JP2008014827A - Method and device for adjusting lens's decentration - Google Patents
Method and device for adjusting lens's decentration Download PDFInfo
- Publication number
- JP2008014827A JP2008014827A JP2006186962A JP2006186962A JP2008014827A JP 2008014827 A JP2008014827 A JP 2008014827A JP 2006186962 A JP2006186962 A JP 2006186962A JP 2006186962 A JP2006186962 A JP 2006186962A JP 2008014827 A JP2008014827 A JP 2008014827A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- adjusted
- movement amount
- eccentricity
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
- Lens Barrels (AREA)
Abstract
Description
本発明は、カメラや他の光学機器などのレンズの組み立て時に用いられるレンズの偏芯調整方法及び装置に関するものである。 The present invention relates to a lens eccentricity adjusting method and apparatus used when assembling a lens of a camera or other optical equipment.
ズームレンズは例えば、前群レンズ、ズームレンズ本体、後群レンズ、フォーカスレンズなどからなり、鏡胴に取り付けられている。このうち、ズームレンズ本体、後群レンズ、フォーカスレンズは鏡胴に組み付けることにより、ほぼ光軸が一致する。また、前群レンズは、バネ状リングなどによって、光軸に直交する面内で鏡胴に移動可能に取り付けられており、レンズの偏芯調整を行った後にレンズ鏡胴に接着剤などにより固定して仮付けし、その後必要により本付けを行っている。 The zoom lens includes, for example, a front lens group, a zoom lens body, a rear lens group, a focus lens, and the like, and is attached to a lens barrel. Among these, the zoom lens main body, the rear group lens, and the focus lens are assembled to the lens barrel so that their optical axes substantially coincide. The front lens group is attached to the lens barrel in a plane perpendicular to the optical axis by a spring-like ring, etc., and is fixed to the lens barrel with an adhesive after adjusting the eccentricity of the lens. The temporary attachment is made, and then the main attachment is performed if necessary.
前記レンズの偏芯調整は、解像度チャートをズームレンズによりCCDカメラで撮影し、この撮影されたチャート画像を作業者が観察しながら、前群レンズを光軸に直交する面内で移動させる。そして、チャート画像が解像される位置で前群レンズを鏡胴に固定する。 In the lens eccentricity adjustment, a resolution chart is taken with a CCD camera using a zoom lens, and the front group lens is moved in a plane orthogonal to the optical axis while an operator observes the taken chart image. Then, the front lens group is fixed to the lens barrel at a position where the chart image is resolved.
しかし、このような方法では、作業者の目視観察によりレンズの移動調整を行うものであり、解像の判断に熟練を必要とし、しかも量産適合性が無く、調整結果に個人差があり信頼性に乏しいなどの問題がある。 However, in this method, the movement of the lens is adjusted by visual observation by the operator, skill is required for determination of resolution, there is no suitability for mass production, and there are individual differences in the adjustment results. There are problems such as poor.
これに対して、特許文献1では、固定レンズ系の光路に被調整レンズ系を保持し、光路に2方向の直線パターンを有するチャートを配置し、被調整レンズ系と固定レンズ系を経て2方向の直線パターンをセンサに投影し、投影された二つの直線チャート像の照度分布を前記2方向にそれぞれ検出し、最強照度点を中心とするコマフレア量を算出し、算出されたコマフレア量から得られた偏芯補正量に基づいて被調整レンズ系を移動調節して、レンズ系の光軸を調整している。これにより、光軸調整を自動的に高速に行うことができる。
On the other hand, in
また、特許文献2では、ズームレンズの固定群の傾きを調整することによって、テレ端付近及びワイド端付近における片ボケ(画像周辺部に発生する部分的なフォーカスのズレ現象)を解消することを目的とする。そして、結像面内の4か所以上の測定点における結像状態を測定し、各測定点についてそれぞれ結像状態が最良となるデフォーカス座標を特定し、各測定点についての結像状態が最良となるデフォーカス座標のうちの3点によって決定される4つ以上の平面を規定し、固定群1,3の光軸に対する傾きを調節することにより4つ以上の平面を一致させる場合における固定群1,3の傾き量を算出し、算出された固定群1,3の傾き量を目標点として、固定群1,3の傾きを調整する。
しかしながら、特許文献1の場合には、中心付近のチャートに基づき偏芯調整を実施するため、周辺部の片ボケに対する調整精度が低いという問題がある。また、特許文献2の場合には、調整個所が2か所となり、且つ複雑な演算が要求されるため、測定点が増えると計算量が飛躍的に増加し、迅速な演算が困難になるという問題がある。このため測定点を増やすことができないため、調整精度を上げることができないという問題がある。
However, in the case of
本発明は、上記のような問題点を解決するためになされたものであり、簡単に且つ高精度にレンズの偏芯を調整することができるレンズの偏芯調整方法及び装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides a lens eccentricity adjustment method and apparatus that can easily and accurately adjust the lens eccentricity. Objective.
本発明は上記目的を達成するために、光軸に直交するレンズ取付面上で二次元方向に被調整レンズを移動して、前記光軸に対する被調整レンズの偏芯を調整するレンズの偏芯調整方法において、前記被調整レンズを保持し、この被調整レンズを前記レンズ取付面上で初期位置へ移動させる第1移動工程と、初期位置移動後に前記被調整レンズと撮像素子とを用いて、焦点位置を変えながら合焦調整チャートを撮影し、この撮影画面を上下及び左右に複数に分割し、各分割エリアにおける合焦位置をそれぞれ求める合焦位置測定工程と、前記撮影画面の各分割エリアにおける合焦位置を揃えるように、前記光軸に対する前記被調整レンズの偏芯移動量を算出する偏芯移動量算出工程と、前記算出した偏芯移動量に基づき前記初期位置から前記被調整レンズを移動させる第2移動工程とを有する。 In order to achieve the above-mentioned object, the present invention moves a lens to be adjusted in a two-dimensional direction on a lens mounting surface orthogonal to the optical axis, and adjusts the eccentricity of the lens to be adjusted with respect to the optical axis. In the adjustment method, the first adjustment step of holding the lens to be adjusted and moving the lens to be adjusted to the initial position on the lens mounting surface, and using the lens to be adjusted and the image sensor after the initial position movement, The focus adjustment chart is shot while changing the focus position, the shooting screen is divided into a plurality of top and bottom and left and right, a focus position measuring step for obtaining the focus position in each divided area, and each divided area of the shooting screen An eccentric movement amount calculating step for calculating an eccentric movement amount of the lens to be adjusted with respect to the optical axis so that the in-focus positions are aligned, and based on the calculated eccentric movement amount, And a second moving step of moving the integer lens.
