JP2008010538A - Surface light emitting laser element, and its manufacturing method - Google Patents

Surface light emitting laser element, and its manufacturing method Download PDF

Info

Publication number
JP2008010538A
JP2008010538A JP2006177789A JP2006177789A JP2008010538A JP 2008010538 A JP2008010538 A JP 2008010538A JP 2006177789 A JP2006177789 A JP 2006177789A JP 2006177789 A JP2006177789 A JP 2006177789A JP 2008010538 A JP2008010538 A JP 2008010538A
Authority
JP
Japan
Prior art keywords
emitting laser
laser element
type
superlattice structure
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006177789A
Other languages
Japanese (ja)
Other versions
JP4897954B2 (en
Inventor
Seteiagun Kashimirusu
セティアグン カシミルス
Norihiro Iwai
則広 岩井
Koji Hiraiwa
浩二 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2006177789A priority Critical patent/JP4897954B2/en
Publication of JP2008010538A publication Critical patent/JP2008010538A/en
Application granted granted Critical
Publication of JP4897954B2 publication Critical patent/JP4897954B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface light emitting laser element having a lower semiconductor multilayer film reflecting mirror, an active layer, and an upper semiconductor multilayer film reflecting mirror on a substrate, and having a constriction structure with functions of current constriction and light constriction; and to provide a manufacturing method of the element. <P>SOLUTION: In the surface light emitting laser element, multiple semiconductor layers are laminated on the substrate. At least the lower semiconductor multilayer film reflecting mirror, the active layer, and the upper semiconductor multilayer film reflecting mirror constitute the element. The upper or lower semiconductor multilayer film reflecting mirror comprises a superlattice structure formed of a p-type semiconductor layer where a p-type impurity is doped and has a layer similar to the superlattice structure. A circumferential region of the superlattice structure is constituted of an n-type semiconductor where an n-type impurity is doped. The superlattice structure and the n-type semiconductor are arranged between the p-type semiconductor layers having impurity concentration higher than that of the p-type semiconductor layer constituting the superlattice structure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、面発光レーザ素子及びその製造方法に関し、更に詳しくは、電流もしくは光の狭窄を行うための狭窄構造を有する面発光レーザ素子及びその製造方法に関するものである。   The present invention relates to a surface emitting laser element and a method for manufacturing the same, and more particularly to a surface emitting laser element having a constriction structure for confining current or light and a method for manufacturing the same.

垂直共振器型面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser. 以下、単に面発光レーザ素子と称する。)は、基板に対して直交方向に光を出射させる半導体レーザ素子である。面発光レーザ素子は、同じ基板上に2次元アレイ状に多数の面発光レーザ素子を配列することが可能であり、通信用光源として、或いは、その他の様々なアプリケーション用デバイスとして注目されている。特に、光インターコネクション等の並列光情報処理や並列光伝送の用途を中心に、面発光レーザ素子のニーズが高まっている。 A vertical cavity surface emitting laser (VCSEL) is a semiconductor laser element that emits light in a direction orthogonal to a substrate. A surface emitting laser element can arrange a large number of surface emitting laser elements in a two-dimensional array on the same substrate, and is attracting attention as a light source for communication or as a device for various other applications. In particular, there is an increasing need for surface emitting laser elements, mainly for applications of parallel optical information processing such as optical interconnection and parallel optical transmission.

面発光レーザ素子は、GaAsやInPといった半導体基板上に1対の半導体多層膜反射鏡(DBR:Distributed Bragg Reflector。)を形成し、その対の1対の半導体多層膜反射鏡の間に、発光領域となる活性層を有するレーザ構造部を備えている。例えばGaAs系面発光レーザ素子では、AlGaAs系材料が多層膜反射鏡に用いられる。   A surface emitting laser element forms a pair of semiconductor multilayer reflectors (DBR) on a semiconductor substrate such as GaAs or InP, and emits light between the pair of semiconductor multilayer reflectors. A laser structure having an active layer to be a region is provided. For example, in a GaAs-based surface emitting laser element, an AlGaAs-based material is used for a multilayer mirror.

GaAs系面発光レーザ素子は、特にGaAs基板上に形成でき、しかも、熱伝導率が良好で、反射率の高いAlGaAs系多層膜反射鏡を用いることができるので、0.8μm〜1.0μm帯のレーザ光を発光できるレーザ素子として有望視されている。また、活性層にGaInNAs系材料を用いた面発光レーザ素子は、1.2μm〜1.6μm帯の長波長域の光を発光できる面発光レーザ素子として有望視されている。これらの面発光レーザ素子では、電流注入効率を高め、閾値電流値を下げるために、AlAs酸化層で電流注入領域を狭窄する構造を構成する、酸化狭窄型の面発光半導体レーザ素子が提案されている(特許文献1)。   The GaAs surface emitting laser element can be formed on a GaAs substrate, and has a good thermal conductivity and a high reflectivity AlGaAs multilayer mirror, so that the 0.8 μm to 1.0 μm band can be used. It is considered promising as a laser element capable of emitting the laser beam. A surface-emitting laser element using a GaInNAs-based material for the active layer is considered promising as a surface-emitting laser element that can emit light in a long wavelength range of 1.2 μm to 1.6 μm. In these surface emitting laser elements, in order to increase the current injection efficiency and reduce the threshold current value, an oxide confinement type surface emitting semiconductor laser element that has a structure in which the current injection region is confined by an AlAs oxide layer is proposed. (Patent Document 1).

ここで、図5及び図6を参照して、従来の発振波長が長波長、具体的には1.3μm帯の面発光レーザ素子の構成を説明する。 発振波長1.3μm帯の従来の面発光半導体レーザ素子10は、膜厚約100μmのp−GaAs基板12上に、順次、形成されたp−Al0.9Ga0.1As/p−GaAsの35.5ペアからなる下部反射鏡14、ノンドープGaAs下部クラッド層18、活性層20、ノンドープGaAs上部クラッド層22、n−Al0.9Ga0.1As/n−GaAsの30ペアからなる上部反射鏡24、及びn−GaAsキャップ層26からなる積層構造を備えている。 p−Al0.9Ga0.1As/p−GaAsの35.5ペアからなる下部反射鏡14の最上層は、図5に示すように、p−Al0.9Ga0.1As膜に代えて、膜厚20nmのAl酸化層16/p−AlAs層17が成膜されている。 Here, with reference to FIG. 5 and FIG. 6, the configuration of a conventional surface emitting laser element having a long oscillation wavelength, specifically, a 1.3 μm band will be described. A conventional surface emitting semiconductor laser device 10 having an oscillation wavelength band of 1.3 μm is formed by sequentially forming p-Al 0.9 Ga 0.1 As / p-GaAs 35.5 on a p-GaAs substrate 12 having a thickness of about 100 μm. The lower reflecting mirror 14 made of a pair, the undoped GaAs lower cladding layer 18, the active layer 20, the undoped GaAs upper cladding layer 22, the upper reflecting mirror 24 made of 30 pairs of n-Al 0.9 Ga 0.1 As / n-GaAs, and the n− A laminated structure composed of the GaAs cap layer 26 is provided. As shown in FIG. 5, the uppermost layer of the lower reflecting mirror 14 made of 35.5 pairs of p-Al 0.9 Ga 0.1 As / p-GaAs has a thickness of 20 nm instead of the p-Al 0.9 Ga 0.1 As film. An Al oxide layer 16 / p-AlAs layer 17 is formed.

積層構造のうち、n−GaAsキャップ層26、n−Al0.9Ga0.1As/n−GaAsの30ペアからなる上部反射鏡24、ノンドープGaAs上部クラッド層22、活性層20、ノンドープGaAs下部クラッド層18、及びAl酸化層16/AlAs層17は、円筒状溝28によって、直径40から45μmのメサポスト構造30として形成されている。 Among the laminated structures, an n-GaAs cap layer 26, an upper reflector 24 composed of 30 pairs of n-Al 0.9 Ga 0.1 As / n-GaAs, an undoped GaAs upper cladding layer 22, an active layer 20, and an undoped GaAs lower cladding layer 18 The Al oxide layer 16 / AlAs layer 17 is formed as a mesa post structure 30 having a diameter of 40 to 45 μm by a cylindrical groove 28.

p−Al0.9Ga0.1As/p−GaAsの35.5ペアからなる下部反射鏡14は、図6に示すように、膜厚110nmのp−Al0.9Ga0.1As膜50と膜厚94nmのp−GaAs膜46とが組成傾斜層を介して積層された35.5ペアの多層膜によって構成されている。
Al酸化層16は、AlAs層を酸化することによってメサポスト構造30の側壁に沿って形成され、電気抵抗の高い電流狭窄領域を構成し、AlAs層17は中央部に円形領域として形成され、電流注入経路を構成している。
活性層20は、GaInAsNを井戸層としている。
上部反射鏡24は膜厚110nmのn−Al0.9Ga0.1As膜54と膜厚94nmのn−GaAs膜56とが組成傾斜層を介して積層された30ペアの多層膜によって構成されている。
As shown in FIG. 6, the lower reflecting mirror 14 composed of 35.5 pairs of p-Al 0.9 Ga 0.1 As / p-GaAs includes a p-Al 0.9 Ga 0.1 As film 50 having a thickness of 110 nm and a p-layer having a thickness of 94 nm. The GaAs film 46 is composed of 35.5 pairs of multilayer films laminated via a composition gradient layer.
The Al oxide layer 16 is formed along the side wall of the mesa post structure 30 by oxidizing the AlAs layer to form a current confinement region having a high electrical resistance, and the AlAs layer 17 is formed as a circular region in the center portion, and current injection The route is configured.
The active layer 20 uses GaInAsN as a well layer.
The upper reflecting mirror 24 is composed of 30 pairs of multilayer films in which an n-Al 0.9 Ga 0.1 As film 54 having a thickness of 110 nm and an n-GaAs film 56 having a thickness of 94 nm are stacked via a composition gradient layer.

円筒状溝28の溝壁、メサポスト構造30上を含めて、全面にシリコン窒化膜32が成膜されている。そして、メサポスト構造30上面のシリコン窒化膜32は、直径30μmの円形状に除去されて、n−GaAsキャップ層26を露出させている。
そこには、内径20μm、外形30μmのリング状のAuGeNi/Au金属積層膜がn側電極34として形成されている。更に、中央に円形開口を有するようにしてn側電極34を覆って接続したTi/Pt/Au積層金属パッドが、n側電極34の引き出し用電極36として形成されている。
また、p−GaAs基板12の裏面には、AuZn膜がp側電極38として形成されている。
A silicon nitride film 32 is formed on the entire surface including the groove wall of the cylindrical groove 28 and the mesa post structure 30. Then, the silicon nitride film 32 on the upper surface of the mesa post structure 30 is removed in a circular shape having a diameter of 30 μm to expose the n-GaAs cap layer 26.
A ring-shaped AuGeNi / Au metal laminated film having an inner diameter of 20 μm and an outer diameter of 30 μm is formed as an n-side electrode 34 there. Further, a Ti / Pt / Au laminated metal pad that covers and connects the n-side electrode 34 with a circular opening at the center is formed as an extraction electrode 36 of the n-side electrode 34.
An AuZn film is formed as a p-side electrode 38 on the back surface of the p-GaAs substrate 12.

なお、p−GaAs基板12に替えて、n型半導体基板を用いp型半導体層とn型半導体層の位置関係が逆になるよう構成された面発光レーザ素子も、従来開発されている。その場合には、酸化狭窄層は上部DBRミラー内であって、活性層20近傍に形成される。   A surface-emitting laser element that uses an n-type semiconductor substrate and has a reverse positional relationship between the p-type semiconductor layer and the n-type semiconductor layer instead of the p-GaAs substrate 12 has also been conventionally developed. In that case, the oxidized constricting layer is formed in the upper DBR mirror and in the vicinity of the active layer 20.

このような酸化狭窄層は、メサポストに加工した積層構造を水蒸気雰囲気中にて、約400℃の温度で酸化処理を行い、メサポストの外側からAlAs層17のAlを選択的に酸化させることにより、Al酸化層16からなる電流狭窄層が形成されている。
このような酸化狭窄層では、電流注入領域となる非酸化領域に比べ、酸化領域の屈折率が低く、非酸化領域のコア部と酸化領域のクラッド部が形成され、光閉じ込めの機能も有している。酸化領域と非酸化領域の等価屈折率の差は約0.005であり、シングルモード動作を得るためには、レーザ光の経路(オプティカルアパーチャ)となる非酸化領域の面積を20〜30μm程度以下にする必要がある。
Such an oxide constriction layer is obtained by oxidizing a laminated structure processed into a mesa post in a water vapor atmosphere at a temperature of about 400 ° C., and selectively oxidizing Al of the AlAs layer 17 from the outside of the mesa post. A current confinement layer made of the Al oxide layer 16 is formed.
In such an oxide confinement layer, the refractive index of the oxidized region is lower than that of the non-oxidized region serving as the current injection region, and the core portion of the non-oxidized region and the cladding portion of the oxidized region are formed, and also has an optical confinement function. ing. The difference in equivalent refractive index between the oxidized region and the non-oxidized region is about 0.005, and in order to obtain a single mode operation, the area of the non-oxidized region that becomes a laser beam path (optical aperture) is about 20 to 30 μm 2. Must be:

そこで、電流を狭窄するための酸化狭窄層とは別に、光閉じ込め機能を有する光狭窄構造を設けた面発光レーザ素子の開発も行われている。
例えば、非酸化領域の径の異なる酸化狭窄層を2種類設け、各々電流狭窄および光狭窄の機能を果たすような面発光レーザ素子の開発が行われている。(特許文献2)
あるいは、多層膜反射鏡を構成する半導体の周辺部に高濃度の不純物をドープすることによって不純物がドープされた領域の半導体の屈折率を低くし光狭窄をおこなう面発光レーザ素子の開発が行われている。(特許文献3)
In view of this, a surface emitting laser element having an optical confinement structure having an optical confinement function has been developed in addition to the oxidized constriction layer for confining current.
For example, two types of oxidized constricting layers having different diameters of non-oxidized regions are provided, and surface emitting laser elements that perform the functions of current confinement and optical confinement have been developed. (Patent Document 2)
Alternatively, a surface emitting laser element has been developed that performs optical confinement by lowering the refractive index of a semiconductor in a region doped with impurities by doping high-concentration impurities in the periphery of the semiconductor constituting the multilayer reflector. ing. (Patent Document 3)

一方、材料の異なる薄い半導体層を交互に積層した超格子構造に不純物ドープをおこない、その領域の超格子層の無秩序化をおこない半導体の屈折率を制御するという方法が従来の端面発光型の半導体レーザにおいて検討されている。(特許文献4)
On the other hand, the conventional edge-emitting semiconductor is a method of doping impurities into a superlattice structure in which thin semiconductor layers of different materials are alternately stacked, disordering the superlattice layer in that region, and controlling the refractive index of the semiconductor. Considered in lasers. (Patent Document 4)

特開2003−179308号公報JP 2003-179308 A 特開2005−93634号公報JP 2005-93634 A 特開2003−124570号公報JP 2003-124570 A 特開平2−106986号公報Japanese Patent Laid-Open No. 2-106986

上述のように、酸化狭窄型の面発光レーザ素子では、酸化狭窄層の電流注入領域となる非酸化領域の面積を小さくすることによって、シングルモード動作が得られる。しかしながら、電流注入領域の面積と光出力とは比例関係にあり、電流注入領域の面積を小さくすることによって光出力は小さくなる。
また、酸化狭窄型の面発光レーザ素子では、メサポストを形成し、酸化工程により、特定半導体層の一部を酸化させる際に、多層膜反射鏡や活性層などのメサポスト側面に露出した半導体層の端面部についても、強い酸化条件に曝されるので、その露出した端面部が酸化されることがある。このような端面部の酸化は体積の収縮による応力の発生や活性層へのダメージの要因となり、面発光レーザ素子の信頼性を低下させる。
As described above, in the oxidized constriction type surface emitting laser element, a single mode operation can be obtained by reducing the area of the non-oxidized region which becomes the current injection region of the oxidized constricting layer. However, the area of the current injection region and the light output are in a proportional relationship, and the light output is reduced by reducing the area of the current injection region.
In addition, in an oxidation confinement type surface emitting laser element, when a mesa post is formed and a part of a specific semiconductor layer is oxidized by an oxidation process, a semiconductor layer exposed on a side surface of a mesa post such as a multilayer reflector or an active layer is formed. Since the end surface portion is also exposed to strong oxidation conditions, the exposed end surface portion may be oxidized. Such oxidation of the end face portion causes generation of stress due to volume contraction and damage to the active layer, and decreases the reliability of the surface emitting laser element.

一方、電流狭窄構造と光狭窄構造を各々設ける面発光レーザ素子では製造工程が複雑になり製造コストの増大を招く。
また、材料の異なる薄い半導体層を交互に積層した超格子構造に不純物ドープをおこなうことによって、その領域の超格子層が無秩序化する方法では、不純物の種類による拡散定数に応じ、ドープ量や熱処理温度および熱処理時間を制御し超格子の無秩序領域および得られる屈折率の制御が困難であった。
On the other hand, in a surface emitting laser element provided with a current confinement structure and an optical confinement structure, the manufacturing process becomes complicated and the manufacturing cost increases.
In addition, by doping impurities into a superlattice structure in which thin semiconductor layers of different materials are alternately stacked, the superlattice layer in that region becomes disordered. Depending on the diffusion constant depending on the type of impurities, the doping amount and heat treatment are performed. It was difficult to control the disordered region of the superlattice and the refractive index obtained by controlling the temperature and heat treatment time.

上記に鑑み、本発明は、基板上に下部半導体多層膜反射鏡と活性層と上部半導体多層膜反射鏡を有する面発光レーザ素子において、電流狭窄と光狭窄の機能を持つ狭窄構造を有する面発光レーザ素子、及び、その製造方法を提供することを目的とする。
In view of the above, the present invention provides a surface emitting laser device having a constriction structure having a current confinement function and an optical confinement function in a surface emitting laser element having a lower semiconductor multilayer reflector, an active layer, and an upper semiconductor multilayer reflector on a substrate. It is an object of the present invention to provide a laser element and a manufacturing method thereof.

上記目的を達成するために、本発明の面発光レーザ素子は、基板上に半導体層を多層積層し、少なくとも下部半導体多層膜反射鏡と活性層と上部半導体多層膜反射鏡を構成する面発光レーザ素子において、該上部又は下部半導体多層膜反射鏡のいずれか一方は、p型不純物がドープされたp型半導体層からなる超格子構造を含んでおり、該超格子構造と同じ層であって、超格子構造の外周領域はn型不純物がドープされてなるn型半導体で構成され、前記超格子構造と前記n型半導体は、前記超格子構造を構成するp型半導体層の不純物濃度よりも高い不純物濃度を有するp型半導体層の間に配設されていることを特徴とする。
In order to achieve the above object, a surface emitting laser element according to the present invention is a surface emitting laser in which semiconductor layers are multilayered on a substrate to form at least a lower semiconductor multilayer mirror, an active layer, and an upper semiconductor multilayer reflector. In the element, one of the upper or lower semiconductor multilayer mirror includes a superlattice structure composed of a p-type semiconductor layer doped with a p-type impurity, and is the same layer as the superlattice structure, The outer peripheral region of the superlattice structure is composed of an n-type semiconductor doped with n-type impurities, and the superlattice structure and the n-type semiconductor are higher in impurity concentration than the p-type semiconductor layer constituting the superlattice structure. It is characterized by being disposed between p-type semiconductor layers having an impurity concentration.

また、本発明の面発光レーザ素子の製造方法は、基板上に、n型半導体多層膜反射鏡を構成する半導体層と、活性層と、p型半導体多層膜反射鏡を構成する半導体層とを順次に積層して積層構造を形成する積層工程と、
前記p型半導体多層膜反射鏡を構成する一部の半導体層に環状にn型不純物をイオン注入する工程と、熱処理を施して前記n型不純物が注入された領域を無秩序化する工程とを順次に有することを特徴とする。
In the method of manufacturing the surface emitting laser element of the present invention, a semiconductor layer constituting an n-type semiconductor multilayer reflector, an active layer, and a semiconductor layer constituting a p-type semiconductor multilayer reflector are formed on a substrate. A laminating step of sequentially laminating to form a laminated structure;
Steps of ion-implanting n-type impurities in a part of the semiconductor layer constituting the p-type semiconductor multilayer mirror and steps of disordering the region where the n-type impurities are implanted by heat treatment are sequentially performed. It is characterized by having.

本発明の面発光レーザ素子及び本発明方法によって製造された面発光レーザ素子では、光狭窄と電流狭窄の機能を有し、信頼性の高い面発光レーザ素子を提供することができる。
In the surface emitting laser element of the present invention and the surface emitting laser element manufactured by the method of the present invention, a highly reliable surface emitting laser element having functions of optical confinement and current confinement can be provided.

面発光レーザ素子の多層膜反射鏡の構成材料として用いられるAlGaAs半導体のAl組成比を変えた薄い層を交互に積層した超格子構造に不純物をドープし、500℃〜900℃で熱処理を行うと、不純物がドープされた領域でのみ、混晶化が促進され、超格子構造が無秩序化することが知られている。不純物としてイオン注入した原子が拡散することによりAlGaAs/AlGaAs超格子構造のAl原子とGa原子の相互拡散は、下記のような方程式で起きるとされている。

Figure 2008010538




但し、
Xo: AlGaAsのAl組成の初期値
X(z):相互拡散後の距離zにおけるAlGaAsのAl組成
Lz: AlGaAs層厚
Ld: Al原子の相互拡散距離

LdはAl原子の相互拡散距離であるが、イオン注入した原子種による拡散定数や注入量、そして再成長温度や熱処理温度および処理時間による制御できる。 Impurities are doped into a superlattice structure in which thin layers with different Al composition ratios of an AlGaAs semiconductor used as a constituent material of a multilayer mirror of a surface emitting laser element are alternately laminated, and heat treatment is performed at 500 ° C. to 900 ° C. It is known that only in a region doped with impurities, mixed crystallization is promoted and the superlattice structure becomes disordered. It is said that the interdiffusion between Al atoms and Ga atoms in the AlGaAs / AlGaAs superlattice structure occurs by the following equation as a result of diffusion of ions implanted as impurities.
Figure 2008010538




However,
Xo: Initial value of Al composition of AlGaAs
X (z): Al composition of AlGaAs at distance z after interdiffusion
L z : AlGaAs layer thickness
L d : Interdiffusion distance of Al atoms

L d is the interdiffusion distance of Al atoms, and can be controlled by the diffusion constant and implantation amount of the ion-implanted atomic species, and the regrowth temperature, heat treatment temperature, and treatment time.

しかしながら、面発光レーザ素子のコア部とクラッド部との等価屈折率の差を良好に制御し光狭窄構造を形成するためには、上述のようなイオン注入した原子種による拡散定数や注入量、そして再成長温度や熱処理温度および処理時間による制御をおこなっても必ずしも安定して良好な光狭窄構造を形成できないことが分かった。イオン注入した原子種や注入量を適切に選択し、再成長温度や熱処理温度および処理時間を最適化すればAlGaAs/AlGaAs超格子構造を無秩序化することはできるが、イオン注入した原子の拡散を抑制は非常に困難である。不純物の拡散が制御できないために、光狭窄構造を形成するコア部とクラッド部との等価屈折率の差が所定の値よりもずれるという問題が生ずる。また、活性層まで不純物が拡散した場合には、レーザの発光特性に影響するという問題がある。   However, in order to satisfactorily control the difference in equivalent refractive index between the core portion and the clad portion of the surface emitting laser element and form an optical confinement structure, the diffusion constant and implantation amount due to the ion-implanted atomic species as described above It was also found that a stable and good optical confinement structure cannot always be formed even if control is performed by the regrowth temperature, the heat treatment temperature and the treatment time. Although the AlGaAs / AlGaAs superlattice structure can be disordered by properly selecting the ion implanted atomic species and implantation amount and optimizing the regrowth temperature, heat treatment temperature and treatment time, the diffusion of the ion implanted atoms can be reduced. Suppression is very difficult. Since the diffusion of impurities cannot be controlled, there arises a problem that the difference in the equivalent refractive index between the core part and the clad part forming the optical confinement structure deviates from a predetermined value. In addition, when impurities are diffused to the active layer, there is a problem that the light emission characteristics of the laser are affected.

不純物の拡散を抑制するために、他の元素を高濃度にドープした層によって超格子構造を挟んだ構成とすることにより、他の元素を高濃度にドープした層が拡散抑制層として機能し、超格子構造以外の層に不純物が拡散することを抑制できる。例えば、AlGaAs/AlGaAs超格子構造にSiイオンを注入する場合、Si原子の拡散抑制層として高濃度炭素(C)又はベリリウム(Be)ドープした層を用いることができる。   In order to suppress the diffusion of impurities, by adopting a structure in which the superlattice structure is sandwiched between layers doped with other elements at a high concentration, a layer doped with other elements at a high concentration functions as a diffusion suppression layer, Impurities can be prevented from diffusing into layers other than the superlattice structure. For example, when Si ions are implanted into an AlGaAs / AlGaAs superlattice structure, a layer doped with high-concentration carbon (C) or beryllium (Be) can be used as a diffusion suppression layer for Si atoms.

このような方法で形成した光狭窄構造ではコア部とクラッド部の屈折率差を0.005程度と小さくすることができ、オプティカルアパーチャを大きくしてもレーザ光をシングルモード発振させることができる。
通常、面発光レーザ素子の静電気耐圧は図1に示すように、電流狭窄の開口部の面積と相関があるが、本発明の面発光レーザ素子の光狭窄構造は電流狭窄構造の機能も兼ねており、電流狭窄の開口部面積も大きくすることができるため、面発光レーザ素子の静電気耐圧も向上させることができる。
以下に、実施形態を挙げ、添付図面を参照して、本発明の実施の形態を具体的かつ詳細に説明する。
In the optical confinement structure formed by such a method, the refractive index difference between the core portion and the clad portion can be reduced to about 0.005, and the laser light can be oscillated in a single mode even if the optical aperture is increased.
Normally, the electrostatic withstand voltage of the surface emitting laser element has a correlation with the area of the opening portion of the current confinement as shown in FIG. 1, but the optical confinement structure of the surface emitting laser element of the present invention also functions as a current confinement structure. In addition, since the opening area of the current confinement can be increased, the electrostatic withstand voltage of the surface emitting laser element can be improved.
Hereinafter, embodiments of the present invention will be described specifically and in detail with reference to the accompanying drawings.

[実施形態1]
図2に示す本発明の第1の実施形態に係る面発光レーザ素子の半導体層の積層の様子を例示する断面図である。本実施形態の面発光半導体レーザ素子110は、図5で示した従来の面発光レーザ素子10とはp型半導体層とn型半導体層の位置関係が逆になっている。n−GaAs基板112上に、それぞれの層の厚さがλ/4n(λは発振波長、nは屈折率)のn−Al0.9Ga0.1As/n−Al0.2 Ga0.8Asの35ペアからなる下部多層膜反射鏡114、下部クラッド層118、GaAsの井戸層とAl0.2 Ga0.8Asのバリア層からなる量子井戸活性層120、上部クラッド層122、及び、それぞれの層の厚さがλ/4n(λは発振波長、nは屈折率)のp−Al0.9Ga0.1As/p−Al0.2Ga0.8Asの30ペアからなる上部多層膜反射鏡124A、Bの積層構造を備えている。
上部多層膜反射鏡上には、リング状のp側電極138が形成されている。また、n−GaAs基板の裏面には、n側電極134として形成されている。
[Embodiment 1]
FIG. 3 is a cross-sectional view illustrating the state of stacking of semiconductor layers of the surface emitting laser element according to the first embodiment of the invention illustrated in FIG. 2. In the surface emitting semiconductor laser device 110 of this embodiment, the positional relationship between the p-type semiconductor layer and the n-type semiconductor layer is reversed from the conventional surface emitting laser device 10 shown in FIG. On the n-GaAs substrate 112, each layer has a thickness of λ / 4n (where λ is an oscillation wavelength and n is a refractive index) of n-Al 0.9 Ga 0.1 As / n-Al 0.2 Ga 0.8 As. 35 multi-pair lower multilayer reflector 114, lower clad layer 118, GaAs well layer and Al 0.2 Ga 0.8 As barrier layer consisting of Al 0.2 Ga 0.8 As, upper clad layer 122, and each layer A laminated structure of upper multilayer reflectors 124A and B composed of 30 pairs of p-Al 0.9 Ga 0.1 As / p-Al 0.2 Ga 0.8 As having a thickness of λ / 4n (λ is an oscillation wavelength and n is a refractive index). I have.
A ring-shaped p-side electrode 138 is formed on the upper multilayer mirror. Further, an n-side electrode 134 is formed on the back surface of the n-GaAs substrate.

本実施形態の面発光レーザ素子が従来の面発光レーザ素子と異なるところは、酸化狭窄層はなく替わりにp型多層膜反射鏡内に各々厚さ6nmのAl0.3Ga0.7As/p−Al0.18Ga0.82Asを交互に8周期積層した超格子構造160を有することである。超格子構造160の上下の層は、p型不純物であるCを高濃度にドープした層150となっている。p型の上部多層膜反射鏡124A、Bおよび超格子構造160を構成するp型半導体のp型不純物濃度は1×1018〜1×1019cm−3であることが好ましい。また、Cを高濃度にドープした層150では不純物濃度は1×1019〜1×1020cm−3であることが好ましい。 The surface emitting laser element of the present embodiment is different from the conventional surface emitting laser element in that there is no oxidized constricting layer, and instead of Al 0.3 Ga 0.7 As / with a thickness of 6 nm in the p-type multilayer reflector. It has a superlattice structure 160 in which p-Al 0.18 Ga 0.82 As is alternately stacked for eight periods. The upper and lower layers of the superlattice structure 160 are layers 150 doped with C, which is a p-type impurity, at a high concentration. The p-type impurity concentration of the p-type semiconductor constituting the p-type upper multilayer mirrors 124A and 124B and the superlattice structure 160 is preferably 1 × 10 18 to 1 × 10 19 cm −3 . Further, in the layer 150 in which C is heavily doped, the impurity concentration is preferably 1 × 10 19 to 1 × 10 20 cm −3 .

また、Cを高濃度にドープした層150に挟まれた超格子構造160の同じ層内であって、オプティカルアパーチャ領域となる領域を環状に取り囲む外周領域は、n型不純物であるSiをドーズ量2×1014cm−2がドープされ超格子層が無秩序化したAlGaAs半導体170で構成されている。オプティカルアパーチャ領域の面積は約40μmである。
オプティカルアパーチャ領域に対し外周領域では、Siドープと無秩序化により屈折率が異なっているため、光狭窄構造を形成することができる。また、外周領域ではSiがドープされたn型半導体をp型半導体層が挟んだ構成となっているため、電流が流れにくく電流狭窄の機能も有する構造となっている。
Further, in the same layer of the superlattice structure 160 sandwiched between layers 150 heavily doped with C, the outer peripheral region surrounding the region to be an optical aperture region in a ring shape is a dose of Si, which is an n-type impurity. The AlGaAs semiconductor 170 is doped with 2 × 10 14 cm −2 and the superlattice layer is disordered. The area of the optical aperture region is about 40 μm 2 .
Since the refractive index in the outer peripheral region differs from that in the optical aperture region due to Si doping and disordering, an optical confinement structure can be formed. Further, since the p-type semiconductor layer is sandwiched between n-type semiconductors doped with Si in the outer peripheral region, the structure is such that current does not easily flow and has a function of current confinement.

この面発光レーザ素子の発光波長は850nmで、スペクトル幅も狭いレーザ光が得られ、変調周波数10Gbpsの高周波でも動作可能であった。
さらには、本実施形態の面発光レーザ素子では、従来の酸化狭窄層を有する面発光レーザ素子に比較してオプティカルアパーチャ面積が広く静電気耐圧特性は1.5倍程度と良好な特性が得られる。
図3に、本実施形態の面発光レーザ素子の光狭窄構造近傍のクラッド部(外周領域)の半導体層の深さ方向の不純物のSIMS(SIMS:Secondury ion mass spectrometry)によるプロファイルを示す。
熱処理後、Siは半導体層の深さ方向に拡散するが高濃度にCをドープした層によって拡散が抑制されることがわかる。
The surface-emitting laser element has an emission wavelength of 850 nm, a laser beam having a narrow spectral width, and can operate at a high frequency of 10 Gbps.
Furthermore, in the surface emitting laser element of this embodiment, the optical aperture area is wide and the electrostatic withstand voltage characteristic is about 1.5 times as good as that of the conventional surface emitting laser element having the oxidized constriction layer.
FIG. 3 shows a profile obtained by SIMS (secondary ion mass spectrometry) of impurities in the depth direction of the semiconductor layer in the cladding portion (outer peripheral region) in the vicinity of the optical confinement structure of the surface emitting laser element of this embodiment.
It can be seen that after heat treatment, Si diffuses in the depth direction of the semiconductor layer, but diffusion is suppressed by the layer doped with C at a high concentration.

次に、本実施形態の面発光レーザ素子110の製造方法について説明する。
本実施形態の面発光レーザ素子110は、図5に示した従来の面発光レーザ素子10とほぼ同様のプロセスによって作製することができる。
ただし、酸化狭窄層の形成の必要が無いため、従来の面発光レーザ素子で必要であったメサポスト形状を形成する工程、および酸化工程は不要となる。
Next, a method for manufacturing the surface emitting laser element 110 of this embodiment will be described.
The surface emitting laser element 110 of the present embodiment can be manufactured by a process substantially similar to that of the conventional surface emitting laser element 10 shown in FIG.
However, since it is not necessary to form an oxidized constricting layer, the process for forming a mesa post shape and the oxidation process, which are necessary in the conventional surface emitting laser element, are not required.

図4−1〜図4−3は、図2に示す面発光レーザ素子110の光狭窄構造の作製方法を説明する図である。
まず、図4−1に示すように、エピ成長によって、n−GaAs基板112上に、下部多層膜反射鏡114、下部クラッド層118、量子井戸活性層120、上部クラッド層122、上部多層膜反射鏡124Bを構成するp-AlGaAs層2ペアを積層し、最上層には高濃度のCをドープし、Cを高濃度にドープした層150を形成する。その後、各々厚さ6nmのAl0.3Ga0.7As/p−Al0.18Ga0.82Asを交互に8周期積層し超格子構造160を形成する。
次に、図4−2に示すようにオプティカルアパーチャとなる部分にSiOマスク180を設け、Siをイオン注入することによって、オプティカルアパーチャを囲む環状領域の半導体にSiがドープされる。
さらに、図4−3に示すように、成長温度700℃で高濃度にCがドープされた層を1層設け、上部多層膜反射鏡124Aとして、p-AlGaAs層を23ペア積層する。上部多層膜反射鏡124Aを成長させる際に、超格子構造160も700℃の熱処理をされることになり、Siがドープされた環状領域では、Siが拡散し、超格子構造160は無秩序化がなされる。
4A to 4C are diagrams illustrating a method for manufacturing the optical confinement structure of the surface-emitting laser element 110 illustrated in FIG.
First, as shown in FIG. 4A, the lower multilayer mirror 114, the lower cladding layer 118, the quantum well active layer 120, the upper cladding layer 122, and the upper multilayer reflection are formed on the n-GaAs substrate 112 by epi growth. Two pairs of p-AlGaAs layers constituting the mirror 124B are stacked, and the uppermost layer is doped with high-concentration C, and a layer 150 doped with C at high concentration is formed. Thereafter, Al 0.3 Ga 0.7 As / p-Al 0.18 Ga 0.82 As each having a thickness of 6 nm is alternately stacked for 8 periods to form a superlattice structure 160.
Next, as shown in FIG. 4B, a SiO 2 mask 180 is provided in a portion to be an optical aperture, and Si is ion-implanted, so that the semiconductor in the annular region surrounding the optical aperture is doped with Si.
Further, as shown in FIG. 4C, one layer doped with C at a high concentration at a growth temperature of 700 ° C. is provided, and 23 pairs of p-AlGaAs layers are stacked as the upper multilayer reflector 124A. When the upper multilayer reflector 124A is grown, the superlattice structure 160 is also heat-treated at 700 ° C., Si diffuses in the annular region doped with Si, and the superlattice structure 160 is disordered. Made.

[実施形態2]
つぎに、実施の形態2にかかる面発光レーザ素子について説明する。実施の形態2の面発光レーザ素子が実施形態110の面発光レーザ素子と異なるところは、活性層に、1100nm帯のレーザ光を発振するIn0.3Ga0.7Asの井戸層とGaAsのバリア層からなる量子井戸活性層を用いた点と、超格子構造をAl0.36Ga0.64As(6nm)/GaAs(6nm)を交互に5周期積層した構造としたことである。また、オプティカルアパーチャの面積は50μmとしたが、シングルモードで発振し変調周波数10Gbpsで動作可能である。静電気耐圧も従来の酸化狭窄層を用いた面発光レーザ素子に比べ、約2倍の静電気耐圧が得られた。
[Embodiment 2]
Next, a surface emitting laser element according to the second embodiment will be described. The surface-emitting laser element of the second embodiment is different from the surface-emitting laser element of the embodiment 110 in that the active layer oscillates an In 0.3 Ga 0.7 As well layer that oscillates a laser beam in the 1100 nm band, and GaAs. This is that a quantum well active layer composed of a barrier layer is used, and the superlattice structure is a structure in which Al 0.36 Ga 0.64 As (6 nm) / GaAs (6 nm) are alternately stacked for five periods. Further, although the area of the optical aperture is 50 μm 2 , it can oscillate in a single mode and operate at a modulation frequency of 10 Gbps. The electrostatic withstand voltage was about twice as high as that of the conventional surface emitting laser element using the oxidized constriction layer.

[実施形態3]
実施の形態3にかかる面発光レーザ素子について説明する。実施の形態3の面発光レーザ素子が実施形態1の面発光レーザ素子110と異なる点は、活性層に、1300nm帯のレーザ光を発振するInGaAsNの井戸層とGaNAsのバリア層からなる量子井戸活性層を用い、、超格子構造をAl0.36Ga0.64As(6nm)/GaAs(6nm)を交互に5周期積層した構造としたことである。本実施形態の面発光レーザ素子では、オプティカルアパーチャの面積は80μmとしてもシングルモードでレーザ光を発振し、85℃でのシングルモード出力は2mWと、従来の面発光レーザ素子に比較し大幅に向上した。
[Embodiment 3]
A surface emitting laser element according to the third embodiment will be described. The surface-emitting laser element of the third embodiment is different from the surface-emitting laser element 110 of the first embodiment in that the active layer is composed of an InGaAsN well layer that oscillates laser light in the 1300 nm band and a quantum well activity composed of a GaNAs barrier layer. The layer is used, and the superlattice structure is formed by alternately laminating Al 0.36 Ga 0.64 As (6 nm) / GaAs (6 nm) for five periods. In the surface emitting laser element of the present embodiment, even when the area of the optical aperture is 80 μm 2 , the laser light is oscillated in a single mode, and the single mode output at 85 ° C. is 2 mW, which is significantly larger than that of the conventional surface emitting laser element. Improved.

面発光レーザ素子の電流開口部面積と静電気耐圧の相関を示す図である。It is a figure which shows the correlation of the electric current opening part area of a surface emitting laser element, and an electrostatic withstand voltage. 本発明の実施形態1に係る面発光レーザ素子の断面図である。It is sectional drawing of the surface emitting laser element which concerns on Embodiment 1 of this invention. 本発明に係る面発光レーザ素子の光狭窄構造近傍での不純物の拡散の様子を示す図である。It is a figure which shows the mode of the diffusion of the impurity in the optical confinement structure vicinity of the surface emitting laser element which concerns on this invention. 本発明の実施形態1に係る面発光レーザ素子の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the surface emitting laser element which concerns on Embodiment 1 of this invention. 従来の酸化狭窄層を有する面発光レーザ素子の形態を示す断面図である。It is sectional drawing which shows the form of the surface emitting laser element which has the conventional oxidation confinement layer. 従来の酸化狭窄層を有する面発光レーザ素子の上部多層膜反射鏡、活性層、下部多層膜反射鏡の形態を示す断面図である。It is sectional drawing which shows the form of the upper multilayer reflector, the active layer, and the lower multilayer reflector of the surface emitting laser element which has the conventional oxidation confinement layer.

符号の説明Explanation of symbols

10 従来の面発光レーザ素子
12 p−GaAs基板
14 p−Al0.9Ga0.1As/p−GaAsの35.5ペアからなる下部反射鏡
16 Al酸化層
17 AlAs層
18 ノンドープGaAs下部クラッド層
20 従来例の活性層
22 ノンドープGaAs上部クラッド層
24 n−Al0.9Ga0.1As/n−GaAsの30ペアからなる上部反射鏡
26 n−GaAsキャップ層
28 円筒状溝
30 メサポスト構造
32 シリコン窒化膜
34 n側電極
36 n側電極の引き出し用電極
38 p側電極
46 p−GaAs膜
50 p−Al0.9Ga0.1As膜
54 n−Al0.9Ga0.1As膜
56 n−GaAs膜
110 実施形態1の面発光レーザ素子
112 n−GaAs基板
114 下部多層膜反射鏡
118 下部クラッド層
120 量子井戸活性層
122 上部クラッド層
124A、B 上部多層膜反射鏡
134 n側電極
138 p側電極
150 Cを高濃度にドープした層
160 超格子構造
170 無秩序化したAlGaAs半導体
180 SiOマスク



10 Conventional surface emitting laser element
12 p-GaAs substrate 14 p-Al 0.9 Ga 0.1 As / p-GaAs lower reflector made of 35.5 pairs 16 Al oxide layer 17 AlAs layer 18 non-doped GaAs lower cladding layer 20 conventional active layer 22 non-doped GaAs upper portion Clad layer 24 n-Al 0.9 Ga 0.1 As / n-GaAs 30 upper reflector 26 n-GaAs cap layer 28 cylindrical groove 30 mesa post structure 32 silicon nitride film 34 n-side electrode 36 n-side electrode lead-out Electrode 38 p-side electrode 46 p-GaAs film 50 p-Al 0.9 Ga 0.1 As film 54 n-Al 0.9 Ga 0.1 As film 56 n-GaAs film 110 Surface emitting laser element 112 of Embodiment 1 n-GaAs substrate 114 Lower multilayer Film reflector 118 Lower cladding layer 120 Quantum well active layer 122 Upper cladding layer 24A, B upper multilayer reflector
134 n-side electrode 138 p-side electrode 150 C heavily doped layer 160 superlattice structure 170 disordered AlGaAs semiconductor 180 SiO 2 mask



Claims (11)

基板上に半導体層を多層積層し、少なくとも下部半導体多層膜反射鏡と活性層と上部半導体多層膜反射鏡を構成する面発光レーザ素子において、
該上部又は下部半導体多層膜反射鏡のいずれか一方は、p型不純物がドープされたp型半導体層からなる超格子構造を含んでおり、
該超格子構造と同じ層であって、超格子構造を環状に囲む外周領域はn型不純物がドープされてなるn型半導体層で構成され、
前記超格子構造と前記n型半導体層は、前記超格子構造を構成するp型半導体層の不純物濃度よりも高い不純物濃度を有するp型半導体層の間に配設されていることを特徴とする面発光レーザ素子。
In a surface emitting laser element in which a plurality of semiconductor layers are stacked on a substrate, and at least a lower semiconductor multilayer reflector, an active layer, and an upper semiconductor multilayer reflector are configured,
Either one of the upper or lower semiconductor multilayer reflector includes a superlattice structure composed of a p-type semiconductor layer doped with a p-type impurity,
An outer peripheral region that is the same layer as the superlattice structure and surrounds the superlattice structure in an annular shape is composed of an n-type semiconductor layer doped with n-type impurities,
The superlattice structure and the n-type semiconductor layer are disposed between p-type semiconductor layers having an impurity concentration higher than that of the p-type semiconductor layer constituting the superlattice structure. Surface emitting laser element.
前記高い不純物濃度を有するp型半導体層は、前記超格子構造を構成するp型半導体層よりも原子の拡散速度が小さい拡散抑制層であることを特徴とする請求項1に記載の面発光レーザ素子。
2. The surface emitting laser according to claim 1, wherein the p-type semiconductor layer having a high impurity concentration is a diffusion suppressing layer having a lower atomic diffusion rate than the p-type semiconductor layer constituting the superlattice structure. element.
前記超格子構造を構成するp型半導体層のp型不純物量は1×1018〜1×1019cm−3であることを特徴とする請求項1又は2のいずれか1に記載の面発光レーザ素子。
3. The surface light emission according to claim 1, wherein the p-type impurity amount of the p-type semiconductor layer constituting the superlattice structure is 1 × 10 18 to 1 × 10 19 cm −3. Laser element.
前記高い不純物濃度を有するp型半導体層のp型不純物量は1×1019〜1×1020cm−3であることを特徴とする請求項1〜4のいずれか1に記載の面発光レーザ素子。
5. The surface emitting laser according to claim 1, wherein the p-type semiconductor layer having the high impurity concentration has a p-type impurity amount of 1 × 10 19 to 1 × 10 20 cm −3. element.
前記高い不純物濃度を有するp型半導体層のp型不純物量は、前記超格子構造を構成するp型半導体層のp型不純物量の10倍以上であることを特徴とする請求項1〜4のいずれか1に記載の面発光レーザ素子。
The p-type impurity amount of the p-type semiconductor layer having the high impurity concentration is 10 times or more of the p-type impurity amount of the p-type semiconductor layer constituting the superlattice structure. The surface emitting laser element according to any one of the above.
前記超格子構造または/および前記高い不純物濃度を有するp型半導体層のp型不純物としてドープされる元素はC又はBeから選ばれる1種類を含むことを特徴とする請求項1〜5のいずれか1に記載の面発光レーザ素子。
The element doped as the p-type impurity of the superlattice structure or / and the p-type semiconductor layer having the high impurity concentration includes one kind selected from C and Be. 2. The surface emitting laser element according to 1.
前記n型半導体層のn型不純物はSi(シリコン)であることを特徴とする請求項1〜6のいずれか1に記載の面発光レーザ素子。
The surface emitting laser element according to claim 1, wherein the n-type impurity of the n-type semiconductor layer is Si (silicon).
前記n型半導体層はn型不純物とp型不純物がコドープされた半導体層であることを特徴とする請求項1〜7のいずれか1に記載の面発光レーザ素子。
8. The surface emitting laser element according to claim 1, wherein the n-type semiconductor layer is a semiconductor layer co-doped with an n-type impurity and a p-type impurity.
前記超格子構造と超格子構造を囲む領域は、AlGa1−xAs(0≦x≦1)からなる半導体材料で構成されることを特徴とする請求項1〜9のいずれか1に記載の面発光レーザ素子。
The superlattice structure and a region surrounding the superlattice structure are made of a semiconductor material made of Al x Ga 1-x As (0 ≦ x ≦ 1). The surface emitting laser element described.
前記超格子構造は厚さが20nm以下の組成比の各々異なる層が交互に積層されていることを特徴とする請求項1〜9のいずれか1に記載の面発光レーザ素子。
The surface emitting laser element according to any one of claims 1 to 9, wherein the superlattice structure is formed by alternately laminating layers having a composition ratio of 20 nm or less.
基板上に、n型半導体多層膜反射鏡を構成する半導体層と、活性層と、p型半導体多層膜反射鏡を構成する半導体層とを順次に積層して積層構造を形成する積層工程と、
前記p型半導体多層膜反射鏡を構成する一部の半導体層に環状にn型不純物をイオン注入する工程と、
熱処理を施し前記n型不純物が注入された領域を無秩序化する工程とを順次に有することを特徴とする面発光レーザ素子の製造方法。





































A laminating step of sequentially laminating a semiconductor layer constituting an n-type semiconductor multilayer reflector on the substrate, an active layer, and a semiconductor layer constituting a p-type semiconductor multilayer reflector;
A step of ion-implanting n-type impurities into a part of the semiconductor layers constituting the p-type semiconductor multilayer mirror;
A method of manufacturing a surface-emitting laser element, comprising sequentially performing a heat treatment to disorder the region into which the n-type impurity has been implanted.





































JP2006177789A 2006-06-28 2006-06-28 Surface emitting laser element and method for manufacturing the same Expired - Fee Related JP4897954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006177789A JP4897954B2 (en) 2006-06-28 2006-06-28 Surface emitting laser element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177789A JP4897954B2 (en) 2006-06-28 2006-06-28 Surface emitting laser element and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2008010538A true JP2008010538A (en) 2008-01-17
JP4897954B2 JP4897954B2 (en) 2012-03-14

Family

ID=39068502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177789A Expired - Fee Related JP4897954B2 (en) 2006-06-28 2006-06-28 Surface emitting laser element and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4897954B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019144448A (en) * 2018-02-22 2019-08-29 日本電信電話株式会社 Optical modulator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319983A (en) * 1988-06-22 1989-12-26 Canon Inc Surface emission type semiconductor laser element
JPH06291365A (en) * 1993-03-30 1994-10-18 Omron Corp Semiconductor light emitting device and its manufacturing method, optical detecting device, optical information processing device, and optical fiber module
JPH06310802A (en) * 1993-04-27 1994-11-04 Fuji Photo Film Co Ltd Surface light emitting semiconductor laser
JPH07288362A (en) * 1994-02-25 1995-10-31 Matsushita Electric Ind Co Ltd Vertical resonator surface light-emitting semiconductor laser
JPH1027937A (en) * 1996-07-10 1998-01-27 Fuji Xerox Co Ltd Normal radiation semiconductor laser device and method of fabricating the same
JP2002289976A (en) * 2001-03-23 2002-10-04 Ricoh Co Ltd Semiconductor structure, its manufacturing method and semiconductor laser element, semiconductor laser array as well as optical interconnection system and optical lan system
JP2005251860A (en) * 2004-03-02 2005-09-15 Nec Corp Surface emitting laser device
JP2005347482A (en) * 2004-06-02 2005-12-15 Ricoh Co Ltd Surface emitting laser, emitting laser array, optical transmission module, optical propagation module and optical communication system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319983A (en) * 1988-06-22 1989-12-26 Canon Inc Surface emission type semiconductor laser element
JPH06291365A (en) * 1993-03-30 1994-10-18 Omron Corp Semiconductor light emitting device and its manufacturing method, optical detecting device, optical information processing device, and optical fiber module
JPH06310802A (en) * 1993-04-27 1994-11-04 Fuji Photo Film Co Ltd Surface light emitting semiconductor laser
JPH07288362A (en) * 1994-02-25 1995-10-31 Matsushita Electric Ind Co Ltd Vertical resonator surface light-emitting semiconductor laser
JPH1027937A (en) * 1996-07-10 1998-01-27 Fuji Xerox Co Ltd Normal radiation semiconductor laser device and method of fabricating the same
JP2002289976A (en) * 2001-03-23 2002-10-04 Ricoh Co Ltd Semiconductor structure, its manufacturing method and semiconductor laser element, semiconductor laser array as well as optical interconnection system and optical lan system
JP2005251860A (en) * 2004-03-02 2005-09-15 Nec Corp Surface emitting laser device
JP2005347482A (en) * 2004-06-02 2005-12-15 Ricoh Co Ltd Surface emitting laser, emitting laser array, optical transmission module, optical propagation module and optical communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019144448A (en) * 2018-02-22 2019-08-29 日本電信電話株式会社 Optical modulator

Also Published As

Publication number Publication date
JP4897954B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
US6185241B1 (en) Metal spatial filter to enhance model reflectivity in a vertical cavity surface emitting laser
US8022424B2 (en) Semiconductor device and method of manufacturing it
KR100708107B1 (en) Semiconductor light-emitting device having improved electro-optical characteristics and the manufacturing method thereof
JP4656183B2 (en) Semiconductor light emitting device
JP4868004B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
US20050220160A1 (en) Vertical cavity surface emitting semiconductor laser device
JP4760380B2 (en) Surface emitting laser
JP2002164621A (en) Plane emission semiconductor laser element
US20110007769A1 (en) Laser diode
JP4728656B2 (en) Surface emitting laser element
JP2010050412A (en) Surface-emitting semiconductor laser
US8228964B2 (en) Surface emitting laser, surface emitting laser array, and image formation apparatus
US7816163B2 (en) Radiation-emitting semiconductor body for a vertically emitting laser and method for producing same
US20020126720A1 (en) Device structure and method for fabricating semiconductor lasers
JP4087152B2 (en) Surface emitting semiconductor laser device and laser array
JP5005937B2 (en) Surface emitting laser element
JP5006242B2 (en) Surface emitting semiconductor laser device
JPWO2005074080A1 (en) Surface emitting laser and manufacturing method thereof
JP4897954B2 (en) Surface emitting laser element and method for manufacturing the same
JP2009246252A (en) Surface emitting laser element and surface emitting laser array
JP2010045249A (en) Semiconductor light emitting device and method of manufacturing the same
JP2005251860A (en) Surface emitting laser device
JP2011061083A (en) Semiconductor laser
JP2003158340A (en) Face emission semiconductor laser device
JP2005093634A (en) Surface emitting semiconductor laser and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111223

R151 Written notification of patent or utility model registration

Ref document number: 4897954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees