JP2008014308A - 熱交換システムおよび潤滑油の冷却方法 - Google Patents

熱交換システムおよび潤滑油の冷却方法 Download PDF

Info

Publication number
JP2008014308A
JP2008014308A JP2007164479A JP2007164479A JP2008014308A JP 2008014308 A JP2008014308 A JP 2008014308A JP 2007164479 A JP2007164479 A JP 2007164479A JP 2007164479 A JP2007164479 A JP 2007164479A JP 2008014308 A JP2008014308 A JP 2008014308A
Authority
JP
Japan
Prior art keywords
flap
duct
heat exchange
outlet
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007164479A
Other languages
English (en)
Inventor
Frederick M Schwarz
エム.シュワルツ フレデリック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of JP2008014308A publication Critical patent/JP2008014308A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/08Plants including a gas turbine driving a compressor or a ducted fan with supplementary heating of the working fluid; Control thereof
    • F02K3/105Heating the by-pass flow
    • F02K3/115Heating the by-pass flow by means of indirect heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】推力損失を低減し、必要とする容積を低減した空気−潤滑油熱交換システムを提供する。
【解決手段】空気−潤滑油熱交換システムは、空気流13が流れ、上流側の入口開口部および下流側の出口開口部を備えた冷却ダクトを備える。可動入口フラップ12’は冷却ダクト11の上流側に配置され、閉じた状態のときに入口開口部の少なくとも一部を覆い、開いた状態のときに空気が冷却ダクト11を流れるのを可能にする。可動出口フラップ16は冷却ダクト11の下流側に配置され、閉じた状態のときに出口開口部の少なくとも一部を覆い、開いた状態のときに空気が冷却ダクト11を流れるのを可能にする。
【選択図】図1

Description

本発明は、タービンエンジンおよびそれに関連する装置の潤滑システムに関し、より詳細には、このようなエンジンおよび装置において潤滑剤を所望の温度に維持するのに使用する空気−潤滑剤熱交換器に関する。
ターボファンエンジンなどのタービンエンジン用、ならびに一体型駆動発電機などの関連する装置用の潤滑システムは、エンジンの主ベアリング、ギヤボックスのギヤなどを潤滑、冷却、および清浄するために、また一方で、そのようなタービンエンジンに関連する装置のベアリングおよび他の部品を潤滑するために、加圧した潤滑剤(オイル)を供給する。このような潤滑時に、潤滑される装置での機械的エネルギ損失によって潤滑剤が加熱される。このような潤滑剤を熱管理することは、潤滑される装置内で潤滑システムを良好な状態で連続稼働させるために非常に重要である。
例えば、航空機タービンエンジンから電力供給を受ける航空機での電力消費の増加により、使用する発電機がより大型化しているために、さらに、大型のファン駆動ギヤボックスを備えた航空機に対してギヤ式ターボファンを使用するなど、航空機タービンエンジンの改良のために、潤滑剤から放出しなければならない熱量はますます増加している。このように改良され、拡大された装置により発生する熱量が増したにもかかわらず、満足のいく潤滑性能をもたらすのに必要な潤滑油の動作温度範囲はほとんど変わっておらず、場合によっては、動作温度の上限値が低くなっている。
航空機のターボファンエンジンの潤滑システムは通常、流路を備えた第1の熱交換器を有し、潤滑油はこの流路を流れて、この流路の周囲を流れる燃料流によって冷却される。この構成により、潤滑油は航空機の燃料に熱を放出することができ、それにより、その燃料を加熱して、エンジン燃焼室でのエネルギ損失の幾らかを回収するのに寄与する。飛行状況によっては、燃料を暖めるのに許容し得る以上の熱が潤滑油内に発生するので、潤滑油の一部に燃料−潤滑油熱交換器を強制的にバイパスさせることがあり、このような潤滑油は、ターボファンエンジンのファンによって発生した2次空気流内で熱を空気に伝達するさらなる熱交換器に向けることができる。通常の構成では、空気流の一部を偏向させるファンカウリング内にダクトを設け、空気−潤滑油熱交換器をこのダクト内に置いて、この熱交換器内の流路を流れる潤滑油が、交換器内のこれらの流路越しに流れるダクト空気流によって冷却されるようにする。ある飛行状況下でこのように潤滑油をさらに冷却する必要がない場合、潤滑油は、再度この空気−潤滑油熱交換器を強制的にバイパスさせることができる。
一方、このようなダクトシステム内の潤滑油−空気熱交換器を通過するように偏向されたファン空気流は少なくとも一部がその交換器を通り、冷却用エンジンファン空気流の一部が、十分な量の潤滑油が流れる流路越しに、十分に流れる場合において、交換器は、遭遇した最も極端な飛行状態に対して潤滑油を十分に冷却できるよう十分に大きくすべきである。熱交換器が大きくなるほど、断面積が大きいダクトが必要となり、そのような空気−潤滑油熱交換器用のダクトに基づくシステムは、ターボファンエンジンに推力損失を絶えずもたらす。
したがって、このような推力損失を低減し、また、改良型ターボファンエンジンの縮小された空間において必要な容積を低減する空気−潤滑油熱交換器用のダクトに基づくシステムが強く求められている。
本発明は、選択した動作を行う際に作動流体を利用する動作装置で使用する熱交換システムを提示し、この熱交換システムは、装置の使用とともに発生する空気流内で、選択的に変更可能な流量で空気と作動流体の熱交換を行って作動流体を冷却する。このシステムは、使用中に発生する空気流内に配置されたストリーム構造体の少なくとも一部を通って延在する冷却ダクトを有し、この冷却ダクトは、上流側の入口開口部および下流側の出口開口部を有する。可動入口フラップは冷却ダクトの上流側に配置され、閉じた状態のときに入口開口部の少なくとも一部を覆い、開いた状態のときに空気が冷却ダクトを流れるのを可能にする。可動出口フラップは冷却ダクトの下流側に配置され、閉じた状態のときに出口開口部の少なくとも一部を覆い、開いた状態のときに空気が冷却ダクトを流れるのを可能にする。熱交換器コア部は、冷却ダクトの入口開口部と出口開口部との間において設けられるとともに、空気が周囲を通過する複数の流路構造体を有し、この流路構造体は、一端で入力管に連結され、他端で出力管に連結されて、作動流体が入力管および出力管の内部を通じて流路構造体の内部に供給され、流路構造体の内部から取り出されるのを可能にする。
熱交換器の断面積が小さければ小さいほど、断面積がより小さいダクト内で熱交換器を使用することが可能になり、それによって、最終的な冷却サブシステムの小型化が促進される。このような断面積が比較的小さい熱交換器を通過する潤滑剤などの作動流体を同等に冷却するには通常、熱交換器において単位時間当たりより多量の空気が、作動流体が送られる流路の周囲、または、加熱された作動流体が流れる流路の周囲、を流れる必要があり、作動流体は冷却されてから、この作動流体を使用するシステムの残りの部分に導入される。断面積が比較的小さいダクト内の熱交換器を通る空気の容積流量をこのように増やすには通常、このような流れを得るために、ダクト入口からダクト出口までの圧力勾配が十分に大きいことが必要である。本発明は、冷却を必要とするガスタービンエンジンに対して調整された任意選択の作動流体に使用可能であるが、本明細書の残りの部分では、作動流体を潤滑剤とした実施形態について説明する。
ターボファンエンジンでは、ターボファンエンジン内のファン流の開始部と周囲大気の間に比較的大きな圧力勾配が存在する。したがって、エンジンナセルの下側分岐部または他のエンジンナセル分岐部において、エンジンファンに近接した上流端からエンジンファン流ノズルの端部付近または該端部を過ぎた下流端まで延在するようにダクトを配置することで、そのダクトを通る空気流を著しく大きくすることができ、それによって、ダクトの断面積、ならびに搭載される空気−潤滑剤熱交換器の断面積、を小さくすることが可能になる。
さらに、エンジン燃料システムにおける燃料−潤滑剤熱交換器内の潤滑剤からエンジン燃料が熱を十分に吸収するのを可能にするほど、燃料源から来たエンジン燃料の温度が十分に低いならば、空気−潤滑剤熱交換器は必要でないか、またはその最大冷却能力までは必要とされないであろう。このような状況にあると、ダクト出口を所望の断面積にするように、すなわち潤滑剤を十分に冷却するのに必要とされる許容面積に面積を維持できるように制御することができるダクト出口フラップを設けることにより、ダクトを通る空気流を低減できるようになり、それによって、脱出する空気によりダクト出口で発生する推力が増加する。通常、ダクト入口フラップも設けられ、ダクト入口の断面積がその時点でダクト出口フラップによって形成されたダクト出口断面積の1.5倍となるようにするが、ダクト出口フラップがダクトに起因する抵抗を低減するためにダクト出口を閉じた場合、ダクト入口フラップはダクト入口を閉じる。これらの2つのフラップは、対応するダクト開口部断面を調整する場合に、通常、2つのフラップを連結する比例リンク(proportional linkage)を動作させる単一のフラップアクチュエータを使用して、または共通のアクチュエータコントローラで作動する各々のフラップに対応する1つのアクチュエータによって、またはフラップのどちらか一方もしくは両方を動かすことができる任意の他の手段によって制御することができる。
以上から、図1には、上流であるダクト入口12から始まり、ダクト構造体における入口からその長さの一部にわたってダクト出口位置まで下流に延在する空気流冷却ダクト11を備えたファンダクト下側分岐構造体10の平面図を示している。ターボファンエンジンのファン空気流もしくはファン流の一部からの空気流13は、ダクト入口フラップ12’によって制御されるダクト入口12からダクト11に入って熱交換器14を通過するとともに、この熱交換器は、複数の潤滑油輸送管15を圧力をかけて通過させるエンジン潤滑システムの潤滑油を冷却するために空気流13を使用する。潤滑油輸送管15は、潤滑油がこれらの輸送管を流れることができるように、一端で入力管に連結され、他端で出力管に連結されることによって、潤滑システムに適切に連結される。空気流13は、これらの輸送管の周囲を流れて、ダクトの下流端で、出口断面積が出口フラップ16によって大きさを制御されるダクト11出口に到達する。
角度位置決めモータ17によって、比例リンク機構17’が各フラップおよびリンク機構部品を、太い黒円で図示されたピンおよび角度位置決めモータに連結したシャフトの周りに動かすようにして、ダクト入口フラップ12’を図1に示す位置から強制的に内側または外側に選択的に回転させることができ、出口フラップ16を図示された位置から強制的に内側または外側に選択的に回転させることができる。あるいは、対応するシャフトに直結された1対の角度位置決めモータ17’’,17’’’の対応する一方によって、入口フラップ12’を選択的に回転させることができ、出口フラップ16を選択的に回転させることができる。ファンダクト内の空気流のマッハ数が十分に小さいターボファンエンジンでは、フラップ12’を省くことができる。
図2および図3の一部分切欠図において示されるように、分岐構造体10は、ターボファンエンジン20用エンジンポッドのエンジンナセル18の壁底部と、外側フェアリング19の壁底部と、の間において配置されている。幾つかある部品の中で、ファン21およびファンダクトノズル22がエンジン20内に示されており、ファンダクトがそれらの間に延在している。図2は、角度位置決めアクチュエータもしくはモータ17が比例リンク機構17’を制御することで作動するフラップ12’,16を有する空気流ダクト11を備えたファンダクト下側分岐構造体10を示している。
図3は、他の実施例として、角度位置決めアクチュエータつまりモータ17’’,17’’’によってそれぞれ直接に作動されるフラップ12’,16を有する空気流ダクト11を備えたファンダクト下側分岐構造体10を示している。図2および図3とは異なり、図4は、ファンダクトノズル22を過ぎ、ターボファンエンジンファンダクトの外側の大気まで延びる長い分岐構造体10’を示しており、ファンダクトノズル22は、ファンダクトを閉鎖するかまたはほぼ閉鎖するために、構造体10の壁に接するかまたは近接することができるように構成されている。
本発明が好ましい実施形態に関連させて説明されたが、本発明の精神および範囲から逸脱することなく、基本形態および細部にわたって変更が可能であると当業者ならば分かるであろう。
本発明を具体化したターボファンエンジンのファンダクト下側分岐構造体を示す平面断面図。 ターボファンエンジンを部分的に切り取り、さらに本発明を具体化した図1のターボファンエンジンのファンダクト下側分岐構造体を示す側面図。 ターボファンエンジンを部分的に切り取り、さらに本発明を具体化した図1のターボファンエンジンのファンダクト下側分岐構造体を表し、本発明の一実施例を示す側面図。 ターボファンエンジンを部分的に切り取り、さらに本発明を具体化した図1のターボファンエンジンのファンダクト下側分岐構造体を表し、本発明の他の実施例を示す側面図。

Claims (15)

  1. 選択した動作を行う際に作動流体を利用する動作装置において使用されるとともに、前記装置を使用して発生させた空気流内で、選択的に変更可能な流量で空気と作動流体の熱交換を行って作動流体を冷却する熱交換システムであって、
    使用時に発生する前記空気流内に配置されたストリーム構造体の少なくとも一部を通って延在し、かつ上流側の入口開口部および下流側の出口開口部を有する冷却ダクトと、
    閉じた状態のときに前記入口開口部の少なくとも一部を覆い、かつ開いた状態のときに空気が前記冷却ダクトを流れるのを可能にするように前記冷却ダクトの上流側に配置された可動入口フラップと、
    閉じた状態のときに前記出口開口部の少なくとも一部を覆い、かつ開いた状態のときに空気が前記冷却ダクトを流れるのを可能にするように前記冷却ダクトの下流側に配置された可動出口フラップと、
    前記冷却ダクト内で前記入口開口部と前記出口開口部との間に設けられ、かつ空気が周囲を通過する複数の流路構造体を有する熱交換器コア部と、を備えるとともに、
    前記流路構造体は、前記作動流体が入力管および出力管の内部を通じて前記流路構造体の内部に供給され、かつ前記流路構造体の内部から取り出されるように、一端で前記入力管に連結され、他端で前記出力管に連結される、
    ように構成された熱交換システム。
  2. 前記ストリーム構造体が、ターボファンエンジン用エンジンポッドのエンジンナセルの壁底部と、外側フェアリングの壁底部と、の間において配置されたファンダクト下側分岐構造体であるとともに、前記冷却ダクトの端部は、前記ターボファンエンジンのファンダクトノズルの端部付近または外側に配置されることを特徴とする請求項1に記載の熱交換システム。
  3. 前記入口フラップは、前記ファンダクト下側分岐構造体の長手方向に沿って配置され、かつ前記エンジンナセルの壁底部ならびに前記外側フェアリングの壁底部に実質的に交差するように、軸の周りに回転可能であることを特徴とする請求項2に記載の熱交換システム。
  4. 前記出口フラップは、前記ファンダクト下側分岐構造体の端部に配置され、かつ前記エンジンナセルの前記壁底部ならびに前記外側フェアリングの前記壁底部に実質的に交差するように、軸の周りに回転可能であることを特徴とする請求項2に記載の熱交換システム。
  5. 前記入口フラップおよび前記出口フラップの位置を移動できるように、前記入口フラップおよび前記出口フラップの両方に連結された機械的リンク機構にさらに連結された第1のフラップアクチュエータを備えることを特徴とする請求項1に記載の熱交換システム。
  6. 前記出口フラップが前記機械的リンク機構によって開かれる前記出口開口部の断面よりも前記入口開口部の断面をより大きく曝露するように、前記入口フラップが前記機械的リンク機構によって開かれることを特徴とする請求項5に記載の熱交換システム。
  7. 前記出口フラップが前記機械的リンク機構によって閉じられて前記出口開口部を覆った場合に、前記入口フラップが、前記リンク機構によって前記入口開口部を覆うように閉じられることを特徴とする請求項5に記載の熱交換システム。
  8. 前記入口フラップの位置を強制的に変えることができるように、前記入口フラップに連結された第1のフラップアクチュエータを備えるとともに、かつ前記出口フラップの位置を強制的に変えることができるように、前記出口フラップに連結された第2のフラップアクチュエータを備えることを特徴とする請求項1に記載の熱交換システム。
  9. 前記出口フラップが前記第2のフラップアクチュエータによって開かれる前記出口開口部の断面を露出させるよりも大きく前記入口開口部の断面を露出させるように、前記入口フラップは前記第1のフラップアクチュエータによって開かれることを特徴とする請求項8に記載の熱交換システム。
  10. 前記出口フラップが前記第2のフラップアクチュエータによって閉じられて前記出口開口部を覆った場合に、前記入口フラップが、前記第1のフラップアクチュエータによって前記入口開口部を閉じられることを特徴とする請求項8に記載の熱交換システム。
  11. 互いに相対移動する面に少なくとも部分的に囲まれた空間に、圧力をかけて潤滑剤を供給する、航空機ターボファンエンジン装置用潤滑システムで使用する熱交換システムにおいて、ファンダクトがターボファンエンジンファンとファンダクトノズルとの間に延在する前記ターボファンエンジンの少なくとも何らかの動作時に、エンジンファンダクト壁の流れ側に発生した空気流内で、選択的に変更可能な流量で空気と潤滑剤の熱交換を行って前記潤滑剤を冷却する前記熱交換器システムであって、
    前記エンジンファンダクト壁の前記流れ側に発生した前記空気流内に前記エンジンダクト壁に隣接して配置されたストリーム構造体の少なくとも一部を通って延在する冷却ダクトであって、前記ターボファンエンジンの前記ファン空気流に面したダクト入口開口部と、前記ファンダクトノズルの端部付近または外側に配置された端部を有するこの冷却ダクトの出口開口部部分を少なくとも部分的に覆う可動出口フラップと、を有する冷却ダクトと、
    前記出口フラップが前記出口開口部を覆う選択された範囲を強制的に開くかまたは閉じることができるフラップアクチュエータと、
    前記冷却ダクト内で前記入口開口部と前記出口開口部との間に設けられ、かつ空気が周囲を通過する複数の流路構造体を備えた熱交換器と、を備えるとともに、
    前記流路構造体は、前記作動流体が入力管および出力管の内部を通じて前記流路構造体の内部に供給され、かつ前記流路構造体の内部から取り出されるように、一端で前記入力管に連結され、他端で前記出力管に連結される、
    ように構成された熱交換システム。
  12. 前記ストリーム構造体が、ターボファンエンジン用エンジンポッドのエンジンナセルの壁底部と、外側フェアリングの壁底部と、の間において配置されたファンダクト下側分岐構造体であることを特徴とする請求項11に記載の熱交換システム。
  13. 前記出口フラップが、前記ファンダクト下側分岐構造体の端部に配置され、かつ前記エンジンナセルの前記壁底部ならびに前記外側フェアリングの前記壁底部に実質的に交差するように、軸の周りに回転可能であることを特徴とする請求項12に記載の熱交換システム。
  14. ターボファンエンジンの稼働中にターボファンエンジンのファンによる空気流内で、動作部品を潤滑するターボファンエンジン潤滑システムに供給された潤滑油を、熱交換器を使用して、選択的に変更可能な流量で冷却する方法であって、
    前記熱交換器は、空気と潤滑油の熱交換を行って前記潤滑油を空気冷却するために、エンジンファンダクト壁の流れ側で発生した前記空気流内に前記エンジンファンダクト壁に隣接して配置されたストリーム構造体の少なくとも一部を通って延在する冷却ダクト内に配置され、この冷却ダクトは、前記ターボファンエンジンの前記ファン空気流に対してダクト入口開口部を有し、前記ターボファンエンジンの少なくとも何らかの動作中に、可動入口フラップが前記ダクト入口を開くと同時に、前記空気流の一部がこのダクト内に押し込まれ、前記冷却ダクトはさらに、ファンダクトノズルの端部付近または外側に配置された端部を有する前記冷却ダクトの出口開口部の部分を少なくとも部分的に覆う可動出口フラップを有し、
    潤滑油によって可動部品を潤滑させ、さらにこの潤滑油を、空気が周囲を流れる複数の流路構造体を備えたコア部を有する熱交換器に通すとともに、前記流路構造体は、入力管および出力管の内部を通じて前記潤滑油を前記流路構造体の内部に供給し、かつ前記流路構造体の内部から取り出すことができるように、一端で前記入力管に連結され、他端で前記出力管に連結されており、
    前記入口フラップを開いて前記入口開口部の一部を露出させ、それによって、前記ファン空気流を前記冷却ダクトに入れ、
    前記出口フラップを開いて、前記入口開口部の露出した部分よりも小さく前記出口開口部の一部を露出させる、
    ことを特徴とする潤滑油の冷却方法。
  15. 前記出口フラップを閉じて前記出口開口部を覆い、前記入口フラップを閉じて前記入口開口部を覆うことをさらに含む請求項14に記載の潤滑油の冷却方法。
JP2007164479A 2006-07-06 2007-06-22 熱交換システムおよび潤滑油の冷却方法 Pending JP2008014308A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/481,550 US7765788B2 (en) 2006-07-06 2006-07-06 Cooling exchanger duct

Publications (1)

Publication Number Publication Date
JP2008014308A true JP2008014308A (ja) 2008-01-24

Family

ID=38330177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007164479A Pending JP2008014308A (ja) 2006-07-06 2007-06-22 熱交換システムおよび潤滑油の冷却方法

Country Status (3)

Country Link
US (3) US7765788B2 (ja)
EP (1) EP1876328B1 (ja)
JP (1) JP2008014308A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063990A (ja) * 2013-09-24 2015-04-09 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation 基本ギアシステム構成

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2889254B1 (fr) * 2005-07-28 2011-05-06 Airbus France Turboreacteur pour aeronef, ensemble propulseur comportant un tel turboreacteur, et aeronef comportant au moins un tel ensemble propulseur
US8127828B2 (en) * 2006-03-17 2012-03-06 United Technologies Corporation Air-oil heat exchanger
GB2437295B (en) * 2006-04-20 2008-06-25 Rolls Royce Plc Aeroengine ventilation system
EP2074317B1 (en) * 2006-10-12 2012-03-07 United Technologies Corporation Nacelle assembly for a gas turbine engine comprising a pylon located in the fan bypass flow path with a variable area flow system
EP1944475B1 (en) 2007-01-08 2015-08-12 United Technologies Corporation Heat exchange system
US8826641B2 (en) * 2008-01-28 2014-09-09 United Technologies Corporation Thermal management system integrated pylon
US8627667B2 (en) * 2008-12-29 2014-01-14 Roll-Royce Corporation Gas turbine engine duct having a coupled fluid volume
US9885313B2 (en) 2009-03-17 2018-02-06 United Technologes Corporation Gas turbine engine bifurcation located fan variable area nozzle
US8910465B2 (en) 2009-12-31 2014-12-16 Rolls-Royce North American Technologies, Inc. Gas turbine engine and heat exchange system
GB201007215D0 (en) * 2010-04-30 2010-06-16 Rolls Royce Plc Gas turbine engine
US10041442B2 (en) * 2010-06-11 2018-08-07 United Technologies Corporation Variable area fan nozzle
US8961114B2 (en) * 2010-11-22 2015-02-24 General Electric Company Integrated variable geometry flow restrictor and heat exchanger
DE102011101342A1 (de) * 2011-05-12 2012-11-15 Rolls-Royce Deutschland Ltd & Co Kg Fluggasturbinentriebwerk mit Ölkühler in der Triebwerksverkleidung
US8973552B2 (en) 2011-06-27 2015-03-10 United Technologies Corporation Integral oil system
US9260191B2 (en) 2011-08-26 2016-02-16 Hs Marston Aerospace Ltd. Heat exhanger apparatus including heat transfer surfaces
US9109464B2 (en) * 2011-08-31 2015-08-18 United Technologies Corporation Distributed lubrication system
US9334802B2 (en) 2011-10-31 2016-05-10 United Technologies Corporation Gas turbine engine thermal management system
US8495857B2 (en) * 2011-10-31 2013-07-30 United Technologies Corporation Gas turbine engine thermal management system
US9388739B2 (en) 2012-05-02 2016-07-12 Pratt & Whitney Canada Corp. Air cooler system for gas turbine engines
US8572943B1 (en) 2012-05-31 2013-11-05 United Technologies Corporation Fundamental gear system architecture
US20150308351A1 (en) 2012-05-31 2015-10-29 United Technologies Corporation Fundamental gear system architecture
US9249731B2 (en) * 2012-06-05 2016-02-02 United Technologies Corporation Nacelle bifurcation for gas turbine engine
US9599410B2 (en) 2012-07-27 2017-03-21 General Electric Company Plate-like air-cooled engine surface cooler with fluid channel and varying fin geometry
US20140216056A1 (en) 2012-09-28 2014-08-07 United Technologies Corporation Heat exchange module for a turbine engine
EP2981697B1 (en) 2013-01-21 2019-10-02 United Technologies Corporation Air oil cooler airflow augmentation system and corresponding method
WO2015050579A2 (en) * 2013-01-21 2015-04-09 United Technologies Corporation Gas turbine engine with geared turbofan and oil thermal management system with unique heat exchanger structure
US10094286B2 (en) 2013-01-29 2018-10-09 United Technologies Corporation Gas turbine engine with lower bifurcation heat exchanger
EP2971739B1 (en) 2013-03-14 2020-03-18 Rolls-Royce North American Technologies, Inc. Gas turbine engine flow duct having two rows of integrated heat exchangers
EP2971734B1 (en) 2013-03-15 2022-11-30 Raytheon Technologies Corporation Geared architecture turbofan engine thermal management system and method
FR3005992B1 (fr) * 2013-05-24 2015-05-22 Snecma Dispositif de passage de servitudes pour une turbomachine
EP3194791B1 (en) * 2014-07-31 2020-01-08 Sikorsky Aircraft Corporation Gearbox oil cooling assembly
ES2678676T3 (es) * 2014-12-23 2018-08-16 Airbus Defence And Space, S.A.U. Sistema y método para controlar la temperatura del aire de sangrado
US10731560B2 (en) 2015-02-12 2020-08-04 Raytheon Technologies Corporation Intercooled cooling air
US10371055B2 (en) 2015-02-12 2019-08-06 United Technologies Corporation Intercooled cooling air using cooling compressor as starter
US11808210B2 (en) 2015-02-12 2023-11-07 Rtx Corporation Intercooled cooling air with heat exchanger packaging
US10221862B2 (en) 2015-04-24 2019-03-05 United Technologies Corporation Intercooled cooling air tapped from plural locations
US10830148B2 (en) 2015-04-24 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air with dual pass heat exchanger
US10480419B2 (en) 2015-04-24 2019-11-19 United Technologies Corporation Intercooled cooling air with plural heat exchangers
US10100739B2 (en) 2015-05-18 2018-10-16 United Technologies Corporation Cooled cooling air system for a gas turbine engine
US20160369697A1 (en) * 2015-06-16 2016-12-22 United Technologies Corporation Cooled cooling air system for a turbofan engine
US10794288B2 (en) 2015-07-07 2020-10-06 Raytheon Technologies Corporation Cooled cooling air system for a turbofan engine
EP3130539B1 (en) * 2015-08-12 2020-04-08 Rolls-Royce North American Technologies, Inc. Heat exchanger for a gas turbine engine propulsion system
US10443508B2 (en) 2015-12-14 2019-10-15 United Technologies Corporation Intercooled cooling air with auxiliary compressor control
US10697371B2 (en) * 2015-12-28 2020-06-30 General Electric Company Method and system for a combined air-oil cooler and fuel-oil cooler heat exchanger
EP3196454B1 (en) * 2016-01-21 2021-09-15 Rolls-Royce Corporation Heat exchanger assembly for a gas turbine engine propulsion system
US11168951B2 (en) 2016-07-14 2021-11-09 General Electric Company Entrainment heat exchanger
US10669940B2 (en) 2016-09-19 2020-06-02 Raytheon Technologies Corporation Gas turbine engine with intercooled cooling air and turbine drive
US10550724B2 (en) 2016-10-11 2020-02-04 General Electric Company System and method for the pressurization of a sump of a gas turbine engine
US10794290B2 (en) 2016-11-08 2020-10-06 Raytheon Technologies Corporation Intercooled cooled cooling integrated air cycle machine
US10550768B2 (en) 2016-11-08 2020-02-04 United Technologies Corporation Intercooled cooled cooling integrated air cycle machine
US20180162537A1 (en) 2016-12-09 2018-06-14 United Technologies Corporation Environmental control system air circuit
US10961911B2 (en) 2017-01-17 2021-03-30 Raytheon Technologies Corporation Injection cooled cooling air system for a gas turbine engine
US10995673B2 (en) 2017-01-19 2021-05-04 Raytheon Technologies Corporation Gas turbine engine with intercooled cooling air and dual towershaft accessory gearbox
US10577964B2 (en) 2017-03-31 2020-03-03 United Technologies Corporation Cooled cooling air for blade air seal through outer chamber
US10711640B2 (en) 2017-04-11 2020-07-14 Raytheon Technologies Corporation Cooled cooling air to blade outer air seal passing through a static vane
US10738703B2 (en) 2018-03-22 2020-08-11 Raytheon Technologies Corporation Intercooled cooling air with combined features
US10808619B2 (en) 2018-04-19 2020-10-20 Raytheon Technologies Corporation Intercooled cooling air with advanced cooling system
US10830145B2 (en) 2018-04-19 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air fleet management system
EP3569841A1 (en) * 2018-05-14 2019-11-20 United Technologies Corporation Intercooled cooling air with heat exchanger packaging
US10718233B2 (en) 2018-06-19 2020-07-21 Raytheon Technologies Corporation Intercooled cooling air with low temperature bearing compartment air
US11255268B2 (en) 2018-07-31 2022-02-22 Raytheon Technologies Corporation Intercooled cooling air with selective pressure dump
FR3089248B1 (fr) * 2018-12-03 2020-11-20 Safran Aircraft Engines Ensemble moteur pour aéronef présentant un support de système d’échangeur air-huile a fixation optimisée
US11300002B2 (en) 2018-12-07 2022-04-12 Pratt & Whitney Canada Corp. Static take-off port
US11174816B2 (en) 2019-02-25 2021-11-16 Rolls-Royce Corporation Bypass duct conformal heat exchanger array
US11378009B2 (en) 2019-05-15 2022-07-05 Raytheon Technologies Corporation Multi-mode heat rejection system for a gas turbine engine
US11492971B2 (en) 2019-09-06 2022-11-08 Raytheon Technologies Corporation Turbine engine system with heat exchanger in bypassable secondary duct
DE102020006235A1 (de) * 2020-10-09 2022-04-14 Airbus Defence and Space GmbH Luftleitanordnung für ein Luftfahrzeug mit integriertem Wärmetauscher
US11512639B2 (en) * 2021-01-26 2022-11-29 General Electric Company Heat transfer system
US11897624B2 (en) 2021-02-01 2024-02-13 General Electric Company Method for thermal management for an aircraft propulsion system using a flow of compressed fluid extracted from a compressor section
US11976595B1 (en) * 2023-06-13 2024-05-07 Pratt & Whitney Canada Corp. Gas turbine engine with air/oil cooler having an airflow control baffle

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US598787A (en) * 1898-02-08 Georg emil kelling
US2080716A (en) * 1934-07-25 1937-05-18 Int Harvester Co Self-aligning sprocket wheel
DE1019866B (de) * 1940-06-24 1957-11-21 Bayerische Motoren Werke Ag Anordnung des Schmierstoffkuehlers eines mit einem die Arbeitsluft foerdernden Geblaese versehenen Strahltriebwerkes
US2625009A (en) * 1948-07-15 1953-01-13 Curtiss Wright Corp Vehicle engine cooling system utilizing air ejector pump to induce flow of additional cooling air
GB750200A (en) * 1953-12-30 1956-06-13 Armstrong Siddeley Motors Ltd Improvements relating to ducted-fan, turbo-jet engines
US3080716A (en) * 1956-03-08 1963-03-12 Thompson Ramo Wooldridge Inc Engine lubricating oil cooling systems for turbojets or the like
US2865580A (en) * 1956-06-25 1958-12-23 Chance Vought Aircraft Inc Oil cooling and drag reducing system
US4409788A (en) * 1979-04-23 1983-10-18 General Electric Company Actuation system for use on a gas turbine engine
JPS61257311A (ja) * 1984-08-21 1986-11-14 Nissan Motor Co Ltd 車両用空調装置
GB9027782D0 (en) * 1990-12-21 1991-02-13 Rolls Royce Plc Heat exchanger apparatus
DE19524733A1 (de) * 1995-07-07 1997-01-09 Bmw Rolls Royce Gmbh Fluggasturbinen-Triebwerk mit einem Flüssigkeits-Luft-Wärmetauscher
CA2226424C (en) * 1995-07-07 2007-01-23 Dimitrie Negulescu Aircraft gas turbine engine with a liquid-air heat exchanger
DE19524731A1 (de) * 1995-07-07 1997-01-09 Bmw Rolls Royce Gmbh Turboprop-Triebwerk mit einem Luft-Ölkühler
FR2788308A1 (fr) * 1999-01-07 2000-07-13 Snecma Dispositif de refroidissement d'un reducteur de vitesse de turbomachine
US7454894B2 (en) * 2004-12-07 2008-11-25 United Technologies Corporation Supplemental oil cooler airflow for gas turbine engine
GB0607771D0 (en) * 2006-04-20 2006-05-31 Rolls Royce Plc A heat exchanger arrangement
US8776952B2 (en) * 2006-05-11 2014-07-15 United Technologies Corporation Thermal management system for turbofan engines
US7658060B2 (en) * 2006-07-19 2010-02-09 United Technologies Corporation Lubricant cooling exchanger dual intake duct

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063990A (ja) * 2013-09-24 2015-04-09 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation 基本ギアシステム構成

Also Published As

Publication number Publication date
EP1876328A2 (en) 2008-01-09
US20080006021A1 (en) 2008-01-10
US8161726B2 (en) 2012-04-24
US7810311B2 (en) 2010-10-12
EP1876328B1 (en) 2015-09-09
EP1876328A3 (en) 2010-11-03
US20100275578A1 (en) 2010-11-04
US20080006022A1 (en) 2008-01-10
US7765788B2 (en) 2010-08-03

Similar Documents

Publication Publication Date Title
JP2008014308A (ja) 熱交換システムおよび潤滑油の冷却方法
EP1944475B1 (en) Heat exchange system
US7658060B2 (en) Lubricant cooling exchanger dual intake duct
EP2519723B1 (en) Gas turbine engine
US11035250B2 (en) Gas turbine engine fluid cooling systems and methods of assembling the same
EP1857638B1 (en) Thermal management system for turbofan engines
US8534043B2 (en) Air-oil heat exchanger
US7908840B2 (en) Turbine engine with integrated generator having shared lubrication system
US8205427B2 (en) Interdependent lubrication systems in a turbine engine
US10823068B2 (en) Heat exchanger device for an aircraft engine
EP3483414B1 (en) Gas turbine engine having an air-oil heat exchanger
US10036322B2 (en) Electroformed nickel-chromium alloy
US20240018904A1 (en) Heat exchanger mounted in a turbine engine cavity
US20220235705A1 (en) Heat transfer system
GB2208702A (en) A heat exchanger system
US20230417181A1 (en) Scoop for an aircraft turbine engine