なお、前記偏芯移動量算出工程は、前記撮影画面の左右方向の両端に位置する分割エリア同士の合焦位置の差分、及び撮影画面の上下方向の両端に位置する分割エリア同士の合焦位置の差分に基づき、前記光軸に対する前記被調整レンズの偏芯移動量を算出することを特徴とする。また、前記撮影画面の左右方向の両端に位置する分割エリア同士の合焦位置の差分を加算し、この加算したものに係数を乗じて撮影画面の左右方向での偏芯移動量を算出し、前記撮影画面の上下方向の両端に位置する分割エリア同士の合焦位置の差分を加算し、この加算したものに係数を乗じて撮影画面の上下方向での偏芯移動量を算出することを特徴とする。また、前記分割エリアを、隣接する複数の小分割エリアの集合から構成し、この集合した前記小分割エリアの合焦位置の平均値を、各分割エリアにおける合焦位置とすることを特徴とする。 The eccentricity movement amount calculating step includes the difference between the focus positions of the divided areas located at both ends in the left-right direction of the shooting screen, and the focus positions of the divided areas positioned at both ends of the shooting screen in the vertical direction. Based on the difference, the amount of decentration movement of the lens to be adjusted with respect to the optical axis is calculated. Further, the difference between the in-focus positions of the divided areas located at both ends in the left-right direction of the shooting screen is added, and the eccentric movement amount in the left-right direction of the shooting screen is calculated by multiplying the added one by a coefficient, A difference between in-focus positions of divided areas located at both ends in the vertical direction of the shooting screen is added, and an eccentricity movement amount in the vertical direction of the shooting screen is calculated by multiplying the added value by a coefficient. And Further, the divided area is constituted by a set of a plurality of adjacent subdivided areas, and an average value of in-focus positions of the aggregated subdivided areas is set as a focused position in each divided area. .
また、本発明は、前記算出した偏芯移動量に基づき前記第2移動工程により前記初期位置から前記被調整レンズを移動させた後に、再度、前記合焦位置測定工程及び偏芯移動量算出工程を行い、求めた偏芯移動量が所定値内のときに前記被調整レンズの偏芯調整が終了したことを報知する報知工程を有することを特徴とする。 In the present invention, after the adjusted lens is moved from the initial position by the second movement step based on the calculated eccentric movement amount, the focus position measurement step and the eccentric movement amount calculation step are performed again. And a notification step of notifying that the eccentric adjustment of the lens to be adjusted has been completed when the calculated amount of eccentric movement is within a predetermined value.
また、本発明は、前記算出した偏芯移動量に基づき前記第2移動工程により前記初期位置から前記被調整レンズを移動させた後に、再度、前記合焦位置測定工程及び偏芯移動量算出工程を行い、求めた偏芯移動量が所定値を超えたときに、アラームを発する報知工程を有することを特徴とする。 In the present invention, after the adjusted lens is moved from the initial position by the second movement step based on the calculated eccentric movement amount, the focus position measurement step and the eccentric movement amount calculation step are performed again. And a notification step of issuing an alarm when the obtained eccentric movement amount exceeds a predetermined value.
なお、固定レンズ系と、この固定レンズ系が組み付けられる鏡胴と、前記固定レンズ系の光軸に対して垂直に2次元方向に移動自在に前記被調整レンズが保持されるレンズ取付面とを備える撮影レンズに対し、前記被調整レンズの偏芯調整を行うことが好ましい。また、前記撮影レンズはズームレンズであり、このズームレンズのテレ端及びワイド端のそれぞれにおいて、前記合焦位置測定工程と、偏芯移動量算出工程とを行い、テレ端偏芯移動量とワイド端偏芯移動量とを求め、前記テレ端偏芯移動量とワイド端偏芯移動量とを重み付けして総合偏芯移動量を求める総合偏芯移動量算出工程を有することが好ましい。 A fixed lens system, a lens barrel to which the fixed lens system is assembled, and a lens mounting surface on which the lens to be adjusted is held so as to be movable in a two-dimensional direction perpendicular to the optical axis of the fixed lens system. It is preferable to adjust the eccentricity of the lens to be adjusted with respect to the photographic lens provided. The photographing lens is a zoom lens, and the in-focus position measuring step and the eccentric movement amount calculating step are performed at each of the tele end and the wide end of the zoom lens, and the tele end eccentric movement amount and the wide end are calculated. It is preferable to have a step of calculating a total eccentric movement amount by calculating an end eccentric movement amount and weighting the tele end eccentric movement amount and the wide end eccentric movement amount to obtain a total eccentric movement amount.
また、本発明は、光軸に直交するレンズ取付面上で二次元方向に被調整レンズを移動して、前記光軸に対する被調整レンズの偏芯を調整するレンズの偏芯調整装置であって、前記被調整レンズを保持し、この被調整レンズを前記レンズ取付面上で初期位置及び任意位置へ移動させる被調整レンズ移動部と、前記被調整レンズ移動部により前記被調整レンズを前記初期位置へ移動させた後に、前記被調整レンズと撮像素子とを用いて、焦点位置を変えながら合焦調整チャートを撮影する撮影部と、前記撮影部による前記合焦調整チャートの撮影画面を上下及び左右に複数に分割し、各分割エリアにおける合焦位置をそれぞれ求める合焦位置測定部と、前記撮影画面の各分割エリアにおける合焦位置を揃えるように、前記光軸に対する前記被調整レンズの偏芯移動量を算出する偏芯移動量算出部と、前記算出した偏芯移動量に基づき、前記被調整レンズ移動部を制御して前記被調整レンズを前記初期位置から移動させる制御部とを有することを特徴とする。 The present invention is also a lens eccentricity adjusting device for adjusting the eccentricity of the lens to be adjusted with respect to the optical axis by moving the lens to be adjusted in a two-dimensional direction on a lens mounting surface orthogonal to the optical axis. An adjusted lens moving unit that holds the adjusted lens and moves the adjusted lens to an initial position and an arbitrary position on the lens mounting surface; and the adjusted lens moving unit moves the adjusted lens to the initial position. And moving the image of the focus adjustment chart by the shooting unit up, down, left and right using the lens to be adjusted and the image sensor. The focus position measuring unit for obtaining a focus position in each divided area, and the adjusted position with respect to the optical axis so as to align the focus position in each divided area of the shooting screen An eccentric movement amount calculating unit for calculating the eccentric movement amount of the lens, and a control unit for controlling the adjusted lens moving unit based on the calculated eccentric movement amount to move the adjusted lens from the initial position. It is characterized by having.
本発明によれば、被調整レンズを保持し、この被調整レンズをレンズ取付面上で初期位置へ移動させ、初期位置移動後に前記被調整レンズと撮像素子とを用いて、焦点位置を変えながら合焦調整チャートを撮影し、この撮影画面を上下及び左右に複数に分割し、各分割エリアにおける合焦位置をそれぞれ求め、撮影画面の各分割エリアにおける合焦位置を揃えるように、光軸に対する被調整レンズの偏芯移動量を算出し、この偏芯移動量に基づき初期位置から被調整レンズを移動させることにより、簡単に且つ容易にレンズの偏芯調整を行うことができる。これに対して、手動調整では、調整の習熟にある程度の期間が必要であり、生産初期の段階での生産性は低く品質も安定しないが、本発明によれば、生産初期の段階からバランスの取れた偏芯調整が可能となり、生産性が向上する。 According to the present invention, the lens to be adjusted is held, the lens to be adjusted is moved to the initial position on the lens mounting surface, and the focal position is changed using the lens to be adjusted and the image sensor after the initial position is moved. Shoot the focus adjustment chart, divide this shooting screen into multiple parts vertically and horizontally, find the focus position in each divided area, and align the focus position in each divided area of the shooting screen with respect to the optical axis By calculating the decentering movement amount of the lens to be adjusted and moving the lens to be adjusted from the initial position based on the decentering movement amount, the decentering adjustment of the lens can be performed easily and easily. On the other hand, manual adjustment requires a certain period of adjustment learning, and the productivity at the initial stage of production is low and the quality is not stable. This makes it possible to adjust the eccentricity and improve productivity.
前記偏芯移動量の算出は、撮影画面の左右方向の両端に位置する分割エリア同士の合焦位置の差分、及び撮影画面の上下方向の両端に位置する分割エリア同士の合焦位置の差分に基づき、光軸に対する被調整レンズの偏芯移動量を算出することにより、合焦位置を分割エリア毎に求める場合でも、簡略な計算で対応が可能となり、迅速且つ容易に偏芯移動量を求めることができる。 The calculation of the eccentric movement amount is based on the difference between the focus positions of the divided areas located at both ends in the left-right direction of the shooting screen and the difference between the focus positions of the divided areas positioned at both ends in the vertical direction of the shooting screen. Based on this, by calculating the eccentric movement amount of the lens to be adjusted with respect to the optical axis, even if the in-focus position is obtained for each divided area, it is possible to cope with simple calculations, and the eccentric movement amount can be obtained quickly and easily. be able to.
特に、撮影画面の左右方向の両端に位置する分割エリア同士の合焦位置の差分を加算し、この加算したものに係数を乗じて撮影画面の左右方向での偏芯移動量を算出し、前記撮影画面の上下方向の両端に位置する分割エリア同士の合焦位置の差分を加算し、この加算したものに係数を乗じて撮影画面の上下方向での偏芯移動量を算出することにより、演算負荷が少なくなり、より一層迅速且つ容易に偏芯移動量を求めることができる。 In particular, the difference between the focus positions of the divided areas located at both ends of the shooting screen in the left-right direction is added, and the added amount is multiplied by a coefficient to calculate the amount of eccentric movement in the left-right direction of the shooting screen, Calculate by calculating the amount of eccentric movement in the vertical direction of the shooting screen by adding the difference in focus position between the divided areas located at both ends in the vertical direction of the shooting screen and multiplying this added value by a coefficient. The load is reduced, and the amount of eccentric movement can be determined more quickly and easily.
また、ズームレンズのテレ端及びワイド端のそれぞれにおいて、合焦位置測定工程と、偏芯移動量算出工程とを行い、テレ端偏芯移動量とワイド端偏芯移動量とを求め、これらテレ端偏芯移動量とワイド端偏芯移動量とを重み付けして総合偏芯移動量を求めることにより、テレ端とワイド端それぞれに最適な偏芯位置に対して、初めから中間的な位置に偏芯調整することができる。また、前記鏡胴に前記撮像素子が固定された撮影レンズを用いることにより、撮像素子が取り付けられた状態で偏芯調整が行われるため、撮像素子のあおり調整が不要になる。 Further, at each of the telephoto end and the wide end of the zoom lens, a focusing position measuring step and an eccentricity moving amount calculating step are performed to obtain the telephoto end eccentricity moving amount and the wide end eccentricity moving amount. By calculating the total eccentric movement amount by weighting the end eccentric movement amount and the wide end eccentric movement amount, the optimal eccentric position for each of the tele end and wide end is set to an intermediate position from the beginning. The eccentricity can be adjusted. Further, by using a photographic lens in which the imaging element is fixed to the lens barrel, the eccentricity adjustment is performed with the imaging element attached, so that the tilt adjustment of the imaging element becomes unnecessary.
図1に示すように、本発明のレンズの偏芯調整装置10は、レンズ保持台11、カメラ駆動部12、被調整レンズ移動部13、コントローラ14、操作パネル15、及びアラーム16を備えている。レンズ保持台11には、マウント部17が形成されており、このマウント部17を介して、偏芯調整対象のレンズユニット18がセットされる。また、レンズ保持台11内には、カメラ駆動部12、被調整レンズ移動部13、コントローラ14が配置されている。レンズユニット18の前方には、合焦調整チャート19がセットされている。合焦調整チャート19は必要に応じて照明装置20により略均一に照明されている。
As shown in FIG. 1, the lens eccentricity adjusting device 10 of the present invention includes a
レンズユニット18は、ズームレンズ21と、このズームレンズ21に一体的に設けられるイメージエリアセンサ22、ズーミング機構23、AF機構24、画像処理部25を有するユニットコントローラ26、バッテリ(図示省略)とを備えている。
The
図2に示すように、レンズユニット18は、カメラボディ30に着脱自在に取り付けられることにより、デジタルカメラ31が構成される。カメラボディ30には、操作パネル32、レリーズボタン33、撮影した画像や各種設定事項を表示する液晶パネル34、ズーミングボタン35、着脱自在な記録媒体に画像データを記録するデータ記録部、カメラコントローラ及びバッテリ等(図示せず)が設けられている。
As shown in FIG. 2, the
図1に示すように、ズームレンズ21は、鏡胴40、撮影レンズを構成する第1〜第4レンズ群G1〜G4、第1〜第4レンズ群G1〜G4をそれぞれ保持する各レンズホルダ41〜44を備えている。第1レンズ群G1及び第3レンズ群G3はレンズホルダ41,43を介して鏡胴40に固定されている。なお、第1レンズ群G1の固定前に、本発明の偏芯調整方法が実施される。第1レンズ群G1の像面側には第2レンズ群G2、第3レンズ群G3、第4レンズ群G4が順に配置される。
As shown in FIG. 1, the
第1レンズ群G1は前群レンズであり、第2レンズ群G2はズーミングレンズであり、第3レンズ群G3は後群レンズであり、第4レンズ群G4はフォーカスレンズである。第2レンズ群G2、第4レンズ群G4は、光軸方向に移動自在にレンズホルダ42,44によって保持される。レンズホルダ42,44は、ネジ棒からなるガイドロッド46,47と噛み合っている。ガイドロッド46がAF機構24のステッピングモータにより回転されることで焦点調節され、ガイドロッド47がズーミング機構23のステッピングモータにより回転されることでズーミングが行われる。なお、各レンズ群G1〜G4のいずれか又は全ては単レンズであってもよい。
The first lens group G1 is a front group lens, the second lens group G2 is a zooming lens, the third lens group G3 is a rear group lens, and the fourth lens group G4 is a focus lens. The second lens group G2 and the fourth lens group G4 are held by
第2〜第4レンズ群G2〜G4は、鏡胴40のレンズホルダ42〜44に組み付けられることで固定される。また、第1レンズ群G1はレンズホルダ41で保持された後に、鏡胴40のレンズ取付面40aに図示しないバネ部材により押し付けられるように付勢されており、レンズ取付面40a上で二次元方向に移動可能になっている。そして、後に説明するように、本発明の偏芯調整方法により、偏芯調整された後に接着剤などでレンズホルダ41がレンズ取付面40aに仮付けされ、この後に本付けされる。
The second to fourth lens groups G2 to G4 are fixed by being assembled to the
第4レンズ群G4の像面側には、CCDからなるイメージエリアセンサ22が配置されている。イメージエリアセンサ22は、ズームレンズ21によりセンサ面に結像された画像を光電変換して画像信号を得る。この画像信号は画像処理部25で処理されて、デジタル化されたRAWデータとされ、画像処理部25内のSDRAMに一時的に格納される。図2に示すように、レンズユニット18にカメラボディ30が接続されてデジタルカメラ31として機能している場合には、前記SDRAM内のRAWデータは適宜タイミングで読み出され、カメラボディ30側のコントローラによりで画像処理された後に、液晶パネル34に表示される。また、レリーズボタン33の操作によって、液晶パネル34に表示されている被写体画像の画像データが記録媒体に記憶される。
An
図1に示すように、被調整レンズ移動部13は、レンズ保持台11にセットされたズームレンズ21の第1レンズ群G1を保持し、この保持した第1レンズ群G1をズームレンズ21の光軸Lに直交するレンズ取付面40a上で二次元方向に移動させる。このため、レンズクランプ50、X方向シフト部51、Y方向シフト部52、Z方向シフト部53、及びベース部54を備えている。レンズクランプ50は、第1レンズ群G1のレンズホルダ41を把持する把持位置と、開放する開放位置との間で変位する。
As shown in FIG. 1, the adjusted lens moving unit 13 holds the first lens group G1 of the
X方向シフト部51は、レンズクランプ50及びY方向シフト部51を介して第1レンズ群G1を光軸(Z軸方向)Lに直交し、且つ図1の紙面に直交する方向に移動する。Y方向シフト部52は、レンズクランプ50を介して第1レンズ群G1を光軸Lに直交し且つY方向に移動する。また、Z方向シフト部53は、第1レンズ群G1を光軸L方向に移動する。そして、X方向シフト部51及びY方向シフト部52により、第1レンズ群G1をXY平面上にあるレンズ取付面40aに沿って移動させることで、偏芯調整を行う。また、Z方向シフト部53は偏芯調整の際に、レンズ取付面40aから第1レンズ群G1を少し離すように第1レンズ群G1を移動する。
The
カメラ駆動部12は、コントローラ14からの制御信号に基づき、レンズユニット18のユニットコントローラ26を介し、ズーミング機構23、AF機構24、画像処理部25を制御し、第1レンズ群G1の偏芯調整を行う。以下、図3のフローチャートを参照して、コントローラ14及びカメラ駆動部12による偏芯調整処理を説明する。この偏芯調整処理は、プログラムによってソフト的に行われ、コントローラ14内には、合焦位置測定部61、偏芯移動量算出部62、及び判定部63が形成される。
The
先ず、レンズ保持台11に被調整対象のレンズユニット18が取り付けられると、マウント部17を介して、カメラ駆動部12がレンズユニット18の各部に接続される。次に、操作パネル15の調整開始ボタンが押されると、被調整レンズ移動部13は、第1レンズ群G1のレンズホルダ41を把持した後に、第1レンズ群G1を設計位置である初期位置に移動する。また、カメラ駆動部12を介してズーミングレンズである第2レンズ群G2を光軸方向で移動させ、ズームレンズ21をテレ端にセットする。
First, when the
次にテレ端側の偏芯移動量の算出処理を開始する。まず、フォーカスレンズである第4レンズ群G4のステップ送りが行われ、ステップ送り毎に、そのフォーカスレンズ位置で、合焦調整チャート19(図1参照)を撮影する。合焦調整チャート19は、図4に示すように、撮影エリアPAの各部での合焦を確認することができるものであればよく、例えば白黒の縞模様を縦、横に交互に配置したものが用いられる。合焦調整チャート19の撮影データはコントローラ14内のメモリ14aに取り込まれる。
Next, the calculation process of the eccentric movement amount on the tele end side is started. First, step feed of the fourth lens group G4 which is a focus lens is performed, and the focus adjustment chart 19 (see FIG. 1) is photographed at the focus lens position for each step feed. As shown in FIG. 4, the
コントローラ14では、各ステップ送り時の合焦調整チャートの撮影エリアPAを、8×8の64分割の小分割エリアa1,1〜a8,8に分け、小分割エリアa1,1〜a8,8毎にAF評価値を求める。AF評価値としては、例えばコントラスト値である。
The
次に、隣接する複数の小分割エリアの集合を分割エリアとし、この分割エリア毎にAF評価値を求める。小分割エリアのAF評価値をそのまま用いると、ピントのバラツキを拾ってしまい、精度のよい偏芯調整が困難になるからである。 Next, a set of a plurality of adjacent small divided areas is set as a divided area, and an AF evaluation value is obtained for each divided area. This is because if the AF evaluation values of the small divided areas are used as they are, variations in focus are picked up, and it is difficult to perform accurate eccentric adjustment.
本実施形態では、隣接する4個の小分割エリアによって、分割エリアを構成している。例えば64個の小分割エリアa1,1〜a8,8のうち、a2,2、a2,3、a3,2、a3,3のコントラスト値を積算し、この積算値を第1分割エリアA1のAF評価値とする。同様にして、a2,4、a2,5、a3,4、a3,5を用いて第2分割エリアA2のAF評価値を得る。以下、同様にして、第3〜第9分割エリアA3〜A9のAF評価値を得る。 In the present embodiment, a divided area is configured by four adjacent subdivided areas. For example, out of 64 subdivision areas a1,1 to a8,8, the contrast values of a2,2, a2,3, a3,2, a3,3 are integrated, and this integrated value is AF of the first divided area A1. The evaluation value. Similarly, the AF evaluation value of the second divided area A2 is obtained using a2,4, a2,5, a3,4, a3,5. Thereafter, AF evaluation values for the third to ninth divided areas A3 to A9 are obtained in the same manner.
次に、第1〜第9分割エリアA1〜A9に対してAF評価値が最大となる送りパルス位置をその分割エリアA1〜A9の焦点位置F1〜F9として求める。 Next, the feed pulse position at which the AF evaluation value is maximum for the first to ninth divided areas A1 to A9 is obtained as the focal positions F1 to F9 of the divided areas A1 to A9.
図5は、分割エリアA1,A5,A9において、その焦点位置F1,F5,F9にずれがある場合の一例を示したものであり、縦軸はAF評価値としてのコントラスト値を、横軸はフォーカスレンズの送りパルス量(光軸方向位置)を示している。 FIG. 5 shows an example in which the focus positions F1, F5, and F9 are shifted in the divided areas A1, A5, and A9. The vertical axis represents the contrast value as the AF evaluation value, and the horizontal axis represents the contrast value. The feed pulse amount (position in the optical axis direction) of the focus lens is shown.
次に、各分割エリアA1〜A9の焦点位置F1〜F9の内、上下端同士の差分を求めた後、これらを加算する。同様にして、各分割エリアA1〜A9の焦点位置F1〜F9の内、左右端同士の差分を求めた後、これらを加算する。そして、これら差分加算値に係数α,βを乗じて、偏芯移動量を算出する。なお、差分を加算して求める代わりに、差分を加算したものを加算した個数で除した差分平均値を用いて、偏芯移動量を求めてもよい。 Next, after obtaining the difference between the upper and lower ends of the focal positions F1 to F9 of the divided areas A1 to A9, these are added. Similarly, after obtaining the difference between the left and right ends of the focal positions F1 to F9 of the divided areas A1 to A9, these are added. Then, the eccentric movement amount is calculated by multiplying these difference addition values by the coefficients α and β. Instead of adding the difference, the eccentric movement amount may be obtained by using a difference average value obtained by dividing the sum of the differences by the added number.
すなわち、下記式(1),(2)に基づいて、X方向偏芯移動量x、Y方向偏芯移動量yを求める。
x=α×{(F1−F3)+(F4−F6)+(F7−F9)}・・・(1)
y=β×{(F1−F7)+(F2−F8)+(F3−F9)}・・・(2)
That is, the X-direction eccentric movement amount x and the Y-direction eccentric movement amount y are obtained based on the following formulas (1) and (2).
x = α × {(F1−F3) + (F4−F6) + (F7−F9)} (1)
y = [beta] * {(F1-F7) + (F2-F8) + (F3-F9)} (2)
係数α,βは、ズームレンズ21の機種毎に予め求められる。具体的には、レンズ設計のシミュレーションで、レンズ移動量に対する焦点位置のずれ量を算出することができるため、その値から係数α,βを求める。また、数個のサンプルを使用してレンズを定量動かし、実際に焦点位置を計測し、実際の移動量と送りパルス量(焦点位置)とに基づき、これら移動量と送りパルス量とが一致するように、係数α,βを決定する。
The coefficients α and β are obtained in advance for each model of the
次に、係数α,βの具体的な求め方の一例を説明する。まず、第1レンズ群G1を機械的中心位置から+X方向に数十μm単位で移動して、この位置でオートフォーカス動作を行い、焦点位置を計測する。さらに、第1レンズ群G1を、+X方向に数十μm単位で移動して、同様にして焦点位置を計測する。以下、この数十μm毎の移動と焦点位置との計測を繰り返すことで、計測点を+X方向に5点以上取り、同様にしてマイナスX方向に計測点を5点以上取る。そして、レンズ移動量に対するパルス値の変化量の近似直線を求める。その近似直線の傾きの逆数を係数αとする。このとき、数個のサンプルを用いて、上記近似直線の傾きの逆数の平均値を採用することが好ましい。係数βも、Y方向に上記同様の操作を行い、近似直線の傾きの逆数を求めて、これを係数βとする。 Next, an example of how to determine the coefficients α and β will be described. First, the first lens group G1 is moved in units of several tens of μm in the + X direction from the mechanical center position, an autofocus operation is performed at this position, and the focal position is measured. Further, the first lens group G1 is moved in units of several tens of μm in the + X direction, and the focal position is measured in the same manner. Hereinafter, by repeating this movement every several tens of μm and measuring the focal position, five or more measurement points are taken in the + X direction, and five or more measurement points are taken in the minus X direction in the same manner. Then, an approximate straight line of the change amount of the pulse value with respect to the lens movement amount is obtained. The reciprocal of the slope of the approximate straight line is defined as a coefficient α. At this time, it is preferable to employ the average value of the reciprocal of the slope of the approximate line using several samples. For the coefficient β, the same operation as described above is performed in the Y direction to obtain the reciprocal of the slope of the approximate straight line, which is set as the coefficient β.
なお、テレ端における各偏芯移動量x,yには添字t、ワイド端における各偏芯移動量x,yには添字wが付してある。また、第1回目に求めた偏芯移動量と第2回目に求めた偏芯移動量とを識別するために、各偏芯移動量には添字1、または添字2が付してある。上記式(1),(2)によって、テレ側x方向の偏芯移動量xt1,テレ側y方向の偏芯移動量yt1が求まる。
Each eccentric movement amount x, y at the tele end is attached with a subscript t, and each eccentric movement amount x, y at the wide end is attached with a subscript w. Further, in order to distinguish the eccentric movement amount obtained in the first time and the eccentric movement amount obtained in the second time, the
次に、カメラ駆動部12を介して第2レンズ群(ズーミングレンズ)G2を光軸方向で移動させ、ズームレンズ21をワイド端にセットする。そして、ワイド端側の偏芯移動量x,yの算出処理を開始する。まず、第4レンズ群(フォーカスレンズ)G4のステップ送りが行われ、ステップ送り毎に、そのフォーカスレンズ位置で、合焦調整チャート19を撮影する。この撮影データはコントローラ14内のメモリ14aに取り込まれる。コントローラ14では、各ステップ送り時の合焦調整チャート撮影データに基づき、上記テレ端側偏芯移動量xt1,yt1の算出手順と同様にして、ワイド端側の偏芯移動量xw1,yw1を算出する。
Next, the second lens group (zooming lens) G2 is moved in the optical axis direction via the
次に、図6に示すように、求めた各偏芯移動量xt1,yt1、xw1,yw1に基づき、実際に移動させる目標位置xp1,yp1を下記式(3),(4)により、重み付け中間値nt1,nw1を用いて求める。
xp1={(nt1×xw1)+(nw1×xt1)}/(nw1+nt1)}・・・(3)
yp1={(nt1×yw1)+(nw1×yt1)}/(nw1+nt1)}・・・(4)
Next, as shown in FIG. 6, based on the obtained eccentric movement amounts xt1, yt1, xw1, and yw1, target positions xp1 and yp1 that are actually moved are weighted by the following equations (3) and (4). Obtained using the values nt1 and nw1.
xp1 = {(nt1 * xw1) + (nw1 * xt1)} / (nw1 + nt1)} (3)
yp1 = {(nt1 * yw1) + (nw1 * yt1)} / (nw1 + nt1)} (4)
なお、重み付け比率nw1:nt1は、ズームレンズの機種に応じて予め決定した値を用いる。具体的には、数個のサンプルを使用してレンズを定量動かし、実際に焦点位置をテレ端、ワイド端で計測し、実際の移動量と送りパルス量(焦点位置)とに基づき、これら移動量と送りパルス量とが一致するように、重み付け比率nw1:nt1を決定する。 The weighting ratio nw1: nt1 uses a value determined in advance according to the type of zoom lens. Specifically, the lens is moved quantitatively using several samples, the focal position is actually measured at the tele end and wide end, and these movements are based on the actual movement amount and feed pulse amount (focal position). The weighting ratio nw1: nt1 is determined so that the amount and the feed pulse amount coincide.
以下、重み付け比率nw1:nt1の決定方法の一例を説明する。先ず、ズームレンズ21をテレ端にセットする。次に、図1に示す被調整レンズ移動部13のX方向シフト部51及びY方向シフト部52により、第1レンズ群G1をXY平面で例えば20μm単位で移動し、この移動点(測定点)でのオートフォーカス時の送りパルス量のX方向における差分加算値FH〔={(F1−F3)+(F4−F6)+(F7−F9)}〕とY方向における差分加算値FV〔={(F1−F7)+(F2−F8)+(F3−F9)}〕を求め、FHとFVを加算した合計差分加算値FHV(=FH+FV)を求める。この加算値FHVが5以下の測定点を「×」で表し、5を超えて10以下の測定点を「△」で表し、10を超えて20以下の測定点を「□」で表す。これら同一記号の測定点同士を連続させると、差分加算値FHVが5以下の領域AT1と、差分加算値FHVが5を超えて10以下の領域AT2と、差分加算値FHVが10を超えて20以下の領域AT3とを有するテレ側の差分加算値分布図(図7(A)参照)が得られる。次に、ズームレンズ21をワイド端にセットし、上記のテレ端での操作と同様の操作によって、ワイド側の差分加算値分布図(図7(B)参照)を得る。
Hereinafter, an example of a method for determining the weighting ratio nw1: nt1 will be described. First, the
ところで、レンズの性能評価は、送りパルス量の差分加算値が小さいかどうかではなく、チャートと呼ばれる性能評価用の絵柄を撮影し、例えばいくつかの空間周波数でコントラスト値を計測し、それぞれ所定の値を超えていることを確認することで行っている。画質の自動検査処理では、撮影された画像に対して上記性能評価を自動実行し、OK(良)かNG(不良)かを判定している。この画質の自動検査処理は、プログラムによってソフト的に行われ、コントローラ14内には、画質の自動検査処理部64が形成される。この画質の自動検査処理部64によって、本発明のレンズ偏芯調整結果が適正になされたか否かを自動判定している。
By the way, the performance evaluation of the lens is not based on whether or not the difference addition value of the feed pulse amount is small, but a picture for performance evaluation called a chart is photographed, for example, contrast values are measured at several spatial frequencies, and each predetermined value is measured. This is done by confirming that the value has been exceeded. In the automatic image quality inspection process, the performance evaluation is automatically executed on a photographed image to determine whether it is OK (good) or NG (bad). This automatic inspection process for image quality is performed in a software manner by a program, and an automatic
上記の差分加算値分布図のデータを得ると同時に、画質の自動検査を実施し、OKかNGかの判定をしていくことで、テレ端とワイド端とのそれぞれがOKとなる範囲を特定することができ、図8に示すような画質検査OKの測定点からなるテレ側OK領域AGT、及びワイド側OK領域AGWが得られる。 At the same time as obtaining the data of the above difference addition value distribution map, the automatic image quality inspection is carried out, and it is determined whether it is OK or NG. As shown in FIG. 8, a tele-side OK area AGT and a wide-side OK area AGW consisting of measurement points for image quality inspection OK are obtained.
図7及び図8から判るように、OK領域AGT,AGWの中心と、送りパルス量の差分加算値が最小となる領域AT1,AW1の中心とは略一致しているが、領域の広さは異なっている。レンズの調整としては、テレ端とワイド端とのOK領域AGT,AGWが重なっている部分にレンズ中心が位置すればよく、好ましくはOK領域の中心付近にレンズ中心が位置すればよい。そこで、調整位置がOK領域AGT,AGWの中心付近に来るように、重み付け比率nw1:nt1を求める。 As can be seen from FIGS. 7 and 8, the centers of the OK regions AGT and AGW and the centers of the regions AT1 and AW1 where the difference addition value of the amount of feed pulses is minimized substantially coincide with each other. Is different. For lens adjustment, the lens center may be positioned at a portion where the OK areas AGT and AGW at the tele end and the wide end overlap, and preferably the lens center is positioned near the center of the OK area. Therefore, the weighting ratio nw1: nt1 is determined so that the adjustment position comes near the center of the OK areas AGT and AGW.
レンズには製造上の個体差が生じるため、計算値と実際の理想位置とには若干のずれがある。この差を埋めるために、2回目の調整を実施する。先ず、第1レンズ群G1を1回目の調整位置に保持した状態で、1回目の調整と同様にして、各偏芯移動量xt2,yt2、xw2,yw2を求める。各偏芯移動量xt2,yt2、xw2,yw2に基づき、実際に移動させる目標位置xp2,yp2を下記式(5),(6)により、重み付け中間値nt2,nw2を用いて求める。
xp2={(nt2×xw2)+(nw2×xt2)}/(nw2+nt2)}・・・(5)
yp2={(nt2×yw2)+(nw2×yt2)}/(nw2+nt2)}・・・(6)
There is a slight difference between the calculated value and the actual ideal position because individual differences in manufacturing occur in the lens. To make up for this difference, a second adjustment is performed. First, the eccentric movement amounts xt2, yt2, xw2, and yw2 are obtained in the same manner as the first adjustment while the first lens group G1 is held at the first adjustment position. Based on the eccentric movement amounts xt2, yt2, xw2, and yw2, target positions xp2 and yp2 that are actually moved are obtained by the following formulas (5) and (6) using the weighted intermediate values nt2 and nw2.
xp2 = {(nt2 * xw2) + (nw2 * xt2)} / (nw2 + nt2)} (5)
yp2 = {(nt2 * yw2) + (nw2 * yt2)} / (nw2 + nt2)} (6)
1回目の調整により、理想的な位置に近づいているため、図9に示すように、2回目の実際の移動量L2(第1目標位置xp1,yp1から第2目標位置xp2,yp2への移動量)は1回目の実際の移動量L1(初期位置(0,0)から第1目標位置xp1,yp1への移動量)に比べて十分に小さな数値となる。そして、この移動量L2を判定値Kと比較し、移動量L2がK以下である場合に、調整完了と判定し、調整完了・仮付けの表示が行われる。このように、2回目の調整を行うことにより、生産初期のデータ数が少ない場合でも、適正な偏芯調整が行われる。 Since the ideal position is approached by the first adjustment, as shown in FIG. 9, the actual movement amount L2 for the second time (movement from the first target position xp1, yp1 to the second target position xp2, yp2). The amount) is a sufficiently small numerical value compared to the first actual movement amount L1 (movement amount from the initial position (0, 0) to the first target position xp1, yp1). Then, the movement amount L2 is compared with the determination value K. When the movement amount L2 is equal to or less than K, it is determined that the adjustment is completed, and the adjustment completion / temporary display is performed. Thus, by performing the second adjustment, proper eccentricity adjustment is performed even when the number of data in the initial stage of production is small.
また、2回目の移動量L2が小さな数値とならず、判定値Kよりも大きい場合には、調整不良と判断し、不合格品とする。この場合にはアラーム16によって調整不良のアラームを発する。オペレータは、このアラームにより、第1レンズ群G1の鏡胴40への仮付けを行うことなく、不良品として、偏芯調整済み完成品とは別の場所に保管する。なお、2回目の調整は省略し、1回目の移動量L1のみで、調整処理を終了してもよい。
Further, when the second movement amount L2 is not a small numerical value and is larger than the determination value K, it is determined that the adjustment is poor and the product is rejected. In this case, the
上記実施形態では、AF評価値としてコントラスト値を用いたが、AF評価が可能であればよく、他のAF評価値を用いてもよい。また、テレ端とワイド端とで偏芯移動量を求める際の、係数α,βは、それぞれ別々に求められる。これは、レンズの移動量に対してテレ端とワイド端ではフォーカス位置の変化が大きく異なるためである。 In the above-described embodiment, the contrast value is used as the AF evaluation value. However, any AF evaluation value may be used as long as AF evaluation is possible. Further, the coefficients α and β when the eccentric movement amounts are obtained at the tele end and the wide end are obtained separately. This is because the change in the focus position differs greatly between the tele end and the wide end with respect to the movement amount of the lens.
上記実施形態では、ズームレンズ21にイメージエリアセンサ22を一体化したレンズユニット18の偏芯調整について説明したが、イメージエリアセンサ22を別体として設けたズームレンズに対して、本発明を実施してもよい。この場合には、レンズ保持台11にイメージエリアセンサを設け、合焦調整チャート19を撮影する。また、イメージエリアセンサ22をカメラボディ側に設けた一般的なデジタルカメラのレンズに対して、本発明を実施してもよい。この場合には、カメラボディに取り付けたイメージエリアセンサから得られる合焦調整チャートの画像データに基づき、上記実施形態と同様にして偏芯移動量を求め、偏芯調整を行う。
In the above embodiment, the eccentricity adjustment of the
上記実施形態ではズームレンズ21の前群レンズの偏芯調整について説明したが、ズームレンズ21に限らず、単焦点レンズの偏芯調整に本発明を実施してもよい。また、分割エリアは3×3のマトリックス配置としたが、これに限らず、その他のマトリックス配置でも本発明を実施することができる。また、マトリックス配置に代えて、中央エリアを通る複数の放射線方向の両端エリアでの差分データに基づき、上記偏芯移動量の算出式によって偏芯移動量を求めてもよい。また、偏芯移動量の算出は2回に限らず、1回または3回以上としてもよい。
In the above embodiment, the eccentricity adjustment of the front lens group of the
10 偏芯調整装置
11 レンズ保持台
12 カメラ駆動部
13 被調整レンズ移動部
14 コントローラ
15 操作パネル
18 レンズユニット
19 合焦調整チャート
21 ズームレンズ
22 イメージエリアセンサ
23 ズーミング機構
24 AF機構
25 画像処理部
DESCRIPTION OF SYMBOLS 10
Claims (18)
前記被調整レンズを保持し、この被調整レンズを前記レンズ取付面上で初期位置へ移動させる第1移動工程と、
初期位置移動後に前記被調整レンズと撮像素子とを用いて、焦点位置を変えながら合焦調整チャートを撮影し、この撮影画面を上下及び左右に複数に分割し、各分割エリアにおける合焦位置をそれぞれ求める合焦位置測定工程と、
前記撮影画面の各分割エリアにおける合焦位置を揃えるように、前記光軸に対する前記被調整レンズの偏芯移動量を算出する偏芯移動量算出工程と、
前記算出した偏芯移動量に基づき前記初期位置から前記被調整レンズを移動させる第2移動工程とを有することを特徴とするレンズの偏芯調整方法。 In the lens eccentricity adjustment method, the lens to be adjusted is moved in a two-dimensional direction on the lens mounting surface orthogonal to the optical axis, and the eccentricity of the lens to be adjusted with respect to the optical axis is adjusted.
A first moving step of holding the lens to be adjusted and moving the lens to be adjusted to an initial position on the lens mounting surface;
After moving the initial position, the focus adjustment chart is shot while changing the focal position using the lens to be adjusted and the image sensor, and this shooting screen is divided into a plurality of vertical and horizontal directions, and the focus position in each divided area is determined. A focus position measurement process to be obtained,
An eccentricity movement amount calculating step of calculating an eccentricity movement amount of the lens to be adjusted with respect to the optical axis so as to align in-focus positions in each divided area of the photographing screen;
And a second moving step of moving the lens to be adjusted from the initial position based on the calculated amount of decentering movement.
前記撮影画面の上下方向の両端に位置する分割エリア同士の合焦位置の差分を加算し、この加算したものに係数を乗じて撮影画面の上下方向での偏芯移動量を算出することを特徴とする請求項2記載のレンズの偏芯調整方法。 Add the difference of the in-focus position between the divided areas located at both ends of the left and right direction of the shooting screen, calculate the amount of eccentric movement in the left and right direction of the shooting screen by multiplying this added by a coefficient,
A difference between in-focus positions of divided areas located at both ends in the vertical direction of the shooting screen is added, and an eccentricity movement amount in the vertical direction of the shooting screen is calculated by multiplying the added value by a coefficient. The method for adjusting the eccentricity of a lens according to claim 2.
前記被調整レンズを保持し、この被調整レンズを前記レンズ取付面上で初期位置及び任意位置へ移動させる被調整レンズ移動部と、
前記被調整レンズ移動部により前記被調整レンズを前記初期位置へ移動させた後に、前記被調整レンズと撮像素子とを用いて、焦点位置を変えながら合焦調整チャートを撮影する撮影部と、
前記撮影部による前記合焦調整チャートの撮影画面を上下及び左右に複数に分割し、各分割エリアにおける合焦位置をそれぞれ求める合焦位置測定部と、
前記撮影画面の各分割エリアにおける合焦位置を揃えるように、前記光軸に対する前記被調整レンズの偏芯移動量を算出する偏芯移動量算出部と、
前記算出した偏芯移動量に基づき、前記被調整レンズ移動部を制御して前記被調整レンズを前記初期位置から移動させる制御部とを有することを特徴とするレンズの偏芯調整装置。 In the lens eccentricity adjusting device for adjusting the eccentricity of the lens to be adjusted with respect to the optical axis by moving the lens to be adjusted in a two-dimensional direction on the lens mounting surface orthogonal to the optical axis,
An adjusted lens moving unit that holds the adjusted lens and moves the adjusted lens to an initial position and an arbitrary position on the lens mounting surface;
An imaging unit that captures a focus adjustment chart while changing a focal position using the adjusted lens and an image sensor after moving the adjusted lens to the initial position by the adjusted lens moving unit;
A focusing position measurement unit that divides the shooting screen of the focusing adjustment chart by the shooting unit into a plurality of top and bottom and left and right, and obtains a focus position in each divided area;
An eccentricity movement amount calculation unit that calculates an eccentricity movement amount of the lens to be adjusted with respect to the optical axis so as to align in-focus positions in each divided area of the shooting screen;
A lens decentering adjustment apparatus, comprising: a control unit that controls the lens moving unit to be adjusted based on the calculated decentering movement amount and moves the lens to be adjusted from the initial position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006186962A JP4860378B2 (en) | 2006-07-06 | 2006-07-06 | Lens eccentricity adjusting method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006186962A JP4860378B2 (en) | 2006-07-06 | 2006-07-06 | Lens eccentricity adjusting method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008014827A true JP2008014827A (en) | 2008-01-24 |
JP4860378B2 JP4860378B2 (en) | 2012-01-25 |
Family
ID=39071979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006186962A Expired - Fee Related JP4860378B2 (en) | 2006-07-06 | 2006-07-06 | Lens eccentricity adjusting method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4860378B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101347842B1 (en) | 2013-07-19 | 2014-01-09 | 테라셈 주식회사 | Camera module correction apparatus |
KR20160088632A (en) * | 2015-01-16 | 2016-07-26 | 한화테크윈 주식회사 | Apparatus for aligning of lens and method thereof |
CN107014812A (en) * | 2017-05-24 | 2017-08-04 | 哈尔滨工业大学 | DWTT fracture surface of sample imaging methods |
JP2019504345A (en) * | 2015-12-16 | 2019-02-14 | ▲寧▼波舜宇光▲電▼信息有限公司 | Image quality compensation method for optical system by adjusting lens |
JP2020533636A (en) * | 2017-09-11 | 2020-11-19 | ▲寧▼波舜宇光▲電▼信息有限公司 | Imaging module and its assembly method |
CN114184353A (en) * | 2020-08-24 | 2022-03-15 | 佳凌科技股份有限公司 | Optical lens assembling method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11159706B2 (en) | 2019-03-19 | 2021-10-26 | Pfa Corporation | Camera module manufacturing apparatus and camera module manufacturing method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000050146A (en) * | 1998-07-30 | 2000-02-18 | Minolta Co Ltd | Image pickup unit |
JP2006148662A (en) * | 2004-11-22 | 2006-06-08 | Canon Inc | Method for adjusting imaging device |
-
2006
- 2006-07-06 JP JP2006186962A patent/JP4860378B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000050146A (en) * | 1998-07-30 | 2000-02-18 | Minolta Co Ltd | Image pickup unit |
JP2006148662A (en) * | 2004-11-22 | 2006-06-08 | Canon Inc | Method for adjusting imaging device |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101347842B1 (en) | 2013-07-19 | 2014-01-09 | 테라셈 주식회사 | Camera module correction apparatus |
KR20160088632A (en) * | 2015-01-16 | 2016-07-26 | 한화테크윈 주식회사 | Apparatus for aligning of lens and method thereof |
KR102334751B1 (en) * | 2015-01-16 | 2021-12-02 | 한화테크윈 주식회사 | Apparatus for aligning of lens and method thereof |
JP2019504345A (en) * | 2015-12-16 | 2019-02-14 | ▲寧▼波舜宇光▲電▼信息有限公司 | Image quality compensation method for optical system by adjusting lens |
US10778897B2 (en) | 2015-12-16 | 2020-09-15 | Ningbo Sunny Opotech Co., Ltd. | Method for compensating for image quality of optical system by means of lens adjustment |
US11277564B2 (en) | 2015-12-16 | 2022-03-15 | Ningbo Sunny Opotech Co., Ltd. | Method for compensating for image quality of optical system by means of lens adjustment |
CN107014812A (en) * | 2017-05-24 | 2017-08-04 | 哈尔滨工业大学 | DWTT fracture surface of sample imaging methods |
JP2020533636A (en) * | 2017-09-11 | 2020-11-19 | ▲寧▼波舜宇光▲電▼信息有限公司 | Imaging module and its assembly method |
US11506857B2 (en) | 2017-09-11 | 2022-11-22 | Ningbo Sunny Opotech Co., Ltd. | Camera module and assembly method therefor |
US11774698B2 (en) | 2017-09-11 | 2023-10-03 | Ningbo Sunny Opotech Co., Ltd. | Camera module and method for assembling same |
CN114184353A (en) * | 2020-08-24 | 2022-03-15 | 佳凌科技股份有限公司 | Optical lens assembling method |
CN114184353B (en) * | 2020-08-24 | 2024-03-05 | 佳凌科技股份有限公司 | Optical lens assembly method |
Also Published As
Publication number | Publication date |
---|---|
JP4860378B2 (en) | 2012-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4860378B2 (en) | Lens eccentricity adjusting method and apparatus | |
EP2081391B1 (en) | Method for adjusting position of image sensor, method and apparatus for manufacturing a camera module, and camera module | |
JP4946059B2 (en) | Imaging device | |
US8098984B2 (en) | Focus detecting apparatus and an imaging apparatus | |
CN107063646B (en) | Method and device for determining effective focal length of lens by adopting camera and virtual reality headset | |
JP7112863B2 (en) | Information processing device, information processing method, program, and image measuring device | |
JP2017090441A (en) | Chromatic aberration correction in imaging system including variable focal length lens | |
JP2014010400A (en) | Imaging device and lens device | |
JP5572024B2 (en) | Lens device | |
JP4112165B2 (en) | Optical system adjustment method and adjustment apparatus | |
US10171725B1 (en) | Variable focal length lens system including a focus state reference subsystem | |
JP2012234152A (en) | Imaging apparatus and control method thereof | |
JP4468396B2 (en) | Lens unit and optical apparatus having the same | |
JP2010128205A (en) | Imaging apparatus | |
JP6271911B2 (en) | Imaging apparatus, control method therefor, and defocus amount calculation method | |
JP3374736B2 (en) | Lens adjustment device | |
JPH1172717A (en) | Microscopic digital photographing system | |
JP2007060520A (en) | Imaging apparatus | |
JP5610579B2 (en) | 3D dimension measuring device | |
JP7504579B2 (en) | Image capture device, image capture device control method and program | |
US20230055287A1 (en) | Digital microscope and method for capturing and displaying microscopic images | |
JP2003066307A (en) | Method of assembling and inspecting electronic imaging device and apparatus for assembling and inspecting electronic imaging device used therefor | |
JP2004045327A (en) | Instrument and method for measuring spot | |
JP6508267B2 (en) | interchangeable lens | |
JP6428845B2 (en) | Imaging device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110518 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110707 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111005 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111102 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141111 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |