (CH 2 ) p -CF = CF 2 (3)
X- (CH 2) q -A 4 - (Z 3 -A 5) r - (Z 4 -A 6) s -R 2 (4)
R 1 - (A 1 -Z 1 ) m - (A 2 -Z 2) n -A 3 - (CH 2) p -CF = CF- (CH 2) q -A 4 - (Z 3 -A 5) r- (Z 4 -A 6 ) s -R 2 (1)
(Wherein, X is chlorine atom, a bromine atom or an iodine atom, R 1, R 2, A 1, A 2, A 3, A 4, A 5, A 6, Z 1, Z 2, Z 3, Z 4 , m, n, p, q, r, and s have the same meaning as described above.)
請求項1ないし5のいずれかに記載の含フッ素化合物を含有する液晶組成物。   A liquid crystal composition containing the fluorine-containing compound according to claim 1. 請求項7に記載の液晶組成物を電極付き基板間に挟持した液晶電気光学素子。   A liquid crystal electro-optical element in which the liquid crystal composition according to claim 7 is sandwiched between substrates with electrodes.
JP2006194580A 2006-07-14 2006-07-14 Fluorine-containing compound, method for producing fluorine-containing compound and use thereof Active JP5199552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006194580A JP5199552B2 (en) 2006-07-14 2006-07-14 Fluorine-containing compound, method for producing fluorine-containing compound and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006194580A JP5199552B2 (en) 2006-07-14 2006-07-14 Fluorine-containing compound, method for producing fluorine-containing compound and use thereof

Publications (2)

Publication Number Publication Date
JP2008019225A true JP2008019225A (en) 2008-01-31
JP5199552B2 JP5199552B2 (en) 2013-05-15

Family

ID=39075470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006194580A Active JP5199552B2 (en) 2006-07-14 2006-07-14 Fluorine-containing compound, method for producing fluorine-containing compound and use thereof

Country Status (1)

Country Link
JP (1) JP5199552B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110268894A1 (en) * 2008-12-24 2011-11-03 Agc Seimi Chemical Co., Ltd. Fluorine-containing liquid crystal compound, liquid crystal composition, and liquid crystal electro-optic element
JP2012006860A (en) * 2010-06-24 2012-01-12 Yokohama National Univ Fluorine-containing liquid crystal compound, method for producing the same, liquid crystal composition, and liquid crystal electrooptical element
JPWO2010050427A1 (en) * 2008-10-30 2012-03-29 Agcセイミケミカル株式会社 Liquid crystal compound and method for producing the same, liquid crystal composition, and liquid crystal electro-optical element
JP2013184938A (en) * 2012-03-08 2013-09-19 Osaka Univ Process for production of trifluorovinyl derivative

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263661A (en) * 1992-09-04 1994-09-20 Asahi Glass Co Ltd Difluorinated derivative compound and liquid crystal composition containing the compound
JPH07304694A (en) * 1994-03-16 1995-11-21 Chisso Corp Hexenediyne derivative and liquid crystal composition
JPH08119887A (en) * 1994-10-18 1996-05-14 Asahi Glass Co Ltd Production of trans-difluoroethylene derivative
JP2001288158A (en) * 2000-03-31 2001-10-16 Seimi Chem Co Ltd Optically active compound, liquid crystal composition containing the same and liquid crystal optical element
JP2004292454A (en) * 1992-09-04 2004-10-21 Asahi Glass Co Ltd Difluoroderivative compound and liquid crystal composition containing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263661A (en) * 1992-09-04 1994-09-20 Asahi Glass Co Ltd Difluorinated derivative compound and liquid crystal composition containing the compound
JP2004292454A (en) * 1992-09-04 2004-10-21 Asahi Glass Co Ltd Difluoroderivative compound and liquid crystal composition containing the same
JPH07304694A (en) * 1994-03-16 1995-11-21 Chisso Corp Hexenediyne derivative and liquid crystal composition
JPH08119887A (en) * 1994-10-18 1996-05-14 Asahi Glass Co Ltd Production of trans-difluoroethylene derivative
JP2001288158A (en) * 2000-03-31 2001-10-16 Seimi Chem Co Ltd Optically active compound, liquid crystal composition containing the same and liquid crystal optical element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010050427A1 (en) * 2008-10-30 2012-03-29 Agcセイミケミカル株式会社 Liquid crystal compound and method for producing the same, liquid crystal composition, and liquid crystal electro-optical element
TWI452121B (en) * 2008-10-30 2014-09-11 Agc Seimi Chemical Co Ltd Liquid crystal compound, method for producing the same, liquid crystal composition, and liquid crystal electrooptical device
JP5608560B2 (en) * 2008-10-30 2014-10-15 Agcセイミケミカル株式会社 Liquid crystal compound and method for producing the same, liquid crystal composition, and liquid crystal electro-optical element
US20110268894A1 (en) * 2008-12-24 2011-11-03 Agc Seimi Chemical Co., Ltd. Fluorine-containing liquid crystal compound, liquid crystal composition, and liquid crystal electro-optic element
CN102264676A (en) * 2008-12-24 2011-11-30 Agc清美化学股份有限公司 Fluorine-containing liquid crystal compound, liquid crystal composition, and liquid crystal electro-optic element
US8574455B2 (en) * 2008-12-24 2013-11-05 Agc Seimi Chemical Co., Ltd. Fluorine-containing liquid crystal compound, liquid crystal composition, and liquid crystal electro-optic element
JP2012006860A (en) * 2010-06-24 2012-01-12 Yokohama National Univ Fluorine-containing liquid crystal compound, method for producing the same, liquid crystal composition, and liquid crystal electrooptical element
JP2013184938A (en) * 2012-03-08 2013-09-19 Osaka Univ Process for production of trifluorovinyl derivative

Also Published As

Publication number Publication date
JP5199552B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5789637B2 (en) Liquid crystal composition and its application
CN107794057B (en) Negative liquid crystal compound, liquid crystal mixture and application thereof
US9315727B2 (en) Compound having fluorinated naphthalene structure and liquid crystal composition of the same
JP5199552B2 (en) Fluorine-containing compound, method for producing fluorine-containing compound and use thereof
JP5608560B2 (en) Liquid crystal compound and method for producing the same, liquid crystal composition, and liquid crystal electro-optical element
JP2598830B2 (en) Liquid crystal composition containing trans-dihalogenostilbene derivative compound
JP5401085B2 (en) Fluorine-containing liquid crystal compound, liquid crystal composition containing the same, and liquid crystal electro-optical element
US8574455B2 (en) Fluorine-containing liquid crystal compound, liquid crystal composition, and liquid crystal electro-optic element
JP6006217B2 (en) Liquid crystal compound and method for producing the same, liquid crystal composition, and liquid crystal electro-optical element
JP5680381B2 (en) Liquid crystal compound, method for producing the same, liquid crystal composition, and liquid crystal electro-optical element
JP5335275B2 (en) Fluorine-containing liquid crystal compound, production method and synthetic intermediate thereof, liquid crystal composition containing the fluorine-containing liquid crystal compound, and liquid crystal electro-optical element
JP2011207871A (en) Liquid crystal compound, method for producing the same, liquid crystal composition and liquid crystal electrooptical element
JP2013112621A (en) Liquid crystal compound, method for producing the same, liquid crystal composition, and liquid crystal electrooptical element
JP5680380B2 (en) Liquid crystal compound, method for producing the same, liquid crystal composition, and liquid crystal electro-optical element
JP2012006860A (en) Fluorine-containing liquid crystal compound, method for producing the same, liquid crystal composition, and liquid crystal electrooptical element
JP4573399B2 (en) Difluorobenzonitrile compound and intermediate thereof, production method, liquid crystal composition, and liquid crystal electro-optical element
JP3856508B2 (en) Tolane derivative compounds and uses thereof
WO2017090384A1 (en) Liquid crystal compound, liquid crystal composition, and display element
JP2013112620A (en) Liquid crystal compound, method for producing the same, liquid crystal composition, and liquid crystal electrooptical element
JP2012126709A (en) Liquid crystal compound, liquid crystal composition, and liquid crystal element
JP5763937B2 (en) Liquid crystal compound, method for producing the same, liquid crystal composition, and liquid crystal electro-optical element
JP2003261562A (en) Fluorine bonded group-containing compound, liquid crystal composition containing the same and liquid crystal element
JP2010006784A (en) Fluorine-containing liquid crystal compound, its production method and synthetic intermediate, liquid crystal composition containing the fluorine-containing liquid crystal compound and liquid crystal electro-optic element
JP2012171942A (en) Method of producing asymmetric fluoro-butadiene compound, and the asymmetric fluoro-butadiene compound
JPWO2006068195A1 (en) Hexendine derivatives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5199552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250