JP2008015571A - Method of manufacturing coordinate input panel - Google Patents

Method of manufacturing coordinate input panel Download PDF

Info

Publication number
JP2008015571A
JP2008015571A JP2006182898A JP2006182898A JP2008015571A JP 2008015571 A JP2008015571 A JP 2008015571A JP 2006182898 A JP2006182898 A JP 2006182898A JP 2006182898 A JP2006182898 A JP 2006182898A JP 2008015571 A JP2008015571 A JP 2008015571A
Authority
JP
Japan
Prior art keywords
coordinate input
input panel
resistor
film
surface resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006182898A
Other languages
Japanese (ja)
Inventor
Makoto Nagaoka
誠 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP2006182898A priority Critical patent/JP2008015571A/en
Publication of JP2008015571A publication Critical patent/JP2008015571A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a coordinate input panel with high accuracy by forming a surface resistor with a thermal decomposition type ITO ink. <P>SOLUTION: The coordinate input panel includes a surface resistor film on a glass substrate, a quadrangular resisting peripheral electrode formed on the surface resistor film to surround the surface resistor film, and lead wires connected from the four vertexes of the resisting peripheral electrode. This method of manufacturing the coordinate input panel is characterized that the surface resistor film is formed of an ITO film by a coating thermal decomposition method. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、指または座標指示器によりタッチ位置を検出する座標入力パネルに関する。   The present invention relates to a coordinate input panel that detects a touch position with a finger or a coordinate indicator.

図1及び図2は静電容量結合方式の座標検出装置の例であり、座標入力パネル1は均一な面抵抗体2に取り囲む抵抗性周囲電極3が配設されており、4頂点に引き出し線5が、信号処理部6に接続されている。
従来の座標入力パネルは、ガラス基材4の表面に面抵抗体2として、スパッタ法によるITO(インジウム酸化物)膜あるいは、cvd法(化学的気相蒸着法)による酸化スズ膜等が約1kΩ/□で形成されている。さらに面抵抗体2の上には、抵抗性周囲電極3が、各頂点間の抵抗値が約100Ωになるように形成されている。
上記座標入力パネルの座標検出手段として、座標指示器(入力ペン等)8から信号を発信し、静電容量結合を介して面抵抗体2が、座標指示器8から発信された信号を受信する方法、及び信号伝達の方向がこれと逆の面抵抗体2の各部を信号駆動し、座標指示器8で受信する座標検出装置、あるいは面抵抗体2全体を電圧振動させて、座標指示器8(指・導電性物等であり図示省略)が近接または接触した点の位置を検出する方法がある。
特願2005−289163号。
FIG. 1 and FIG. 2 show an example of a capacitive coupling type coordinate detection device. A coordinate input panel 1 is provided with a resistive peripheral electrode 3 surrounded by a uniform sheet resistor 2, and leads are drawn at the four vertices. 5 is connected to the signal processing unit 6.
In the conventional coordinate input panel, an ITO (indium oxide) film formed by sputtering or a tin oxide film formed by cvd (chemical vapor deposition) is used as the surface resistor 2 on the surface of the glass substrate 4 at about 1 kΩ. / □. Furthermore, a resistive surrounding electrode 3 is formed on the surface resistor 2 so that the resistance value between the apexes is about 100Ω.
As a coordinate detection means of the coordinate input panel, a signal is transmitted from a coordinate indicator (input pen or the like) 8 and the surface resistor 2 receives a signal transmitted from the coordinate indicator 8 through capacitive coupling. A method and a coordinate detection device for driving each part of the surface resistor 2 of which the direction of signal transmission is opposite to this, and receiving the signal by the coordinate indicator 8, or the entire surface resistor 2 is voltage-vibrated, and the coordinate indicator 8 There is a method for detecting the position of a point where a finger (a finger, a conductive material, etc., not shown) comes close to or touches.
Japanese Patent Application No. 2005-289163.

上記座標入力パネルにおいて、入力ペンまたは指、導電物等が近接または接触した点の位置を正確に検出するためには、座標入力パネル上に生じる電位分布あるいは電流分布を均一にすることが必要となる。
そのために、面抵抗体2を均一に成膜すること、及び抵抗性周囲電極3の4頂点間の抵抗値が均一であることが必要である。同時に面抵抗体2のシート抵抗値1000Ω/□に対し、抵抗性周囲電極4の抵抗値が20〜200Ωであることが必要である。
In the above coordinate input panel, in order to accurately detect the position of the point where the input pen, finger, conductor, or the like approaches or contacts, it is necessary to make the potential distribution or current distribution generated on the coordinate input panel uniform. Become.
For this purpose, it is necessary that the surface resistor 2 is uniformly formed and that the resistance value between the four vertices of the resistive surrounding electrode 3 is uniform. At the same time, it is necessary that the resistance value of the resistive surrounding electrode 4 is 20 to 200Ω with respect to the sheet resistance value of 1000Ω / □ of the surface resistor 2.

本発明に関わる座標入力パネルは、液晶等の表示装置上に搭載される使用方法が主流となっているが、近年液晶表示装置の面積の大型化により、座標入力装置の面積も大型化が不可欠となっている。
面抵抗体2の従来の成膜方法としては、スパッタ法やcvd法(化学的気相蒸着法)が用いられているが、これらの方法だと、シート抵抗値1000Ω/□付近での膜厚の均一性をよくすることが困難であり、特に大面積でのシート抵抗値の均一性が悪い。
また後述する抵抗性周囲電極3を形成する際、加熱工程が不可欠であり、そのときに面抵抗体2のシート抵抗値が変化してしまい、シート抵抗値と抵抗性周囲電極の抵抗値との比がずれてしまうという問題があった。
The coordinate input panel according to the present invention is mainly used on a display device such as a liquid crystal display. However, due to the increase in the area of the liquid crystal display device in recent years, it is essential to increase the area of the coordinate input device. It has become.
Sputtering or cvd (chemical vapor deposition) is used as a conventional film forming method for the surface resistor 2. With these methods, the film thickness near a sheet resistance of 1000 Ω / □ is used. It is difficult to improve the uniformity of the sheet resistance, and the uniformity of the sheet resistance value in a large area is particularly poor.
Moreover, when forming the resistive surrounding electrode 3 mentioned later, a heating process is indispensable, the sheet resistance value of the surface resistor 2 changes at that time, and the sheet resistance value and the resistance value of the resistive surrounding electrode There was a problem that the ratio was shifted.

抵抗性周囲電極3の形成方法としては、導電性インクが知られている。このインクでは、導電性材料として、カーボン粉・銀粉等が使用され、所望の抵抗値になるようにその混合比を適宜調整し使用される。これらのインクでは、スクリーン印刷等でパターン印刷された後、通常150℃〜850℃で加熱硬化される。
また別の方法では、スパッタ法、メッキ法等により金属抵抗膜を所望の形状及び抵抗値に形成される。
As a method for forming the resistive surrounding electrode 3, a conductive ink is known. In this ink, carbon powder, silver powder, or the like is used as a conductive material, and the mixing ratio is appropriately adjusted so as to obtain a desired resistance value. With these inks, pattern printing is performed by screen printing or the like, and then heat curing is usually performed at 150 ° C. to 850 ° C.
In another method, the metal resistance film is formed in a desired shape and resistance value by sputtering, plating, or the like.

本発明は、ガラス基材上の面抵抗体膜と、前記面抵抗体膜上に前記面抵抗体膜を取り囲む様に形成された四角形の抵抗性周囲電極、及び前記抵抗性周囲電極の各4頂点から引き出し線が接続される座標入力パネルであって、前記面抵抗体膜が塗布熱分解法によるITO膜で形成されていることを特徴とする座標入力パネルの製造方法を第1の要旨とし、抵抗性周囲電極が、導電性インクを印刷・焼成して形成されることを特徴とする座標入力パネルの製造方法を第2の要旨とし、さらにガラス粉末をバインダーとした導電性インクにより抵抗性周囲電極を印刷・焼成して形成されることを特徴とする座標入力パネルの製造方法を第3の要旨とするものである。   The present invention relates to a sheet resistor film on a glass substrate, a square resistor surrounding electrode formed on the sheet resistor film so as to surround the sheet resistor film, and four each of the resistor surrounding electrodes. A coordinate input panel to which a lead line is connected from the apex, wherein the surface resistor film is formed of an ITO film by a coating pyrolysis method is a first gist. The second aspect is a method for manufacturing a coordinate input panel, in which the resistive surrounding electrode is formed by printing and baking a conductive ink, and the conductive ink using glass powder as a binder provides resistance. A third gist of the method for manufacturing a coordinate input panel, which is formed by printing and baking the surrounding electrodes.

面抵抗体を熱分解型ITOインクにより形成することで、精度の高い座標入力パネルを製造することが可能となる。   A highly accurate coordinate input panel can be manufactured by forming the surface resistor from the thermal decomposition type ITO ink.

本発明で用いられる塗布熱分解法によるito膜は、有機インジウム化合物を主体とし、導電性を付与するために有機スズ化合物が添加される。さらに印刷性を付与するために、溶媒に溶解し、粘性剤等を添加して得られる塗布液をガラス基材に塗布・焼成して得られる物である。有機インジウム化合物及び有機スズ化合物はともに公知の化合物が用いられ、例えばオクチル酸インジウム、アセチルアセトンインジウム等で、特に限定されることなく使用できる。またインク化するための溶媒・粘性剤も特に限定される物でなく、任意の物が使用できる。   The ITO film by the coating pyrolysis method used in the present invention is mainly composed of an organic indium compound, and an organic tin compound is added to impart conductivity. Furthermore, in order to provide printability, it is a product obtained by applying and baking a coating solution obtained by dissolving in a solvent and adding a viscosity agent or the like to a glass substrate. As the organic indium compound and the organic tin compound, known compounds are used, for example, indium octylate, indium acetylacetone, and the like, which can be used without any particular limitation. Further, the solvent / viscous agent for forming an ink is not particularly limited, and an arbitrary one can be used.

ガラス基材への塗布方法としては例えば、ディップコート法、スピンコート法、スクリーン印刷法等がある。いずれの方法もスパッタ法等に比べ、装置が簡単であり、大面積への成膜が可能である。特に、曲面への塗布や、後工程の抵抗性周囲電極の形成方法と同じ工程が利用できるといった点で、スクリーン印刷法は有利である。   Examples of the coating method on the glass substrate include dip coating, spin coating, and screen printing. Each method has a simpler apparatus than the sputtering method and can form a film over a large area. In particular, the screen printing method is advantageous in that it can be applied to a curved surface and the same process as a method for forming a resistive surrounding electrode in a subsequent process can be used.

形成される面抵抗体2のシート抵抗値は、有機インジウム化合物と有機スズ化合物の比、及び印刷膜厚・焼成温度・時間といった条件により定まり、所望の抵抗値を得るための条件は適宜選択されればよい。使用されるガラス基材も特にその材質を限定される物でなく、ソーダガラス、・無アルカリガラス、耐熱性硝子等任意の物が使用できるが、塗布熱分解法によるito膜の形成温度が通常300℃〜600℃の範囲で形成されることから、耐熱温度が600℃以下のソーダガラスも十分使用できる。   The sheet resistance value of the formed surface resistor 2 is determined by the ratio of the organic indium compound and the organic tin compound and the conditions such as the printed film thickness, the firing temperature, and the time, and the conditions for obtaining the desired resistance value are appropriately selected. Just do it. The glass substrate used is not particularly limited in its material, and any material such as soda glass, non-alkali glass, heat-resistant glass, etc. can be used, but the formation temperature of the ITO film by the coating pyrolysis method is usually Since it forms in the range of 300 to 600 degreeC, the soda glass whose heat-resistant temperature is 600 degrees C or less can fully be used.

抵抗性周囲電極は、前述のごとく導電性インクをスクリーン印刷法により、形成するのが好ましい。導電性インクには、樹脂をバインダーとし、120〜200℃で加熱硬化する物が使われるが、より好ましくはガラス粉をバインダーとする導電性インクを用いることがよい。このインクでは、導電性材料として、銀粉や銀―パラジウム粉が使用されるが、印刷後の加熱硬化方法として、ガラス粉の軟化温度以上の温度が必要であり、通常450℃〜600℃で焼成される。   As described above, the resistive surrounding electrode is preferably formed by screen printing using conductive ink. As the conductive ink, a resin is used as a binder and heat-cured at 120 to 200 ° C., but it is more preferable to use a conductive ink having glass powder as a binder. In this ink, silver powder or silver-palladium powder is used as a conductive material. However, a temperature higher than the softening temperature of glass powder is required as a heat-curing method after printing, and is usually fired at 450 ° C. to 600 ° C. Is done.

樹脂をバインダーとする導電性インクでは、加熱硬化温度が120〜200℃であるため、工程が簡易であるという長所があるが、反面バインダーが樹脂であるため、密着性、及び強度の点で、ガラス粉をバインダーとする導電性インクに比べ劣っており、ガラス粉をバインダーとする導電性インクを用いるのが好ましい。またガラス粉をバインダーとする導電性インクは、加熱硬化温度が熱分解型ITOインクとほぼ同じ温度で行えるため、工程の設備を共用できる利点もある。   In the conductive ink using a resin as a binder, since the heat curing temperature is 120 to 200 ° C., there is an advantage that the process is simple. On the other hand, since the binder is a resin, in terms of adhesion and strength, It is inferior to the conductive ink which uses glass powder as a binder, and it is preferable to use the conductive ink which uses glass powder as a binder. In addition, the conductive ink using glass powder as a binder has the advantage that the process equipment can be shared because the heat-curing temperature can be almost the same as that of the thermally decomposable ITO ink.

以下実施例により、図3、図4、図5を用いて本発明を詳細に説明する。
ソーダガラス(厚さ3ミリメートルを略430×330ミリメートル切断したガラス基材4を用意した。表面を洗浄後、住友金属鉱山(株)製熱分解型itoインクdx400をスクリーン印刷により、ガラス表面全面に印刷塗布し、室温にて約5分放置後、180℃にて15分乾燥を行った。その後、520℃にて12分焼成を行い、面抵抗体2を形成した。得られた面抵抗体2のシート抵抗値及び分布をガラス表面で48カ所測定した結果、965Ω/□±12%であった。
Hereinafter, the present invention will be described in detail by way of examples with reference to FIGS. 3, 4, and 5.
Soda glass (a glass substrate 4 having a thickness of 3 mm cut to about 430 × 330 mm was prepared. After cleaning the surface, pyrolytic ito ink dx400 manufactured by Sumitomo Metal Mining Co., Ltd. was screen-printed on the entire surface of the glass. The coating was applied and left at room temperature for about 5 minutes, followed by drying at 180 ° C. for 15 minutes, followed by baking at 520 ° C. for 12 minutes to form sheet resistor 2. The obtained sheet resistor. The sheet resistance value and distribution of No. 2 were measured at 48 locations on the glass surface. As a result, it was 965Ω / □ ± 12%.

その後、面抵抗体2の上に(株)アサヒ化学研究所製銀ペーストls−504(樹脂バインダー)にカーボンを混合したペーストを用いて、スクリーン印刷により周囲電極3を印刷し、180℃にて30分加熱硬化した。その際、周囲電極3の4頂点間抵抗値が約100Ωになるように、パターン幅・長さが設計されたパターンを用いた。かかるタイプの銀導電性インクでは強度が弱く直接ハンダ付けが困難なので、4頂点3−A、3−B、3−C、3−Dにハンダ付けができるようにするため、4頂点のみにハンダ付け可能な銅ペースト((株)アサヒ化学研究所製銅ペーストACP−051)を用いハンダ付け端子3−Eを形成した。   Thereafter, the peripheral electrode 3 was printed by screen printing on the surface resistor 2 using a paste obtained by mixing carbon in silver paste ls-504 (resin binder) manufactured by Asahi Chemical Research Co., Ltd. at 180 ° C. Heat cured for 30 minutes. At that time, a pattern in which the pattern width and length were designed so that the resistance value between the four apexes of the peripheral electrode 3 was about 100Ω was used. Since this type of silver conductive ink has low strength and is difficult to solder directly, in order to enable soldering to the four vertices 3-A, 3-B, 3-C, and 3-D, solder only to the four vertices. A soldering terminal 3-E was formed using a copper paste that can be attached (copper paste ACP-051 manufactured by Asahi Chemical Research Co., Ltd.).

周囲電極3を形成後、再度面抵抗体2のシート抵抗値及び分布をガラス表面で48カ所測定した結果、975Ω/□±12%であり、面抵抗体2のシート抵抗値に変化は見られなかった。さらに得られた座標入力パネルに引き出し線をハンダ付けし、信号処理部に接続し、入力ペンにより座標検出を行った結果、精度が3%以内に納まり良好な性能を得られた。   After forming the peripheral electrode 3, the sheet resistance value and distribution of the surface resistor 2 were measured again at 48 locations on the glass surface. As a result, it was 975Ω / □ ± 12%, and a change was seen in the sheet resistance value of the surface resistor 2. There wasn't. Furthermore, the lead wire was soldered to the obtained coordinate input panel, connected to the signal processing unit, and coordinate detection was performed with the input pen. As a result, the accuracy was within 3% and good performance was obtained.

図4を参照して説明する。実施例1と同様に面抵抗体2を形成したガラス基材4に、ガラスバインダータイプの銀導電性インク(ヘレウス(株)製厚膜ペーストC4460)を用い、スクリーン印刷により周囲電極3を印刷し、520℃にて30分加熱硬化した。その際、周囲電極3の4頂点間抵抗値が約100Ωになるように、パターン幅・長さが設計されたパターンを用いた。   This will be described with reference to FIG. The glass substrate 4 on which the surface resistor 2 was formed in the same manner as in Example 1 was printed with the surrounding electrode 3 by screen printing using a glass binder-type silver conductive ink (Healeus Co., Ltd. thick film paste C4460). Heat curing at 520 ° C. for 30 minutes. At that time, a pattern in which the pattern width and length were designed so that the resistance value between the four apexes of the peripheral electrode 3 was about 100Ω was used.

周囲電極3を形成後、再度面抵抗体2のシート抵抗値及び分布をガラス表面で48カ所測定した結果、970Ω/□±12%であり、面抵抗体2のシート抵抗値に変化は見られなかった。さらに得られた座標入力パネルに引き出し線を形成された周囲電極3の4頂点に直接ハンダ付けし、信号処理部に接続し、入力ペンにより座標検出を行った結果、精度が3%以内に納まり良好な性能を得られた。   After forming the peripheral electrode 3, the sheet resistance value and distribution of the surface resistor 2 were measured again at 48 locations on the glass surface. As a result, it was 970Ω / □ ± 12%, and a change was seen in the sheet resistance value of the surface resistor 2. There wasn't. Furthermore, as a result of soldering directly to the four vertices of the peripheral electrode 3 on which the lead lines are formed on the obtained coordinate input panel, connecting to the signal processing unit, and performing coordinate detection with the input pen, the accuracy is within 3%. Good performance was obtained.

図5は、ガラス基材4として2000Rの曲面を有するガラスを用い、凸面側に実施例1と同様に面抵抗体2を形成した。得られた面抵抗体2を形成のシート抵抗値及び分布は1100Ω/□±15%であった。抵抗性周囲電極3は銀−パラジウム混合導電性インク(ヘレウス(株)製厚膜ペーストC4026)を用いた以外は実施例2と同様に形成した。   In FIG. 5, glass having a curved surface of 2000R was used as the glass substrate 4, and the surface resistor 2 was formed on the convex surface side in the same manner as in Example 1. The sheet resistance value and distribution for forming the obtained sheet resistor 2 were 1100Ω / □ ± 15%. The resistive surrounding electrode 3 was formed in the same manner as in Example 2 except that silver-palladium mixed conductive ink (Heerus Co., Ltd., thick film paste C4026) was used.

周囲電極3を形成後、再度面抵抗体2のシート抵抗値及び分布をガラス表面で48カ所測定した結果、1150Ω/□±12%であり、面抵抗体2のシート抵抗値に変化は見られなかった。さらに得られた座標入力パネルに引き出し線を形成された周囲電極3の4頂点に直接ハンダ付けし、信号処理部に接続し、入力ペンにより座標検出を行った結果、精度が3%以内に納まり良好な性能を得られた。
(比較例1)
After forming the peripheral electrode 3, the sheet resistance value and distribution of the surface resistor 2 were measured again at 48 locations on the glass surface. As a result, it was 1150Ω / □ ± 12%, and there was a change in the sheet resistance value of the surface resistor 2. There wasn't. Furthermore, as a result of soldering directly to the four vertices of the peripheral electrode 3 on which the lead lines are formed on the obtained coordinate input panel, connecting to the signal processing unit, and performing coordinate detection with the input pen, the accuracy is within 3%. Good performance was obtained.
(Comparative Example 1)

面抵抗体2として、スパッタ法によるITO膜を用いた以外は実施例1と同様になした。面抵抗体2のシート抵抗値及び分布は、膜付け時は、980Ω/□±20%であった。さらに周囲電極3を形成した後、測定した結果、1950Ω/□±25%に変化していた。   The same operation as in Example 1 was performed except that an ITO film formed by sputtering was used as the surface resistor 2. The sheet resistance value and distribution of the surface resistor 2 were 980Ω / □ ± 20% when the film was attached. Furthermore, after forming the surrounding electrode 3, as a result of the measurement, it was changed to 1950Ω / □ ± 25%.

実施例1と同様に座標検出を行った結果、座標入力精度は8%と悪かった。
(比較例2)
As a result of performing coordinate detection in the same manner as in Example 1, the coordinate input accuracy was as bad as 8%.
(Comparative Example 2)

面抵抗体2として、スパッタ法によるITO膜を用いた以外は実施例2と同様になした。面抵抗体2のシート抵抗値及び分布は、膜付け時は、980Ω/□±20%であった。さらに周囲電極3を形成した後、測定した結果、2900Ω/□±35%に変化していた。   The same operation as in Example 2 was performed except that an ITO film formed by sputtering was used as the surface resistor 2. The sheet resistance value and distribution of the surface resistor 2 were 980Ω / □ ± 20% when the film was attached. Furthermore, after forming the surrounding electrode 3, as a result of the measurement, it was changed to 2900Ω / □ ± 35%.

実施例1と同様に座標検出を行った結果、座標入力精度は20%となり、実用に値しないものであった。   As a result of performing coordinate detection in the same manner as in Example 1, the coordinate input accuracy was 20%, which was not practical.

静電容量結合方式の座標検出装置の説明図Explanatory diagram of capacitive coupling type coordinate detection device 本発明の座標入力パネルの平面模式図Plane schematic diagram of the coordinate input panel of the present invention 実施例1及び比較例1の座標入力パネルの断面模式図Sectional schematic diagram of coordinate input panel of Example 1 and Comparative Example 1 実施例2及び比較例2の座標入力パネルの断面模式図Sectional schematic diagram of coordinate input panel of Example 2 and Comparative Example 2 実施例3の座標入力パネルの断面模式図Sectional schematic diagram of the coordinate input panel of Example 3

符号の説明Explanation of symbols

1 座標入力パネル
2 面抵抗体
3 抵抗性周囲電極
4 ガラス基材
5 引き出し線
6 信号処理部
7 信号処理部
8 座標指示器(入力ペン)
DESCRIPTION OF SYMBOLS 1 Coordinate input panel 2 Surface resistor 3 Resistive surrounding electrode 4 Glass base material 5 Lead wire 6 Signal processing part 7 Signal processing part 8 Coordinate indicator (input pen)

Claims (3)

ガラス基材上に設けられた面抵抗体膜と、前記面抵抗体膜を取り囲む様に形成された抵抗性周囲電極と、前記抵抗性周囲電極から電気的な引き出し線が接続されて構成されている座標入力パネルであって、前記面抵抗体膜が塗布熱分解法によるITO膜で形成されていることを特徴とする座標入力パネルの製造方法。 A sheet resistor film provided on a glass substrate, a resistor surrounding electrode formed so as to surround the sheet resistor film, and an electrical lead wire connected from the resistor surrounding electrode. A method for manufacturing a coordinate input panel, wherein the surface resistor film is formed of an ITO film by a coating pyrolysis method. 前記抵抗性周囲電極が、導電性インクを印刷・焼成して形成されることを特徴とする、特許請求項1に記載の座標入力パネルの製造方法。 2. The method of manufacturing a coordinate input panel according to claim 1, wherein the resistive surrounding electrode is formed by printing and baking conductive ink. ガラス粉末をバインダーとした導電性インクにより、前記抵抗性周囲電極を印刷・焼成して形成されることを特徴とする、特許請求項1に記載された座標入力パネルの製造方法。
2. The method for manufacturing a coordinate input panel according to claim 1, wherein the resistive surrounding electrode is formed by printing and baking with a conductive ink using glass powder as a binder.
JP2006182898A 2006-07-03 2006-07-03 Method of manufacturing coordinate input panel Pending JP2008015571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006182898A JP2008015571A (en) 2006-07-03 2006-07-03 Method of manufacturing coordinate input panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006182898A JP2008015571A (en) 2006-07-03 2006-07-03 Method of manufacturing coordinate input panel

Publications (1)

Publication Number Publication Date
JP2008015571A true JP2008015571A (en) 2008-01-24

Family

ID=39072551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006182898A Pending JP2008015571A (en) 2006-07-03 2006-07-03 Method of manufacturing coordinate input panel

Country Status (1)

Country Link
JP (1) JP2008015571A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286895A (en) * 2009-06-09 2010-12-24 Toshiba Tec Corp Information input device and information processor
WO2011145367A1 (en) * 2010-05-21 2011-11-24 日本メクトロン株式会社 Transparent flexible printed wiring board and process for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286895A (en) * 2009-06-09 2010-12-24 Toshiba Tec Corp Information input device and information processor
WO2011145367A1 (en) * 2010-05-21 2011-11-24 日本メクトロン株式会社 Transparent flexible printed wiring board and process for producing same
JP2011243928A (en) * 2010-05-21 2011-12-01 Nippon Mektron Ltd Transparent flexible printed wiring board and method for manufacturing the same
KR20130072185A (en) * 2010-05-21 2013-07-01 니폰 메크트론 가부시키가이샤 Transparent flexible printed wiring board and process for producing same
US9029709B2 (en) 2010-05-21 2015-05-12 Nippon Mektron, Ltd. Transparent flexible printed wiring board and method for manufacturing the same
KR101718873B1 (en) * 2010-05-21 2017-03-22 니폰 메크트론 가부시키가이샤 Transparent Flexible Printed Wiring Board and Method For Manufacturing the Same

Similar Documents

Publication Publication Date Title
KR101144537B1 (en) Electric conducting body and method for preparing the same
US9535543B2 (en) Touch panel and method for manufacturing the same
WO2014061765A1 (en) Electroconductive paste
US20170011825A1 (en) Thick film resistor and production method for same
TWI381043B (en) Ion dielectric type touch sensor and device thereof
KR20160027873A (en) Capacitive sensor and method of manufacturing the same
JP5988123B2 (en) Resistance composition
JP4687733B2 (en) Transparent electrode, transparent conductive substrate and transparent touch panel
KR101796452B1 (en) Flexible printed circuit board and method for manufacturing thereof
JP2008015571A (en) Method of manufacturing coordinate input panel
TWI609381B (en) Method of fabricating high-conductivity thick-film copper paste coated with nano-silver for being sintered in the air
CN105372882B (en) Display panel
CN113793718A (en) Thin film electrode and preparation method and application thereof
US8921704B2 (en) Patterned conductive polymer with dielectric patch
CN105764168A (en) Car rear windshield heating wire silver paste and preparation method thereof
JP2008090517A (en) Manufacturing method of coordinate input panel
CN107533877A (en) Thick film conductor forms and uses Cu composite creams and thick film conductor
JP2011053033A (en) Apparatus for evaluation of coordinates input panel
JP2009205562A (en) Coordinate input device
JP2009110457A (en) Coordinate input device
JP2010039510A (en) Method of producing electrostatic capacity coupling type coordinate input panel
KR20120079748A (en) Touch panel
TW498364B (en) Method in producing linear pattern for touch screen
KR102545717B1 (en) Touch and fingerprint recognition display panel and the method for manufacturing the same
CN104951151A (en) Touch module manufacturing method