JP2008012384A - Method of forming fine line - Google Patents

Method of forming fine line Download PDF

Info

Publication number
JP2008012384A
JP2008012384A JP2006183553A JP2006183553A JP2008012384A JP 2008012384 A JP2008012384 A JP 2008012384A JP 2006183553 A JP2006183553 A JP 2006183553A JP 2006183553 A JP2006183553 A JP 2006183553A JP 2008012384 A JP2008012384 A JP 2008012384A
Authority
JP
Japan
Prior art keywords
forming
fine line
droplet
dispersion
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006183553A
Other languages
Japanese (ja)
Other versions
JP4923293B2 (en
Inventor
Makoto Kawada
誠 川田
Yusuke Ozaki
祐介 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced PDP Development Center Corp
Panasonic Holdings Corp
Original Assignee
Advanced PDP Development Center Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced PDP Development Center Corp, Matsushita Electric Industrial Co Ltd filed Critical Advanced PDP Development Center Corp
Priority to JP2006183553A priority Critical patent/JP4923293B2/en
Publication of JP2008012384A publication Critical patent/JP2008012384A/en
Application granted granted Critical
Publication of JP4923293B2 publication Critical patent/JP4923293B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming fine lines improved in linearity by suppressing the spreading of wetting without requiring a preceding process for forming an interface such as a liquid repellent area along the desired lines and an additional process such as a heating process. <P>SOLUTION: The fine lines are formed by discharging a dispersion liquid containing metal fine particles to a predetermined position on a substrate 1 as droplets 2. The method of forming the fine line comprises: a first process of forming a fine line 4 having such a shape that the cross-section shape has a recessed part on the central part by discharging the droplets onto a substrate; and a second process of forming a fine line 5 by discharging the droplets into the recessed part of the fine line formed on the first process. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、プラズマディスプレイパネルなどの微細ラインを有するデバイスの製造に用いられる微細ラインの形成方法に関する。   The present invention relates to a method for forming a fine line used for manufacturing a device having a fine line such as a plasma display panel.

プラズマディスプレイパネルには、大別して、駆動方法についてAC型とDC型があり、放電形式については面放電型と対向放電型の2種類がある。高精細化、大画面化および製造の簡便性から、現状では、プラズマディスプレイパネルの主流は、3電極構造の面放電型のものである(例えば特許文献1参照)。   Plasma display panels are broadly classified into AC types and DC types as driving methods, and there are two types of discharge types: surface discharge type and counter discharge type. At present, the mainstream of plasma display panels is a surface discharge type having a three-electrode structure because of high definition, large screen, and ease of manufacture (see, for example, Patent Document 1).

面放電型のプラズマディスプレイパネル(以下、PDPとも言う)の構造を、図5に示す。このPDPは、ガラス製の前面基板1と背面基板2とを、その間に放電空間を形成するように対向配置することにより構成されている。   The structure of a surface discharge type plasma display panel (hereinafter also referred to as PDP) is shown in FIG. This PDP is configured by disposing a glass front substrate 1 and a back substrate 2 so as to form a discharge space therebetween.

前面基板1上には、表示電極を構成する走査電極3と維持電極4とが互いに平行に対をなして複数形成されている。そして、走査電極3および維持電極4を覆うように誘電体層5が形成され、誘電体層5上には保護層6が形成されている。走査電極3と維持電極4はそれぞれ、透明電極3a、4aと、金属材料からなるバス電極3b、4bとから構成される。前面基板1上に以上の要素が設けられることにより、前面板ユニット7が構成されている。   On the front substrate 1, a plurality of scanning electrodes 3 and sustaining electrodes 4 constituting display electrodes are formed in parallel with each other. A dielectric layer 5 is formed so as to cover the scan electrode 3 and the sustain electrode 4, and a protective layer 6 is formed on the dielectric layer 5. Scan electrode 3 and sustain electrode 4 are each composed of transparent electrodes 3a and 4a and bus electrodes 3b and 4b made of a metal material. The front plate unit 7 is configured by providing the above elements on the front substrate 1.

また、背面基板2上には、絶縁体層8で覆われた複数のデータ電極9が設けられ、その絶縁体層8上には井桁状の隔壁10が設けられている。また、絶縁体層8の表面および隔壁10の側面には蛍光体層11が設けられている。背面基板2上に以上の要素が設けられることにより、背面板ユニット12が構成されている。   A plurality of data electrodes 9 covered with an insulator layer 8 are provided on the back substrate 2, and a grid-like partition wall 10 is provided on the insulator layer 8. A phosphor layer 11 is provided on the surface of the insulator layer 8 and on the side surfaces of the partition walls 10. The back plate unit 12 is configured by providing the above elements on the back substrate 2.

上記構成の前面板ユニット7と背面板ユニット12とは、走査電極3および維持電極4とデータ電極9とが交差するように対向配置されており、その間に形成される放電空間には、放電ガスとして、例えばネオンとキセノンの混合ガスが封入されている。蛍光体層11には、放電により赤色、緑色、青色に発光する蛍光体が用いられ、放電により発生する波長の短い真空紫外光によって蛍光体を励起し、赤色、緑色、青色の放電セルからそれぞれ赤色、緑色、青色の可視光を発することによりカラー表示を行っている。   The front plate unit 7 and the back plate unit 12 having the above-described configuration are disposed to face each other so that the scan electrode 3, the sustain electrode 4, and the data electrode 9 intersect each other, and a discharge gas formed therebetween has a discharge gas. For example, a mixed gas of neon and xenon is enclosed. For the phosphor layer 11, phosphors that emit red, green, and blue light by discharge are used, and the phosphors are excited by vacuum ultraviolet light having a short wavelength generated by the discharge, respectively from the red, green, and blue discharge cells. Color display is performed by emitting visible light of red, green, and blue.

