JP2008008473A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2008008473A
JP2008008473A JP2006182317A JP2006182317A JP2008008473A JP 2008008473 A JP2008008473 A JP 2008008473A JP 2006182317 A JP2006182317 A JP 2006182317A JP 2006182317 A JP2006182317 A JP 2006182317A JP 2008008473 A JP2008008473 A JP 2008008473A
Authority
JP
Japan
Prior art keywords
bearing
hole
gap
radial
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006182317A
Other languages
Japanese (ja)
Other versions
JP4642708B2 (en
Inventor
Seiji Hori
政治 堀
Takaharu Inazuka
貴開 稲塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006182317A priority Critical patent/JP4642708B2/en
Publication of JP2008008473A publication Critical patent/JP2008008473A/en
Application granted granted Critical
Publication of JP4642708B2 publication Critical patent/JP4642708B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic pressure bearing device having a bearing member having a through-hole, and superior in moldability. <P>SOLUTION: Since the through-hole is molded by a molding pin 13 arranged in a cavity 16, the through-hole can be easily molded more than when molded by machining, and there is no risk of mixing-in of contamination. Risk of breaking an extra fine molding pin 13 can be reduced by arranging the molding pin 13 in a wide part A1' of relatively low pressure by an injected resin among the cavity 16. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軸受隙間に生じる潤滑流体の動圧作用で軸部材を回転自在に支持する動圧軸受装置に関するものである。   The present invention relates to a hydrodynamic bearing device that rotatably supports a shaft member by the hydrodynamic action of a lubricating fluid generated in a bearing gap.

動圧軸受装置は、情報機器、例えばHDD等の磁気ディスク駆動装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク駆動装置、MD、MO等の光磁気ディスク駆動装置等のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、あるいは電気機器、例えばファンモータなどの小型モータ用として好適に使用可能である。   The hydrodynamic bearing device is an information device, for example, a magnetic disk drive device such as HDD, an optical disk drive device such as CD-ROM, CD-R / RW, DVD-ROM / RAM, a magneto-optical disk drive device such as MD, MO, etc. It can be suitably used for a spindle motor of the present invention, a polygon scanner motor of a laser beam printer (LBP), a color wheel of a projector, or an electric device such as a small motor such as a fan motor.

例えば、特許文献1に示されている動圧軸受装置は、軸受部材(軸受スリーブ)と軸部材とを備え、軸受部材の内周面と軸部材の外周面との間に形成されるラジアル軸受隙間の潤滑流体の動圧作用で、軸部材を回転自在に支持している。この動圧軸受装置では、軸受部材を樹脂で形成することにより、材料コストの低減を図っている。   For example, a hydrodynamic bearing device disclosed in Patent Document 1 includes a bearing member (bearing sleeve) and a shaft member, and is a radial bearing formed between an inner peripheral surface of the bearing member and an outer peripheral surface of the shaft member. The shaft member is rotatably supported by the dynamic pressure action of the lubricating fluid in the gap. In this dynamic pressure bearing device, the material cost is reduced by forming the bearing member with resin.

また、このような軸受部材には、軸受内部の圧力バランスを保つ等の目的で、内部を潤滑流体が流通可能の軸方向の貫通孔(バイパス通路)を形成する場合がある(特許文献2参照)。   In addition, such a bearing member may be formed with an axial through hole (bypass passage) through which the lubricating fluid can flow for the purpose of maintaining the pressure balance inside the bearing (see Patent Document 2). ).

特開2004−316712号公報JP 2004-316712 A 特開2004−11897号公報JP 2004-11897 A

しかし、貫通孔の内径寸法は一般に微小(数十μm〜数百μm程度)であるため、軸受部材に機械加工等で貫通孔を形成することは極めて困難であり、且つ加工粉等が軸受内部にコンタミとして混入する恐れがある。   However, since the inner diameter of the through hole is generally very small (several tens to several hundreds of μm), it is extremely difficult to form a through hole in the bearing member by machining or the like, and the processing powder or the like is inside the bearing. There is a risk of contamination.

本発明の課題は、貫通孔を有し、且つ成形性に優れた軸受部材を備えた動圧軸受装置を提供することである。   An object of the present invention is to provide a hydrodynamic bearing device having a through-hole and having a bearing member excellent in formability.

前記課題を解決するため、本発明は、樹脂の型成形で形成された軸受部材と、軸受部材の内周に挿入された軸部材とを備え、軸受部材の内周面と軸部材の外周面との間に形成されたラジアル軸受隙間に、潤滑流体の動圧作用を発生させる動圧軸受装置において、軸受部材に厚肉部と薄肉部を設け、厚肉部に内面を成形面とした軸方向の貫通孔を設けたことを特徴とする。   In order to solve the above problems, the present invention includes a bearing member formed by resin molding and a shaft member inserted into the inner periphery of the bearing member, and an inner peripheral surface of the bearing member and an outer peripheral surface of the shaft member. In a hydrodynamic bearing device that generates a dynamic pressure action of a lubricating fluid in a radial bearing gap formed between the shaft and the bearing member, a thick-walled portion and a thin-walled portion are provided, and an inner surface is formed on the thick-walled portion. A through hole in the direction is provided.

このように、本発明では、貫通孔の内面が成形面であるので、貫通孔は軸受部材の型成形と共に、キャビティに配した成形ピンを用いて同時成形することができる。従って、容易に貫通孔を形成することができ、かつコンタミの問題も回避できる。   Thus, in the present invention, since the inner surface of the through hole is a molding surface, the through hole can be molded simultaneously with the molding of the bearing member using the molding pin disposed in the cavity. Therefore, the through hole can be easily formed and the problem of contamination can be avoided.

また、軸受部材に厚肉部と薄肉部を設けるため、キャビティには径方向幅の広い部分(以下、幅広部と称す)と径方向幅の狭い部分(以下、幅狭部と称す)とが形成される。このため、キャビティ内に射出された樹脂材料による圧力(以下、射出圧と称す)が場所によって異なる。極細の成形ピンに高い射出圧がかかると、成形ピンが折れるおそれがある。本発明では、軸受部材の厚肉部に軸方向の貫通孔を設けているため、射出圧が比較的小さいキャビティの幅広部に成形ピンが配置され、成形ピンが折れる危険性を低減することができる。   Further, since the bearing member is provided with a thick part and a thin part, the cavity has a wide radial part (hereinafter referred to as a wide part) and a narrow radial part (hereinafter referred to as a narrow part). It is formed. For this reason, the pressure by the resin material injected into the cavity (hereinafter referred to as injection pressure) varies depending on the location. When a high injection pressure is applied to an extremely fine molding pin, the molding pin may be broken. In the present invention, since the axial through hole is provided in the thick part of the bearing member, the molding pin is arranged in the wide part of the cavity where the injection pressure is relatively small, and the risk of the molding pin being broken can be reduced. it can.

この軸受部材の厚肉部及び薄肉部は、例えば軸受部材の円周方向に交互に設けることができる。   The thick part and the thin part of the bearing member can be provided alternately in the circumferential direction of the bearing member, for example.

このように形成した貫通孔の一端をラジアル軸受隙間の一端に連通させると共に、貫通孔の他端をラジアル軸受隙間の他端に連通させ、ラジアル軸受隙間、貫通孔、および貫通孔とラジアル軸受隙間の間を全て潤滑流体で満たすことにより、軸受装置の内部で潤滑流体を循環させることができる。これにより、軸受内部の潤滑流体に気泡や局所的な負圧が生じることを防止できる。   One end of the through hole formed in this way is communicated with one end of the radial bearing gap, and the other end of the through hole is communicated with the other end of the radial bearing gap so that the radial bearing gap, the through hole, and the through hole and the radial bearing gap are communicated. By filling all the gaps with the lubricating fluid, the lubricating fluid can be circulated inside the bearing device. Thereby, it can prevent that a bubble and a local negative pressure arise in the lubricating fluid inside a bearing.

以上のように、本発明によれば、貫通孔を有し、かつ成形性に優れた軸受部材を備えた動圧軸受装置が得られる。   As described above, according to the present invention, a hydrodynamic bearing device including a bearing member having a through hole and excellent in moldability can be obtained.

以下、本発明の第1実施形態を図1〜図5に基づいて説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の第1実施形態に係る動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を相対回転自在に非接触支持する動圧軸受装置1と、軸部材2に固定されるディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6の外周に取付けられ、ロータマグネット5はディスクハブ3の内周に取付けられている。動圧軸受装置1の軸受部材7は、ブラケット6の内周に固定される。また、ディスクハブ3には、情報記録媒体としてのディスクDが一又は複数枚(図1では2枚)保持される。このように構成されたスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する励磁力でロータマグネット5が回転し、これに伴って、ディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to a first embodiment of the present invention. The spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that supports the shaft member 2 in a non-contact manner so as to be relatively rotatable, a disk hub 3 that is fixed to the shaft member 2, and a radius, for example. A stator coil 4 and a rotor magnet 5 and a bracket 6 are provided to face each other with a gap in the direction. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The bearing member 7 of the fluid dynamic bearing device 1 is fixed to the inner periphery of the bracket 6. The disk hub 3 holds one or a plurality of disks D (two sheets in FIG. 1) as information recording media. In the spindle motor configured as described above, when the stator coil 4 is energized, the rotor magnet 5 is rotated by an exciting force generated between the stator coil 4 and the rotor magnet 5, and accordingly, the disk hub 3 and the disk are rotated. The disk D held by the hub 3 rotates integrally with the shaft member 2.

図2は、動圧軸受装置1を示している。この動圧軸受装置1は、軸受部材7と、軸受部材7の内周に挿入される軸部材2と、軸受部材7の一端を閉口する蓋部材10と、軸受部材7の他端をシールするシール部11とを主に備えている。なお、説明の便宜上、軸方向両端に形成される軸受部材7の開口部のうち、蓋部材10で閉口される側を下側、閉口側と反対の側を上側として以下説明する。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 seals a bearing member 7, a shaft member 2 inserted into the inner periphery of the bearing member 7, a lid member 10 that closes one end of the bearing member 7, and the other end of the bearing member 7. The seal part 11 is mainly provided. For the sake of convenience of explanation, of the openings of the bearing member 7 formed at both ends in the axial direction, the side closed by the lid member 10 will be described as the lower side, and the side opposite to the closed side will be described as the upper side.

軸部材2は、軸部2aと軸部2aの下端に設けたフランジ部2bとからなり、SUS鋼等の金属材料で一体または別体に形成される。軸部材2の各部は、同種の材料で形成する他、別材料で形成することもできる。例えば軸部2aを金属材料で形成すると共に、フランジ部2bの一部または全部を樹脂材料で形成することもでき、この場合、軸部材2は、軸部2aをインサート部品とする樹脂の射出成形で製作することが可能である。   The shaft member 2 includes a shaft portion 2a and a flange portion 2b provided at the lower end of the shaft portion 2a, and is formed integrally or separately from a metal material such as SUS steel. Each part of the shaft member 2 can be made of the same kind of material or a different material. For example, the shaft portion 2a can be formed of a metal material, and a part or all of the flange portion 2b can be formed of a resin material. In this case, the shaft member 2 is a resin injection molding using the shaft portion 2a as an insert part. It is possible to make with.

軸受部材7は、軸方向両端を開口した形状をなし、略円筒状のスリーブ部8と、スリーブ部8の外径側に位置するハウジング部9とを一体に備えている。この実施形態では、軸受部材7は、例えば液晶ポリマー(LCP)やポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等の結晶性樹脂、あるいはポリフェニルサルフォン(PPSU)、ポリエーテルサルフォン(PES)、ポリエーテルイミド(PEI)等の非晶性樹脂をベース樹脂とする樹脂組成物を射出成形することで形成される。また、上記の樹脂に充填する充填材の種類も特に限定されないが、例えば、充填材として、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の導電性充填材を用いることができる。これらの充填材は、単独で用い、あるいは、二種以上を混合して使用しても良い。   The bearing member 7 has a shape in which both ends in the axial direction are opened, and includes a substantially cylindrical sleeve portion 8 and a housing portion 9 positioned on the outer diameter side of the sleeve portion 8. In this embodiment, the bearing member 7 is made of, for example, a crystalline resin such as liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyphenyl sulfone (PPSU), polyether sulfone ( It is formed by injection molding a resin composition having an amorphous resin such as PES) or polyetherimide (PEI) as a base resin. The type of filler to be filled in the resin is not particularly limited. For example, as the filler, fibrous filler such as glass fiber, whisker-like filler such as potassium titanate, and scaly filler such as mica. A fibrous or powdery conductive filler such as carbon fiber, carbon black, graphite, carbon nanomaterial, or metal powder can be used. These fillers may be used alone or in combination of two or more.

スリーブ部8は、円周方向で厚肉部A1と薄肉部A2を交互に備え、その内周面8aは複数の円弧面からなる多円弧形状を呈している(図3に誇張して示す)。軸部材2の回転時には、スリーブ部8の内周面8aと軸部2aの外周面2a1との間に、ラジアル軸受部Rのラジアル軸受隙間を形成する。   The sleeve portion 8 is alternately provided with thick portions A1 and thin portions A2 in the circumferential direction, and an inner peripheral surface 8a thereof has a multi-arc shape including a plurality of arc surfaces (exaggerated in FIG. 3). . When the shaft member 2 rotates, a radial bearing gap of the radial bearing portion R is formed between the inner peripheral surface 8a of the sleeve portion 8 and the outer peripheral surface 2a1 of the shaft portion 2a.

スリーブ部8の下端面8bの全面または一部環状面領域には、複数の動圧溝を配列した領域が形成される。この実施形態では、例えば図4に示すように、複数の動圧溝8b1をスパイラル形状に配列した領域が形成される。軸部材2の回転時には、動圧溝8b1の形成領域とフランジ部2bの上端面2b1との間に、第1スラスト軸受部T1のスラスト軸受隙間を形成する(図2を参照)。   A region where a plurality of dynamic pressure grooves are arranged is formed in the entire lower surface 8b of the sleeve portion 8 or in a partial annular surface region. In this embodiment, for example, as shown in FIG. 4, a region in which a plurality of dynamic pressure grooves 8b1 are arranged in a spiral shape is formed. During rotation of the shaft member 2, a thrust bearing gap of the first thrust bearing portion T1 is formed between the formation region of the dynamic pressure groove 8b1 and the upper end surface 2b1 of the flange portion 2b (see FIG. 2).

スリーブ部8の外径側に位置するハウジング部9は略筒状をなすもので、その軸方向両端をスリーブ部8の両端面8b、8cよりも軸方向上下に突出させた形態をなす。ハウジング部9の下端突出部9aの内周には、軸受部材7の下端側を閉口する蓋部材10が接着、圧入、接着剤介在下での圧入(以下、圧入接着と称す)、溶着、あるいは溶接等の手段で固定される。この際、ハウジング部9と蓋部材10との固定面間では、軸受内部に充満した潤滑油が少なくとも外部に漏出しない程度の密封性が確保されている。   The housing portion 9 positioned on the outer diameter side of the sleeve portion 8 is substantially cylindrical, and has a shape in which both ends in the axial direction protrude above and below the both end surfaces 8b and 8c of the sleeve portion 8 in the axial direction. A lid member 10 that closes the lower end side of the bearing member 7 is bonded, press-fitted, press-fitted with an adhesive (hereinafter referred to as press-fitting adhesion), welding, It is fixed by means such as welding. Under the present circumstances, between the fixed surfaces of the housing part 9 and the cover member 10, the sealing performance of the extent which the lubricating oil with which the inside of a bearing was filled at least is not leaked outside is ensured.

ハウジング部9の上端突出部9bの内周には環状のシール部11が、その下端面11bをスリーブ部8の上端面8cに当接させた状態で固定される。シール部11の内周面11aと、この面に対向する軸部2aの外周面2a1との間には、その半径方向寸法を上方に向けて漸次拡大させたテーパ状のシール空間S1が形成される。軸受内部が潤滑油で満たされた状態では、潤滑油の油面は常にシール空間S1の範囲内にある。   An annular seal portion 11 is fixed to the inner periphery of the upper end protruding portion 9 b of the housing portion 9 with its lower end surface 11 b in contact with the upper end surface 8 c of the sleeve portion 8. Between the inner peripheral surface 11a of the seal portion 11 and the outer peripheral surface 2a1 of the shaft portion 2a facing this surface, a tapered seal space S1 is formed in which the radial dimension is gradually enlarged upward. The In a state where the bearing is filled with the lubricating oil, the oil level of the lubricating oil is always within the range of the seal space S1.

軸受部材7の径方向中間部には、図2に示すように、軸受部材7を軸方向に貫通する複数の貫通孔12が形成される。この貫通孔12は、この実施形態では、円周方向等間隔の複数箇所、例えば4箇所に設けられる。貫通孔12は、下端でスリーブ部8の下端面8bの動圧溝8b1形成領域よりも外径側に開口する(図4参照)と共に、上端でスリーブ部8の上端面8cの外径側に開口する。   As shown in FIG. 2, a plurality of through-holes 12 penetrating the bearing member 7 in the axial direction are formed in the radial intermediate portion of the bearing member 7. In this embodiment, the through-holes 12 are provided at a plurality of, for example, four locations at equal intervals in the circumferential direction. The through-hole 12 opens to the outer diameter side of the lower end surface 8b of the sleeve portion 8 at the lower end side than the region where the dynamic pressure groove 8b1 is formed (see FIG. 4), and at the upper end to the outer diameter side of the upper end surface 8c of the sleeve portion 8. Open.

貫通孔12の内径の大きさは、軸受内部の潤滑流体の流動性や、貫通孔12の成形性などを考慮して適宜の値に設定される。しかし、貫通孔12の内径が大きすぎると、軸受部材の強度低下を招いたり、他の流体保持空間から貫通孔12へ流体が過剰に流れ込むことで、本来圧力が高まるべき箇所、すなわちラジアル軸受隙間およびスラスト軸受隙間から流体が逃げ、あるいは局所的に負圧状態を生じ、かえって圧力バランスが崩れる恐れがある。このため、貫通孔12の内径は、内部を潤滑流体が良好に流れることのできる範囲内で、できるだけ小径に設定することが望ましい。   The size of the inner diameter of the through hole 12 is set to an appropriate value in consideration of the fluidity of the lubricating fluid inside the bearing, the moldability of the through hole 12, and the like. However, if the inner diameter of the through hole 12 is too large, the strength of the bearing member is reduced, or the fluid flows excessively from another fluid holding space into the through hole 12, so that the pressure should be increased, that is, the radial bearing gap. In addition, fluid may escape from the thrust bearing gap, or a negative pressure state may be locally generated, and the pressure balance may be lost. For this reason, it is desirable to set the inner diameter of the through hole 12 as small as possible within a range in which the lubricating fluid can flow satisfactorily.

貫通孔12の上端は、シール部11の下端面11bに複数設けられた半径方向溝11b1を介してラジアル軸受隙間の上端と連通し、貫通孔12の下端は、蓋部材10の当接面10b1に複数設けられた半径方向溝10c及び第1スラスト軸受部T1のスラスト軸受隙間を介してラジアル軸受隙間の下端と連通する。   The upper end of the through hole 12 communicates with the upper end of the radial bearing gap via a plurality of radial grooves 11 b 1 provided on the lower end surface 11 b of the seal portion 11, and the lower end of the through hole 12 is the contact surface 10 b 1 of the lid member 10. Are communicated with the lower end of the radial bearing gap via a plurality of radial grooves 10c provided in the first thrust bearing portion and the thrust bearing gap of the first thrust bearing portion T1.

この軸受部材7は、以下のように形成される。軸受部材7の射出成形で使用される金型は、図5に示すように、真円状の内周面を有する外型14と、軸受部材7の内周面8aの形状に対応した多円弧形状の外周面を有する内型15とを備える。この外型14及び内型15で形成されたキャビティ16に、貫通孔12を成形するための成形ピン13を配置し、スプルー17およびゲート18を介してキャビティ16内に樹脂材料を射出する。このように、貫通孔12の内面を成形ピン13で成形するため、軸受部材7の成形と同時に簡易に貫通孔12を形成することができ、且つ加工粉も生じないため、コンタミによる不具合も解消できる。   The bearing member 7 is formed as follows. As shown in FIG. 5, the mold used in the injection molding of the bearing member 7 is a multi-circular arc corresponding to the shape of the outer mold 14 having a perfect circular inner peripheral surface and the inner peripheral surface 8 a of the bearing member 7. And an inner mold 15 having a shape outer peripheral surface. A molding pin 13 for molding the through hole 12 is disposed in the cavity 16 formed by the outer mold 14 and the inner mold 15, and a resin material is injected into the cavity 16 through the sprue 17 and the gate 18. In this way, since the inner surface of the through hole 12 is formed with the molding pin 13, the through hole 12 can be easily formed simultaneously with the molding of the bearing member 7, and no processing powder is generated, so that problems due to contamination are also eliminated. it can.

また、内型15の外周面が多円弧形状であるため、キャビティ16には円周方向で交互に幅広部A1’と幅狭部A2’が形成される。ゲート18から射出された樹脂材料の圧力は、幅狭部A2’で最大となる。本発明では、図5に示すように、キャビティ16のうち、比較的圧力の低い幅広部A1’に成形ピン13を配することにより、極細形状の成形ピン13が折損する危険を低減することができる。   Further, since the outer peripheral surface of the inner mold 15 has a multi-arc shape, the cavity 16 is formed with wide portions A1 'and narrow portions A2' alternately in the circumferential direction. The pressure of the resin material injected from the gate 18 becomes maximum at the narrow portion A2 '. In the present invention, as shown in FIG. 5, by arranging the molding pin 13 in the wide portion A1 ′ having a relatively low pressure in the cavity 16, it is possible to reduce the risk of the ultrafine molding pin 13 being broken. it can.

蓋部材10の上端面10aの一部環状面領域には、図示は省略するが、複数の動圧溝を、例えば図4に示すスパイラル形状とは円周方向反対向きの形状となるよう配列した領域が形成される。軸部材2の回転時には、この動圧溝形成領域とフランジ部2bの下端面2b2との間に、第2スラスト軸受部T2のスラスト軸受隙間を形成する(図2を参照)。   Although not shown in the partial annular surface region of the upper end surface 10a of the lid member 10, for example, a plurality of dynamic pressure grooves are arranged so as to have a shape opposite to the spiral shape shown in FIG. A region is formed. When the shaft member 2 rotates, a thrust bearing gap of the second thrust bearing portion T2 is formed between the dynamic pressure groove forming region and the lower end surface 2b2 of the flange portion 2b (see FIG. 2).

また、蓋部材10の上端面10aの外周には上方に突出する突出部10bが設けられており、突出部10bの上端に位置する当接面10b1をスリーブ部8の下端面8bに当接させた状態で、蓋部材10が下端突出部9aの内周に固定される。この場合、突出部10bの軸方向寸法からフランジ部2bの軸方向幅を減じた値が、スラスト軸受部T1、T2の各スラスト軸受隙間の総和に等しくなる。   A protrusion 10b that protrudes upward is provided on the outer periphery of the upper end surface 10a of the lid member 10, and the contact surface 10b1 positioned at the upper end of the protrusion 10b is brought into contact with the lower end surface 8b of the sleeve portion 8. In this state, the lid member 10 is fixed to the inner periphery of the lower end protruding portion 9a. In this case, a value obtained by subtracting the axial width of the flange portion 2b from the axial dimension of the protruding portion 10b is equal to the sum of the thrust bearing gaps of the thrust bearing portions T1 and T2.

上記構成の動圧軸受装置1の内部空間、詳しくはラジアル軸受隙間、スラスト軸受隙間、貫通孔12、及びこれらの間の空間を全て潤滑油で満たす。潤滑油としては、種々のものが使用可能であるが、HDD等のディスク駆動装置用の動圧軸受装置に提供される潤滑油には、その使用時あるいは輸送時における温度変化を考慮して、低蒸発率及び低粘度性に優れたエステル系潤滑油、例えばジオクチルセバケート(DOS)、ジオクチルアゼレート(DOZ)等が好適に使用可能である。   The internal space of the hydrodynamic bearing device 1 having the above-described configuration, specifically, the radial bearing gap, the thrust bearing gap, the through hole 12, and the space between them are all filled with lubricating oil. Various types of lubricating oil can be used, but the lubricating oil provided to the hydrodynamic bearing device for a disk drive device such as an HDD, in consideration of temperature changes during use or transportation, An ester-based lubricating oil excellent in low evaporation rate and low viscosity, such as dioctyl sebacate (DOS), dioctyl azelate (DOZ) and the like can be suitably used.

上記構成の動圧軸受装置1において、軸部材2の回転時、スリーブ部8の内周面8aは、対向する軸部2aの外周面2a1との間にラジアル軸受隙間を形成する。スリーブ部8の内周面8aは非真円形状を呈するため、ラジアル軸受隙間は円周方向で異なる隙間幅を有する(図3を参照)。軸部材2の回転に伴い、ラジアル軸受隙間のうち比較的隙間幅が大きい部分の潤滑油が、比較的隙間幅が小さい部分に押し込まれることにより、潤滑油膜の圧力が上昇する。このように、ラジアル軸受隙間に生じる潤滑油の動圧作用によって、軸部材2をラジアル方向に非接触支持するラジアル軸受部Rが構成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the shaft member 2 rotates, a radial bearing gap is formed between the inner peripheral surface 8a of the sleeve portion 8 and the outer peripheral surface 2a1 of the opposing shaft portion 2a. Since the inner peripheral surface 8a of the sleeve portion 8 has a non-circular shape, the radial bearing gap has a different gap width in the circumferential direction (see FIG. 3). Along with the rotation of the shaft member 2, the lubricating oil in the portion having a relatively large gap width in the radial bearing gap is pushed into the portion having a relatively small gap width, thereby increasing the pressure of the lubricating oil film. Thus, the radial bearing portion R that supports the shaft member 2 in the radial direction in a non-contact manner is formed by the dynamic pressure action of the lubricating oil generated in the radial bearing gap.

これと同時に、スリーブ部8の下端面8bの動圧溝8b1形成領域とこれに対向するフランジ部2bの上端面2b1との間のスラスト軸受隙間、および蓋部材10の上端面10aの動圧溝形成領域とこれに対向するフランジ部2bの下端面2b2との間のスラスト軸受隙間に形成される潤滑油膜の圧力が、動圧溝の動圧作用により高められる。そして、これら油膜の圧力によって、軸部材2をスラスト方向に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とがそれぞれ構成される。   At the same time, the thrust bearing gap between the dynamic pressure groove 8b1 formation region of the lower end surface 8b of the sleeve portion 8 and the upper end surface 2b1 of the flange portion 2b opposed thereto, and the dynamic pressure groove of the upper end surface 10a of the lid member 10 The pressure of the lubricating oil film formed in the thrust bearing gap between the formation region and the lower end surface 2b2 of the flange portion 2b facing the formation region is increased by the dynamic pressure action of the dynamic pressure groove. The first thrust bearing portion T1 and the second thrust bearing portion T2 that support the shaft member 2 in the thrust direction in a non-contact manner are constituted by the pressure of these oil films.

また、この動圧軸受装置1では、上述のように、軸受部材7に形成された貫通孔12の上端がラジアル軸受隙間の上端に連通すると共に、貫通孔12の下端がラジアル軸受隙間の下端に連通している。このため、何らかの理由でハウジング7の閉塞側の流体(潤滑油)圧力が過度に高まり、あるいは低下するといった事態を避けて、軸部材2をスラスト方向に安定して非接触支持することが可能となる。   In the hydrodynamic bearing device 1, as described above, the upper end of the through hole 12 formed in the bearing member 7 communicates with the upper end of the radial bearing gap, and the lower end of the through hole 12 is the lower end of the radial bearing gap. Communicate. For this reason, it is possible to avoid the situation where the fluid (lubricating oil) pressure on the closing side of the housing 7 is excessively increased or decreased for some reason, and to stably support the shaft member 2 in the thrust direction in a non-contact manner. Become.

以上、本発明の第1実施形態を説明したが、本発明はこの実施形態に限られない。以下、本発明の他の実施形態を説明する。なお、以下に示す図において、第1実施形態と構成・作用を同一にする部位および部材については、同一の参照番号を付し、重複説明を省略する。   Although the first embodiment of the present invention has been described above, the present invention is not limited to this embodiment. Hereinafter, other embodiments of the present invention will be described. Note that, in the drawings shown below, parts and members that have the same configuration and function as those of the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

例えば、スリーブ部8の内周面8aの形状は多円弧形状に限定されず、図6に示すように、ステップ形状とすることもできる。具体的には、スリーブ部8の内周面8aが、円周方向交互に現れる小径部8a1と大径部8a2とで構成され、各大径部8a2の円周方向位置、すなわち軸受部材7の厚肉部A1に、貫通孔12が一又は複数箇所(図6では3箇所)に形成される。   For example, the shape of the inner peripheral surface 8a of the sleeve portion 8 is not limited to a multi-arc shape, and may be a step shape as shown in FIG. Specifically, the inner peripheral surface 8a of the sleeve portion 8 is composed of small-diameter portions 8a1 and large-diameter portions 8a2 that appear alternately in the circumferential direction, and the circumferential position of each large-diameter portion 8a2, that is, the bearing member 7 The through-hole 12 is formed in one or a plurality of places (three places in FIG. 6) in the thick part A1.

あるいは、スリーブ部8の内周面8aを、いわゆるテーパ軸受で構成することもできる。具体的には、図7に示すように、スリーブ部8の内周面8aが、回転軸心Oから等距離だけオフセットした中心O’を有する3つの円弧面8a3、8a4、8a5で構成される。各円弧面が臨むラジアル軸受隙間は、円周方向の一方向に対して、それぞれ楔状に漸次縮小した形状を有している。また、3つの円弧面8a3、8a4、8a5の相互間の境界部に、分離溝と称される、一段深い軸方向溝Gが形成されている。このとき、ラジアル軸受隙間の隙間幅が最小となる円周方向位置が、軸受部材7の厚肉部A1となり、分離溝Gの円周方向位置が、軸受部材7の薄肉部A2となる。軸受部材7の厚肉部A1に、貫通孔12が一又は複数箇所(図7では3箇所)に形成される。   Alternatively, the inner peripheral surface 8a of the sleeve portion 8 can be constituted by a so-called taper bearing. Specifically, as shown in FIG. 7, the inner peripheral surface 8a of the sleeve portion 8 is composed of three arcuate surfaces 8a3, 8a4, 8a5 having a center O ′ offset by an equal distance from the rotation axis O. . The radial bearing gaps facing each arc surface have a shape gradually reduced in a wedge shape with respect to one direction in the circumferential direction. A deeper axial groove G called a separation groove is formed at the boundary between the three arcuate surfaces 8a3, 8a4, 8a5. At this time, the circumferential position where the clearance width of the radial bearing gap is the smallest is the thick portion A1 of the bearing member 7, and the circumferential position of the separation groove G is the thin portion A2 of the bearing member 7. The through hole 12 is formed in one or a plurality of locations (three locations in FIG. 7) in the thick portion A1 of the bearing member 7.

あるいは、スリーブ部8の内周面8aを、いわゆるテーパ・フラット軸受で構成することもできる(図8を参照)。この場合、図7に示す構成のうち、3つの円弧面8a3、8a4、8a5の最小隙間側の所定領域θが、それぞれ、回転軸心Oを曲率中心とする同心の円弧で構成されている。従って、各所定領域θにおいて、ラジアル軸受隙間(最小隙間)は一定になる。   Alternatively, the inner peripheral surface 8a of the sleeve portion 8 can be constituted by a so-called tapered flat bearing (see FIG. 8). In this case, in the configuration shown in FIG. 7, the predetermined regions θ on the minimum gap side of the three circular arc surfaces 8a3, 8a4, and 8a5 are each configured by concentric arcs with the rotation axis O as the center of curvature. Therefore, in each predetermined area θ, the radial bearing gap (minimum gap) is constant.

以上の実施形態では、軸受部材7の外周面9cが真円形状である場合を示したが、これに限られない。例えば、図9に示すように、軸受部材7の外周面9cの円周方向の複数箇所(図9では3箇所)に、外径へ向けて突出した突出部7aを形成してもよい。この場合、突出部7aの形成領域が厚肉部A1、その円周方向間の領域が薄肉部A2となり、厚肉部A1に貫通孔12が形成される。本実施形態では、このように、突出部7aを設けることにより、厚肉部A1と薄肉部A2との肉厚差を積極的に大きくしている。この厚肉部A1と薄肉部A2の肉厚差による成形収縮量の差を利用して、内周面8aに大径部8a1及び小径部8a2を形成することができる。この大径部8a1と小径部8a2との径差が、ラジアル軸受隙間の潤滑流体に動圧作用を発生させる動圧発生部となる。このため、軸受部材7の内周面を成形する内型は、真円形状で足りるため、内型の製造コストが低減される。   In the above embodiment, although the case where the outer peripheral surface 9c of the bearing member 7 was a perfect circle shape was shown, it is not restricted to this. For example, as shown in FIG. 9, you may form the protrusion part 7a which protruded toward the outer diameter in the multiple places (3 places in FIG. 9) of the outer peripheral surface 9c of the bearing member 7 in the circumferential direction. In this case, the region where the protruding portion 7a is formed is the thick portion A1, the region between the circumferential directions thereof is the thin portion A2, and the through hole 12 is formed in the thick portion A1. In the present embodiment, the thickness difference between the thick portion A1 and the thin portion A2 is positively increased by providing the protruding portion 7a as described above. The large diameter portion 8a1 and the small diameter portion 8a2 can be formed on the inner peripheral surface 8a using the difference in molding shrinkage due to the thickness difference between the thick portion A1 and the thin portion A2. The diameter difference between the large diameter portion 8a1 and the small diameter portion 8a2 becomes a dynamic pressure generating portion that generates a dynamic pressure action on the lubricating fluid in the radial bearing gap. For this reason, since the inner mold | die which shape | molds the inner peripheral surface of the bearing member 7 is sufficient for a perfect circle shape, the manufacturing cost of an inner mold | type is reduced.

以下に、本発明が適用される他の実施形態に係る動圧軸受装置の構成例を示す。図10に示す動圧軸受装置21は、主に、第1シール部23、および第2シール部24をそれぞれ軸部材22に設け、シール部23、24の外周面23a、24aとこれに対向するハウジング部9の内周面9a1、9b1との間にシール空間S2、S3を形成している。また、第1シール部23(下側)の上端面23bとスリーブ部8の下端面8bとの間に第1スラスト軸受部T11が形成されると共に、第2シール部24(上側)の下端面24bとスリーブ部8の上端面8c(この実施形態では、かかる上端面8cにも動圧溝形成領域が設けられる。)との間に第2スラスト軸受部T12が形成される。なお、この実施形態では、シール部23、24を何れも軸部材22とは別体とし、これらシール部23、24を軸部材22に接着、圧入等の手段で固定した場合を例示しているが、これに限らず、例えばシール部23、24のうち何れか一方を軸部材22と一体に形成することもできる。   Below, the structural example of the hydrodynamic bearing apparatus which concerns on other embodiment to which this invention is applied is shown. The hydrodynamic bearing device 21 shown in FIG. 10 is mainly provided with a first seal portion 23 and a second seal portion 24 on the shaft member 22, respectively, and faces the outer peripheral surfaces 23a and 24a of the seal portions 23 and 24. Seal spaces S2 and S3 are formed between the inner peripheral surfaces 9a1 and 9b1 of the housing portion 9. Further, the first thrust bearing portion T11 is formed between the upper end surface 23b of the first seal portion 23 (lower side) and the lower end surface 8b of the sleeve portion 8, and the lower end surface of the second seal portion 24 (upper side). A second thrust bearing portion T12 is formed between 24b and the upper end surface 8c of the sleeve portion 8 (in this embodiment, the upper end surface 8c is also provided with a dynamic pressure groove forming region). In this embodiment, the seal portions 23 and 24 are both separated from the shaft member 22, and the seal portions 23 and 24 are fixed to the shaft member 22 by means such as adhesion and press-fitting. However, the present invention is not limited thereto, and for example, one of the seal portions 23 and 24 can be formed integrally with the shaft member 22.

この実施形態では、貫通孔12の上端は、第1スラスト軸受部T11のスラスト軸受隙間を介してラジアル軸受隙間の上端と連通すると共に、貫通孔12の下端は、第2スラスト軸受部T12のスラスト軸受隙間を介してラジアル軸受隙間の下端と連通する。   In this embodiment, the upper end of the through hole 12 communicates with the upper end of the radial bearing gap via the thrust bearing gap of the first thrust bearing portion T11, and the lower end of the through hole 12 is the thrust of the second thrust bearing portion T12. It communicates with the lower end of the radial bearing gap via the bearing gap.

図11に示す動圧軸受装置31は、スリーブ部8の下端面8bとフランジ部32bの上端面32b1との間に第1スラスト軸受部T21が形成されると共に、ディスクハブ33を構成する円盤部33aの下端面33a1とハウジング部39の上端面39aとの間に第2スラスト軸受部T22が形成される。また、ハウジング部39の外周上端にテーパシール面39bを設け、このテーパシール面39bと、この面に対向するディスクハブ33の筒部33bの内周面33b1との間にシール空間S4を形成する。   A hydrodynamic bearing device 31 shown in FIG. 11 includes a first thrust bearing portion T21 formed between the lower end surface 8b of the sleeve portion 8 and the upper end surface 32b1 of the flange portion 32b, and a disk portion constituting the disc hub 33. A second thrust bearing portion T22 is formed between the lower end surface 33a1 of 33a and the upper end surface 39a of the housing portion 39. Further, a taper seal surface 39b is provided at the outer peripheral upper end of the housing portion 39, and a seal space S4 is formed between the taper seal surface 39b and the inner peripheral surface 33b1 of the cylindrical portion 33b of the disk hub 33 facing this surface. .

この実施形態では、貫通孔12の上端は、スリーブ部8の上側端面8cと円盤部33aの下側端面33a1との間の隙間を介してラジアル軸受隙間の上端と連通すると共に、貫通孔12の下端は、第1スラスト軸受部T21のスラスト軸受隙間を介してラジアル軸受隙間の下端と連通する。   In this embodiment, the upper end of the through hole 12 communicates with the upper end of the radial bearing gap via a gap between the upper end surface 8c of the sleeve portion 8 and the lower end surface 33a1 of the disk portion 33a, and the through hole 12 The lower end communicates with the lower end of the radial bearing gap via the thrust bearing gap of the first thrust bearing portion T21.

以上の実施形態では、軸受部材として、スリーブ部とハウジング部とが一体成形された場合を例示したが、これに限らず、例えば、貫通孔を有するスリーブ状の軸受部材を、別途形成したハウジングの内周に固定してもよい。   In the above embodiment, the case where the sleeve portion and the housing portion are integrally formed as the bearing member is illustrated. However, the present invention is not limited to this. For example, a sleeve-shaped bearing member having a through hole is separately formed in the housing. You may fix to an inner periphery.

また、以上の実施形態では、貫通孔12を、スリーブ部8の両端面8b、8cに開口する位置に形成した場合を説明したが、これに限らず、軸受部材7、27、37を軸方向に貫通し、厚肉部A1に位置する限り、任意の位置に形成することができる。また、図2に示すように、蓋部材10やシール部11に半径方向溝10c、11b1を形成する場合、これら半径方向溝10c、11b1を対向する部材の側(例えばスリーブ部8の両端面8b、8c)に設けることも可能である。   Moreover, although the above embodiment demonstrated the case where the through-hole 12 was formed in the position opened in the both end surfaces 8b and 8c of the sleeve part 8, it is not restricted to this, The bearing members 7, 27, and 37 are made into an axial direction. As long as it penetrates through and is located in the thick part A1, it can be formed at any position. Further, as shown in FIG. 2, when the radial grooves 10c and 11b1 are formed in the lid member 10 and the seal portion 11, the radial grooves 10c and 11b1 are opposed to the opposite member side (for example, both end surfaces 8b of the sleeve portion 8). 8c).

また、以上の実施形態では、円筒状の内周面を有する貫通孔12を例示したが、軸受部材7に形成される貫通孔は、その両端開口間で流体を流通可能とする限り、また、成形ピンで以って軸受部材の射出成形と同時に形成可能である限り、他形状の貫通孔を採用することもできる。   Further, in the above embodiment, the through hole 12 having a cylindrical inner peripheral surface has been exemplified. However, the through hole formed in the bearing member 7 can also be used as long as fluid can flow between the openings at both ends. As long as the molding pin can be formed at the same time as the injection molding of the bearing member, a through hole having another shape can be adopted.

また、スラスト軸受部の動圧発生部は上記のようなスパイラル形状の動圧発生部に限らず、図示は省略するが、ヘリングボーン形状の動圧溝や、動圧発生部が形成される領域(例えばスリーブ部8の両端面8b、8c、蓋部材10の上端面10a、ハウジング部39の上端面39a)に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、あるいは波型軸受(ステップ型が波型になったもの)等で構成することもできる。   In addition, the dynamic pressure generating portion of the thrust bearing portion is not limited to the spiral-shaped dynamic pressure generating portion as described above, and although not shown in the drawing, a herringbone-shaped dynamic pressure groove and a region where the dynamic pressure generating portion is formed (For example, a plurality of radial groove-shaped dynamic pressure grooves are provided at predetermined intervals in the circumferential direction on both end surfaces 8b and 8c of the sleeve portion 8, the upper end surface 10a of the lid member 10, and the upper end surface 39a of the housing portion 39). A so-called step bearing or a corrugated bearing (where the step mold is a corrugated bearing) can also be used.

また、以上の実施形態では、スリーブ部8や蓋部材10、ハウジング部39の側にスラスト動圧発生部(動圧溝8b1等)が形成される場合を説明したが、動圧発生部が形成される領域は、例えばこれらに対向するフランジ部2bの両端面2b1、2b2、あるいはディスクハブ33の下端面33a1の側に設けることもできる。   Moreover, although the above embodiment demonstrated the case where the thrust dynamic pressure generation part (dynamic pressure groove 8b1 etc.) was formed in the sleeve part 8, the lid member 10, and the housing part 39 side, the dynamic pressure generation part was formed. The region to be formed can be provided, for example, on both end surfaces 2b1 and 2b2 of the flange portion 2b opposed to these, or on the lower end surface 33a1 side of the disc hub 33.

また、以上の説明では、動圧軸受装置1、21、31の内部に充満し、ラジアル軸受隙間や、スラスト軸受隙間に動圧作用を生じる流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧作用を発生可能な流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   Further, in the above description, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing devices 1, 21, and 31 and causes the hydrodynamic action in the radial bearing gap and the thrust bearing gap. A fluid capable of generating a dynamic pressure action in each bearing gap, for example, a gas such as air, a fluid lubricant such as a magnetic fluid, or lubricating grease may be used.

また、本発明の動圧軸受装置は、上記のようにHDD等のディスク駆動装置に用いられるスピンドルモータに限らず、光ディスクの光磁気ディスク駆動用のスピンドルモータ等、高速回転下で使用される情報機器用の小型モータ、レーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用、あるいは電気機器の冷却ファン用のファンモータとしても好適に使用することができる。   Further, the hydrodynamic bearing device of the present invention is not limited to the spindle motor used in the disk drive device such as the HDD as described above, but is used for information used under high-speed rotation, such as a spindle motor for driving a magneto-optical disk of an optical disk. It can also be suitably used as a fan motor for rotating shaft support in a small motor for equipment, a polygon scanner motor of a laser beam printer, or a cooling fan for electrical equipment.

本発明の実施形態に係る動圧軸受装置1を組込んだスピンドルモータの断面図である。It is sectional drawing of the spindle motor incorporating the dynamic pressure bearing apparatus 1 which concerns on embodiment of this invention. 動圧軸受装置1の断面図である。1 is a cross-sectional view of a fluid dynamic bearing device 1. FIG. 軸受部材7の径方向断面図である。3 is a radial cross-sectional view of a bearing member 7. FIG. 軸受部材7の下面図である。4 is a bottom view of the bearing member 7. FIG. 軸受部材7の射出成形工程を示す断面図である。5 is a cross-sectional view showing an injection molding process of the bearing member 7. 本発明の他の実施形態の軸受部材7を示す断面図である。It is sectional drawing which shows the bearing member 7 of other embodiment of this invention. 本発明の他の実施形態の軸受部材7を示す断面図である。It is sectional drawing which shows the bearing member 7 of other embodiment of this invention. 本発明の他の実施形態の軸受部材7を示す断面図である。It is sectional drawing which shows the bearing member 7 of other embodiment of this invention. 本発明の他の実施形態の軸受部材7を示す断面図である。It is sectional drawing which shows the bearing member 7 of other embodiment of this invention. 本発明の他の実施形態に係る動圧軸受装置21を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus 21 which concerns on other embodiment of this invention. 本発明の他の実施形態に係る動圧軸受装置31を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus 31 which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
7 軸受部材
8 スリーブ部
9 ハウジング部
10 蓋部材
11 シール部
12 貫通孔
13 成形ピン
14 外型
15 内型
16 キャビティ
A1 厚肉部
A2 薄肉部
R ラジアル軸受部
T1、T2 スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 7 Bearing member 8 Sleeve part 9 Housing part 10 Lid member 11 Seal part 12 Through-hole 13 Forming pin 14 Outer mold 15 Inner mold 16 Cavity A1 Thick part A2 Thin part R Radial bearing part T1, T2 thrust bearing

Claims (3)

射出成形で形成された軸受部材と、軸受部材の内周に挿入された軸部材とを備え、軸受部材の内周面と軸部材の外周面との間に形成されたラジアル軸受隙間に、潤滑流体の動圧作用を発生させる動圧軸受装置において、
軸受部材に厚肉部と薄肉部を設け、厚肉部に内面を成形面とした軸方向の貫通孔を設けたことを特徴とする動圧軸受装置。
A bearing member formed by injection molding and a shaft member inserted in the inner periphery of the bearing member are lubricated in a radial bearing gap formed between the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member. In a hydrodynamic bearing device that generates fluid dynamic pressure action,
A hydrodynamic bearing device characterized in that a thick member and a thin member are provided in a bearing member, and an axial through hole having an inner surface as a molding surface is provided in the thick member.
軸受部材の円周方向に前記厚肉部と前記薄肉部を交互に設けた請求項1記載の動圧軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein the thick portions and the thin portions are alternately provided in a circumferential direction of the bearing member. 貫通孔の一端をラジアル軸受隙間の一端に連通させると共に、貫通孔の他端をラジアル軸受隙間の他端に連通させ、ラジアル軸受隙間、貫通孔、および貫通孔とラジアル軸受隙間の間を全て潤滑流体で満たした請求項1又は2記載の動圧軸受装置。   One end of the through hole is communicated with one end of the radial bearing gap, and the other end of the through hole is communicated with the other end of the radial bearing gap to lubricate the radial bearing gap, the through hole, and between the through hole and the radial bearing gap. The hydrodynamic bearing device according to claim 1 or 2 filled with a fluid.
JP2006182317A 2006-06-30 2006-06-30 Hydrodynamic bearing device Expired - Fee Related JP4642708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006182317A JP4642708B2 (en) 2006-06-30 2006-06-30 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006182317A JP4642708B2 (en) 2006-06-30 2006-06-30 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2008008473A true JP2008008473A (en) 2008-01-17
JP4642708B2 JP4642708B2 (en) 2011-03-02

Family

ID=39066864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006182317A Expired - Fee Related JP4642708B2 (en) 2006-06-30 2006-06-30 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4642708B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011897A (en) * 2002-06-11 2004-01-15 Sankyo Seiki Mfg Co Ltd Dynamic-pressure bearing device
JP2006046461A (en) * 2004-08-03 2006-02-16 Ntn Corp Dynamic pressure bearing device
JP2006097852A (en) * 2004-09-30 2006-04-13 Ntn Corp Dynamic pressure bearing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011897A (en) * 2002-06-11 2004-01-15 Sankyo Seiki Mfg Co Ltd Dynamic-pressure bearing device
JP2006046461A (en) * 2004-08-03 2006-02-16 Ntn Corp Dynamic pressure bearing device
JP2006097852A (en) * 2004-09-30 2006-04-13 Ntn Corp Dynamic pressure bearing device

Also Published As

Publication number Publication date
JP4642708B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
KR101519426B1 (en) Fluid dynamic-pressure bearing device
KR101439924B1 (en) Fluid dynamic bearing device and its assembling method
JP2007024146A (en) Dynamic pressure bearing device
JP2008008368A (en) Hydrodynamic bearing device
US8016488B2 (en) Fluid dynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2006292013A (en) Dynamic pressure bearing device
JP2008069805A (en) Dynamic pressure bearing device
US8511899B2 (en) Fluid dynamic bearing device, and manufacturing method of bearing member
JP4916673B2 (en) Hydrodynamic bearing device
JP4559336B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2008008367A (en) Dynamic pressure bearing device
JP5220339B2 (en) Hydrodynamic bearing device
JP4642682B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP4738964B2 (en) Hydrodynamic bearing device and motor having the same
JP4642708B2 (en) Hydrodynamic bearing device
JP2006258123A (en) Dynamic pressure bearing device
JP5133156B2 (en) Fluid dynamic bearing device
JP2008075687A (en) Fluid bearing device
JP2008069835A (en) Dynamic pressure bearing device
JP4615328B2 (en) Hydrodynamic bearing device
JP2007113778A (en) Fluid bearing device and motor equipped with the same
JP4685641B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP4522869B2 (en) Hydrodynamic bearing device
JP2007255646A (en) Fluid bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A977 Report on retrieval

Effective date: 20100909

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20131210

LAPS Cancellation because of no payment of annual fees