JP2008013672A - Composite material containing cured epoxy resin porous material and fiber - Google Patents

Composite material containing cured epoxy resin porous material and fiber Download PDF

Info

Publication number
JP2008013672A
JP2008013672A JP2006186787A JP2006186787A JP2008013672A JP 2008013672 A JP2008013672 A JP 2008013672A JP 2006186787 A JP2006186787 A JP 2006186787A JP 2006186787 A JP2006186787 A JP 2006186787A JP 2008013672 A JP2008013672 A JP 2008013672A
Authority
JP
Japan
Prior art keywords
composite material
fiber
epoxy resin
material according
porogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006186787A
Other languages
Japanese (ja)
Inventor
Norio Tsujioka
則夫 辻岡
Ken Hosoya
憲 細矢
Akinobu Sakamoto
明信 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAKUHOKU GISHI KK
Asahi Kasei Corp
Kyoto Institute of Technology NUC
Original Assignee
RAKUHOKU GISHI KK
Asahi Kasei Corp
Kyoto Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAKUHOKU GISHI KK, Asahi Kasei Corp, Kyoto Institute of Technology NUC filed Critical RAKUHOKU GISHI KK
Priority to JP2006186787A priority Critical patent/JP2008013672A/en
Publication of JP2008013672A publication Critical patent/JP2008013672A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material which is light and having sufficient mechanical strength and gas and/or water permeability, and suitable for using as an artificial limb, plaster cast, protective material, etc. <P>SOLUTION: This composite material contains a cured epoxy resin porous material having a three-dimensional network skeleton and a continuous void, and a fiber. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エポキシ樹脂硬化物多孔体と繊維を含んでなる複合材料に関する。詳しくは、本発明は、通気性ないし通水性を有し、機械強度に優れ、義肢、ギブス、又は防護具などとしての使用に好適な軽量複合材料、及びその製造方法に関する。   The present invention relates to a composite material comprising a cured epoxy resin porous material and fibers. More specifically, the present invention relates to a lightweight composite material having air permeability or water permeability, excellent mechanical strength, and suitable for use as a prosthetic limb, a cast, or a protective device, and a method for producing the same.

繊維強化複合材料は軽量、高強度かつ耐蝕性に優れることから、様々な分野に広く使用されている。なかでも、特に、安全保護具や義肢材料などのような、人体に直接接触して使用される材料に対しては、とりわけ軽量化に対する要請が強く、また、通気性ないし通水性を有し、体温の調節や汗の発散を可能とする複合材料に対するニーズが高い。   Fiber reinforced composite materials are widely used in various fields because of their light weight, high strength, and excellent corrosion resistance. In particular, for materials that are used in direct contact with the human body, such as safety protective equipment and prosthetic limb materials, there is a strong demand for weight reduction, and it has breathability or water permeability. There is a great need for composite materials that can regulate body temperature and wick sweat.

軽量性と強度を兼ね備えた複合材料としては、例えば特定の引張弾性率を有する炭素繊維と発泡樹脂とからなる軽量複合材料が提案されている(特許文献1)。この材料は、密度が0.2から0.8g/cmであり、軽量化が図られている。しかしながら、発泡樹脂における孔は連通しない独立気泡によるため、このような複合材料では通気性ないし通水性は得られない。 As a composite material having both lightness and strength, for example, a lightweight composite material made of carbon fiber having a specific tensile elastic modulus and a foamed resin has been proposed (Patent Document 1). This material has a density of 0.2 to 0.8 g / cm 3 and is lightened. However, since the pores in the foamed resin are closed cells that do not communicate with each other, such a composite material cannot provide air permeability or water permeability.

また、特許文献2には、内層が気泡または多孔質材含有樹脂層、外層が繊維強化熱硬化性樹脂層で構成された複層樹脂製品を生産性よく連続的に製造する方法が開示されている。この方法によって得られる複層樹脂製品は一定の軽量性を有するものの、通気性ないし通水性はない。   Patent Document 2 discloses a method for continuously producing a multi-layer resin product in which an inner layer is a bubble or porous material-containing resin layer and an outer layer is a fiber-reinforced thermosetting resin layer with high productivity. Yes. The multilayer resin product obtained by this method has a certain lightness but does not have air permeability or water permeability.

一方、特許文献3には、ガラス繊維織物を補強材とし、特定の透気度と空孔率を有するポリオレフィン微多孔膜が開示されている。この微多孔膜は、リチウム電池あるいはコンデンサー用のセパレータとしての強度や耐熱性を有している。しかしながら、セパレータに用いられる薄膜であって、しかもポリオレフィンを使用するため、高強度や高弾性率を要する複合材料の分野での使用には適さない。   On the other hand, Patent Document 3 discloses a polyolefin microporous membrane having a specific air permeability and porosity using a glass fiber fabric as a reinforcing material. This microporous film has strength and heat resistance as a separator for a lithium battery or a capacitor. However, since it is a thin film used for a separator and polyolefin is used, it is not suitable for use in the field of composite materials requiring high strength and high elastic modulus.

特開2003−335888号公報JP 2003-335888 A 特開平10−166467号公報JP-A-10-166467 特開2004−269579号公報JP 2004-269579 A

本発明の課題は、軽量で十分な機械強度を有すると共に、通気性ないし通水性を有し、義肢、ギブス、又は防護具などとしての使用に好適な複合材料を提供することにある。   An object of the present invention is to provide a composite material that is lightweight and has sufficient mechanical strength, and has air permeability or water permeability, and is suitable for use as a prosthetic limb, a cast, or a protective device.

本発明者らは、特定の構造及び性質を有するエポキシ樹脂硬化物多孔体を複合材料のマトリックス樹脂として使用することによって、前記課題が解決されることを見出した。
即ち、本発明は、三次元網目状骨格構造及び連通する空隙を有するエポキシ樹脂硬化物多孔体と繊維を含んでなる複合材料に関する。
本発明はまた、上記三次元網目状骨格構造が、三次元網目状骨格と球状微粒子が混在する構造である上記複合材料に関する。
本発明はまた、空孔率が20%〜70%、平均孔径(メディアン径)が0.5〜30μmである上記複合材料に関する。
本発明はまた、繊維が、表面に官能基を有する、上記複合材料に関する。
本発明はまた、上記繊維が、ガラス繊維、炭素繊維、ポリアミド繊維及びポリエステル繊維からなる群から選択される、上記複合材料に関する。
本発明はまた、上記繊維が、繊維は、織布又は不織布である、上記複合材料に関する。
The present inventors have found that the above-mentioned problems can be solved by using a cured epoxy resin porous body having a specific structure and properties as a matrix resin of a composite material.
That is, the present invention relates to a composite material comprising a three-dimensional network skeleton structure and a cured epoxy resin porous body having a communicating void and fibers.
The present invention also relates to the composite material, wherein the three-dimensional network skeleton structure is a structure in which a three-dimensional network skeleton and spherical fine particles are mixed.
The present invention also relates to the above composite material having a porosity of 20% to 70% and an average pore diameter (median diameter) of 0.5 to 30 μm.
The present invention also relates to the composite material, wherein the fiber has a functional group on the surface.
The present invention also relates to the above composite material, wherein the fiber is selected from the group consisting of glass fiber, carbon fiber, polyamide fiber and polyester fiber.
The present invention also relates to the above composite material, wherein the fiber is a woven fabric or a non-woven fabric.

本発明はさらに、上記複合材料を製造する方法であって、以下の工程:
a)エポキシ樹脂、硬化剤、ポロゲンを含んでなるエポキシ樹脂ワニスを繊維に含浸する工程、
b)得られた含浸物を加熱してエポキシ樹脂を硬化させる工程、
c)得られた硬化物からポロゲンを除去する工程、
を含む方法に関する。
本発明はまた、含浸後に、残留する気泡を減圧により脱泡する、上記方法に関する。
本発明はまた、工程b)において、重合、架橋、相分離、及び硬化が行われる、上記方法に関する。
本発明はさらに、上記複合材料で形成されている義肢、ギブス、並びに防護具に関する。
The present invention further provides a method for producing the above composite material, comprising the following steps:
a) a step of impregnating a fiber with an epoxy resin varnish comprising an epoxy resin, a curing agent, and a porogen;
b) a step of curing the epoxy resin by heating the obtained impregnated material,
c) a step of removing porogen from the obtained cured product,
Relates to a method comprising:
The present invention also relates to the above method, wherein after the impregnation, the remaining bubbles are degassed by decompression.
The invention also relates to the above method wherein in step b) the polymerization, crosslinking, phase separation and curing are performed.
The present invention further relates to a prosthesis, a cast, and a protective device formed of the composite material.

本発明による複合材料は、軽量で十分な機械強度を有すると共に、通気性ないし通水性を有するという、優れた特性を有する。本発明による複合材料は、このように、軽量性と機械強度のバランスに優れるのみならず、体温の調節や汗の発散を可能とする通気性ないし通水性に優れているため、人体に直接装着する義肢、ギブス、又は防護具における使用に好適である。   The composite material according to the present invention has excellent characteristics such as light weight, sufficient mechanical strength, and breathability or water permeability. Thus, the composite material according to the present invention is not only excellent in the balance between lightness and mechanical strength, but also has excellent breathability and water permeability that enables adjustment of body temperature and sweat perspiration, so it is directly attached to the human body. Suitable for use in prosthetic limbs, casts or armor.

本発明の複合材料は、三次元網目状骨格構造及び連通する空隙を有するエポキシ樹脂硬化物多孔体と繊維を含んでなる。
即ち、本発明による複合材料は、従来のエポキシ樹脂とは異なる三次元網目状骨格構造と連通する空隙とを有することにより、軽量で十分な機械強度を有すると共に、通気性ないし通水性を有するという、優れた特性を有する。
The composite material of the present invention comprises a cured epoxy resin porous body having a three-dimensional network skeleton structure and communicating voids and fibers.
That is, the composite material according to the present invention has a three-dimensional network skeleton structure different from that of the conventional epoxy resin and a void communicating therewith, so that it has light weight and sufficient mechanical strength, and has air permeability or water permeability. , Have excellent characteristics.

本発明において使用されるエポキシ樹脂硬化物多孔体は、後述するように、ポロゲンにエポキシ樹脂と硬化剤を均一に溶解し、加熱重合してポリマーとポロゲンの共連続構造体を形成し、次いでポロゲンを除去することにより得ることができる。   As described later, the cured epoxy resin porous material used in the present invention is obtained by uniformly dissolving an epoxy resin and a curing agent in porogen and heat-polymerizing to form a co-continuous structure of polymer and porogen, and then porogen. Can be obtained by removing.

本発明に使用されるエポキシ樹脂としては、芳香族エポキシ樹脂、脂肪族エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂などが挙げられる。より具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、フルオレン含有エポキシ樹脂、トリグリシジルイソシアヌレート、脂環族グリシジルエーテル型エポキシ樹脂、脂環族グリシジルエステル型エポキシ樹脂などが挙げられる。なかでも、エポキシ当量が600以下で融点が100℃以下の上記エポキシ樹脂が特に好ましい。   Examples of the epoxy resin used in the present invention include aromatic epoxy resins, aliphatic epoxy resins, alicyclic epoxy resins, and heterocyclic epoxy resins. More specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, fluorene-containing epoxy resin, triglycidyl isocyanurate, alicyclic glycidyl ether type epoxy resin, alicyclic glycidyl ester type epoxy Resin etc. are mentioned. Among them, the above epoxy resin having an epoxy equivalent of 600 or less and a melting point of 100 ° C. or less is particularly preferable.

本発明に使用される硬化剤としては、特に限定されないが、例えば、アミン類、ポリアミドアミン類、酸無水物、フェノール系などを挙げることができる。より具体的には、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン、ビス(4−アミノシクロヘキシル)メタン、ポリアミン類とダイマー酸からなる脂肪族ポリアミドアミンなどが挙げられる。本発明においては、エポキシ樹脂と反応して水酸基を形成し、得られる多孔体に親水性を付与する機能を有する硬化剤を用いることが好ましい。   Although it does not specifically limit as a hardening | curing agent used for this invention, For example, amines, a polyamidoamine, an acid anhydride, a phenol type etc. can be mentioned. More specifically, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, bis (4-amino-3-methylcyclohexyl) methane, bis (4-aminocyclohexyl) methane, aliphatic polyamidoamines composed of polyamines and dimer acids. Etc. In the present invention, it is preferable to use a curing agent having a function of reacting with an epoxy resin to form a hydroxyl group and imparting hydrophilicity to the resulting porous body.

本発明においては硬化促進剤を使用することもできる。硬化促進剤としては特に限定されず、既知のあらゆる化合物を使用することができるが、例えば、トリエチルアミン、トリブチルアミン等の三級アミン、2−フェノール−4−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェノール−4,5−ジヒドロキシメチルイミダゾールなどのイミダゾール類などを好適に用いることができる。   In the present invention, a curing accelerator can also be used. The curing accelerator is not particularly limited and any known compound can be used. For example, tertiary amines such as triethylamine and tributylamine, 2-phenol-4-methylimidazole, 2-ethyl-4-methyl, etc. Imidazoles such as imidazole and 2-phenol-4,5-dihydroxymethylimidazole can be preferably used.

本発明において、用語「ポロゲン」とは、細孔形成剤としての不活性溶媒又は不活性溶媒混合物を指称する。ポロゲンは、重合のある段階で多孔性ポリマーを形成させる重合反応中に存在し、所定の段階でこれを反応混合物中から除去することによって、三次元網目状骨格構造及び連通する空隙を有するエポキシ樹脂硬化物多孔体が得られる。   In the present invention, the term “porogen” refers to an inert solvent or inert solvent mixture as a pore-forming agent. The porogen is present in a polymerization reaction that forms a porous polymer at a certain stage of polymerization, and is removed from the reaction mixture at a predetermined stage, whereby an epoxy resin having a three-dimensional network skeleton structure and communicating voids. A cured product porous body is obtained.

本発明においては、ポロゲンとして、水酸基を有し、水酸基価100(mgKOH/g)以上のポリアルキレングリコールまたはポリアルキレングリコール誘導体を使用することが望ましい。水酸基価が100(mgKOH/g)より小さくなると粘度が高くなり、形成されるエポキシ硬化物多孔体の孔径を大きくすることが困難になったり、エポキシ樹脂硬化物多孔体への親水性の付与効果が低下することがある。エポキシ樹脂多孔体表面の水酸基量とポロゲンの水酸基当量とは密接な関係にあり、ポロゲンの水酸基価が小さくなるに連れてエポキシ樹脂硬化物表面に現れる水酸基量も減少し、表面の親水性が低下するためと考えられる。   In the present invention, it is desirable to use a polyalkylene glycol or a polyalkylene glycol derivative having a hydroxyl group and having a hydroxyl value of 100 (mgKOH / g) or more as the porogen. When the hydroxyl value is less than 100 (mgKOH / g), the viscosity becomes high, and it becomes difficult to increase the pore diameter of the formed cured epoxy resin porous material, or the hydrophilicity imparting effect to the epoxy resin cured material porous body May decrease. The amount of hydroxyl groups on the surface of the porous epoxy resin and the hydroxyl equivalent of the porogen are closely related. As the hydroxyl value of the porogen decreases, the amount of hydroxyl groups that appear on the surface of the cured epoxy resin also decreases and the hydrophilicity of the surface decreases. It is thought to do.

本発明はまた、上記したような本発明の複合材料の製造方法に関する。
即ち、本発明は、本発明による複合材料を製造する方法であって、以下の工程:
a)エポキシ樹脂、硬化剤、ポロゲンを含んでなるエポキシ樹脂ワニスを繊維に含浸する工程、
b)得られた含浸物を加熱してエポキシ樹脂を硬化させる工程、
c)得られた硬化物からポロゲンを除去する工程、
を含む方法に関する。
本発明はまた、上記方法において、ポロゲンは水酸基を有し、水酸基価100(mgKOH/g)以上のポリアルキレングリコール又はポリアルキレングリコール誘導体である方法に関する。
The present invention also relates to a method for producing the composite material of the present invention as described above.
That is, the present invention is a method for producing a composite material according to the present invention, comprising the following steps:
a) a step of impregnating a fiber with an epoxy resin varnish comprising an epoxy resin, a curing agent, and a porogen;
b) a step of curing the epoxy resin by heating the obtained impregnated material,
c) a step of removing porogen from the obtained cured product,
Relates to a method comprising:
The present invention also relates to the above method, wherein the porogen is a polyalkylene glycol or a polyalkylene glycol derivative having a hydroxyl group and having a hydroxyl value of 100 (mgKOH / g) or more.

本発明による複合材料の製造は、本発明者らによる未公開の特許出願である特願第2005−2550号及びそれに基づくPCT/JP2006/300069に記載されたエポキシ樹脂硬化物多孔体の製造方法に準じて、又はこれを変形して、行うことができる。この方法を採用するに際し、エポキシ樹脂と硬化剤を溶解したポロゲンを加熱して反応させる代わりに、エポキシ樹脂、硬化剤、ポロゲンを含んでなるエポキシ樹脂ワニスを繊維に含浸して得た含浸物を加熱反応させることができる。以下に、本発明におけるエポキシ樹脂硬化物多孔体及び本発明の複合材料を製造する方法の一例を、より具体的に示す。   The composite material according to the present invention is manufactured by a method for producing a cured epoxy resin porous material described in Japanese Patent Application No. 2005-2550 which is an unpublished patent application by the present inventors and PCT / JP2006 / 300069 based thereon. This can be done according to or modified. In adopting this method, instead of heating and reacting the porogen in which the epoxy resin and the curing agent are dissolved, an impregnation product obtained by impregnating the fiber with an epoxy resin varnish containing an epoxy resin, a curing agent and a porogen is used. Heat reaction can be performed. Below, an example of the method of manufacturing the epoxy resin hardened | cured material porous body in this invention and the composite material of this invention is shown more concretely.

まず、エポキシ樹脂と硬化剤を、エポキシ基1当量に対する硬化剤当量の比率が0.6〜1.5の範囲になるように選択する。エポキシ樹脂と硬化剤、並びにそれらと非反応性で溶解可能なポロゲンを含んでなるエポキシ樹脂ワニスを調製し、これを繊維、例えば炭素繊維やナイロンなどの繊維織物もしくは不織布に含浸する。含浸後、減圧を行って、繊維束内などに残留している気泡を十分に脱泡することが好ましい。得られた含浸物を、所定の重合温度に加熱し重合を行う。重合誘起により、重合物とポロゲンをスピノーダル分解させてミクロ相分離を起こさせる。ミクロ相分離が生長すると、重合物とポロゲンによる共連続構造が不安定化して粒子凝集構造に転移しようとするが、その前に重合物を三次元架橋させることにより共連続構造体を構造固定(凍結固定)する。このように、含浸物を加熱して硬化物を得る工程は、通常、重合、架橋、相分離、及び硬化の各段階を含み、これらの各段階は、場合により、複合的に進行し得る。次いで、得られた硬化物からポロゲンを水抽出によって除去すると、三次元網目状骨格構造を有する多孔体を含んでなる複合材料が得られる。   First, the epoxy resin and the curing agent are selected so that the ratio of the curing agent equivalent to 1 equivalent of the epoxy group is in the range of 0.6 to 1.5. An epoxy resin varnish comprising an epoxy resin, a curing agent, and a porogen that is non-reactive and soluble therein is prepared, and this is impregnated into a fiber woven fabric or non-woven fabric such as carbon fiber or nylon. After the impregnation, it is preferable to perform depressurization to sufficiently degas bubbles remaining in the fiber bundle. The obtained impregnated product is heated to a predetermined polymerization temperature for polymerization. Due to polymerization induction, the polymer and porogen are spinodal decomposed to cause microphase separation. When microphase separation grows, the co-continuous structure due to the polymer and porogen becomes unstable and tries to transfer to a particle aggregate structure. Before that, the structure is fixed by cross-linking the polymer three-dimensionally ( Freeze and fix). As described above, the process of heating the impregnated product to obtain a cured product usually includes polymerization, crosslinking, phase separation, and curing steps, and these steps can proceed in combination in some cases. Subsequently, when the porogen is removed from the obtained cured product by water extraction, a composite material including a porous body having a three-dimensional network skeleton structure is obtained.

ここで、スピノーダル分解を生ぜしめるためには、重合液を臨界組成近傍とすることが重要である。   Here, in order to cause spinodal decomposition, it is important that the polymerization solution is close to the critical composition.

重合が進行し、ポリマー成分が増大すると、スピノーダル分解によって相分離が起こり、共連続構造が発現するが、上記のとおり、相分離が更に進行し、共連続構造が消滅する前にエポキシ樹脂の架橋反応を進行させることにより構造が凍結固定されて、所望の三次元網目状骨格構造、又は三次元網目状骨格と球状微粒子が混在する三次元網目状骨格構造、及び連通する空隙を有する多孔体を製造することが可能となる。   As polymerization progresses and the polymer component increases, phase separation occurs due to spinodal decomposition and a co-continuous structure develops, but as described above, the phase separation further proceeds and the epoxy resin crosslinks before the co-continuous structure disappears. The structure is frozen and fixed by advancing the reaction, and a desired three-dimensional network skeleton structure, or a three-dimensional network skeleton structure in which three-dimensional network skeleton and spherical fine particles are mixed, and a porous body having a communicating void It can be manufactured.

エポキシ基1当量に対する硬化剤当量の比率が0.6より小さい場合は、硬化物の架橋密度が低くなり、耐熱性、耐溶剤性などが低下する場合がある。また、上記比率が1.5より大きくなると、未反応の官能基が多くなり、未反応のまま硬化物中に残留したり、あるいは架橋密度の増加を阻害する要因となり得る。エポキシ基1当量に対する硬化剤当量の比率を1より高くすると、三次元網目状骨格と球状微粒子が混在する三次元網目状骨格構造を有する多孔体を得ることが可能となる。
得られた多孔体の構造は、例えば、走査型電子顕微鏡観察によって確認することができる。
When the ratio of the curing agent equivalent to 1 equivalent of epoxy group is smaller than 0.6, the crosslinking density of the cured product is lowered, and the heat resistance, solvent resistance, etc. may be lowered. Moreover, when the said ratio becomes larger than 1.5, an unreacted functional group will increase and it may remain in a hardened | cured material unreacted, or may become a factor which inhibits the increase in a crosslinking density. When the ratio of the curing agent equivalent to 1 equivalent of epoxy group is higher than 1, a porous body having a three-dimensional network skeleton structure in which a three-dimensional network skeleton and spherical fine particles are mixed can be obtained.
The structure of the obtained porous body can be confirmed by, for example, observation with a scanning electron microscope.

本発明の複合材料に使用されるエポキシ樹脂硬化物多孔体は、親水性であることが好ましい。親水性のエポキシ樹脂硬化物多孔体を用いることによって、本発明の複合材料により優れた通気性ないし通水性を付与することができ、汗又は高湿度の空気が透過して複合材料の外部へ排出され得る。本発明において、親水性の用語は、次の意味を有するものと理解される。即ち、水滴を多孔体表面に滴加する場合、疎水性であれば水滴はそのまま多孔体にしみ込まないが、親水性であれば、容易に(数秒で)水滴が多孔体内部へしみ込み、水滴は消失する。
エポキシ樹脂硬化物多孔体に親水性を付与する方法は特に限定されないが、例えば、エポキシ樹脂硬化物の表面に、できるだけ多量に水酸基を存在させることが好ましい。アフターキュアーを行う場合は、ポロゲンの存在下で実施するのが好ましい。
It is preferable that the cured epoxy resin porous material used in the composite material of the present invention is hydrophilic. By using a porous porous body of a cured epoxy resin, the composite material of the present invention can provide excellent breathability or water permeability, and sweat or high-humidity air can permeate and discharge to the outside of the composite material. Can be done. In the present invention, the term hydrophilic is understood to have the following meaning. That is, when water droplets are added to the surface of a porous body, if they are hydrophobic, the water droplets do not penetrate into the porous body as they are, but if they are hydrophilic, the water drops can easily penetrate into the porous body (in a few seconds). Disappears.
The method for imparting hydrophilicity to the cured epoxy resin product is not particularly limited, but for example, it is preferable to have as many hydroxyl groups as possible on the surface of the cured epoxy resin product. When carrying out after cure, it is preferable to carry out in the presence of a porogen.

本発明の複合材料は、その空孔率が20%〜70%、平均孔径(メディアン径)が0.5〜30μmであることが好ましい。20%未満では、十分な軽量性と、通気性ないし通水性が得られないことがある。また、70%を超えると、複合材料としての十分な機械強度が得られないことがある。
また、本発明の複合材料は、その平均孔径(メディアン径)が0.5μm以上であることが好ましく、1μm以上であることがより好ましい。平均孔径が小さいと、例えば義肢、ギブス、又は防護具などとして使用した場合、目詰まりを起こし易くなる傾向にある。また、平均孔径(メディアン径)は30μm以下であることが好ましく、より好ましくは20μm以下、さらに好ましくは10μm以下である。平均孔径が大きいと、繊維界面との接着点が疎になるため、複合材料としての十分な機械強度が得られないことがある。
The composite material of the present invention preferably has a porosity of 20% to 70% and an average pore diameter (median diameter) of 0.5 to 30 μm. If it is less than 20%, sufficient lightness and air permeability or water permeability may not be obtained. If it exceeds 70%, sufficient mechanical strength as a composite material may not be obtained.
The composite material of the present invention preferably has an average pore diameter (median diameter) of 0.5 μm or more, and more preferably 1 μm or more. When the average pore diameter is small, for example, when used as a prosthetic limb, a cast or a protective gear, clogging tends to occur easily. Moreover, it is preferable that an average hole diameter (median diameter) is 30 micrometers or less, More preferably, it is 20 micrometers or less, More preferably, it is 10 micrometers or less. When the average pore size is large, the bonding point with the fiber interface becomes sparse, so that sufficient mechanical strength as a composite material may not be obtained.

本発明の複合材料における上記の空孔率、平均孔径及び孔径分布は、用いるエポキシ樹脂、硬化剤及びポロゲンの種類や使用比率、あるいは重合温度条件により変化する。従って、系の相図を作成し、最適な条件を選択することにより、上記範囲の空孔率、平均孔径及び孔径分布を得ることができる。   The porosity, average pore size, and pore size distribution in the composite material of the present invention vary depending on the type and use ratio of the epoxy resin, curing agent and porogen used, or polymerization temperature conditions. Therefore, by creating a phase diagram of the system and selecting optimum conditions, the porosity, average pore diameter, and pore diameter distribution in the above range can be obtained.

本発明の複合材料に使用される繊維は特に限定されず、複合材料の用途に応じて適宜決定できる。使用し得る有機繊維としては、例えば、6ナイロン、66ナイロン、芳香族ポリアミドなどのポリアミド繊維、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル繊維、(超高分子量)ポリエチレン繊維、ポリプロピレン繊維などが挙げられる。また、使用し得る無機繊維としては、例えば、ガラス繊維、炭素繊維、石英繊維などが挙げられる。中でも、とりわけガラス繊維、炭素繊維、ポリアミド繊維及びポリエステル繊維からなる群から選択される繊維を使用することが好ましい。
本発明の複合材料に使用される繊維の態様も特に限定されず、例えば、チョップトストランド、不織布、織布(織物)、編物、引き揃え、ロービングなどが挙げられる。中でも、とりわけ織布又は不織布の態様のものを使用することが好ましい。
上記の繊維は、表面に官能基を有することが、繊維と樹脂の界面接着強度の点から好ましい。官能基としては、例えば、アミノ基、グリシジル基、水酸基などが挙げられる。繊維の表面に官能基を導入する方法については、特に限定されないが、例えば、無機繊維の場合には、シランカップリング剤などによる表面処理、有機繊維の場合には、プラズマ処理や電解酸化処理などによる表面処理が有効である。
The fiber used for the composite material of the present invention is not particularly limited, and can be appropriately determined according to the use of the composite material. Examples of organic fibers that can be used include polyamide fibers such as 6 nylon, 66 nylon, and aromatic polyamide, polyester fibers such as polyethylene terephthalate and polybutylene terephthalate, (ultra high molecular weight) polyethylene fibers, and polypropylene fibers. Moreover, as an inorganic fiber which can be used, glass fiber, carbon fiber, quartz fiber etc. are mentioned, for example. Among these, it is particularly preferable to use a fiber selected from the group consisting of glass fiber, carbon fiber, polyamide fiber and polyester fiber.
The aspect of the fiber used for the composite material of the present invention is not particularly limited, and examples thereof include chopped strands, nonwoven fabrics, woven fabrics (woven fabrics), knitted fabrics, alignment, and rovings. Especially, it is preferable to use the thing of the aspect of a woven fabric or a nonwoven fabric especially.
The above-mentioned fiber preferably has a functional group on the surface from the viewpoint of the interfacial adhesive strength between the fiber and the resin. Examples of the functional group include an amino group, a glycidyl group, and a hydroxyl group. The method for introducing a functional group onto the surface of the fiber is not particularly limited. For example, in the case of inorganic fibers, surface treatment with a silane coupling agent, in the case of organic fibers, plasma treatment, electrolytic oxidation treatment, etc. Surface treatment by is effective.

本発明の複合材料は、その目的を害さない限り、いかなる形状に賦形されていてもよく、例えば、シート状、棒状又は筒状の形態とすることができ、また、義肢用ソケット、ギブス、又は防護具などの用途に応じて、所望の形状に成形することができる。   The composite material of the present invention may be shaped in any shape as long as it does not impair the purpose thereof, for example, it can be in the form of a sheet, rod, or cylinder, and also has a socket for a prosthesis, a cast, Or it can shape | mold into a desired shape according to uses, such as a protective device.

次に、実施例を挙げて本発明を更に具体的に説明する。前記において開示した本発明は、本発明の精神を逸脱せず、本発明の技術的範囲内に入る限り、以下の実施例に限定されるものではない。当業者ならば、以下の記載に基づき、容易に、既知の変法および条件を採用することができる。
なお、実施例等において、物性等の評価は以下の方法によって行った。
Next, the present invention will be described more specifically with reference to examples. The present invention disclosed above is not limited to the following examples as long as it does not depart from the spirit of the present invention and falls within the technical scope of the present invention. A person skilled in the art can easily adopt known variations and conditions based on the following description.
In Examples and the like, physical properties and the like were evaluated by the following methods.

〔多孔体の構造〕
走査型電子顕微鏡によって多孔体の断面写真を撮影し、多孔体の構造を観察した。
[Porous structure]
A cross-sectional photograph of the porous body was taken with a scanning electron microscope, and the structure of the porous body was observed.

〔親水性〕
親水性は、複合材料表面に水滴を滴下し、水滴が複合材料内部にしみ込むかどうかで判断した。無孔性の複合材料、或いは疎水性の多孔体表面では、表面張力により水滴は形状を維持したままであるが、親水性表面を有する多孔体上では、次第に内部にしみ込むのが観察される。なお、成形条件によっては最表面に薄く無孔のスキン層が形成されることがあるため、スキン層を除去して観察することが好ましい。
[Hydrophilicity]
The hydrophilicity was judged by dropping water droplets on the surface of the composite material and whether the water droplets soaked into the composite material. On the surface of the nonporous composite material or the hydrophobic porous body, the water droplets remain in the shape due to the surface tension, but on the porous body having a hydrophilic surface, it is observed that the water drops gradually enter the inside. Note that, depending on the molding conditions, a thin non-porous skin layer may be formed on the outermost surface. Therefore, it is preferable to observe after removing the skin layer.

〔空孔率〕
複合材料の空孔率は、次の式によって算出した。
空孔率(%)=(1−W/ρV)×100
ここで、
W:複合材料の乾燥重量(g)
V:複合材料の見掛けの体積(cm
ρ:樹脂の真密度(g/m
である。尚、ここで樹脂の真密度は、複合材料をエタノールに入れて脱泡後、JIS-K-7112(B法I)に従い測定した値である。
[Porosity]
The porosity of the composite material was calculated by the following formula.
Porosity (%) = (1−W / ρV) × 100
here,
W: Dry weight of composite material (g)
V: Apparent volume of composite material (cm 3 )
ρ: True density of resin (g / m 3 )
It is. Here, the true density of the resin is a value measured according to JIS-K-7112 (Method B) after defoaming the composite material in ethanol.

〔孔径分布、平均孔径(メディアン径)〕
島津製作所製オートポア9520形(水銀ポロシメータ)を使用し、水銀圧入法(詳しくは、E. W. Washburn, Proc. Natl. Acad. Sci., 7, 115(1921), H. L. Ritter, L. E. Drake, Ind. Eng.Chem. Anal., 17, 782, 787(1945), L. C. Drake, Ind. Eng. Chem., 41, 780(1949),及びH. P. Grace, J. Amer. Inst. Chem. Engrs., 2. 307(1965)などの文献に記載されている)により孔径分布を測定した。測定試料100mg〜200mgを標準セルに採取し、初期圧20kPa(約3psia、細孔直径約60μm相当)の条件で測定し、平均孔径を算出した。
[Pore size distribution, average pore size (median diameter)]
Shimadzu Autopore Model 9520 (mercury porosimeter) is used and the mercury intrusion method (for details, see EW Washburn, Proc. Natl. Acad. Sci., 7, 115 (1921), HL Ritter, LE Drake, Ind. Eng. Chem. Anal., 17, 782, 787 (1945), LC Drake, Ind. Eng. Chem., 41, 780 (1949), and HP Grace, J. Amer. Inst. Chem. Engrs., 2. 307 ( 1965) and the like, and the pore size distribution was measured. 100 mg to 200 mg of a measurement sample was collected in a standard cell and measured under conditions of an initial pressure of 20 kPa (approximately 3 psia, corresponding to a pore diameter of approximately 60 μm), and an average pore diameter was calculated.

〔空気透過性〕
ガーレー透気度によって評価した。ガーレー透気度は、JIS P8117に準じて、ガーレー式から、空気100ccが試験片を通過するのに要する時間(秒)を測定した。
(Air permeability)
The Gurley permeability was evaluated. The Gurley air permeability measured the time (seconds) required for 100 cc of air to pass through the test piece from the Gurley type according to JIS P8117.

〔積層板の曲げ強度〕
ガラスクロスを使用した積層板の曲げ強度及び曲げ弾性率を、JIS C6481に準じて測定した。
[Bending strength of laminated sheet]
The bending strength and the flexural modulus of the laminate using glass cloth were measured according to JIS C6481.

〔圧縮強度〕
ASTM-D-695に準じて測定した。
[Compressive strength]
Measured according to ASTM-D-695.

〔実施例1〕
ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製、商品名「エピコート828」)26gをポリエチレングリコール#200(ナカライテスク(株)製)68gに溶解し、エポキシ樹脂/ポロゲン溶液とした。次に、ビス(4−アミノシクロヘキシル)メタン(新日本理化(株)製、商品名「ワンダミンHM」)6gを常温で十分溶解した後、真空脱泡して、エポキシワニスを得た。得られたワニスを、縦横120mm、厚み1mmの金型の中に少しずつ流し込みながら、厚さ0.18mmの平織ガラスクロス(旭シュエーベル社製、商品名「スタイル7628」)4枚に含浸した。次いで、この積層品をステンレス板で挟み、温度140℃で1時間、160℃で2時間、加熱及び加圧を行った。その後、常温水で48時間、メタノール中で24時間、浸漬してトリエチレングリコールを抽出除去し、60℃で乾燥して、厚さ1.0mmの平板状成形品を得た。
[Example 1]
26 g of bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., trade name “Epicoat 828”) was dissolved in 68 g of polyethylene glycol # 200 (manufactured by Nacalai Tesque Co., Ltd.) to obtain an epoxy resin / porogen solution. Next, 6 g of bis (4-aminocyclohexyl) methane (manufactured by Shin Nippon Rika Co., Ltd., trade name “Wandamine HM”) was sufficiently dissolved at room temperature, and then vacuum degassed to obtain an epoxy varnish. The resulting varnish was impregnated into four plain woven glass cloths (trade name “Style 7628”, manufactured by Asahi Schwer, Inc.) having a thickness of 0.18 mm while being poured little by little into a mold having a length and width of 120 mm and a thickness of 1 mm. Subsequently, this laminate was sandwiched between stainless plates, and heated and pressurized at a temperature of 140 ° C. for 1 hour and at 160 ° C. for 2 hours. Then, it was immersed in normal temperature water for 48 hours and in methanol for 24 hours to extract and remove triethylene glycol, and dried at 60 ° C. to obtain a plate-shaped molded product having a thickness of 1.0 mm.

得られた成形品のガラス繊維体積含有は35%、複合材料の空孔率は35%であり、多孔樹脂の平均孔径は4μmであった。走査型電子顕微鏡写真を図1に示す。成形品の曲げ強度は19,000MPa、曲げ弾性率は600MPaであった。透気度は6,500秒/100cc・cmと高い値であったが、通気性が確認された。また、複合材料表面に水滴を滴下したところ、徐々に水が複合材料内部にしみ込み、3分後には完全に表面から消失した。 The obtained molded product had a glass fiber volume content of 35%, the composite material had a porosity of 35%, and the average pore diameter of the porous resin was 4 μm. A scanning electron micrograph is shown in FIG. The bending strength of the molded product was 19,000 MPa, and the flexural modulus was 600 MPa. The air permeability was as high as 6,500 seconds / 100 cc · cm 2 , but air permeability was confirmed. Further, when a water droplet was dropped on the surface of the composite material, water gradually soaked into the composite material and disappeared completely from the surface after 3 minutes.

〔実施例2〕
実施例1と同様にしてエポキシワニスを作成した。断面直径が10mm、長さ120mmのステンレス製容器に三菱レイヨン(株)製炭素繊維TR50S−12K(フィラメント数12,000本、引張弾性率240GPa)7本を伸ばした状態で固定し、樹脂ワニスを充填後、真空脱泡を行い、150℃乾燥機中で1時間、180℃で2時間加熱重合した。実施例1と同様にポリエチレングリコールを水及びメタノールで抽出補去後、乾燥して、成形品を得た。
[Example 2]
An epoxy varnish was prepared in the same manner as in Example 1. 7 carbon fibers TR50S-12K (12,000 filaments, tensile elastic modulus 240 GPa) made by Mitsubishi Rayon Co., Ltd. are stretched and fixed in a stainless steel container having a cross-sectional diameter of 10 mm and a length of 120 mm. After filling, vacuum degassing was performed, and heat polymerization was performed in a 150 ° C. dryer for 1 hour and at 180 ° C. for 2 hours. In the same manner as in Example 1, polyethylene glycol was extracted and removed with water and methanol and then dried to obtain a molded product.

得られた成形品の炭素繊維体積含有は4%、複合材料の空孔率は52%、多孔樹脂の平均孔径は3μmであった。走査型電子顕微鏡写真を図2に示す。成形品の圧縮強度を測定したところ、45MPaであった。透気度を測定するため、厚み1mmに切り出して測定したところ2,500秒/100cc・cmであった。また、複合材料断面に水滴を滴下したところ、水が複合材料内部にしみ込み、1分後には完全に表面から消失した。 The obtained molded product had a carbon fiber volume content of 4%, a porosity of the composite material of 52%, and an average pore diameter of the porous resin of 3 μm. A scanning electron micrograph is shown in FIG. The compression strength of the molded product was measured and found to be 45 MPa. In order to measure the air permeability, it was cut out to a thickness of 1 mm and measured, and it was 2,500 seconds / 100 cc · cm 2 . Further, when water droplets were dropped on the composite material cross section, water soaked into the composite material and disappeared completely from the surface after 1 minute.

〔比較例1〕
ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製、商品名「エピコート828」)を100重量部、ジシアンジアミド(試薬品)固形分4.2重量部、有機溶剤としてN,N−ジメチルホルムアミド(試薬品)60重量部、メチルエチルケトン25重量部を加えて配合し、全体を高速ディゾルバーで混合・溶解して、エポキシ樹脂ワニスを調製した。このエポキシ樹脂ワニスを厚さ0.18mmの平織ガラスクロスに含浸塗布し、170℃で120分間、加熱・加圧し、厚み0.8mmの張積層板を得た。
[Comparative Example 1]
100 parts by weight of bisphenol A type epoxy resin (trade name “Epicoat 828” manufactured by Japan Epoxy Resin Co., Ltd.), 4.2 parts by weight of dicyandiamide (reagent product), N, N-dimethylformamide (reagent) as an organic solvent Product) 60 parts by weight and 25 parts by weight of methyl ethyl ketone were added and blended, and the whole was mixed and dissolved with a high-speed dissolver to prepare an epoxy resin varnish. This epoxy resin varnish was impregnated and applied to a plain woven glass cloth having a thickness of 0.18 mm and heated and pressurized at 170 ° C. for 120 minutes to obtain a stretched laminate having a thickness of 0.8 mm.

得られた成形品のガラス繊維体積含有は45%であった。成形品の曲げ強度は29,000MPa、曲げ弾性率は700MPaであった。通気性は全くなく、また、複合材料表面に水滴を滴下したところ、水滴は全く複合材料内部にしみ込まなかった。   The obtained molded product had a glass fiber volume content of 45%. The bending strength of the molded product was 29,000 MPa, and the bending elastic modulus was 700 MPa. There was no air permeability, and when a water droplet was dropped on the surface of the composite material, the water droplet did not penetrate into the composite material at all.

〔比較例2〕
実施例1と同様にして、エポキシワニスを作成し、厚さ0.18mmの平織ガラスクロス(旭シュエーベル社製、商品名「スタイル7628」)4枚に含浸した。次いで、この積層品をステンレス板で挟み、温度100℃で1時間、160℃で2時間、加熱・加圧した。その後、実施例1と同様にして、ポリエチレングリコールを抽出除去し、厚さ1.0mmの平板状成形品を得た。
[Comparative Example 2]
In the same manner as in Example 1, an epoxy varnish was prepared and impregnated into four plain woven glass cloths (trade name “Style 7628”, manufactured by Asahi Schwer, Inc.) having a thickness of 0.18 mm. Next, this laminate was sandwiched between stainless plates and heated and pressurized at a temperature of 100 ° C. for 1 hour and at 160 ° C. for 2 hours. Thereafter, the polyethylene glycol was extracted and removed in the same manner as in Example 1 to obtain a flat molded product having a thickness of 1.0 mm.

得られた成形品のガラス繊維体積含有は40%、複合材料の空孔率は30%であった。エポキシ樹脂は球状粒子がガラス繊維の表面、繊維束内部に凝集体を形成していた。走査型電子顕微鏡写真を図3に示す。成形品の曲げ強度を測定したところ、500MPaと非常に強度が低く、複合材料としての使用は困難であった。   The obtained molded product had a glass fiber volume content of 40%, and the porosity of the composite material was 30%. In the epoxy resin, spherical particles formed aggregates on the surface of the glass fiber and inside the fiber bundle. A scanning electron micrograph is shown in FIG. When the bending strength of the molded product was measured, the strength was very low at 500 MPa, and it was difficult to use as a composite material.

図1は、実施例1で得られた複合材料の走査型電子顕微鏡による倍率5000倍の写真を示す図である。FIG. 1 is a view showing a photograph of the composite material obtained in Example 1 at a magnification of 5000 using a scanning electron microscope. 図2は、実施例2で得られた複合材料の走査型電子顕微鏡による倍率5000倍の写真を示す図である。FIG. 2 is a view showing a photograph of the composite material obtained in Example 2 at a magnification of 5000 times with a scanning electron microscope. 図3は、比較例2で得られた複合材料の走査型電子顕微鏡による倍率5000倍の写真を示す図である。FIG. 3 is a view showing a photograph of the composite material obtained in Comparative Example 2 at a magnification of 5000 times with a scanning electron microscope.

Claims (13)

三次元網目状骨格構造及び連通する空隙を有するエポキシ樹脂硬化物多孔体と繊維を含んでなる複合材料。   A composite material comprising a porous epoxy resin cured body having a three-dimensional network skeleton structure and communicating voids and fibers. 三次元網目状骨格構造は、三次元網目状骨格と球状微粒子が混在する構造である請求項1に記載の複合材料。   The composite material according to claim 1, wherein the three-dimensional network skeleton structure is a structure in which a three-dimensional network skeleton and spherical fine particles are mixed. 空孔率が20%〜70%、平均孔径(メディアン径)が0.5〜30μmである、請求項1又は2に記載の複合材料。   The composite material according to claim 1 or 2, wherein the porosity is 20% to 70%, and the average pore diameter (median diameter) is 0.5 to 30 µm. 繊維は、表面に官能基を有する、請求項1〜3のいずれかに記載の複合材料。   The composite material according to claim 1, wherein the fiber has a functional group on a surface. 繊維は、ガラス繊維、炭素繊維、ポリアミド繊維及びポリエステル繊維からなる群から選択される、請求項1〜4のいずれかに記載の複合材料。   The composite material according to any one of claims 1 to 4, wherein the fiber is selected from the group consisting of glass fiber, carbon fiber, polyamide fiber, and polyester fiber. 繊維は、織布又は不織布である、請求項1〜5のいずれかに記載の複合材料。   The composite material according to any one of claims 1 to 5, wherein the fiber is a woven fabric or a non-woven fabric. 請求項1〜6のいずれかに記載の複合材料を製造する方法であって、以下の工程:
a)エポキシ樹脂、硬化剤、ポロゲンを含んでなるエポキシ樹脂ワニスを繊維に含浸する工程、
b)得られた含浸物を加熱してエポキシ樹脂を硬化させる工程、
c)得られた硬化物からポロゲンを除去する工程、
を含む方法。
It is a method of manufacturing the composite material in any one of Claims 1-6, Comprising: The following processes:
a) a step of impregnating a fiber with an epoxy resin varnish comprising an epoxy resin, a curing agent, and a porogen;
b) a step of curing the epoxy resin by heating the obtained impregnated material,
c) a step of removing porogen from the obtained cured product,
Including methods.
含浸後に、残留する気泡を減圧により脱泡する、請求項7に記載の方法。   The method according to claim 7, wherein after the impregnation, the remaining bubbles are degassed by reduced pressure. 工程b)において、重合、架橋、相分離、及び硬化が行われる、請求項7又は8に記載の方法。   9. A method according to claim 7 or 8, wherein in step b) polymerization, crosslinking, phase separation and curing are carried out. ポロゲンは、水酸基を有し、水酸基価100(mgKOH/g)以上のポリアルキレングリコール又はポリアルキレングリコール誘導体である、請求項7又は8に記載の方法。   The method according to claim 7 or 8, wherein the porogen is a polyalkylene glycol or a polyalkylene glycol derivative having a hydroxyl group and having a hydroxyl value of 100 (mgKOH / g) or more. 請求項1〜6のいずれかに記載の複合材料で形成されている義肢。   A prosthesis formed of the composite material according to claim 1. 請求項1〜6のいずれかに記載の複合材料で形成されているギブス。   Gibbs formed of the composite material according to claim 1. 請求項1〜6のいずれかに記載の複合材料で形成されている防護具。   The armor formed with the composite material in any one of Claims 1-6.
JP2006186787A 2006-07-06 2006-07-06 Composite material containing cured epoxy resin porous material and fiber Pending JP2008013672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006186787A JP2008013672A (en) 2006-07-06 2006-07-06 Composite material containing cured epoxy resin porous material and fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006186787A JP2008013672A (en) 2006-07-06 2006-07-06 Composite material containing cured epoxy resin porous material and fiber

Publications (1)

Publication Number Publication Date
JP2008013672A true JP2008013672A (en) 2008-01-24

Family

ID=39071006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006186787A Pending JP2008013672A (en) 2006-07-06 2006-07-06 Composite material containing cured epoxy resin porous material and fiber

Country Status (1)

Country Link
JP (1) JP2008013672A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047383A1 (en) * 2008-10-23 2010-04-29 日東電工株式会社 Method for producing porous thermosetting resin sheet, porous thermosetting resin sheet and composite semipermeable membrane using same
JP2012031399A (en) * 2010-06-30 2012-02-16 Nitto Denko Corp Method for producing thermosetting resin porous sheet, and composite separation membrane using the same
JP4940367B1 (en) * 2011-06-13 2012-05-30 日東電工株式会社 Separator for nonaqueous electrolyte electricity storage device, nonaqueous electrolyte electricity storage device, and production method thereof
WO2012172786A1 (en) * 2011-06-13 2012-12-20 日東電工株式会社 Method for fabricating separator for non-aqueous electrolyte electricity storage device and method for fabricating non-aqueous electrolyte electricity storage device
WO2012172789A1 (en) * 2011-06-13 2012-12-20 日東電工株式会社 Separator for nonaqueous electrolyte electricity storage devices, nonaqueous electrolyte electricity storage device, method for producing separator for nonaqueous electrolyte electricity storage devices, and method for manufacturing nonaqueous electrolyte electricity storage device
WO2012172787A1 (en) * 2011-06-13 2012-12-20 日東電工株式会社 Separator for non-aqueous electrolyte accumulators, non-aqueous electrolyte accumulator and manufacturing methods therefor
WO2012172784A1 (en) * 2011-06-13 2012-12-20 日東電工株式会社 Method for manufacturing separator for non-aqueous electrolyte accumulator and method for manufacturing non-aqueous electrolyte accumulator
JP2013204036A (en) * 2012-03-29 2013-10-07 Sekisui Chem Co Ltd Method for manufacturing porous film, porous film, electrolyte film, secondary battery, and fuel cell
EP2668967A1 (en) * 2012-05-30 2013-12-04 Skulle Implants OY An implant
JP2014088491A (en) * 2012-10-30 2014-05-15 Nissin Kogyo Co Ltd Porous structure
JP2014088490A (en) * 2012-10-30 2014-05-15 Nissin Kogyo Co Ltd Method for manufacturing porous structure
WO2015098052A1 (en) * 2013-12-25 2015-07-02 日東電工株式会社 Separator for aqueous electrolyte power storage device, production method for separator for aqueous electrolyte power storage device, and aqueous electrolyte power storage device using separator for aqueous electrolyte power storage device
WO2015098053A1 (en) * 2013-12-25 2015-07-02 日東電工株式会社 Separator for electrolytic capacitor, production method for separator for electrolytic capacitor, and electrolytic capacitor using separator for electrolytic capacitor
US9504966B2 (en) 2008-09-26 2016-11-29 Nitto Denko Corporation Composite semi-permeable membrane and method for producing same
JP2017010060A (en) * 2011-06-30 2017-01-12 キヤノン株式会社 Imaging apparatus and image forming apparatus
JP2017036381A (en) * 2015-08-10 2017-02-16 株式会社エマオス京都 Composite membrane and manufacturing method therefor
CN110680559A (en) * 2019-09-27 2020-01-14 长沙晟天新材料有限公司 Chest lock integrated piece and preparation method thereof
WO2021097649A1 (en) * 2019-11-19 2021-05-27 南京中弘华飞信息科技有限公司 Soft prosthesis composite material and preparation method therefor
KR102358253B1 (en) * 2020-12-11 2022-02-07 김영철 Manufacture Method of Thermoplastic-Based Porous Sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328290A (en) * 1997-06-03 1998-12-15 Nippon Steel Corp Support member for orthosis and orthosis using it
JP2003003005A (en) * 2001-06-26 2003-01-08 Sk Kaken Co Ltd Open porous complex
JP2003012821A (en) * 2001-07-03 2003-01-15 Japan U-Pica Co Ltd Method for producing fiber-reinforced porous cured molding having cavity
JP2004083718A (en) * 2002-08-26 2004-03-18 Matsushita Electric Works Ltd Resin composition, resin cured product, prepreg, laminate, printed wiring board, and multilayer printed wiring board
JP2007186621A (en) * 2006-01-13 2007-07-26 Ntn Corp Resin porous body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328290A (en) * 1997-06-03 1998-12-15 Nippon Steel Corp Support member for orthosis and orthosis using it
JP2003003005A (en) * 2001-06-26 2003-01-08 Sk Kaken Co Ltd Open porous complex
JP2003012821A (en) * 2001-07-03 2003-01-15 Japan U-Pica Co Ltd Method for producing fiber-reinforced porous cured molding having cavity
JP2004083718A (en) * 2002-08-26 2004-03-18 Matsushita Electric Works Ltd Resin composition, resin cured product, prepreg, laminate, printed wiring board, and multilayer printed wiring board
JP2007186621A (en) * 2006-01-13 2007-07-26 Ntn Corp Resin porous body

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9504966B2 (en) 2008-09-26 2016-11-29 Nitto Denko Corporation Composite semi-permeable membrane and method for producing same
US9186633B2 (en) 2008-10-23 2015-11-17 Nitto Denko Corporation Method for producing porous thermosetting resin sheet, porous thermosetting resin sheet and composite semipermeable membrane using same
JP2010121122A (en) * 2008-10-23 2010-06-03 Nitto Denko Corp Method for producing thermosetting resin porous sheet, thermosetting resin porous sheet, and composite semipermeable membrane using the same
WO2010047383A1 (en) * 2008-10-23 2010-04-29 日東電工株式会社 Method for producing porous thermosetting resin sheet, porous thermosetting resin sheet and composite semipermeable membrane using same
JP2012031399A (en) * 2010-06-30 2012-02-16 Nitto Denko Corp Method for producing thermosetting resin porous sheet, and composite separation membrane using the same
WO2012172787A1 (en) * 2011-06-13 2012-12-20 日東電工株式会社 Separator for non-aqueous electrolyte accumulators, non-aqueous electrolyte accumulator and manufacturing methods therefor
WO2012172789A1 (en) * 2011-06-13 2012-12-20 日東電工株式会社 Separator for nonaqueous electrolyte electricity storage devices, nonaqueous electrolyte electricity storage device, method for producing separator for nonaqueous electrolyte electricity storage devices, and method for manufacturing nonaqueous electrolyte electricity storage device
WO2012172619A1 (en) * 2011-06-13 2012-12-20 日東電工株式会社 Separator for nonaqueous electrolyte electricity storage devices, nonaqueous electrolyte electricity storage device, method for producing separator for nonaqueous electrolyte electricity storage devices, and method for manufacturing nonaqueous electrolyte electricity storage device
WO2012172784A1 (en) * 2011-06-13 2012-12-20 日東電工株式会社 Method for manufacturing separator for non-aqueous electrolyte accumulator and method for manufacturing non-aqueous electrolyte accumulator
WO2012172786A1 (en) * 2011-06-13 2012-12-20 日東電工株式会社 Method for fabricating separator for non-aqueous electrolyte electricity storage device and method for fabricating non-aqueous electrolyte electricity storage device
CN103620817A (en) * 2011-06-13 2014-03-05 日东电工株式会社 Method for manufacturing separator for non-aqueous electrolyte accumulator and method for manufacturing non-aqueous electrolyte accumulator
JP4940367B1 (en) * 2011-06-13 2012-05-30 日東電工株式会社 Separator for nonaqueous electrolyte electricity storage device, nonaqueous electrolyte electricity storage device, and production method thereof
JP2017010060A (en) * 2011-06-30 2017-01-12 キヤノン株式会社 Imaging apparatus and image forming apparatus
JP2013204036A (en) * 2012-03-29 2013-10-07 Sekisui Chem Co Ltd Method for manufacturing porous film, porous film, electrolyte film, secondary battery, and fuel cell
CN104349799B (en) * 2012-05-30 2016-05-18 斯卡勒植入物公司 Implant
WO2013178637A1 (en) * 2012-05-30 2013-12-05 Skulle Implants Oy An implant
KR101500951B1 (en) * 2012-05-30 2015-03-13 스쿨레 임플란츠 오와이 An implant
EP2668967A1 (en) * 2012-05-30 2013-12-04 Skulle Implants OY An implant
CN104349799A (en) * 2012-05-30 2015-02-11 斯卡勒植入物公司 An implant
US9084844B2 (en) 2012-05-30 2015-07-21 Skulle Implants Oy Implant
JP2014088490A (en) * 2012-10-30 2014-05-15 Nissin Kogyo Co Ltd Method for manufacturing porous structure
JP2014088491A (en) * 2012-10-30 2014-05-15 Nissin Kogyo Co Ltd Porous structure
WO2015098053A1 (en) * 2013-12-25 2015-07-02 日東電工株式会社 Separator for electrolytic capacitor, production method for separator for electrolytic capacitor, and electrolytic capacitor using separator for electrolytic capacitor
WO2015098052A1 (en) * 2013-12-25 2015-07-02 日東電工株式会社 Separator for aqueous electrolyte power storage device, production method for separator for aqueous electrolyte power storage device, and aqueous electrolyte power storage device using separator for aqueous electrolyte power storage device
JP2017036381A (en) * 2015-08-10 2017-02-16 株式会社エマオス京都 Composite membrane and manufacturing method therefor
WO2017026445A1 (en) * 2015-08-10 2017-02-16 株式会社エマオス京都 Composite film and method for producing same
CN110680559A (en) * 2019-09-27 2020-01-14 长沙晟天新材料有限公司 Chest lock integrated piece and preparation method thereof
WO2021097649A1 (en) * 2019-11-19 2021-05-27 南京中弘华飞信息科技有限公司 Soft prosthesis composite material and preparation method therefor
KR102358253B1 (en) * 2020-12-11 2022-02-07 김영철 Manufacture Method of Thermoplastic-Based Porous Sheet

Similar Documents

Publication Publication Date Title
JP2008013672A (en) Composite material containing cured epoxy resin porous material and fiber
CN108137839B (en) Prepreg, laminate, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
JP4477271B2 (en) Production and use of laminates without voids
JP5329735B2 (en) Porous polymer membrane reinforced composite
KR101951058B1 (en) Prepreg, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material
US9314736B2 (en) Separation composite membrane and separating membrane module using the same
TW201731674A (en) Insulating structures
JP6036844B2 (en) Prepreg, fiber reinforced composite material and method for producing fiber reinforced composite material
CN108248063A (en) The improvement of laminate or the improvement about laminate
US11820858B2 (en) Prepreg, method for producing same, and method for producing fiber-reinforced composite material
CN107108930B (en) Prepreg
US9221021B2 (en) Method for producing air-permeable composite sheet
EP3331689A1 (en) Moulding materials with improved surface finish
JPWO2020059599A1 (en) Prepregs, prepreg laminates and fiber reinforced composites
EP3086923B1 (en) Improvements in or relating to laminates
CN111699211B (en) Prepreg sheets and prepreg stacks useful for making low void content fiber reinforced composites
KR101563881B1 (en) Manufacturing method of gas separation membrane with sponge-like structure for improved pressure resistance
WO2017026445A1 (en) Composite film and method for producing same
CN111989359B (en) Prepreg, laminate, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
WO2016102415A1 (en) Moulding materials with improved surface finish
JPH08276525A (en) Laminated composite material and its manufacture
CN108888384B (en) Tubular stent with double-layer structure and preparation method thereof
JP2022023119A (en) Reinforced fiber stitch base material, preform material and fiber-reinforced composite material, and production method thereof
KR101317641B1 (en) Manufacturing method of polyamideimide-based porous membrane
JP2020069443A (en) Separation membrane module and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306