JP2008015938A - Production management method and production management system of manufacturing line - Google Patents

Production management method and production management system of manufacturing line Download PDF

Info

Publication number
JP2008015938A
JP2008015938A JP2006188533A JP2006188533A JP2008015938A JP 2008015938 A JP2008015938 A JP 2008015938A JP 2006188533 A JP2006188533 A JP 2006188533A JP 2006188533 A JP2006188533 A JP 2006188533A JP 2008015938 A JP2008015938 A JP 2008015938A
Authority
JP
Japan
Prior art keywords
inspection
product
measurement values
pass
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006188533A
Other languages
Japanese (ja)
Inventor
Takahiro Funatsu
隆弘 船津
Akihiro Narita
昭弘 成田
Ichiro Uemitsu
一郎 上光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006188533A priority Critical patent/JP2008015938A/en
Publication of JP2008015938A publication Critical patent/JP2008015938A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • General Factory Administration (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the quality of a product by reflecting an inspection result in an inspection process on a manufacturing process. <P>SOLUTION: An inspection apparatus 12 measures the dimensions of various parts constituting a bearing 24. When the measurement values by inspection by the inspection apparatus 12 shows a trend that the measurement values gradually come close to a standard upper limit value 106 even though the measurement values do not exceed the standard upper limit value 106, an assembling method of an assembling device 10 in the manufacturing process is changed or the driving of the assembling device 10 is stopped when a management apparatus 14 manages the measurement values. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、各種部品を用いて軸受などの製品を製造する製造ラインにおいて、各工程の状態を的確に管理するに好適な製造ラインの生産管理方法および生産管理システムに関する。   The present invention relates to a production management method and a production management system for a production line suitable for accurately managing the state of each process in a production line for producing products such as bearings using various components.

自動車や各種産業機械に用いられる転がり軸受として、例えば、グリースが封入された軸受空間をシールしたシール軸受が知られている。この種の転がり軸受を製造する製造ラインにおいては、シール軸受に要求されるシール性能を評価するために、転がり軸受を微小な異物を混入した液体に触れる状態で所定時間回転させたのち、軌道輪の一方を固定して他方を所定の回転速度で回転させ、固定した軌道輪の振動変位を測定し、この測定した振動変位に基づいて転がり軸受のシール性能を評価する方法が提案されている(特許文献1参照)。   As a rolling bearing used in automobiles and various industrial machines, for example, a sealed bearing that seals a bearing space filled with grease is known. In a production line for manufacturing this type of rolling bearing, in order to evaluate the sealing performance required for the seal bearing, the rolling bearing is rotated for a predetermined time in a state where it is in contact with a liquid mixed with minute foreign matters, and then the race ring is One of these is fixed, the other is rotated at a predetermined rotational speed, the vibration displacement of the fixed bearing ring is measured, and the sealing performance of the rolling bearing is evaluated based on the measured vibration displacement ( Patent Document 1).

また、製造ラインにおいて、製品の良否を判定するに際しては、製造工程を経た製品を検査工程で各種の検査として、マッチング検査、振動検査、外観検査を行い、例えば、振動検査では、規格値を設定するとともに、規格値に対してしきい値を設定し、測定値がしきい値の範囲内のときには良品(正常)と判定し、しきい値を超えた場合には、不良品(異常)と判定してする方法が採用されている。
特開2005−207764号公報
In addition, when judging the quality of a product on the production line, the product that has undergone the manufacturing process is subjected to various inspections in the inspection process, such as matching inspection, vibration inspection, and appearance inspection. For example, in the vibration inspection, standard values are set. In addition, a threshold value is set for the standard value, and when the measured value is within the threshold value range, it is judged as a non-defective product (normal). A method of judging is adopted.
Japanese Patent Laid-Open No. 2005-207764

しかし、検査工程において、測定値としきい値とを比較して良否の判定する方法では、測定値が規格値を外れていても、しきい値の範囲内であれば良品として判断されるため、製造工程において、しきい値の範囲内であって、規格値を外れたものが多く製造されていても、検査結果が製造工程に反映されず、製品の品質を高めるには十分ではない。   However, in the inspection process, in the method of judging pass / fail by comparing the measured value and the threshold value, even if the measured value is out of the standard value, it is judged as good if it is within the threshold value range, In the manufacturing process, even if many products that are within the threshold value range and deviate from the standard value are manufactured, the inspection result is not reflected in the manufacturing process, which is not sufficient for improving the quality of the product.

本発明は、前記従来技術の課題に鑑みて為されたものであり、その目的は、検査工程における検査結果を製造工程に反映して、製品の品質をより高めることにある。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to improve the quality of a product by reflecting the inspection result in the inspection process in the manufacturing process.

前記課題を達成するために、本発明は、複数の部品を組み立てて製品を形成する製造工程と、前記各部品または前記製品を検査対象として前記検査対象を検査する検査工程とを含み、前記検査工程では、予め設定されたルールに従って前記検査対象の静特性を測定し、この測定値と良否判定値とを比較して前記検査対象の良否を判定するとともに、前記測定値を順次蓄積してその内容を判定し、この判定結果を前記製造工程に反映させる製造ラインの生産管理方法を採用したものである。   In order to achieve the object, the present invention includes a manufacturing process in which a plurality of parts are assembled to form a product, and an inspection process in which the inspection object is inspected with each of the parts or the product as an inspection object. In the process, the static characteristic of the inspection object is measured according to a preset rule, and the measurement value is compared with the quality determination value to determine the quality of the inspection object, and the measurement values are sequentially accumulated and the The production management method of the production line is adopted in which the content is judged and the judgment result is reflected in the production process.

前記した手段によれば、測定値を順次蓄積してその内容を判定し、この判定結果を製造工程に反映させることで、製品の品質をより高めることができる。   According to the above-described means, it is possible to further improve the quality of the product by sequentially accumulating the measurement values and determining the contents thereof and reflecting the determination results in the manufacturing process.

本発明によれば、製品の品質をより高めることができる。   According to the present invention, product quality can be further improved.

以下、本発明の一実施の形態を図面に基づいて説明する。図1は、本発明の一実施例を示す製造ラインの生産管理システムの構成図である。図1において、軸受を製造するための製造ラインにおいては、各種部品を組み立てて製品を形成する製造工程、各部品または製品を検査対象として、検査対象を検査する検査工程などの工程が設定されている。製造工程には、各種軸受部品を組み立てる組み立て装置10が配置され、検査工程には、各種軸受部品または軸受を検査対象として、検査対象を検査する検査装置12が配置されており、組み立て装置10と検査装置12は管理装置14に接続され、管理装置14は、インターネットなどの通信ネットワーク16に接続されている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a production management system for a production line showing an embodiment of the present invention. In FIG. 1, in a production line for manufacturing a bearing, processes such as a manufacturing process for assembling various parts to form a product, and an inspection process for inspecting an inspection object with each part or product as an inspection object are set. Yes. An assembly apparatus 10 for assembling various bearing parts is arranged in the manufacturing process, and an inspection apparatus 12 for inspecting the inspection object is arranged in the inspection process with various bearing parts or bearings as inspection objects. The inspection device 12 is connected to a management device 14, and the management device 14 is connected to a communication network 16 such as the Internet.

ここで、図2に示すように、軸受用部品として、外輪18と、内輪20およびボール22を用いて軸受24を組み立てる場合、これら軸受用部品を製造工程の組み立て装置10に搬入するに先立って、本実施例では、外輪18と、内輪20およびボール22を検査対象として、検査対象の静特性を測定することとしている。   Here, as shown in FIG. 2, when the bearing 24 is assembled using the outer ring 18, the inner ring 20, and the ball 22 as bearing parts, these bearing parts are loaded into the assembly apparatus 10 in the manufacturing process. In this embodiment, the outer ring 18, the inner ring 20 and the ball 22 are used as inspection targets, and the static characteristics of the inspection target are measured.

具体的には、各部品単体の寸法として、外輪18の内径溝18aの溝径φa、内輪20の外径溝20aの溝径φb、ボール16の外径(直径)φcを検査装置12で測定し、各部品の測定値を管理装置14で管理する。   Specifically, as the dimensions of the individual parts, the groove diameter φa of the inner diameter groove 18 a of the outer ring 18, the groove diameter φb of the outer diameter groove 20 a of the inner ring 20, and the outer diameter (diameter) φc of the ball 16 are measured by the inspection device 12. Then, the measurement value of each part is managed by the management device 14.

例えば、ボール22と内輪20が固定の場合、内輪20およびボール22を含む要素と外輪18との隙間=φa−φb−φc×2を求め、多数の外輪18の中から最適な隙間となる外輪18を選別し、選別された外輪18のうち隙間が規格値の範囲内に入ったもののみを、図3に示すように、組み立て装置10におけるストッカー24にストックする。ストックされた外輪18の寸法φaを組み立て装置10で管理し、製造工程において、外輪18と、内輪20およびボール22を用いて軸受24を組み立てる場合、内輪20およびボール22に対して、ストッカー24にストックされた外輪18を組み付けて、軸受24を形成する。   For example, when the ball 22 and the inner ring 20 are fixed, the gap between the elements including the inner ring 20 and the ball 22 and the outer ring 18 = φa−φb−φc × 2 is obtained, and the outer ring having the optimum gap among the many outer rings 18 is obtained. 18 is selected, and only the selected outer ring 18 whose gap is within the range of the standard value is stocked in the stocker 24 in the assembling apparatus 10 as shown in FIG. When the dimension φa of the stocked outer ring 18 is managed by the assembling apparatus 10 and the bearing 24 is assembled using the outer ring 18, the inner ring 20 and the ball 22 in the manufacturing process, the stocker 24 is attached to the inner ring 20 and the ball 22. The stocked outer ring 18 is assembled to form the bearing 24.

外輪18の溝径φaを検査装置12で順次測定し、各測定値を管理装置14で管理するに際しては、図4に示すように、17個の外輪18をサンプルとして、17点の測定結果が得られたときに、例えば、以下に示すように、JISのルールを採用することができる。この場合、基準値100に対して、規格値として、管理上限値102と管理下限値104が設定されているとともに、しきい値として、規格値上限106と規格値下限108が設定されている。   When the groove diameter φa of the outer ring 18 is sequentially measured by the inspection device 12 and each measured value is managed by the management device 14, as shown in FIG. When obtained, for example, JIS rules can be adopted as shown below. In this case, with respect to the reference value 100, a management upper limit value 102 and a management lower limit value 104 are set as standard values, and a standard value upper limit 106 and a standard value lower limit 108 are set as threshold values.

ルール1 1点が領域Aを超えている。
ルール2 9点が中心線(基準値100)に対して同じ側にある。
ルール3 6点が増加または減少している。
ルール4 14点が交互に増減している。
ルール5 連続する3点中、2点が領域Aまたはそれを越えた領域にある。
ルール6 連続する5点中、4点が領域Bまたはそれを超えた領域にある。
ルール7 連続する15点が領域Cにある。
ルール8 連続する8点が領域Cを超えた領域にある。
Rule 1 One point exceeds area A.
Rule 2 Nine points are on the same side with respect to the center line (reference value 100).
Rule 3 6 points increase or decrease.
Rule 4 14 points increase or decrease alternately.
Rule 5 Out of 3 consecutive points, 2 points are in region A or beyond.
Rule 6 Four out of five consecutive points are in region B or beyond.
Rule 7 There are 15 consecutive points in region C.
Rule 8 There are 8 consecutive points in the region beyond region C.

また、管理装置14において、各外輪18に関する測定値と良否判定値とを比較して、各外輪18の良否を判定するとともに、各測定値を記憶装置に順次蓄積してその内容を判定し、この判定結果を製造工程における組み立て方法に反映させることができる。この場合、各測定値をメモリに順次蓄積してその内容を判定し、この判定結果を製造工程における組み立て方法に反映させるためのルールとしては、例えば、測定値が良否判定値としての規格値上限106または規格値下限108に近づく傾向を示すときには、測定値の変化傾向を製造工程における組み立て方法に反映させるルールを採用することができる。   Further, the management device 14 compares the measured value and the pass / fail judgment value for each outer ring 18 to determine the pass / fail of each outer ring 18, and sequentially accumulates each measured value in the storage device to determine its contents. This determination result can be reflected in the assembly method in the manufacturing process. In this case, each measurement value is sequentially stored in the memory and its contents are determined. As a rule for reflecting this determination result in the assembly method in the manufacturing process, for example, the measurement value is an upper limit of a standard value as a pass / fail determination value. When a tendency toward 106 or the standard value lower limit 108 is shown, a rule that reflects the change tendency of the measurement value in the assembly method in the manufacturing process can be adopted.

このルールを図4に示す測定結果に適用すると、以下のようになる。
サンプル8は、規格値上限106を超えているので、不良品(NG)と判別する。
サンプル13、14は、規格値上限106を超えていないが、管理値上限102を超えているので、前工程である製造工程における狙い値を自動で変更させる。
When this rule is applied to the measurement result shown in FIG.
Since the sample 8 exceeds the standard value upper limit 106, it is determined as a defective product (NG).
Although the samples 13 and 14 do not exceed the standard value upper limit 106, but exceed the control value upper limit 102, the target value in the manufacturing process, which is the previous process, is automatically changed.

また、サンプル5、6、7やサンプル10、11、12、13に関しては、規格上限値106を超えていないが、規格上限値106に漸次近づく傾向を示すため、この変化傾向を示す情報を基に製造工程における組み立て方法を変更することで、つぎのサンプルの測定値が規格値上限106を超えるのを未然に防止することができ、軸受24の品質をより高めることができる。   In addition, regarding samples 5, 6, 7 and samples 10, 11, 12, and 13, the standard upper limit 106 is not exceeded, but since it tends to gradually approach the standard upper limit 106, information indicating this change tendency is used. By changing the assembly method in the manufacturing process, the measured value of the next sample can be prevented from exceeding the standard value upper limit 106, and the quality of the bearing 24 can be further improved.

各測定値をメモリに順次蓄積してその内容を判定し、この判定結果を製造工程における組み立て方法に反映させるためのルールを、製品としての軸受24の静特性に関する測定値に適用することもできる。すなわち、製造工程を経て組み立てられた軸受24の各部の寸法を検査装置12で測定し、各測定値を管理装置14で管理することができる。この場合、測定値が、規格上限値106を超えていないが、規格上限値106に漸次近づく傾向を示す情報を基に製造工程における組み立て方法を変更することで、軸受24の品質をより高めることができる。   A rule for sequentially storing each measured value in a memory and determining the contents thereof and reflecting the determination result in an assembling method in the manufacturing process can be applied to a measured value related to the static characteristics of the bearing 24 as a product. . That is, the dimension of each part of the bearing 24 assembled through the manufacturing process can be measured by the inspection device 12 and each measured value can be managed by the management device 14. In this case, although the measured value does not exceed the standard upper limit 106, the quality of the bearing 24 is further improved by changing the assembly method in the manufacturing process based on information indicating a tendency to gradually approach the standard upper limit 106. Can do.

また、検査工程における測定結果(検査結果)を製造工程に反映しても、不良品が多発する場合には、製造工程における組み立て装置10を自動的に停止したり、あるいは不良品が多発する旨を管理装置14から管理者に自動的に通報したりするシステムを構成することができる。   In addition, even if the measurement result (inspection result) in the inspection process is reflected in the manufacturing process, if defective products occur frequently, the assembly apparatus 10 in the manufacturing process is automatically stopped, or defective products occur frequently. Can be configured to automatically notify the administrator from the management device 14.

また、図4に示す各サンプルの測定結果、各サンプルに関する判定結果あるいは不良品の発生状況などを通信ネットワーク16を介してネット上に表現したり、イベントのログを表示したりすることで、各サンプルの測定結果、各サンプルに関する判定結果あるいは不良品の発生状況などを誰でも端末装置などで確認することができる。   In addition, the measurement result of each sample shown in FIG. 4, the determination result regarding each sample, the occurrence status of defective products, and the like are expressed on the network via the communication network 16, and an event log is displayed. Anyone can check the measurement result of the sample, the determination result related to each sample, the occurrence status of defective products, etc. with a terminal device or the like.

本発明の一実施例を示す製造ラインの生産管理システムの構成図である。It is a block diagram of the production management system of the manufacturing line which shows one Example of this invention. 軸受用部品の寸法を説明するための図である。It is a figure for demonstrating the dimension of the components for bearings. 軸受用部品の組み立て方法を説明するための要部工程図である。It is a principal part process drawing for demonstrating the assembly method of the components for bearings. 軸受用部品の測定値の変化を説明するための図である。It is a figure for demonstrating the change of the measured value of the components for bearings.

符号の説明Explanation of symbols

10 組み立て装置
12 検査装置
14 管理装置
16 通信ネットワーク
18 外輪
20 内輪
22 ボール
24 軸受
DESCRIPTION OF SYMBOLS 10 Assembly apparatus 12 Inspection apparatus 14 Management apparatus 16 Communication network 18 Outer ring 20 Inner ring 22 Ball 24 Bearing

Claims (5)

複数の部品を組み立てて製品を形成する製造工程と、前記各部品または前記製品を検査対象として前記検査対象を検査する検査工程とを含み、前記検査工程では、予め設定されたルールに従って前記検査対象の静特性を測定し、この測定値と良否判定値とを比較して前記検査対象の良否を判定するとともに、さらに、前記測定値を順次蓄積してその内容を判定し、この判定結果を前記製造工程に反映させる管理工程を含む、製造ラインの生産管理方法。   A manufacturing process for assembling a plurality of parts to form a product; and an inspection process for inspecting the inspection object with each of the parts or the product as an inspection object. In the inspection process, the inspection object is in accordance with a preset rule. And measuring the static characteristics of the test object, comparing the measured value with a pass / fail judgment value to determine pass / fail of the inspection object, and further accumulating the measured value in order to determine its contents, A production management method for a production line including a management process to be reflected in the production process. 前記管理工程は、前記測定値を順次蓄積し、前記測定値が前記良否判定値に近づく傾向を示すときには、前記測定値の変化傾向を前記製造工程に反映させることを特徴とする請求項1に記載の製造ラインの生産管理方法。   The management process sequentially accumulates the measurement values, and when the measurement values show a tendency to approach the pass / fail judgment value, the change tendency of the measurement values is reflected in the manufacturing process. A production management method for the described production line. 前記測定値に関する情報を前記良否判定値に対応づけて通信ネットワークに送信することを特徴とする請求項1または2に記載の製造ラインの生産管理方法。   3. The production management method for a production line according to claim 1, wherein information related to the measured value is transmitted to a communication network in association with the pass / fail judgment value. 前記製品として、外輪と内輪およびボールを含む軸受を対象としたときには、前記検査工程では、前記外輪を基準として、前記内輪と前記ボールを含む要素と前記外輪との隙間を測定することを特徴とする請求項1、2または3のうちいずれか1項に記載の製造ラインの生産管理方法。   When the bearing includes an outer ring, an inner ring, and a ball as the product, the inspection step measures a gap between the inner ring, the element including the ball, and the outer ring based on the outer ring. The production management method for a production line according to any one of claims 1, 2, and 3. 複数の部品を組み立てて製品を形成する組み立て装置と、前記各部品または前記製品を検査対象として前記検査対象の静特性を検査する検査装置と、前記検査装置の検査による測定値を管理する管理装置とを備え、前記管理装置は、前記検査装置の検査による測定値と良否判定値とを比較して前記検査対象の良否を判定するとともに、前記測定値を順次蓄積してその内容を判定し、この判定結果を前記組み立て装置に反映させてなる製造ラインの生産管理システム。   An assembling apparatus that assembles a plurality of parts to form a product, an inspection apparatus that inspects the static characteristics of the inspection object using each of the parts or the product as an inspection object, and a management apparatus that manages measurement values obtained by inspection of the inspection apparatus The management device compares the measured value by the inspection of the inspection device and the pass / fail judgment value to determine pass / fail of the inspection object, and sequentially accumulates the measured value to determine the contents thereof, A production line production management system in which the determination result is reflected in the assembly apparatus.
JP2006188533A 2006-07-07 2006-07-07 Production management method and production management system of manufacturing line Pending JP2008015938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006188533A JP2008015938A (en) 2006-07-07 2006-07-07 Production management method and production management system of manufacturing line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006188533A JP2008015938A (en) 2006-07-07 2006-07-07 Production management method and production management system of manufacturing line

Publications (1)

Publication Number Publication Date
JP2008015938A true JP2008015938A (en) 2008-01-24

Family

ID=39072861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006188533A Pending JP2008015938A (en) 2006-07-07 2006-07-07 Production management method and production management system of manufacturing line

Country Status (1)

Country Link
JP (1) JP2008015938A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199313A (en) * 2016-04-28 2017-11-02 ファナック株式会社 Manufacturing regulation system for regulating manufacturing situation of machines
CN107831738A (en) * 2017-09-28 2018-03-23 浙江盛达物联科技股份有限公司 The cutter and production planning management system of bearing mnanufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199313A (en) * 2016-04-28 2017-11-02 ファナック株式会社 Manufacturing regulation system for regulating manufacturing situation of machines
CN107390644A (en) * 2016-04-28 2017-11-24 发那科株式会社 Manufacture adjustment system
US10120368B2 (en) 2016-04-28 2018-11-06 Fanuc Corporation Manufacturing adjustment system that adjusts manufacturing statuses of multiple machines
CN107390644B (en) * 2016-04-28 2020-06-02 发那科株式会社 Manufacturing adjustment system
CN107831738A (en) * 2017-09-28 2018-03-23 浙江盛达物联科技股份有限公司 The cutter and production planning management system of bearing mnanufacture

Similar Documents

Publication Publication Date Title
US20190250066A1 (en) Monitoring method and monitoring apparatus for determining remaining life of a bearing
KR20150004848A (en) Bearing monitoring method and system
EP1649333B2 (en) A system and method for monitoring and visualizing the output of a production process
US20130218484A1 (en) System and method for monitoring rotating and reciprocating machinery
US20140012527A1 (en) Diagnostic method for determining whether machine element is reusable
GB2521359A (en) Viscosity estimation from demodulated acoustic emission
JP5908356B2 (en) Life estimation apparatus and life estimation method for rolling bearing
EP3757539A1 (en) System, apparatus and method of determining condition of a bearing
JP2008015938A (en) Production management method and production management system of manufacturing line
US11137741B2 (en) Quality control device and quality control method
US20220065748A1 (en) System, apparatus and method for estimating remaining useful life of a bearing
Zhang et al. Mechanical component lifetime estimation based on accelerated life testing with singularity extrapolation
US8830078B2 (en) Method of manufacturing bearing device component coated with photoluminescence material, bearing device component and processing device
KR101802701B1 (en) Bearing reverse design method and device by evaluating residual life of bearing
CN105486807A (en) Method for analyzing hidden safety trouble of dangerous chemical gas
KR101745805B1 (en) Apparatus and Method for machine condition monitoring
JP2008015930A (en) Production management method and production management system of manufacturing line
JP2008015937A (en) Production management method and production management system of manufacturing line
KR101499728B1 (en) Fault prediction method for plant
US10508690B2 (en) Rolling-element bearing assembly
US20220334027A1 (en) Systems and methods for predicting and updating gearbox lifetime expectancy
US20220360142A1 (en) Method for determining a state of an electric motor and a corresponding electric motor and fan
US20220260632A1 (en) Systems and methods for evaluating the reliability of semiconductor die packages
Bewoor et al. Interoperability of international standards, condition monitoring methods and research models for bearing fault: an integrated approach
FR3020844A1 (en) MECHANICAL SYSTEM WITH MICROCAPSULES FOR MONITORING STATE