ところで、このPDPにおいて、電極などの形成方法として、分散液を液滴として吐出することによって、基板上に微細ラインを形成する方法が検討されている。   By the way, in this PDP, as a method for forming electrodes or the like, a method for forming a fine line on a substrate by discharging a dispersion liquid as droplets has been studied.

基板上に微細ラインを形成する代表的な方式として、従来よりフォトリソグラフィ法が用いられてきた。この方法は、スクリーン印刷法などを用いて基板上に膜パターンを形成した後に、フォトリソグラフィ法を用いて所望の微細ラインを得るものである。そのため、工程および設備の複雑化や材料利用率の低さなどのデメリットがあった。   As a typical method for forming fine lines on a substrate, a photolithography method has been conventionally used. In this method, after a film pattern is formed on a substrate using a screen printing method or the like, a desired fine line is obtained using a photolithography method. For this reason, there are disadvantages such as complicated processes and equipment and low material utilization.

そこで、例えば特許文献1のように、例えばインクジェット法によって、微細ラインを形成する方法が提案されている。
特開2003−243328号公報
Therefore, for example, as in Patent Document 1, a method of forming a fine line by, for example, an ink jet method has been proposed.
JP 2003-243328 A

従来、インクジェット法などによって微小ラインを形成する場合、濡れ広がりを抑えるために、1回の吐出量を少なくする必要があった。その結果、所望の膜厚になるまで重ね塗りが必要であるために、タクト的に問題があった。   Conventionally, when forming fine lines by an ink jet method or the like, it has been necessary to reduce the amount of one discharge in order to suppress wetting and spreading. As a result, overcoating is necessary until a desired film thickness is obtained.

また、特許文献1に示される方法では、分散質が分散された分散液もしくは溶質が溶解された溶液の界面が所定のパターンに沿うように、分散液もしくは溶液を吐出する。その後、分散液もしくは溶液の界面に分散質もしくは溶質を寄せ集めることでラインを形成する。そのため、撥液領域などの界面を所望のラインに沿って形成する前工程や、加熱などの工程といった、他工程を必要とし、工程が複雑になる。   In the method disclosed in Patent Document 1, the dispersion or solution is discharged so that the interface of the dispersion in which the dispersoid is dispersed or the solution in which the solute is dissolved follows a predetermined pattern. Thereafter, a line is formed by collecting the dispersoid or solute at the interface of the dispersion or solution. Therefore, other processes such as a pre-process for forming an interface such as a liquid repellent region along a desired line and a process such as heating are required, and the process becomes complicated.

本発明はこのような微細ラインの形成方法において、濡れ広がりを抑えながら効率的に所望の線幅と直線性を実現することを目的とする。   An object of the present invention is to achieve a desired line width and linearity efficiently while suppressing wetting and spreading in such a fine line forming method.

本発明は、上記の課題を達成するために、金属超微粒子を含む分散液を液滴として基板上の所定位置に吐出して、微細ラインの形成を行う形成方法において、前記基板上に液滴を吐出することにより断面形状が中央部に凹部を有する形状の微細ラインを形成する第1工程と、前記第1工程で形成した微細ラインの凹部に液滴を吐出して更に微細ラインを形成する第2工程とを含むことを特徴とする。   In order to achieve the above object, the present invention provides a method for forming a fine line by discharging a dispersion liquid containing ultrafine metal particles as droplets to a predetermined position on a substrate. A first step of forming a fine line having a cross-sectional shape having a recess in the central portion by discharging a droplet, and discharging a droplet into the recess of the fine line formed in the first step to further form a fine line And a second step.

本発明によれば、基板上に所定の吐出速度以上で液滴を吐出することにより、衝突エネルギーを利用し、断面形状が中凹部を有する微細ラインを形成する。次に凹部に吐出する液滴量は、凹んでいるので、従来の重ね塗りの液滴量より多くしても、濡れ広がりを抑え、直線性を向上することができる。また、液滴量が従来より多いので当然、タクトアップが可能となる。   According to the present invention, by ejecting droplets on a substrate at a predetermined ejection speed or higher, a collision line is used to form a fine line whose cross-sectional shape has a middle recess. Next, since the amount of liquid droplets to be ejected into the recesses is concave, even if the amount is larger than the conventional overcoating droplet amount, wetting spread can be suppressed and linearity can be improved. In addition, since the amount of liquid droplets is larger than before, tact-up is naturally possible.

さらに、本発明の方法では、撥液領域などの界面を所望のラインに沿って形成する前工程や、加熱などの工程といった、他工程を全く必要とせず、液滴を吐出する工程のみで微細ラインを形成することができる。   Furthermore, in the method of the present invention, there is no need for any other process such as a pre-process for forming an interface such as a liquid repellent region along a desired line or a process such as heating, and only a process for discharging droplets is required. A line can be formed.

上記構成の本発明の微細ラインの形成方法は、前記第1工程において、前記金属超微粒子が粒径100[nm]以下であり、前記分散液の粘度が1〜20[mPa・s]以下、その表面張力が25〜80[mN/m]、固形分濃度が5〜40[w%]、液滴の吐出速度が√(4.83/m)[m/s](m=1滴の重量[ng])以上であることが好ましい。   In the first step of the method for forming a fine line of the present invention having the above structure, in the first step, the ultrafine metal particles have a particle size of 100 [nm] or less, and the dispersion has a viscosity of 1 to 20 [mPa · s], The surface tension is 25 to 80 [mN / m], the solid content concentration is 5 to 40 [w%], the droplet discharge speed is √ (4.83 / m) [m / s] (m = 1 drop Weight [ng]) or more.

また、前記第2工程において、前記金属超微粒子が粒径100[nm]以下であり、前記分散液の粘度が1〜20[mPa・s]以下、その表面張力が25〜80[mN/m]、固形分濃度が5〜40[w%]、液滴の吐出速度が√(4.83/m)[m/s](m=1滴の重量[ng])未満であることが好ましい。   In the second step, the ultrafine metal particles have a particle size of 100 [nm] or less, the dispersion has a viscosity of 1 to 20 [mPa · s] or less, and a surface tension of 25 to 80 [mN / m. It is preferable that the solid content concentration is 5 to 40 [w%] and the droplet discharge speed is less than √ (4.83 / m) [m / s] (m = 1 weight of the droplet [ng]). .

また、前記第1工程で吐出する前記分散液と前記第2工程で吐出する前記分散液を同じにすることができる。   Further, the dispersion discharged in the first step and the dispersion discharged in the second step can be made the same.

また、前記第1工程で吐出する前記分散液と前記第2工程で吐出する前記分散液を異ならせることができる。例えば、凹部に吐出する第2工程では、材料使用量を減少するために導電性に優れた、第1工程とは別の分散液を使用する。このように、第1工程と第2工程で使用する分散液を使い分けすることによって、微細ラインの形成を精度良く、効率的に実現することもできる。   Further, the dispersion liquid discharged in the first step and the dispersion liquid discharged in the second step can be made different. For example, in the second step of discharging into the recess, a dispersion different from the first step, which is excellent in conductivity, is used to reduce the amount of material used. As described above, the fine lines can be formed accurately and efficiently by properly using the dispersion liquid used in the first step and the second step.

また、前記第2工程の後に、前記第2工程と同じ工程を1〜20回繰り返してもよい。   Further, after the second step, the same step as the second step may be repeated 1 to 20 times.

また、前記基板と前記第1工程の前記液滴との接触角が45〜90[deg]であることが好ましい。   Moreover, it is preferable that the contact angle of the said board | substrate and the said droplet of the said 1st process is 45-90 [deg].

以下、本発明の一実施の形態における微細ラインの形成方法について、図1および2を参照して説明する。図1および図2における(a)は、微細ラインの形成方法の工程を示す正面図、(b)は(a)の断面図である。   Hereinafter, a fine line forming method according to an embodiment of the present invention will be described with reference to FIGS. 1A and 2A are front views showing steps of a fine line forming method, and FIG. 1B is a cross-sectional view of FIG.

〈第1工程〉
まず、図1(a)のように、液滴材料を吐出手段3から、液滴2として基板1上の所定位置に吐出して、微細ライン4を形成する。この際の液滴2の吐出速度を、下記の(式1)で表される値以上にすることで、衝突エネルギーによって図1(b)のような断面形状が中央部に凹部を有する形状になる。(式1)において、m=1滴の重量[ng]である。
<First step>
First, as shown in FIG. 1A, a droplet material is ejected from the ejection means 3 as a droplet 2 to a predetermined position on the substrate 1 to form a fine line 4. By making the discharge speed of the droplet 2 at this time equal to or higher than the value represented by the following (Equation 1), the cross-sectional shape as shown in FIG. Become. In (Formula 1), m = 1 weight of the drop [ng].

√(4.83/m)[m/s] ・・・(式1)     √ (4.83 / m) [m / s] (Formula 1)

この第1工程で、液滴2と基板1との接触角は45〜90[deg]とすることが望ましい。導電膜配線を形成する場合、線幅を狭くするために、より好ましくは接触角が70〜90[deg]の分散液を用いる。また、液滴材料を液滴2として吐出する方法としては、インクジェット法を用いることができる。   In this first step, the contact angle between the droplet 2 and the substrate 1 is preferably 45 to 90 [deg]. In the case of forming the conductive film wiring, a dispersion liquid having a contact angle of 70 to 90 [deg] is more preferably used in order to narrow the line width. In addition, as a method of discharging the droplet material as the droplet 2, an inkjet method can be used.

〈第2工程〉
次に、図2(a)のように、液滴2を第1工程で形成した微細ラインの凹部4に吐出する。この際の液滴2の吐出速度を、上記の(式1)で表される値未満にすることで、図2(b)のように濡れ広がりなく吐出することができる。
<Second step>
Next, as shown in FIG. 2A, the droplet 2 is discharged into the concave portion 4 of the fine line formed in the first step. By setting the discharge speed of the droplet 2 at this time to be less than the value represented by the above (Equation 1), it is possible to discharge without wetting and spreading as shown in FIG.

液滴材料を液滴2として吐出する方法としては、インクジェット法を用いることができる。さらに、この際の液滴量は、先に形成した微細ラインの中央が凹んでいるので、従来の重ね塗りの液滴量より多くしても、濡れ広がりを抑え、直線性を向上することができる。また、液滴量が従来より多いので、当然、タクトアップを可能とする。必要であれば、この後に、第2工程を1〜20回繰り返すこともできる。   As a method for ejecting the droplet material as the droplet 2, an inkjet method can be used. Furthermore, since the amount of droplets at this time is recessed in the center of the previously formed fine line, even if it is larger than the amount of droplets of conventional overcoat, wetting spread can be suppressed and linearity can be improved. it can. Moreover, since the amount of liquid droplets is larger than before, it is possible to improve the tact time. If necessary, the second step can be repeated 1 to 20 times thereafter.

例えば1例として、導電膜配線を形成する場合、凹部に吐出する第2工程では、材料使用量を減少するために導電性に優れた、第1工程とは別の分散液を使用することもできる。このように、第1工程と第2工程で使用する分散液を使い分けすることによって、微細ラインの形成を精度良く、効率的に実現することができる。勿論、第1工程と第2工程で同じ分散液を使用することもできる。   For example, when forming conductive film wiring as an example, in the second step of discharging into the recesses, it is possible to use a dispersion different from the first step, which has excellent conductivity in order to reduce the amount of material used. it can. In this way, by properly using the dispersion liquid used in the first step and the second step, the formation of fine lines can be realized with high accuracy and efficiency. Of course, the same dispersion can be used in the first step and the second step.

本発明で使用する液滴材料である分散液の特性に関し、分散液の供給安定性や分散液の飛翔安定性などを実現するためには、以下の条件を満足することが望ましい。すなわち、通常の動作時間における温度(5〜60度)、湿度(10〜70%)において、その粘度が1〜20[mPa・s]以下、好ましくは1〜10[mPa・s]、その表面張力が25〜80[mN/m]、好ましくは35〜50[mN/m]、固形分濃度が5〜40[w%]、好ましくは10〜25[w%]である。   Regarding the characteristics of the dispersion liquid, which is a droplet material used in the present invention, it is desirable to satisfy the following conditions in order to realize the supply stability of the dispersion liquid and the flight stability of the dispersion liquid. That is, the viscosity is 1 to 20 [mPa · s] or less, preferably 1 to 10 [mPa · s] at a temperature (5 to 60 degrees) and humidity (10 to 70%) in a normal operation time, and its surface The tension is 25 to 80 [mN / m], preferably 35 to 50 [mN / m], and the solid content concentration is 5 to 40 [w%], preferably 10 to 25 [w%].

この特性を満足する分散液では、吐出速度を、上記の(式1)で表される値以上にすることで、衝突エネルギーによって図1のような断面形状が中央部に凹部を有する形状になる。   In a dispersion satisfying this characteristic, the cross-sectional shape as shown in FIG. 1 becomes a shape having a concave portion in the center portion due to the collision energy by setting the discharge speed to be equal to or higher than the value represented by the above (Equation 1). .

また、本発明で使用することができる溶媒の具体例としては、例えば、水や、エタノール、メタノール、ブタノール、プロパノール等のアルコール類、n−オクタン、n−ヘプタン、トルエン、デカン、キシレン、デュレン、シメン、インデン、ジペンテン、デカヒドロナフタレン、テトラヒドロナフタレン、シクロヘキシルベンゼン等の炭化水素系溶媒、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル、p−ジオキサン等のエーテル系溶媒、プロピレンカーボネ−ト、γ−ブチロラクトン、N−メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、シクロヘキサノン等の極性溶媒がある。   Specific examples of the solvent that can be used in the present invention include water, alcohols such as ethanol, methanol, butanol, and propanol, n-octane, n-heptane, toluene, decane, xylene, durene, Hydrocarbon solvents such as cymene, indene, dipentene, decahydronaphthalene, tetrahydronaphthalene, cyclohexylbenzene, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, 1, Ether solvents such as 2-dimethoxyethane, bis (2-methoxyethyl) ether, p-dioxane, propylene carbonate, γ Butyrolactone, N- methyl-2-pyrrolidone, dimethylformamide, dimethyl sulfoxide, there is a polar solvent such as cyclohexanone.

図3は、本発明の一実施の形態における微細ラインの形成方法に用いられた形成装置の概略構成を示す斜視図である。この微細ライン形成装置は、塗布機構6、基板設置台8、駆動機構7、制御装置9を備えている。塗布機構6は、分散液を液滴として基板1上の所定の位置に吐出するインクジェット方式の塗布装置を備えている。基板設置台8は、この塗布装置によって液体を塗布する基板1を設置する機構を備えている。駆動機構7は、この基板設置台8をX方向とY方向に移動する機構を備える。なお、塗布機構6は固定であり、基板1を移動させることで、微細ラインの形成を行う。制御装置9は、駆動機構7によるX方向とY方向の移動と、塗布機構6の液滴の吐出の同期を制御する。   FIG. 3 is a perspective view showing a schematic configuration of a forming apparatus used in the fine line forming method according to the embodiment of the present invention. The fine line forming apparatus includes a coating mechanism 6, a substrate mounting base 8, a driving mechanism 7, and a control device 9. The coating mechanism 6 includes an inkjet type coating apparatus that discharges the dispersion liquid as droplets to a predetermined position on the substrate 1. The substrate mounting base 8 includes a mechanism for installing the substrate 1 on which the liquid is applied by the coating device. The drive mechanism 7 includes a mechanism for moving the substrate mounting base 8 in the X direction and the Y direction. The coating mechanism 6 is fixed, and fine lines are formed by moving the substrate 1. The control device 9 controls the synchronization of the movement in the X direction and the Y direction by the drive mechanism 7 and the ejection of the droplets from the coating mechanism 6.

以下に、具体的な実施例により本発明について説明する。なお、本発明は以下の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described with reference to specific examples. The present invention is not limited to the following examples.

〈実施例1〉
液滴の吐出速度を変化させて、その液滴を吐出した場合の中凹部量の変化を検証した。既にITOが形成されているガラス基板上に、銀粉末を含有した分散液(日本ペイント(株)製ファインスフェアSVW102、銀粒子の最大粒径76.3[nm]、温度25度、湿度50%における、粘度が8[mPa・s]、表面張力が40[mN/m]、固形分濃度が30[w%]である。)を、図3の装置(インクジェット方式塗布装置:(有)マイクロジェット社製IJK−100T)を用いて吐出した。
<Example 1>
By changing the discharge speed of the droplet, the change in the amount of the middle recess when the droplet was discharged was verified. A dispersion containing silver powder on a glass substrate on which ITO is already formed (Nippon Paint Co., Ltd. Finesphere SVW102, silver particle maximum particle size 76.3 [nm], temperature 25 degrees, humidity 50% The viscosity is 8 [mPa · s], the surface tension is 40 [mN / m], and the solid content concentration is 30 [w%].) The apparatus of FIG. The ink was discharged using IJK-100T manufactured by Jet Co.

なお、分散液の比重は1.4、基板と分散液との接触角は53[deg]、ノズル先端から基板までの間隔は1[mm]で、分散液の吐出周波数は10[kHz]とした。また、吐出する分散液の1滴の重量が19.6[ng]、53.6[ng]、120.7[ng]の3種類で実施した。その関係を図4に示す。1滴の重量が19.6[ng]の場合(図4(a))には、上述の吐出速度の(式1)、すなわち√(4.83/m)のmに1滴の重量19.6[ng]を代入すると、√(4.83/19.6)=0.5[m/s]になる。   The specific gravity of the dispersion is 1.4, the contact angle between the substrate and the dispersion is 53 [deg], the distance from the nozzle tip to the substrate is 1 [mm], and the discharge frequency of the dispersion is 10 [kHz]. did. Further, the weight of one droplet of the discharged dispersion was 19.6 [ng], 53.6 [ng], and 120.7 [ng]. The relationship is shown in FIG. When the weight of one drop is 19.6 [ng] (FIG. 4 (a)), the weight of one drop is 19 for m of √ (4.83 / m) (equation 1) of the above-described discharge speed. Substituting .6 [ng] yields √ (4.83 / 19.6) = 0.5 [m / s].

従って、この分散液の場合、吐出速度が0.5[m/s]以上なら吐出された分散液は図1のように、衝突エネルギーにより断面が中凹部の微細ラインになる。また、0.5[m/s]未満なら断面形状が中央部に凹部を有する形状にはならない。図4(a)に示すように検証結果では、0.5[m/s]以上で中凹部が発生した。   Therefore, in the case of this dispersion liquid, if the discharge speed is 0.5 [m / s] or more, the discharged dispersion liquid becomes a fine line with a cross-section in the middle recessed portion by collision energy as shown in FIG. Moreover, if it is less than 0.5 [m / s], a cross-sectional shape will not become a shape which has a recessed part in the center part. As shown in FIG. 4A, in the verification result, a middle recess was generated at 0.5 [m / s] or more.

同様に1滴の重量が53.7[ng]の場合(図4(b))は、吐出速度の(式1)、√(4.83/m)のmに1滴の重量53.7[ng]を代入すると、√(4.83/53.7)=0.3[m/s]になる。従って、この分散液の場合、吐出速度が0.3[m/s]以上なら吐出された分散液は、図1のように、衝突エネルギーにより断面が中凹部の微細ラインになる。また、0.3[m/s]未満なら断面形状が中央部に凹部を有する形状にはならない。図4(b)に示すように、検証結果では0.3[m/s]以上で中凹部が発生した。   Similarly, when the weight of one drop is 53.7 [ng] (FIG. 4B), the weight of one drop is 53.7 for m of the discharge speed (Formula 1), √ (4.83 / m). Substituting [ng] yields √ (4.83 / 53.7) = 0.3 [m / s]. Therefore, in the case of this dispersion liquid, if the discharge speed is 0.3 [m / s] or more, the discharged dispersion liquid becomes a fine line having a cross section in the middle concave portion due to the collision energy as shown in FIG. Moreover, if it is less than 0.3 [m / s], a cross-sectional shape will not become a shape which has a recessed part in the center part. As shown in FIG. 4B, in the verification result, a middle recess was generated at 0.3 [m / s] or more.

同様に1滴の重量が120.8[ng]の場合は、吐出速度の(式1)、√(4.83/m)のmに1滴の重量120.8[ng]を代入すると、√(4.83/120.8)=0.2[m/s]になる。従って、この分散液の場合、吐出速度が0.2[m/s]以上なら吐出された分散液は、図1のように、衝突エネルギーにより断面形状が中央部に凹部を有する形状の微細ラインになる。また、0.2[m/s]未満なら断面形状が中央部に凹部を有する形状にはならない。図4(c)に示すように、検証結果では0.2[m/s]以上で断面形状が中央部に凹部を有する形状となった。   Similarly, when the weight of one drop is 120.8 [ng], substituting the weight of one drop of 120.8 [ng] for m of (Expression 1) and √ (4.83 / m) of the discharge speed, √ (4.83 / 120.8) = 0.2 [m / s]. Therefore, in the case of this dispersion liquid, if the discharge speed is 0.2 [m / s] or more, the discharged dispersion liquid has a fine line with a cross-sectional shape having a concave portion in the central part due to collision energy as shown in FIG. become. Moreover, if it is less than 0.2 [m / s], a cross-sectional shape will not become a shape which has a recessed part in the center part. As shown in FIG. 4C, in the verification result, the cross-sectional shape is a shape having a recess at the center at 0.2 [m / s] or more.

〈実施例2〉
PDPの42型パネルに対し、前面板ユニットの放電電極と背面板ユニットのアドレス電極を形成し、PDPパネルを作成し評価を行った。その電極形成工程及びパネル作成工程について、以下に述べる。
<Example 2>
For the PDP 42 type panel, the discharge electrode of the front plate unit and the address electrode of the back plate unit were formed, and a PDP panel was prepared and evaluated. The electrode formation process and panel creation process will be described below.

まず、前面板ユニットの放電電極を形成するために、既にITOが形成されているガラス基板上に、実施例1と同様の分散液を実施例1と同様の装置を用いて吐出し、電極を作製した。なお、分散液の比重は1.4、基板と分散液との接触角は53[deg]、ノズル先端から基板までの間隔は1[mm]で、分散液の吐出周波数は10[kHz]とした。また、吐出する分散液の1滴の重量を19.6[ng]に設定した。   First, in order to form the discharge electrode of the front plate unit, a dispersion similar to that in Example 1 is discharged onto a glass substrate on which ITO has already been formed using the same apparatus as in Example 1, Produced. The specific gravity of the dispersion is 1.4, the contact angle between the substrate and the dispersion is 53 [deg], the distance from the nozzle tip to the substrate is 1 [mm], and the discharge frequency of the dispersion is 10 [kHz]. did. Further, the weight of one droplet of the discharged dispersion was set to 19.6 [ng].

ここで、上述の吐出速度の(式1)、すなわち√(4.83/m)のmに1滴の重量19.6[ng]を代入すると、√(4.83/19.6)=0.5[m/s]になる。   Here, substituting 19.6 [ng] for the weight of one drop into m of the above-described discharge speed (Equation 1), that is, √ (4.83 / m), √ (4.83 / 19.6) = 0.5 [m / s].

従って、この分散液の場合、吐出速度が0.5[m/s]以上ならば、吐出された分散液は図1のように、衝突エネルギーにより断面形状が中央部に凹部を有する形状になる。また、0.5[m/s]未満なら断面が中凹部にはならない。   Therefore, in the case of this dispersion liquid, if the discharge speed is 0.5 [m / s] or more, the discharged dispersion liquid has a cross-sectional shape having a concave portion in the center portion due to collision energy as shown in FIG. . Moreover, if it is less than 0.5 [m / s], a cross section will not become a middle recessed part.

第1工程において、液滴を2.5[m/s]の吐出速度で基板上に吐出した。液滴速度が0.5[m/s]以上なので、吐出された分散液は、断面形状が中央部に凹部を有する形状の線幅50[μm]の微細ラインになった。   In the first step, droplets were discharged onto the substrate at a discharge speed of 2.5 [m / s]. Since the droplet velocity was 0.5 [m / s] or more, the discharged dispersion became a fine line having a line width of 50 [μm] with a cross-sectional shape having a recess at the center.

第2工程においては、液滴を0.3[m/s]の吐出速度で、第1工程で形成した微細ラインの凹部に吐出した。吐出速度が0.5[m/s]未満なので、吐出された分散液は、図2のように濡れ広がりなく、断線などの不良箇所がない線幅50[μm]の微細ラインを形成することができた。この電極を乾燥した後、全面に厚さ約40μmの誘電体をスクリーン印刷で塗布し、キープ時間30分、温度600℃の下で焼成した。   In the second step, the liquid droplets were discharged into the concave portions of the fine lines formed in the first step at a discharge speed of 0.3 [m / s]. Since the discharge speed is less than 0.5 [m / s], the discharged dispersion liquid does not spread as shown in FIG. 2 and forms a fine line with a line width of 50 [μm] that does not have a defective portion such as disconnection. I was able to. After this electrode was dried, a dielectric having a thickness of about 40 μm was applied to the entire surface by screen printing and baked at a temperature of 600 ° C. for 30 minutes.

背面板ユニットのアドレス電極については、ガラス基板上に、前面板ユニットと同様の材料、手段の構成により、断線などの不良箇所がない線幅50[μm]の微細ラインを形成することができた。この電極を乾燥した後、全面に厚さ約40μmの誘電体をスクリーン印刷で塗布し、キープ時間30分、温度600℃の下で焼成した。   With respect to the address electrodes of the back plate unit, a fine line with a line width of 50 [μm] having no defective parts such as disconnection could be formed on the glass substrate by the same material and configuration of the front plate unit. . After this electrode was dried, a dielectric having a thickness of about 40 μm was applied to the entire surface by screen printing and baked at a temperature of 600 ° C. for 30 minutes.

そして、上記のようにして電極の形成された前面板ユニット、背面板ユニットとを、封着、排気、ガス封入後、エージング処理を行い、PDPパネルとして組み立てた。このパネルに対し、1000時間連続の点灯試験を行った結果、電極の耐久性が十分であることが確認できた。また、このパネルは、従来技術の方法で製造されたパネルと比べても、画像に差異は認められなかった。   Then, the front plate unit and the back plate unit on which the electrodes were formed as described above were sealed, exhausted, and filled with gas, and then subjected to an aging treatment to assemble as a PDP panel. As a result of conducting a lighting test for 1000 hours on this panel, it was confirmed that the durability of the electrode was sufficient. In addition, this panel showed no difference in image even when compared with a panel produced by a conventional method.

〈実施例3〉
実施例2と同様の材料、手段の構成で、線幅50μm、線間隔50μmのラインを平行に40本描画し、導電回路のラインを作成した。そして、膜厚、直線性、表面抵抗、抵抗率の評価を行った結果、従来技術の方法で製造された導電回路と比べても差異は認められなかった。
<Example 3>
Forty lines having a line width of 50 μm and a line interval of 50 μm were drawn in parallel with the same material and configuration as in Example 2 to create a conductive circuit line. And as a result of evaluating film thickness, linearity, surface resistance, and resistivity, no difference was recognized even when compared with the conductive circuit manufactured by the method of the prior art.

本発明の微細ラインの形成方法は、従来より多くの液滴量を吐出しても、濡れ広がりを抑え、直線性を向上することができる。さらに、これらの手段は、撥液領域などの界面を所望のラインに沿って形成する前工程や、加熱などの工程といった、他工程を全く必要としない、液滴を吐出する工程のみで微細ラインを形成することができる。従って、ディスプレイパネルやプリント基板の製造に利用可能である。   The fine line forming method of the present invention can suppress wetting and spread and improve linearity even when a larger amount of liquid droplets is ejected than before. Furthermore, these means do not require any other processes such as a pre-process for forming an interface such as a liquid repellent region along a desired line, or a process such as heating. Can be formed. Therefore, it can be used for manufacturing display panels and printed circuit boards.

本発明の一実施の形態における微細ラインの形成方法の第1工程を示し、(a)は正面図、(b)は断面図The 1st process of the formation method of the fine line in one embodiment of the present invention is shown, (a) is a front view and (b) is a sectional view. 同形成方法の第2工程を示し、(a)は正面図、(b)は断面図The 2nd process of the formation method is shown, (a) is a front view, (b) is a sectional view. 本発明の微細ラインの形成方法に用いられた微細ライン形成装置の構成を示す斜視図The perspective view which shows the structure of the fine line formation apparatus used for the formation method of the fine line of this invention 本発明の微細ラインの形成を実施した時の液滴速度と膜厚の関係を示す図The figure which shows the relationship between the droplet speed and film thickness when forming the fine line of this invention プラズマディスプレイパネルを示す分解斜視図An exploded perspective view showing a plasma display panel

符号の説明Explanation of symbols

1 基板
2 液滴
3 吐出手段
4、5 微細ライン
1 Substrate 2 Droplet 3 Discharge means 4, 5 Fine line

Claims (7)

金属超微粒子を含む分散液を液滴として基板上の所定位置に吐出して、微細ラインの形成を行う形成方法において、
前記基板上に液滴を吐出することにより断面形状が中央部に凹部を有する形状の微細ラインを形成する第1工程と、前記第1工程で形成した微細ラインの凹部に液滴を吐出して更に微細ラインを形成する第2工程とを含むことを特徴とする微細ラインの形成方法。
In a forming method of forming a fine line by discharging a dispersion containing ultrafine metal particles as droplets to a predetermined position on a substrate,
A first step of forming a fine line having a cross-sectional shape having a recess in the center by discharging a droplet onto the substrate; and a droplet is discharged into the recess of the fine line formed in the first step. And a second step of forming a fine line.
前記第1工程において、前記金属超微粒子が粒径100[nm]以下であり、前記分散液の粘度が1〜20[mPa・s]以下、その表面張力が25〜80[mN/m]、固形分濃度が5〜40[w%]、液滴の吐出速度が√(4.83/m)[m/s](m=1滴の重量[ng])以上である請求項1記載の微細ラインの形成方法。   In the first step, the ultrafine metal particles have a particle size of 100 nm or less, the dispersion has a viscosity of 1 to 20 [mPa · s] or less, a surface tension of 25 to 80 [mN / m], The solid content concentration is 5 to 40 [w%], and the discharge speed of the droplet is √ (4.83 / m) [m / s] (m = 1 weight of the droplet [ng]) or more. Method for forming fine lines. 前記第2工程において、前記金属超微粒子が粒径100[nm]以下であり、前記分散液の粘度が1〜20[mPa・s]以下、その表面張力が25〜80[mN/m]、固形分濃度が5〜40[w%]、液滴の吐出速度が√(4.83/m)[m/s](m=1滴の重量[ng])未満である請求項1記載の微細ラインの形成方法。   In the second step, the ultrafine metal particles have a particle size of 100 [nm] or less, the dispersion has a viscosity of 1 to 20 [mPa · s] or less, and a surface tension of 25 to 80 [mN / m], The solid content concentration is 5 to 40 [w%], and the discharge speed of the droplet is less than √ (4.83 / m) [m / s] (m = 1 weight of the droplet [ng]). Method for forming fine lines. 前記第1工程で吐出する前記分散液と前記第2工程で吐出する前記分散液が同じである請求項1に記載の微細ラインの形成方法。   The method for forming a fine line according to claim 1, wherein the dispersion liquid discharged in the first step and the dispersion liquid discharged in the second step are the same. 前記第1工程で吐出する前記分散液と前記第2工程で吐出する前記分散液が異なる請求項1に記載の微細ラインの形成方法。   The fine line forming method according to claim 1, wherein the dispersion discharged in the first step and the dispersion discharged in the second step are different. 前記第2工程の後に、前記第2工程と同じ工程を1〜20回繰り返す請求項1に記載の微細ラインの形成方法。   The method for forming a fine line according to claim 1, wherein the same step as the second step is repeated 1 to 20 times after the second step. 前記基板と前記第1工程の前記液滴との接触角が45〜90[deg]である請求項1に記載の微細ラインの形成方法。   2. The fine line forming method according to claim 1, wherein a contact angle between the substrate and the droplet in the first step is 45 to 90 [deg].
JP2006183553A 2006-07-03 2006-07-03 Fine line forming method Expired - Fee Related JP4923293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006183553A JP4923293B2 (en) 2006-07-03 2006-07-03 Fine line forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006183553A JP4923293B2 (en) 2006-07-03 2006-07-03 Fine line forming method

Publications (2)

Publication Number Publication Date
JP2008012384A true JP2008012384A (en) 2008-01-24
JP4923293B2 JP4923293B2 (en) 2012-04-25

Family

ID=39069953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006183553A Expired - Fee Related JP4923293B2 (en) 2006-07-03 2006-07-03 Fine line forming method

Country Status (1)

Country Link
JP (1) JP4923293B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234354A (en) * 2009-03-09 2010-10-21 Fujifilm Corp Line pattern formation method
JP2017179175A (en) * 2016-03-31 2017-10-05 富士フイルム株式会社 Method for producing gelatin molded body
WO2017208981A1 (en) * 2016-06-03 2017-12-07 株式会社東海理化電機製作所 Heating body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003311196A (en) * 2002-04-19 2003-11-05 Seiko Epson Corp Method and apparatus for forming film pattern, conductive film wiring, electrooptical apparatus, electronic device, non-contact type card medium, piezoelectric element, and ink-jet recording head
JP2004259874A (en) * 2003-02-25 2004-09-16 Ricoh Co Ltd Liquid-drop injection equipment, manufactured pattern wiring board and device board
JP2004342919A (en) * 2003-05-16 2004-12-02 Seiko Epson Corp Method and system for ejecting liquid droplet, method for forming film pattern, device and its fabricating method, electro-optical device, and electronic apparatus
JP2005013985A (en) * 2003-05-30 2005-01-20 Seiko Epson Corp Method for forming film pattern, device and its production method, electro-optic apparatus, and electronic component, production method of active matrix substrate, active matrix substrate
JP2005028276A (en) * 2003-07-11 2005-02-03 Seiko Epson Corp Film forming method, device producing method, electro-optical device, and electronic device
JP2006108146A (en) * 2004-09-30 2006-04-20 Seiko Epson Corp Method of manufacturing functional film and method of manufacturing thin-film transistor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003311196A (en) * 2002-04-19 2003-11-05 Seiko Epson Corp Method and apparatus for forming film pattern, conductive film wiring, electrooptical apparatus, electronic device, non-contact type card medium, piezoelectric element, and ink-jet recording head
JP2004259874A (en) * 2003-02-25 2004-09-16 Ricoh Co Ltd Liquid-drop injection equipment, manufactured pattern wiring board and device board
JP2004342919A (en) * 2003-05-16 2004-12-02 Seiko Epson Corp Method and system for ejecting liquid droplet, method for forming film pattern, device and its fabricating method, electro-optical device, and electronic apparatus
JP2005013985A (en) * 2003-05-30 2005-01-20 Seiko Epson Corp Method for forming film pattern, device and its production method, electro-optic apparatus, and electronic component, production method of active matrix substrate, active matrix substrate
JP2005028276A (en) * 2003-07-11 2005-02-03 Seiko Epson Corp Film forming method, device producing method, electro-optical device, and electronic device
JP2006108146A (en) * 2004-09-30 2006-04-20 Seiko Epson Corp Method of manufacturing functional film and method of manufacturing thin-film transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234354A (en) * 2009-03-09 2010-10-21 Fujifilm Corp Line pattern formation method
JP2017179175A (en) * 2016-03-31 2017-10-05 富士フイルム株式会社 Method for producing gelatin molded body
WO2017208981A1 (en) * 2016-06-03 2017-12-07 株式会社東海理化電機製作所 Heating body

Also Published As

Publication number Publication date
JP4923293B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP4311084B2 (en) Thin film pattern manufacturing method, organic electroluminescent device manufacturing method, color filter manufacturing method, plasma display panel manufacturing method, liquid crystal display panel manufacturing method
JP4923293B2 (en) Fine line forming method
JP2000268716A (en) Manufacturing device and method for plasma display pannel
CN102099886A (en) Plasma display panel
KR20020061484A (en) Plasma display and methode of manufacturing the same
JP4800526B2 (en) Method for manufacturing plasma display panel
JP2005095757A (en) Paste application method and paste application apparatus
JP4068884B2 (en) Plasma display and manufacturing method thereof
JP2004006224A (en) Manufacturing device of plasma display panel (pdp)
JP4800863B2 (en) Method for manufacturing plasma display panel
JP2001006541A (en) Plasma display panel, its manufacture and its manufacturing device
JP2004071248A (en) Plasma display and its manufacturing method
CN101211733A (en) Method of forming bulkhead
KR100518857B1 (en) ink-jet type electrode manufacturing method
JP4442738B2 (en) Method for forming phosphor screen of plasma display panel
JP2010108618A (en) Method of manufacturing plasma display panel, and inkjet device
KR100570654B1 (en) Method for manufacturing plasma display panel
JP2004358298A (en) Method of forming thin film pattern, method of manufacturing organic electro luminescent element, method of manufacturing color filter, method of manufacturing plasma display panel, method of manufacturing liquid crystal panel, and electronic apparatus
JP2004186115A (en) Manufacturing method of display panel
JP2007080823A (en) Plasma display panel and its electrode forming method
KR20030080143A (en) Fabrication Method for Backplate of Plasma Display Panel
JPH11224609A (en) Phosphor paste and manufacture of substrate for plasma display panel using the same
JP2004349045A (en) Method for manufacturing plasma display panel
JP2010108616A (en) Method of manufacturing plasma display panel, and inkjet device
KR100745806B1 (en) Spray device and method of dielectric film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4923293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees