JP2008016580A - Active material for accumulator device and manufacturing method therefor, electrode for the accumulator device and manufacturing method thereof, and the accumulator device - Google Patents

Active material for accumulator device and manufacturing method therefor, electrode for the accumulator device and manufacturing method thereof, and the accumulator device Download PDF

Info

Publication number
JP2008016580A
JP2008016580A JP2006185117A JP2006185117A JP2008016580A JP 2008016580 A JP2008016580 A JP 2008016580A JP 2006185117 A JP2006185117 A JP 2006185117A JP 2006185117 A JP2006185117 A JP 2006185117A JP 2008016580 A JP2008016580 A JP 2008016580A
Authority
JP
Japan
Prior art keywords
active material
storage device
mold
electrode
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006185117A
Other languages
Japanese (ja)
Inventor
Naoki Mizuno
直樹 水野
Ai Nakajima
乃 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2006185117A priority Critical patent/JP2008016580A/en
Publication of JP2008016580A publication Critical patent/JP2008016580A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an accumulator device that has low internal resistance for an active material layer itself and improved electrical connection between the active material layer and a collector, and has high output characteristics. <P>SOLUTION: An active material formation material 1, containing at least an electrode active material and a binder, is supplied between a lower die 2 and an upper die 3 where irregular patterns 4, 5 mutually formed are arranged opposite, and is pressed with the lower and upper dies to separate the lower and upper dies, thus manufacturing the active material 6 for accumulator devices where irregular patterns 9, 8 are formed on both the rear and on the front surfaces of the active material formation material. The collector 7 is stuck to one surface of the active material made of the active material for accumulator devices, and an electrode 10 for accumulator devices is manufactured, and by using the electrode for accumulator devices, an accumulator device, such as an electric double-layer capacitor, is formed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、電気二重層キャパシタのような蓄電デバイスに関する。ならびに、そのような蓄電デバイスにおいて、正極体や負極体を構成する蓄電デバイス用電極、およびその蓄電デバイス用電極の製造方法に関する。ならびに、蓄電デバイス用電極を構成する蓄電デバイス用活物質、およびその蓄電デバイス用活物質の製造方法に関する。   The present invention relates to an electricity storage device such as an electric double layer capacitor. In addition, in such an electricity storage device, the present invention relates to an electrode for an electricity storage device constituting a positive electrode body and a negative electrode body, and a method for producing the electrode for the electricity storage device. The present invention also relates to an active material for an electricity storage device that constitutes an electrode for an electricity storage device, and a method for producing the active material for the electricity storage device.

近年、携帯型電子機器やハイブリッド自動車などの高性能化が著しく、それらに用いる電池等の蓄電デバイスの高性能化に対する要求が強くなっている。アルカリ乾電池やオキシライド乾電池などの一次電池、ニッケル水素電池やリチウムイオン電池などの二次電池など、従来の電池の高性能化に加え、燃料電池などの次世代電池や電気二重層キャパシタなどの次世代蓄電デバイスなど、新しい技術分野においても実用化に向けた開発が進められている。   2. Description of the Related Art In recent years, the performance of portable electronic devices and hybrid automobiles has been remarkably improved, and the demand for higher performance of power storage devices such as batteries used therefor has increased. In addition to improving the performance of conventional batteries such as primary batteries such as alkaline batteries and oxyride batteries, secondary batteries such as nickel metal hydride batteries and lithium ion batteries, next generation batteries such as fuel cells and next generation batteries such as electric double layer capacitors Development for practical use is also being promoted in new technical fields such as power storage devices.

中でも、特に電気二重層キャパシタが注目されており、サイクル寿命が長く、大電流出力が得られ、急速な充放電が可能であり、広い温度範囲を有し、小型化・薄型化・軽量化が可能であり、人体に安全であり、環境に優しいなどの数々の利点を有することから、電池に代わる蓄電デバイスとして開発が盛んに行われている。   In particular, electric double layer capacitors are attracting attention, with a long cycle life, high current output, rapid charge / discharge, a wide temperature range, miniaturization, thickness reduction, and weight reduction. Since it has many advantages such as being possible, safe for the human body, and environmentally friendly, it has been actively developed as an electricity storage device to replace batteries.

電気エネルギの発生手段は異なるものの、従来の電池と電気二重層キャパシタとでは、基本的な構成に変わりはない。つまり、集電体とその集電体の表面に形成された活物質層よりなる二対の蓄電デバイス用電極、それらの二対の蓄電デバイス間に挿入されたセパレータ、そして電解液から構成されている。従来の電池が活物質での電気化学反応により電気エネルギを発生するのに対して、電気二重層キャパシタは活物質層に生じる電気二重層により電気エネルギを発生する。   Although the means for generating electric energy is different, the basic configuration of the conventional battery and the electric double layer capacitor is not changed. In other words, it is composed of two pairs of electrodes for an electricity storage device consisting of a current collector and an active material layer formed on the surface of the current collector, a separator inserted between the two pairs of electricity storage devices, and an electrolyte. Yes. Whereas a conventional battery generates electric energy by an electrochemical reaction in an active material, an electric double layer capacitor generates electric energy by an electric double layer generated in the active material layer.

今日、蓄電デバイスの高性能化の要求に対しては、電気エネルギ発生の高効率化、内部エネルギの低減などを目指して、材料の改善、構成の改善などの面から様々なアプローチが取られている。   Today, various approaches have been taken to improve the performance of electrical storage devices with the aim of improving the efficiency of electrical energy generation and reducing internal energy, in terms of material improvements and configuration improvements. Yes.

電気二重層キャパシタでは、例えば下記の特許文献1に記載されるように、活物質層となる金属箔の表面に活性炭主体の混練物を一体化し、スタンピングやカッティングで混練物層に微小幅の溝を刻み付け、この溝に電解液を保持することにより、活物質層に電解液を効率よく含浸させ、また活物質層を構成する活性炭の細孔の利用効率を上げ、静電容量の増大と内部抵抗の低減を可能としていた。   In the electric double layer capacitor, for example, as described in Patent Document 1 below, the activated carbon-based kneaded material is integrated on the surface of the metal foil serving as the active material layer, and a minute width groove is formed in the kneaded material layer by stamping or cutting. By holding the electrolyte solution in this groove, the active material layer is efficiently impregnated with the electrolyte solution, and the utilization efficiency of the pores of the activated carbon constituting the active material layer is increased, and the capacitance is increased. The internal resistance can be reduced.

または、下記の特許文献2に記載されるように、少なくとも多孔体粒子とバインダが含まれている活物質層の表面に円柱状のローラをプレスして、活物質層の表面に凹凸パターンを形成することにより、電極活物質と導電補助材の密着性を高めて内部抵抗を低減させていた。   Alternatively, as described in Patent Document 2 below, a cylindrical roller is pressed on the surface of the active material layer containing at least porous particles and a binder to form an uneven pattern on the surface of the active material layer As a result, the adhesion between the electrode active material and the conductive auxiliary material was increased, and the internal resistance was reduced.

さらには、下記の特許文献3に記載されるように、活物質層の外側表面に先端角90度以下の鋭角または円弧状の先端を有する凸部を形成することにより、活物質層と集電体の接触抵抗を低減し、内部抵抗を低減させていた。   Furthermore, as described in Patent Document 3 below, the active material layer and the current collector are formed by forming a convex portion having an acute or arc tip with a tip angle of 90 degrees or less on the outer surface of the active material layer. The body contact resistance was reduced and the internal resistance was reduced.

特開2004−303754号公報JP 2004-303754 A 特開2005−33066号公報JP-A-2005-33066 特開2002−43180号公報JP 2002-43180 A

しかしながら、上記特許文献1や特許文献2に記載されるものでは、活物質層の表面に形成された凹凸パターンの内部抵抗を低減する効果はあっても、活物質層と集電体の接触はオーミックなものであり、電極の内部抵抗は十分に低いものではなかった。また、上記特許文献3に記載されるものでは、活物質層と集電体の電気的接続は良好でも、活物質層の内部抵抗は十分に低くはなかった。   However, in what is described in Patent Document 1 and Patent Document 2 described above, even if there is an effect of reducing the internal resistance of the uneven pattern formed on the surface of the active material layer, the contact between the active material layer and the current collector is not It was ohmic and the internal resistance of the electrode was not sufficiently low. Moreover, in what was described in the said patent document 3, although the electrical connection of an active material layer and a collector was favorable, the internal resistance of the active material layer was not low enough.

そこで、この発明の第1の目的は、活物質層自体の内部抵抗が低く、活物質層と集電体の電気的接続も良好であり、高出力の特性を有する蓄電デバイスを得ることにある。   Therefore, a first object of the present invention is to obtain an electricity storage device having a high output characteristic in which the internal resistance of the active material layer itself is low, the electrical connection between the active material layer and the current collector is good. .

また、上記特許文献1や特許文献2に記載される方法では、圧延によりシート状とした活物質層に対して、スタンピング、カッティング、ローラプレスにより凹凸パターンを形成しているため、形成することができる凹凸パターンの平面形状や断面形状、大きさが限定され、また再現性よく凹凸パターンを形成することができず、内部抵抗の低減は不十分であった。   Further, in the methods described in Patent Document 1 and Patent Document 2, an uneven pattern is formed by stamping, cutting, and roller pressing on an active material layer formed into a sheet shape by rolling. The planar shape, cross-sectional shape, and size of the concavo-convex pattern that can be formed are limited, and the concavo-convex pattern cannot be formed with good reproducibility, so that the internal resistance is insufficiently reduced.

この発明の第2の目的は、活物質層の表裏両面に再現性よく凹凸パターンを形成して内部抵抗を十分に低減することにある。   A second object of the present invention is to form an uneven pattern with good reproducibility on both the front and back surfaces of an active material layer to sufficiently reduce internal resistance.

この発明の第3の目的は、活物質層に対する集電体の固着を容易として蓄電デバイス用電極の製造を簡単とすることにある。   A third object of the present invention is to facilitate the fixation of the current collector to the active material layer and to simplify the production of the electrode for the electricity storage device.

この発明の第4の目的は、活物質層自体の内部抵抗が低く、活物質層と集電体の電気的接続も良好であり、高出力の特性を有する電気二重層キャパシタを得ることにある。   A fourth object of the present invention is to obtain an electric double layer capacitor having a high output characteristic in which the internal resistance of the active material layer itself is low, the electrical connection between the active material layer and the current collector is also good. .

そこで、請求項1に記載の発明は、上記第1の目的を達成すべく、蓄電デバイス用活物質であって、少なくとも電極活物質とバインダが含まれている活物質形成材料を用い、その表裏両面に凹凸パターンが形成されていることを特徴とする。   Therefore, in order to achieve the first object, the invention described in claim 1 is an active material for an electricity storage device, and uses an active material forming material containing at least an electrode active material and a binder. An uneven pattern is formed on both sides.

請求項2に記載の発明は、同じく上記第1の目的を達成すべく、蓄電デバイス用活物質の製造方法であって、互いに形成された凹凸パターンが対向して配置される下型と上型との間に、少なくとも電極活物質とバインダが含まれている活物質形成材料が供給され、その活物質形成材料が前記下型と前記上型とで加圧されて後、それら下型と上型とが剥離されることにより製造されることを特徴とする。   The invention according to claim 2 is also a method for producing an active material for an electricity storage device, in order to achieve the first object, wherein a lower mold and an upper mold in which concavo-convex patterns formed opposite to each other are arranged. Are provided with an active material forming material containing at least an electrode active material and a binder, and the active material forming material is pressurized by the lower mold and the upper mold, and then the lower mold and the upper mold It is manufactured by peeling off the mold.

請求項3に記載の発明は、同じく上記第1の目的を達成すべく、蓄電デバイス用活物質であって、請求項2に記載の製造方法で製造されることを特徴とする。   The invention described in claim 3 is also an active material for an electricity storage device, and is manufactured by the manufacturing method described in claim 2 in order to achieve the first object.

請求項4に記載の発明は、同じく上記第1の目的を達成すべく、蓄電デバイス用活物質の製造方法であって、下型に形成された凹凸パターンに、少なくとも電極活物質とバインダが含まれている活物質形成材料が供給され、その活物質形成材料が、上型に形成された凹凸パターンに入り込むまで前記上型が前記活物質形成材料に押し当てられて後、それら上型と下型とが剥離されることにより製造されることを特徴とする。   The invention described in claim 4 is also a method for producing an active material for an electricity storage device, in order to achieve the first object, wherein the uneven pattern formed in the lower mold includes at least an electrode active material and a binder. The active material forming material is supplied, and after the upper die is pressed against the active material forming material until the active material forming material enters the uneven pattern formed on the upper die, the upper die and the lower die It is manufactured by peeling off the mold.

請求項5に記載の発明は、同じく上記第1の目的を達成すべく、蓄電デバイス用活物質であって、請求項4に記載の製造方法で製造されることを特徴とする。   The invention described in claim 5 is also an active material for an electricity storage device, and is manufactured by the manufacturing method described in claim 4, in order to achieve the first object.

請求項6に記載の発明は、上記第2の目的を達成すべく、蓄電デバイス用電極の製造方法であって、請求項3に記載の蓄電デバイス用活物質を活物質層としてその片面に集電体が固着されて製造されることを特徴とする。   The invention described in claim 6 is a method for producing an electrode for an electricity storage device to achieve the second object, wherein the active material for an electricity storage device according to claim 3 is collected on one side as an active material layer. It is characterized by being manufactured by fixing an electric body.

請求項7に記載の発明は、同じく上記第2の目的を達成すべく、蓄電デバイス用電極の製造方法であって、請求項5に記載の蓄電デバイス用活物質を活物質層としてその片面に集電体が固着されて製造されることを特徴とする。   The invention according to claim 7 is also a method for producing an electrode for an electricity storage device, in order to achieve the second object, wherein the active material for the electricity storage device according to claim 5 is used as an active material layer on one side thereof. The current collector is manufactured by being fixed.

請求項8に記載の発明は、上記第2および第3の目的を達成すべく、蓄電デバイス用電極の製造方法であって、下型と上型のどちらか一方が集電体を兼ね、その集電体を兼ねる一方の金型に形成された凹凸パターンの表面積が他方の金型に形成された凹凸パターンの表面積よりも大きくされ、少なくとも電極活物質とバインダが含まれている活物質形成材料が前記下型と前記上型とで加圧されて後、前記他方の金型が剥離されることにより製造されることを特徴とする。   The invention according to claim 8 is a method of manufacturing an electrode for an electricity storage device in order to achieve the second and third objects, wherein either the lower mold or the upper mold also serves as a current collector, An active material forming material in which the surface area of the concavo-convex pattern formed on one mold also serving as a current collector is larger than the surface area of the concavo-convex pattern formed on the other mold, and includes at least an electrode active material and a binder Is manufactured by pressing the lower mold and the upper mold and then peeling the other mold.

請求項9に記載の発明は、同じく上記第2および第3の目的を達成すべく、蓄電デバイス用電極の製造方法であって、下型と上型のどちらか一方が集電体を兼ね、その集電体を兼ねる一方の金型に形成された凹凸パターンの側面傾斜角度が他方の金型に形成された凹凸パターンの側面傾斜角度よりも大きくされ、少なくとも電極活物質とバインダが含まれている活物質形成材料が前記下型と前記上型とで加圧されて後、前記他方の金型が剥離されることにより製造されることを特徴とする。   The invention according to claim 9 is also a method for manufacturing an electrode for an electricity storage device in order to achieve the second and third objects, and either the lower mold or the upper mold also serves as a current collector, The side surface inclination angle of the concavo-convex pattern formed on one mold that also serves as the current collector is larger than the side surface inclination angle of the concavo-convex pattern formed on the other mold, and includes at least an electrode active material and a binder. The active material forming material is manufactured by pressing the lower mold and the upper mold and then peeling the other mold.

請求項10に記載の発明は、上記第2の目的を達成すべく、蓄電デバイス用電極であって、請求項6ないし9のいずれか1に記載の製造方法で製造されることを特徴とする。   The invention described in claim 10 is an electrode for an electricity storage device to achieve the second object, and is manufactured by the manufacturing method according to any one of claims 6 to 9. .

請求項11に記載の発明は、上記第1の目的を達成すべく、蓄電デバイスであって、請求項10に記載の蓄電デバイス用電極を用いて形成されることを特徴とする。   The invention described in claim 11 is an electricity storage device to achieve the first object, characterized in that it is formed using the electrode for an electricity storage device according to claim 10.

請求項12に記載の発明は、上記第4の目的を達成すべく、請求項11に記載の蓄電デバイスが、電気二重層キャパシタであることを特徴とする。   According to a twelfth aspect of the present invention, in order to achieve the fourth object, the electric storage device according to the eleventh aspect is an electric double layer capacitor.

そして、請求項1に記載の発明によれば、活物質形成材料の表裏両面に凹凸パターンが形成されているので、活物質層自体の内部抵抗が低く、活物質層と集電体の電気的接続も良好であり、高出力の特性を有する蓄電デバイスを得ることができる。   According to the first aspect of the present invention, since the concave and convex patterns are formed on the front and back surfaces of the active material forming material, the internal resistance of the active material layer itself is low, and the electrical current between the active material layer and the current collector is low. An electrical storage device having good connection and high output characteristics can be obtained.

請求項2に記載の発明によれば、互いに形成された凹凸パターンが対向して配置される下型と上型との間に活物質形成材料が供給され、その活物質形成材料が下型と上型とで加圧されて後、それら下型と上型とが剥離されることにより蓄電デバイス用活物質が製造されるので、活物質層自体の内部抵抗が低く、活物質層と集電体の電気的接続も良好であり、高出力の特性を有する蓄電デバイスを得ることができる。   According to the invention described in claim 2, the active material forming material is supplied between the lower mold and the upper mold in which the concavo-convex patterns formed to face each other are arranged, and the active material forming material is After being pressed by the upper mold, the lower mold and the upper mold are peeled to produce an active material for an electricity storage device, so that the internal resistance of the active material layer itself is low, and the active material layer and the current collector The electrical connection of the body is also good, and an electricity storage device having high output characteristics can be obtained.

請求項3に記載の発明によれば、請求項2に記載の製造方法で蓄電デバイス用活物質が製造されるので、活物質層自体の内部抵抗が低く、活物質層と集電体の電気的接続も良好であり、高出力の特性を有する蓄電デバイスを得ることができる。   According to the invention described in claim 3, since the active material for the electricity storage device is manufactured by the manufacturing method described in claim 2, the internal resistance of the active material layer itself is low, and the electric current between the active material layer and the current collector is low. Electrical connection is also good, and an electricity storage device having high output characteristics can be obtained.

請求項4に記載の発明によれば、下型に形成された凹凸パターンに活物質形成材料が供給され、その活物質形成材料が、上型に形成された凹凸パターンに入り込むまで上型が活物質形成材料に押し当てられて後、それら上型と下型とが剥離されることにより蓄電デバイス用活物質が製造されるので、活物質層自体の内部抵抗が低く、活物質層と集電体の電気的接続も良好であり、高出力の特性を有する蓄電デバイスを得ることができる。   According to the invention of claim 4, the active material forming material is supplied to the uneven pattern formed in the lower mold, and the upper mold is activated until the active material forming material enters the uneven pattern formed in the upper mold. After being pressed against the material forming material, the upper die and the lower die are peeled to produce an active material for an electricity storage device, so that the internal resistance of the active material layer itself is low, and the active material layer and the current collector The electrical connection of the body is also good, and an electricity storage device having high output characteristics can be obtained.

請求項5に記載の発明によれば、請求項4に記載の製造方法で製造される蓄電デバイス用活物質であるので、活物質層自体の内部抵抗が低く、活物質層と集電体の電気的接続も良好であり、高出力の特性を有する蓄電デバイスを得ることができる。   According to the invention described in claim 5, since it is an active material for an electricity storage device manufactured by the manufacturing method described in claim 4, the internal resistance of the active material layer itself is low, and the active material layer and the current collector An electrical storage device having good electrical connection and high output characteristics can be obtained.

請求項6に記載の発明によれば、請求項3に記載の蓄電デバイス用活物質を活物質層としてその片面に集電体が固着されて蓄電デバイス用電極が製造されるので、活物質層の表裏両面に、大きさがμm、サブμmと非常に微細で任意の形状を備える凹凸パターンを再現性よく形成して内部抵抗を十分に低減することができる。   According to the invention described in claim 6, since the electricity storage device electrode is manufactured by fixing the current collector on one side of the electricity storage device active material according to claim 3 as an active material layer, the active material layer The internal resistance can be sufficiently reduced by forming a concave / convex pattern having a very fine size of μm and sub-μm and having an arbitrary shape on both front and back surfaces with good reproducibility.

請求項7に記載の発明によれば、請求項5に記載の蓄電デバイス用活物質を活物質層としてその片面に集電体が固着されて蓄電デバイス用電極が製造されるので、活物質層の表裏両面に、大きさがμm、サブμmと非常に微細で任意の形状を備える凹凸パターンを再現性よく形成して内部抵抗を十分に低減することができる。   According to the invention described in claim 7, since the power storage device active material according to claim 5 is used as an active material layer and the current collector is fixed to one surface thereof to produce the electrode for the power storage device, the active material layer The internal resistance can be sufficiently reduced by forming a concave / convex pattern having a very fine size of μm and sub-μm and having an arbitrary shape on both front and back surfaces with good reproducibility.

請求項8に記載の発明によれば、下型と上型のどちらか一方が集電体を兼ね、その集電体を兼ねる一方の金型に形成された凹凸パターンの表面積が他方の金型に形成された凹凸パターンの表面積よりも大きくされ、活物質形成材料が下型と上型とで加圧されて後、他方の金型が剥離されることにより蓄電デバイス用電極が製造されるので、活物質層の表裏両面に、大きさがμm、サブμmと非常に微細で任意の形状を備える凹凸パターンを再現性よく形成して内部抵抗を十分に低減することができる。また、集電体を兼ねる一方の金型を活物質層から剥離することなく、そのまま残すことが可能となり、別に接着剤などを介して活物質層を集電体に固着する手間を省き、活物質層に対する集電体の固着を容易として蓄電デバイス用電極の製造を簡単とすることができる。   According to the invention described in claim 8, one of the lower mold and the upper mold also serves as a current collector, and the surface area of the concavo-convex pattern formed on one mold serving also as the current collector is the other mold. Since the surface area of the concavo-convex pattern formed on the surface is made larger, the active material forming material is pressed by the lower mold and the upper mold, and then the other mold is peeled off to produce the electrode for the electricity storage device. The internal resistance can be sufficiently reduced by forming an uneven pattern having a very fine size of μm and sub-μm and having an arbitrary shape on both the front and back surfaces of the active material layer with good reproducibility. In addition, it is possible to leave one mold that also serves as a current collector without being peeled from the active material layer, and to save the trouble of fixing the active material layer to the current collector through an adhesive or the like. It is possible to easily fix the current collector to the material layer and to simplify the production of the electrode for the electricity storage device.

請求項9に記載の発明によれば、下型と上型のどちらか一方が集電体を兼ね、その集電体を兼ねる一方の金型に形成された凹凸パターンの側面傾斜角度が他方の金型に形成された凹凸パターンの側面傾斜角度よりも大きくされ、活物質形成材料が下型と上型とで加圧されて後、他方の金型が剥離されることにより蓄電デバイス用電極が製造されるので、活物質層の表裏両面に、大きさがμm、サブμmと非常に微細で任意の形状を備える凹凸パターンを再現性よく形成して内部抵抗を十分に低減することができる。また、集電体を兼ねる一方の金型を活物質層から剥離することなく、そのまま残すことが可能となり、別に接着剤などを介して活物質層を集電体に固着する手間を省き、活物質層に対する集電体の固着を容易として蓄電デバイス用電極の製造を簡単とすることができる。   According to the ninth aspect of the present invention, one of the lower mold and the upper mold also serves as a current collector, and the side surface inclination angle of the concave-convex pattern formed on one mold serving as the current collector is the other. The electrode for the electricity storage device is made larger than the inclination angle of the side surface of the concavo-convex pattern formed on the mold, the active material forming material is pressed by the lower mold and the upper mold, and then the other mold is peeled off. Since it is manufactured, it is possible to form an uneven pattern having a very fine size of μm and sub-μm and having an arbitrary shape on both the front and back surfaces of the active material layer with good reproducibility, thereby sufficiently reducing the internal resistance. In addition, it is possible to leave one mold that also serves as a current collector without being peeled from the active material layer, and to save the trouble of fixing the active material layer to the current collector through an adhesive or the like. It is possible to easily fix the current collector to the material layer and to simplify the production of the electrode for the electricity storage device.

請求項10に記載の発明によれば、請求項6ないし9のいずれか1に記載の製造方法で製造される蓄電デバイス用電極であるので、活物質層の表裏両面に、大きさがμm、サブμmと非常に微細で任意の形状を備える凹凸パターンを再現性よく形成して、内部抵抗を十分に低減することができる。   According to the invention described in claim 10, since it is an electrode for an electricity storage device manufactured by the manufacturing method according to any one of claims 6 to 9, the size is μm on both the front and back surfaces of the active material layer, By forming a concavo-convex pattern that is very fine as sub-μm and has an arbitrary shape with good reproducibility, the internal resistance can be sufficiently reduced.

請求項11に記載の発明によれば、請求項10に記載の蓄電デバイス用電極を用いて形成される蓄電デバイスであるので、活物質層自体の内部抵抗が低く、活物質層と集電体の電気的接続も良好であり、高出力の特性を有する蓄電デバイスを得ることができる。   According to the eleventh aspect of the invention, since the electric storage device is formed using the electric storage device electrode according to the tenth aspect, the internal resistance of the active material layer itself is low, and the active material layer and the current collector Thus, an electrical storage device having a high output characteristic can be obtained.

請求項12に記載の発明によれば、請求項11に記載の蓄電デバイスが、電気二重層キャパシタであるので、活物質層自体の内部抵抗が低く、活物質層と集電体の電気的接続も良好であり、高出力の特性を有する電気二重層キャパシタを得ることができる。   According to the invention of claim 12, since the electricity storage device of claim 11 is an electric double layer capacitor, the internal resistance of the active material layer itself is low, and the active material layer and the current collector are electrically connected. And an electric double layer capacitor having high output characteristics can be obtained.

以下、図面を参照しつつ、この発明を実施するための最良の形態につき説明する。
図1ないし4には、それぞれこの発明による蓄電デバイス用電極の製造方法を示す。各図においては、発明内容を判りやすくするため、各構成部材の縮尺は考慮していない。
The best mode for carrying out the present invention will be described below with reference to the drawings.
1 to 4 show a method for manufacturing an electrode for an electricity storage device according to the present invention. In each figure, the scale of each component is not considered in order to make the contents of the invention easy to understand.

まず、図1に示す製造方法においては、(A)に示すように、下型2と上型3を用意する。下型2および上型3は、金属、セラミックス、ガラスなどの材料を使用し、フォトリソグラフィ技術、X線リソグラフィ技術、エッチング技術、電鋳技術、機械加工技術などの既知の型加工技術を用い、またはこれらの型加工技術を組み合わせて用いてつくる。図示例では、フォトリソグラフィ技術とエッチング技術とを用いて加工したSi製マスター金型に電鋳を施して製作したニッケル基合金製のものを使用している。   First, in the manufacturing method shown in FIG. 1, a lower mold 2 and an upper mold 3 are prepared as shown in FIG. The lower mold 2 and the upper mold 3 use materials such as metal, ceramics, and glass, and use known mold processing techniques such as a photolithography technique, an X-ray lithography technique, an etching technique, an electroforming technique, and a machining technique. Alternatively, these mold processing techniques are used in combination. In the illustrated example, a nickel-based alloy made by electroforming a Si master mold processed using a photolithography technique and an etching technique is used.

下型2および上型3には、各々任意の大きさで任意の形状の凹凸パターン4、5が任意の位置に形成されている。この例では、凸部の上面が0.5μm角で、基部が1μm角であり、高さが0.5μmであって、テーパー側面を有するパターンが多数形成されている。そして、下型2および上型3は、互いに形成された凹凸パターン4、5を対向して配置される。   The lower mold 2 and the upper mold 3 are respectively provided with irregular patterns 4 and 5 having an arbitrary size and an arbitrary shape at arbitrary positions. In this example, the upper surface of the convex portion is 0.5 μm square, the base is 1 μm square, the height is 0.5 μm, and many patterns having tapered side surfaces are formed. And the lower mold | type 2 and the upper mold | type 3 are arrange | positioned so that the uneven | corrugated pattern 4 and 5 formed mutually may be opposed.

次に、(B)に示すように、下型2と上型3との間に活物質形成材料1が供給される。活物質形成材料1は、少なくとも電極活物質とバインダが含まれていればよく、ここでは電極活物質とバインダと導電補助材とで構成し、電極活物質としては粒状の活性炭粒子、バインダとしてはフッ素系高分子、導電補助材としてはカーボンブラックを使用し、これらの材料を混練しているが、特にこのようなものに限定されない。   Next, as shown in (B), the active material forming material 1 is supplied between the lower mold 2 and the upper mold 3. The active material forming material 1 only needs to contain at least an electrode active material and a binder, and here, it is composed of an electrode active material, a binder, and a conductive auxiliary material, and the electrode active material is granular activated carbon particles, and the binder is Although carbon black is used as the fluorine-based polymer and the conductive auxiliary material and these materials are kneaded, it is not particularly limited to such materials.

それから、(C)に示すように、活物質形成材料1が下型2と上型3とで加圧されることにより凹凸パターン4、5に充填されながら乾燥される。凹凸パターン4、5に活物質形成材料1を充填する方法としては、この他にも、スピンコーティングやスプレーなどにより塗布する方法、ディッピングする方法、ドクターブレード法、ローラ等により圧延する方法などがある。   Then, as shown in (C), the active material forming material 1 is pressed by the lower mold 2 and the upper mold 3 to be dried while being filled in the concavo-convex patterns 4 and 5. As other methods for filling the concavo-convex patterns 4 and 5 with the active material forming material 1, there are other methods such as a coating method by spin coating or spraying, a dipping method, a doctor blade method, a rolling method using a roller or the like. .

つまり、この例では、下型2と上型3の各々に形成された互いの凹凸パターン4、5が対向するように下型2と上型3とが配置され、それら下型2と上型3との間に、少なくとも電極活物質とバインダが含まれている活物質材料1が供給され、不図示のプレス機構などを用いることにより下型2と上型3とでその活物質形成材料1が加圧されるようになっている。   That is, in this example, the lower mold 2 and the upper mold 3 are arranged so that the concave and convex patterns 4 and 5 formed on the lower mold 2 and the upper mold 3 face each other. An active material 1 containing at least an electrode active material and a binder is supplied between the lower die 2 and the upper die 3 by using a pressing mechanism (not shown). Is to be pressurized.

その後、(D)に示すように、活物質形成材料1から下型2と上型3とが剥離されることにより、表裏両面に任意の大きさで任意の形状を有する凹凸パターン9、8が形成される蓄電デバイス用活物質6が製造される。なお、下型2の凹凸パターン4が形成される面および上型3の凹凸パターン5が形成される面には、活物質形成材料1が容易に剥離できるように、各々表面処理を施しておくとよい。   Thereafter, as shown in (D), when the lower mold 2 and the upper mold 3 are peeled from the active material forming material 1, the concave and convex patterns 9 and 8 having an arbitrary size on the front and back surfaces are formed. The power storage device active material 6 to be formed is manufactured. The surface on which the concave / convex pattern 4 of the lower mold 2 is formed and the surface on which the concave / convex pattern 5 of the upper mold 3 is formed are each subjected to surface treatment so that the active material forming material 1 can be easily peeled off. Good.

次いで、(E)に示すように、蓄電デバイス用活物質6を活物質層としてその片面に集電体7が固着されて蓄電デバイス用電極10が製造される。   Next, as shown in (E), the power storage device active material 6 is used as the active material layer, and the current collector 7 is fixed to one surface thereof to manufacture the power storage device electrode 10.

次に、図2に示す製造方法においては、(A)に示すように、下型12と上型13を用意する。下型12および上型13は、図1に示す蓄電デバイス用電極10の製造方法で用いたと同様な材料を使用し、同様な既知の型加工技術を用いてつくる。図示例では、同じく、フォトリソグラフィ技術とエッチング技術とを用いて加工したSi製マスター金型に電鋳を施して製作したニッケル基合金製のものを使用している。   Next, in the manufacturing method shown in FIG. 2, as shown to (A), the lower mold | type 12 and the upper mold | type 13 are prepared. The lower mold 12 and the upper mold 13 are made by using the same material as that used in the method for manufacturing the electricity storage device electrode 10 shown in FIG. In the illustrated example, similarly, a nickel-based alloy manufactured by electroforming a Si master mold processed using a photolithography technique and an etching technique is used.

下型12および上型13には、同様に、各々任意の大きさで任意の形状の凹凸パターン14、15が任意の位置に形成されており、この例では、凸部の上面が0.5μm角で、基部が1μm角であり、高さが0.5μmのテーパー側面を有するパターンが多数形成されている。そして、下型12および上型13は、互いに形成された凹凸パターン14、15を対向して配置される。   Similarly, the lower mold 12 and the upper mold 13 are respectively provided with irregular patterns 14 and 15 having an arbitrary size and an arbitrary shape at an arbitrary position. In this example, the upper surface of the convex portion is 0.5 μm. A large number of patterns having a tapered side surface with a corner having a base of 1 μm square and a height of 0.5 μm are formed. And the lower mold | type 12 and the upper mold | type 13 are arrange | positioned facing the uneven | corrugated patterns 14 and 15 mutually formed.

それから、(B)に示すように、例えばスピンコーティング法により活物質形成材料11が、下型12に形成された凹凸パターン14に充填される。活物質形成材料11は、少なくとも電極活物質とバインダが含まれていればよく、ここでは電極活物質として粒状の活性炭粒子、バインダとしてフッ素系高分子、導電補助材としてカーボンブラックを用い、それらを溶液中に分散したものが使用されている。   Then, as shown in (B), the active material forming material 11 is filled into the concave / convex pattern 14 formed on the lower mold 12 by, for example, a spin coating method. The active material forming material 11 only needs to contain at least an electrode active material and a binder. Here, granular activated carbon particles are used as an electrode active material, a fluorine-based polymer is used as a binder, and carbon black is used as a conductive auxiliary material. Dispersed in solution is used.

次に、(C)に示すように、活物質形成材料11が、上型13に形成された凹凸パターン15の凹部に入り込むまで、上型13が下型12上の活物質形成材料11に押し当てられながら乾燥される。   Next, as shown in (C), the upper mold 13 pushes against the active material forming material 11 on the lower mold 12 until the active material forming material 11 enters the concave portion of the concave / convex pattern 15 formed on the upper mold 13. It is dried while being applied.

その後、(D)に示すように、活物質形成材料11から下型12と上型13とが剥離されることにより、表裏両面に任意の大きさで任意の形状を有する凹凸パターン19、18が形成される蓄電デバイス用活物質16が製造される。この例では、蓄電デバイス用活物質16の密度を高めるために、活物質形成材料11を乾燥する際、活物質形成材料11に圧縮荷重を加えてなる。なお、この場合も、下型12の凹凸パターン14が形成される面および上型13の凹凸パターン15が形成される面には、活物質形成材料11が容易に剥離できるように、各々表面処理を施しておくとよい。   Thereafter, as shown in (D), when the lower mold 12 and the upper mold 13 are peeled from the active material forming material 11, the concave and convex patterns 19 and 18 having an arbitrary size on the front and back surfaces are formed. The power storage device active material 16 to be formed is manufactured. In this example, in order to increase the density of the active material 16 for an electricity storage device, a compressive load is applied to the active material forming material 11 when the active material forming material 11 is dried. Also in this case, the surface treatment is performed on the surface on which the concave / convex pattern 14 of the lower mold 12 and the surface on which the concave / convex pattern 15 of the upper mold 13 are formed so that the active material forming material 11 can be easily peeled off. It is good to give.

次いで、(E)に示すように、蓄電デバイス用活物質16を活物質層としてその片面に集電体17が固着されて蓄電デバイス用電極20が製造される。   Next, as shown in (E), the power storage device active material 16 is used as an active material layer, and the current collector 17 is fixed to one surface thereof to manufacture the power storage device electrode 20.

また、図3に示す製造方法においては、(A)に示すように、下型22と上型23を用意する。そして、下型22と上型23のいずれでもよいが、どちらか一方が集電体を兼ねるようにする。この例では、上型23が集電体を兼ねる。集電体を兼ねていない下型22および集電体を兼ねている上型23には、各々任意の大きさで任意の形状の凹凸パターン24、25が任意の位置に形成されている。   Moreover, in the manufacturing method shown in FIG. 3, as shown to (A), the lower mold | type 22 and the upper mold | type 23 are prepared. And although either the lower mold | type 22 and the upper mold | type 23 may be sufficient, either one serves as a collector. In this example, the upper mold 23 also serves as a current collector. Arbitrary patterns 24 and 25 having an arbitrary size and an arbitrary shape are formed at arbitrary positions on the lower mold 22 that also does not function as a current collector and the upper mold 23 that also functions as a current collector.

この例では、集電体を兼ねていない下型22には、凸部の周囲が上面から基部までストレートに1μm角であり、凸部高さが0.5μmのパターンが多数形成されているのに対し、集電体を兼ねている上型23には、凸部周囲が0.3μm角であり、凸部高さが0.5μmのパターンが多数形成されている。すなわち、集電体を兼ねる上型23に形成された凹凸パターン25の表面積が、集電体を兼ねていない下型22に形成された凹凸パターン24の表面積よりも大きくなっている。そして、下型22および上型23は、互いに形成された凹凸パターン24、25を対向して配置される。   In this example, the lower mold 22 that does not serve also as a current collector is formed with a large number of patterns each having a 1 μm square straight from the top surface to the base portion and having a convex portion height of 0.5 μm. On the other hand, the upper mold 23 also serving as a current collector is formed with a large number of patterns having a convex portion periphery of 0.3 μm square and a convex portion height of 0.5 μm. That is, the surface area of the concavo-convex pattern 25 formed on the upper mold 23 also serving as a current collector is larger than the surface area of the concavo-convex pattern 24 formed on the lower mold 22 not serving also as a current collector. And the lower mold | type 22 and the upper mold | type 23 are arrange | positioned facing the uneven | corrugated patterns 24 and 25 which were formed mutually.

それから、図1(B)に示すと同様に下型22と上型23との間に、少なくとも電極活物質とバインダが含まれている活物質形成材料が供給され、(C)に示すと同様に活物質形成材料が下型22と上型23とで加圧されることにより凹凸パターン24、25に充填されながら乾燥される。または、図2(B)に示すと同様に少なくとも電極活物質とバインダが含まれている活物質形成材料が、下型22に形成された凹凸パターン24に供給され、(C)に示すと同様に活物質形成材料が、上型23に形成された凹凸パターン25の凹部に入り込むまで、上型23が下型22上の活物質形成材料に押し当てられて活物質形成材料が下型22と上型23とで加圧されながら乾燥される。   Then, as shown in FIG. 1B, an active material forming material containing at least an electrode active material and a binder is supplied between the lower die 22 and the upper die 23, and as shown in FIG. In addition, the active material forming material is pressed by the lower mold 22 and the upper mold 23, thereby being dried while being filled in the concavo-convex patterns 24 and 25. Alternatively, as shown in FIG. 2B, an active material forming material containing at least an electrode active material and a binder is supplied to the concave / convex pattern 24 formed in the lower mold 22, and as shown in FIG. The upper mold 23 is pressed against the active material forming material on the lower mold 22 until the active material forming material enters the recesses of the concave / convex pattern 25 formed on the upper mold 23. It is dried while being pressed with the upper mold 23.

その後、図3(B)に示すように、集電体を兼ねていない下型22が剥離される。このとき、下型22と蓄電デバイス用活物質26の接触面積よりも、上型23と蓄電デバイス用活物質26の接触面積の方が大きくなるので、下型22と蓄電デバイス用活物質26の固着力よりも、上型23と蓄電デバイス用活物質26の固着力の方が強くなり、上型23が蓄電デバイス用活物質26から剥離することなく、集電体を兼ねる上型23に、蓄電デバイス用活物質26よりなる活物質層が固着された蓄電デバイス用電極30が製造されることとなる。   Thereafter, as shown in FIG. 3B, the lower mold 22 that does not serve as a current collector is peeled off. At this time, the contact area between the upper mold 23 and the active device for electricity storage device 26 is larger than the contact area between the lower die 22 and the active material for electricity storage device 26. The upper die 23 and the active material 26 for the electricity storage device 26 are stronger than the adhesive force, and the upper die 23 does not peel from the active material 26 for the electricity storage device. The storage device electrode 30 to which the active material layer made of the storage device active material 26 is fixed is manufactured.

これにより、集電体を兼ねる上型23を、蓄電デバイス用活物質26よりなる活物質層から剥離することなく、そのまま残すことが可能となり、別に接着剤などを介して活物質層を集電体に固着する手間を省き、活物質層に対する集電体の固着を容易として蓄電デバイス用電極の製造を簡単とすることができる。   As a result, the upper mold 23 that also serves as a current collector can be left as it is without being peeled off from the active material layer made of the active material 26 for the electricity storage device, and the active material layer can be separately collected via an adhesive or the like. Thus, it is possible to simplify the manufacture of the electrode for the electricity storage device by eliminating the trouble of fixing to the body and facilitating the fixing of the current collector to the active material layer.

また、図4に示す製造方法においては、(A)に示すように、下型32と上型33を用意する。そして、下型32と上型33のいずれでもよいが、どちらか一方が集電体を兼ねるようにする。この例では、図3の場合と同様に、上型33が集電体を兼ねる。集電体を兼ねていない下型32および集電体を兼ねている上型33には、各々任意の大きさで任意の形状の凹凸パターン34、35が任意の位置に形成されている。   Moreover, in the manufacturing method shown in FIG. 4, as shown to (A), the lower mold | type 32 and the upper mold | type 33 are prepared. And although either the lower mold | type 32 and the upper mold | type 33 may be sufficient, either one serves as a collector. In this example, as in the case of FIG. 3, the upper mold 33 also serves as a current collector. The lower mold 32 not serving as a current collector and the upper mold 33 serving also as a current collector are respectively provided with irregular patterns 34 and 35 having an arbitrary size and an arbitrary shape.

この例では、図5(A)に示すとおり、集電体を兼ねていない下型32には、凸部34aの上面が0.5μm角で、基部が1μm角であり、高さが0.5μmのテーパー状の側面傾斜角度θを有するパターンが多数形成されているのに対し、図5(B)に示すとおり、集電体を兼ねている上型33には、凸部35aの周囲が上面から基部までストレートに0.3μm角であり、凸部高さが0.5μmの側面傾斜角度が0であるパターンが多数形成されている。すなわち、集電体を兼ねる上型33に形成された凹凸パターン35の側面傾斜角度θが、集電体を兼ねていない下型32に形成された凹凸パターン34の側面傾斜角度よりも大きくなっている。そして、下型32および上型33は、互いに形成された凹凸パターン34、35を対向して配置される。   In this example, as shown in FIG. 5A, the lower mold 32 not serving as a current collector has a top surface of the convex portion 34a of 0.5 μm square, a base portion of 1 μm square, and a height of 0.2 mm. While many patterns having a tapered side surface inclination angle θ of 5 μm are formed, as shown in FIG. 5B, the upper mold 33 that also serves as a current collector has a periphery of the convex portion 35a. A large number of patterns having a 0.3 μm square straight from the top surface to the base, a convex portion height of 0.5 μm, and a side surface inclination angle of 0 are formed. That is, the side surface inclination angle θ of the concavo-convex pattern 35 formed on the upper mold 33 that also serves as a current collector is larger than the side surface inclination angle of the concavo-convex pattern 34 formed on the lower mold 32 that also does not serve as a current collector. Yes. And the lower mold | type 32 and the upper mold | type 33 are arrange | positioned so that the uneven | corrugated patterns 34 and 35 mutually formed may be opposed.

それから、図3の場合と同様に、図1(B)に示すと同様に下型32と上型33との間に、少なくとも電極活物質とバインダが含まれている活物質形成材料が供給され、(C)に示すと同様に活物質形成材料が下型32と上型33とで加圧されることにより凹凸パターン34、35に充填されながら乾燥される。または、図2(B)に示すと同様に少なくとも電極活物質とバインダが含まれている活物質形成材料が、下型32に形成された凹凸パターン34に供給され、(C)に示すと同様に活物質形成材料が、上型33に形成された凹凸パターン35の凹部に入り込むまで、上型33が下型32上の活物質形成材料に押し当てられて活物質形成材料が下型32と上型33とで加圧されながら乾燥される。   Then, as in the case of FIG. 3, an active material forming material containing at least an electrode active material and a binder is supplied between the lower mold 32 and the upper mold 33 as shown in FIG. 1B. In the same manner as shown in (C), the active material forming material is pressed by the lower mold 32 and the upper mold 33 to be dried while filling the concave and convex patterns 34 and 35. Alternatively, as shown in FIG. 2B, an active material forming material containing at least an electrode active material and a binder is supplied to the concave / convex pattern 34 formed on the lower mold 32, and as shown in FIG. The active material forming material is pressed against the active material forming material on the lower die 32 until the active material forming material enters the concave portion of the concave / convex pattern 35 formed on the upper die 33. It is dried while being pressed with the upper mold 33.

その後、図4(B)に示すように、集電体を兼ねていない下型32が剥離される。このとき、下型32の凹凸パターン34の凸部34aが抜き勾配となるので、下型32と蓄電デバイス用活物質36の固着力よりも、上型33と蓄電デバイス用活物質36の固着力の方が強くなり、上型33が蓄電デバイス用活物質36から剥離することなく、集電体を兼ねる上型33に、蓄電デバイス用活物質36よりなる活物質層が固着された蓄電デバイス用電極40が製造されることとなる。   Thereafter, as shown in FIG. 4B, the lower mold 32 not serving as a current collector is peeled off. At this time, since the convex portion 34a of the concave / convex pattern 34 of the lower mold 32 has a draft, the fixing force between the upper mold 33 and the active material for power storage device 36 is higher than the fixing force between the lower mold 32 and the active material for power storage device 36. Therefore, the upper die 33 is not peeled off from the active material 36 for the electricity storage device, and the active material layer made of the active material 36 for the electricity storage device is fixed to the upper die 33 that also serves as a current collector. The electrode 40 will be manufactured.

これにより、図3の場合と同様に、集電体を兼ねる上型33を、蓄電デバイス用活物質36よりなる活物質層から剥離することなく、そのまま残すことが可能となり、別に接着剤などを介して活物質層を集電体に固着する手間を省き、活物質層に対する集電体の固着を容易として蓄電デバイス用電極の製造を簡単とすることができる。   Thus, as in FIG. 3, the upper mold 33 that also serves as a current collector can be left as it is without being peeled off from the active material layer made of the active material 36 for the electricity storage device. Thus, the trouble of fixing the active material layer to the current collector can be saved, and the current collector can be easily fixed to the active material layer, whereby the production of the electrode for the electricity storage device can be simplified.

以上のとおり、図1ないし4に示す製造方法を用いて製造された蓄電デバイス用電極10、20、30、40は、蓄電デバイス用活物質6、16、26、36を活物質層としてその片面に集電体7、17、23、33が固着されて製造されるので、活物質層の表裏両面に、大きさがμm、サブμmと非常に微細で任意の形状を備える凹凸パターンを再現性よく形成して内部抵抗を十分に低減することができる。   As described above, the electricity storage device electrodes 10, 20, 30, and 40 manufactured using the manufacturing method illustrated in FIGS. 1 to 4 have one side of the electricity storage device active material 6, 16, 26, and 36 as the active material layer. Since the current collectors 7, 17, 23, and 33 are fixed to the surface of the active material layer, the concave / convex pattern having a very fine size of μm and sub-μm and having an arbitrary shape is reproducible on both sides of the active material layer. It can be formed well and the internal resistance can be sufficiently reduced.

そして、以上のように図1ないし4に示す製造方法を用いて製造された蓄電デバイス用電極10、20、30、40を使用して蓄電デバイスを製造するときは、例えば図6に示すように、1つの蓄電デバイス用電極を、電気を外部とやり取りするための集電体101と活物質層102とから構成される正極体103とし、別の1つの蓄電デバイス用電極を、同じく集電体101と活物質層102とから構成される負極体104とする。そして、それらの正極体103と負極体104との接触を防止するためにそれらの間にセパレータ105を設け、正極体103と負極体104とセパレータ105に電解液が含浸されてケース106内に密封される。   And when manufacturing an electrical storage device using the electrical storage device electrode 10, 20, 30, 40 manufactured using the manufacturing method shown in FIGS. 1 to 4 as described above, for example, as shown in FIG. One power storage device electrode is a positive electrode body 103 composed of a current collector 101 for exchanging electricity with the outside and an active material layer 102, and another one power storage device electrode is also a current collector. A negative electrode body 104 including 101 and an active material layer 102 is used. In order to prevent contact between the positive electrode body 103 and the negative electrode body 104, a separator 105 is provided between them, and the positive electrode body 103, the negative electrode body 104, and the separator 105 are impregnated with an electrolytic solution and sealed in the case 106. Is done.

これにより、活物質形成材料の表裏両面に凹凸パターンが形成されているので、活物質層自体の内部抵抗が低く、活物質層と集電体の電気的接続も良好であり、高出力の特性を有する電気二重層キャパシタのような蓄電デバイスを得ることができる。   As a result, uneven patterns are formed on both the front and back surfaces of the active material forming material, so that the internal resistance of the active material layer itself is low, the electrical connection between the active material layer and the current collector is good, and high output characteristics Thus, an electric storage device such as an electric double layer capacitor can be obtained.

(A)ないし(E)はこの発明による蓄電デバイス用電極の製造工程図である。(A) thru | or (E) is a manufacturing-process figure of the electrode for electrical storage devices by this invention. (A)ないし(E)はこの発明による別の蓄電デバイス用電極の製造工程図である。(A) thru | or (E) is a manufacturing-process figure of the electrode for another electrical storage device by this invention. (A)および(B)はこの発明によるさらに別の蓄電デバイス用電極の製造工程図である。(A) And (B) is a manufacturing-process figure of another electrode for electrical storage devices by this invention. (A)および(B)はこの発明によるまたさらに別の蓄電デバイス用電極の製造工程図である。(A) And (B) is a manufacturing-process figure of another electrode for electrical storage devices by this invention. (A)は図4に示す製造工程で用いる下型に形成される凹凸パターンの凸部拡大図、(B)は上型に形成される凹凸パターンの凸部拡大図である。(A) is an enlarged view of the convex portion of the concave / convex pattern formed in the lower mold used in the manufacturing process shown in FIG. 4, and (B) is an enlarged view of the convex portion of the concave / convex pattern formed in the upper die. この発明による蓄電デバイスの断面構成図である。It is a cross-sectional block diagram of the electrical storage device by this invention.

符号の説明Explanation of symbols

1 活物質形成材料
2 下型
3 上型
4 下型の凹凸パターン
5 上型の凹凸パターン
6 蓄電デバイス用活物質
7 集電体
8 蓄電デバイス用活物質の裏面の凹凸パターン
9 蓄電デバイス用活物質の表面の凹凸パターン
10 蓄電デバイス用電極
11 活物質形成材料
12 下型
13 上型
14 下型の凹凸パターン
15 上型の凹凸パターン
16 蓄電デバイス用活物質
17 集電体
18 蓄電デバイス用活物質の裏面の凹凸パターン
19 蓄電デバイス用活物質の表面の凹凸パターン
20 蓄電デバイス用電極
22 下型
23 集電体を兼ねる上型
24 下型の凹凸パターン
25 上型の凹凸パターン
26 蓄電デバイス用活物質
30 蓄電デバイス用電極
32 下型
33 集電体を兼ねる上型
34 下型の凹凸パターン
35 上型の凹凸パターン
36 蓄電デバイス用活物質
40 蓄電デバイス用電極
101 集電体
102 活物質層
103 正極体
104 負極体
105 セパレータ
106 ケース
θ 側面傾斜角度

DESCRIPTION OF SYMBOLS 1 Active material formation material 2 Lower mold | type 3 Upper mold | type 4 Lower mold | die uneven | corrugated pattern 5 Upper mold | die uneven | corrugated pattern 6 Active material for electrical storage devices 7 Current collector 8 Uneven pattern of the back surface of the active material for electrical storage devices 9 Active material for electrical storage devices Surface irregularity pattern 10 Electrode for power storage device 11 Active material forming material 12 Lower mold 13 Upper mold 14 Lower mold uneven pattern 15 Upper mold uneven pattern 16 Current storage device active material 17 Current collector 18 Power storage device active material Uneven pattern on the back surface 19 Uneven pattern on the surface of the active material for the electricity storage device 20 Electrode for electricity storage device 22 Lower mold 23 Upper mold that also serves as a current collector 24 Uneven pattern on the lower mold 25 Uneven pattern on the upper mold 26 Active material for the electricity storage device 30 Electrode for power storage device 32 Lower mold 33 Upper mold also serving as a current collector 34 Lower mold uneven pattern 35 Upper mold uneven pattern 36 Storage Active material for electric device 40 Electrode for electric storage device 101 Current collector 102 Active material layer 103 Positive electrode body 104 Negative electrode body 105 Separator 106 Case θ Side surface inclination angle

Claims (12)

少なくとも電極活物質とバインダが含まれている活物質形成材料を用い、その表裏両面に凹凸パターンが形成されていることを特徴とする、蓄電デバイス用活物質。   An active material for an electricity storage device, wherein an active material forming material containing at least an electrode active material and a binder is used, and concave and convex patterns are formed on both front and back surfaces. 互いに形成された凹凸パターンが対向して配置される下型と上型との間に、少なくとも電極活物質とバインダが含まれている活物質形成材料が供給され、その活物質形成材料が前記下型と前記上型とで加圧されて後、それら下型と上型とが剥離されることにより製造されることを特徴とする、蓄電デバイス用活物質の製造方法。   An active material forming material containing at least an electrode active material and a binder is supplied between a lower mold and an upper mold in which the concavo-convex patterns formed to face each other, and the active material forming material is the lower mold A method for producing an active material for an electricity storage device, wherein the lower mold and the upper mold are peeled off after being pressed between the mold and the upper mold. 請求項2に記載の製造方法で製造されることを特徴とする、蓄電デバイス用活物質。   It manufactures with the manufacturing method of Claim 2, The active material for electrical storage devices characterized by the above-mentioned. 下型に形成された凹凸パターンに、少なくとも電極活物質とバインダが含まれている活物質形成材料が供給され、その活物質形成材料が、上型に形成された凹凸パターンに入り込むまで前記上型が前記活物質形成材料に押し当てられて後、それら上型と下型とが剥離されることにより製造されることを特徴とする、蓄電デバイス用活物質の製造方法。   An active material forming material containing at least an electrode active material and a binder is supplied to the concavo-convex pattern formed on the lower mold, and the upper mold until the active material forming material enters the concavo-convex pattern formed on the upper mold. A method for producing an active material for an electricity storage device, wherein the upper mold and the lower mold are peeled off after being pressed against the active material forming material. 請求項4に記載の製造方法で製造されることを特徴とする、蓄電デバイス用活物質。   It manufactures with the manufacturing method of Claim 4, The active material for electrical storage devices characterized by the above-mentioned. 請求項3に記載の蓄電デバイス用活物質を活物質層としてその片面に集電体が固着されて製造されることを特徴とする、蓄電デバイス用電極の製造方法。   A method for producing an electrode for an electricity storage device, wherein the active material for an electricity storage device according to claim 3 is used as an active material layer, and a current collector is fixed to one surface thereof. 請求項5に記載の蓄電デバイス用活物質を活物質層としてその片面に集電体が固着されて製造されることを特徴とする、蓄電デバイス用電極の製造方法。   A method for producing an electrode for an electricity storage device, wherein the active material for an electricity storage device according to claim 5 is used as an active material layer, and a current collector is fixed to one surface thereof. 下型と上型のどちらか一方が集電体を兼ね、その集電体を兼ねる一方の金型に形成された凹凸パターンの表面積が他方の金型に形成された凹凸パターンの表面積よりも大きくされ、少なくとも電極活物質とバインダが含まれている活物質形成材料が前記下型と前記上型とで加圧されて後、前記他方の金型が剥離されることにより製造されることを特徴とする、蓄電デバイス用電極の製造方法。   Either the lower mold or the upper mold also serves as a current collector, and the surface area of the concave / convex pattern formed on one mold serving also as the current collector is larger than the surface area of the concave / convex pattern formed on the other mold. The active material forming material containing at least an electrode active material and a binder is pressed by the lower mold and the upper mold, and then the other mold is peeled off. The manufacturing method of the electrode for electrical storage devices. 下型と上型のどちらか一方が集電体を兼ね、その集電体を兼ねる一方の金型に形成された凹凸パターンの側面傾斜角度が他方の金型に形成された凹凸パターンの側面傾斜角度よりも大きくされ、少なくとも電極活物質とバインダが含まれている活物質形成材料が前記下型と前記上型とで加圧されて後、前記他方の金型が剥離されることにより製造されることを特徴とする、蓄電デバイス用電極の製造方法。   Either the lower mold or the upper mold also serves as a current collector, and the side surface inclination angle of the concave / convex pattern formed on one mold serving as the current collector is the side slope of the concave / convex pattern formed on the other mold. An active material forming material that is larger than the angle and includes at least an electrode active material and a binder is pressed by the lower mold and the upper mold, and then the other mold is peeled off. A method for producing an electrode for an electricity storage device. 請求項6ないし9のいずれか1に記載の製造方法で製造されることを特徴とする、蓄電デバイス用電極。   An electrode for an electricity storage device, which is manufactured by the manufacturing method according to claim 6. 請求項10に記載の蓄電デバイス用電極を用いて形成されることを特徴とする、蓄電デバイス。   It forms using the electrode for electrical storage devices of Claim 10, The electrical storage device characterized by the above-mentioned. 電気二重層キャパシタであることを特徴とする、請求項11に記載の蓄電デバイス。   The electric storage device according to claim 11, wherein the electric storage device is an electric double layer capacitor.
JP2006185117A 2006-07-05 2006-07-05 Active material for accumulator device and manufacturing method therefor, electrode for the accumulator device and manufacturing method thereof, and the accumulator device Pending JP2008016580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006185117A JP2008016580A (en) 2006-07-05 2006-07-05 Active material for accumulator device and manufacturing method therefor, electrode for the accumulator device and manufacturing method thereof, and the accumulator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006185117A JP2008016580A (en) 2006-07-05 2006-07-05 Active material for accumulator device and manufacturing method therefor, electrode for the accumulator device and manufacturing method thereof, and the accumulator device

Publications (1)

Publication Number Publication Date
JP2008016580A true JP2008016580A (en) 2008-01-24

Family

ID=39073329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006185117A Pending JP2008016580A (en) 2006-07-05 2006-07-05 Active material for accumulator device and manufacturing method therefor, electrode for the accumulator device and manufacturing method thereof, and the accumulator device

Country Status (1)

Country Link
JP (1) JP2008016580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008017592A (en) * 2006-07-05 2008-01-24 Ricoh Elemex Corp Information display system device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008017592A (en) * 2006-07-05 2008-01-24 Ricoh Elemex Corp Information display system device

Similar Documents

Publication Publication Date Title
TW508860B (en) Paste-like thin electrode for battery, its manufacturing method, and battery
JP5181413B2 (en) Electrode for electrochemical device, solid electrolyte / electrode assembly and method for producing the same
JP2017522725A5 (en)
JP4994205B2 (en) Electric double layer capacitor and manufacturing method thereof
TW200501479A (en) Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing same and nonaqueous electrolyte secondary battery
KR20170019424A (en) Hybrid electrochemical cell
CN212365996U (en) Lithium-philic nano/micron-sized three-dimensional composite lithium metal negative plate
CN108428901B (en) A kind of composite microstructure collector and preparation method thereof for lithium ion battery
TW201843875A (en) Printed planar lithium-ion batteries
JP2008016581A (en) Electrode for accumulator device and manufacturing method therefor, and the accumulator device
JP5458505B2 (en) Electrode for electric double layer capacitor and method for manufacturing the same
JP2005353758A (en) Energy device, its manufacturing method and device mounting the same
KR20180004407A (en) Manufacture method and its structure for lithium-air batteries using metal foam
CN113506877A (en) High-energy-density microporous lithium battery electrode and preparation method thereof
KR101297094B1 (en) Structure of Current Collector and Electrode including the same and, Lithium Ion capacitor comprising the same
JP2005174621A (en) Fuel cell component, method for manufacturing the same, and fuel cell using the method
CN111180730A (en) Rapid charging and discharging graphene power lithium battery and preparation method thereof
JP2018074117A (en) Current collector for power storage device, electrode for power storage device, lithium ion capacitor, and method for manufacturing electrode for power storage device
JP2008016580A (en) Active material for accumulator device and manufacturing method therefor, electrode for the accumulator device and manufacturing method thereof, and the accumulator device
JP2012253072A (en) Lithium ion capacitor
CN214203735U (en) Pole piece and diaphragm-free lithium ion battery
JP7168473B2 (en) Negative electrode for all-solid-state battery
JP2011150913A (en) Laminated battery
CN114284463A (en) Composite lithium supplementing sheet, and battery cell and battery with same
JP6686789B2 (en) Stacked alkaline secondary battery