JP2008007713A - Cleaning method within overhead piping in reactor tower of heavy oil thermal cracking apparatus, cleaning apparatus and cleaning pipe - Google Patents

Cleaning method within overhead piping in reactor tower of heavy oil thermal cracking apparatus, cleaning apparatus and cleaning pipe Download PDF

Info

Publication number
JP2008007713A
JP2008007713A JP2006182162A JP2006182162A JP2008007713A JP 2008007713 A JP2008007713 A JP 2008007713A JP 2006182162 A JP2006182162 A JP 2006182162A JP 2006182162 A JP2006182162 A JP 2006182162A JP 2008007713 A JP2008007713 A JP 2008007713A
Authority
JP
Japan
Prior art keywords
pressure water
pipe
cleaning
heavy oil
reaction tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006182162A
Other languages
Japanese (ja)
Inventor
Kashio Kobayashi
林 甲子男 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP2006182162A priority Critical patent/JP2008007713A/en
Publication of JP2008007713A publication Critical patent/JP2008007713A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cleaning of coke adhered inside of an overhead piping in a reactor tower of a heavy oil thermal cracking apparatus. <P>SOLUTION: The cleaning method of a piping 25 set in the overhead of reactor tower of a batch or semi-batch heavy oil thermal cracking apparatus such as a delayed coker, Eureka<SP>RTM</SP>process and Flexicoker with high-pressure water, comprised of setting up high pressure water, attaching a high pressure water cleaning tube 23 on the outside of the overhead of reactor tower giving the high pressure water in the piping 25 from an exhaust nozzle 27 of the high pressure water cleaning tube to remove cokes adhered in the tubing. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、重質油熱分解装置の反応塔における塔頂配管内の洗浄方法及びそれを達成しうる高圧水洗浄装置に関する。   TECHNICAL FIELD The present invention relates to a method for cleaning an overhead pipe in a reaction tower of a heavy oil pyrolysis apparatus and a high-pressure water cleaning apparatus capable of achieving the same.

現在、石油精製において熱分解反応法を用いた様々プロセス(装置)が提案されている。例えば、個体の石油コークスを併産するディレードコーカー、フルードコーカー、減圧残油の粘度低下を目的としたビスブレーカー、鉄鋼向けコークス製造用のバインダーピッチを併産するユリカプロセス、フルードコーカーにコークスガス化装置を伴ったフレキシコーカー等の(重質油)熱分解装置が開発されている。   At present, various processes (equipment) using a pyrolysis reaction method in petroleum refining have been proposed. For example, delayed coker, fluid coker that co-produces individual petroleum coke, bisbreaker for reducing viscosity of vacuum residual oil, yurika process that co-produces binder pitch for coke production for steel, coke gasification to fluid coker (Heavy oil) pyrolysis equipment such as flexi coker with equipment has been developed.

従来、重質油熱分解装置においては、熱分解により生じた分解ガス及び分解油に付随してアスファルテン等で形成される重質の炭素質成分(「コーク前駆体」と呼ばれる)が発生する。このため、重質油熱分解装置の配管系、とりわけ、反応塔の塔頂配管系において、このコーク前駆体が付着し、経時的にコーク化してコーク層を形成し、その生長によりコーク層の厚みが増して配管系の内径を狭め、反応塔内の内圧上昇を生じさせる。そして、コーク層が過大に生長すると最終的には重質油熱分解装置の運転を停止して、コーク層を除去する必要が生じる。特に、高温水蒸気による熱分解反応を利用した重質油熱分解装置(例えば、ユリカプロセス)においては、その反応塔からのガス量が多く、コーク前駆体の飛沫同伴が比較的多いために、短い期間(約1年程度)で、その運転を停止し反応塔の塔頂周辺配管系内に存在するコークを除去することが必要であった。   Conventionally, in a heavy oil pyrolysis apparatus, a heavy carbonaceous component (referred to as a “coke precursor”) formed from asphaltenes or the like is generated along with cracked gas and cracked oil generated by thermal decomposition. For this reason, in the piping system of the heavy oil pyrolysis apparatus, in particular, in the top piping system of the reaction tower, this coke precursor adheres and cokes with time to form a coke layer. The thickness is increased to narrow the inner diameter of the piping system, causing an increase in internal pressure in the reaction tower. And if a coke layer grows too much, it will eventually be necessary to stop the operation of the heavy oil pyrolysis apparatus and remove the coke layer. In particular, in heavy oil pyrolysis apparatus (for example, Yurica process) using a thermal decomposition reaction with high-temperature steam, the amount of gas from the reaction tower is large, and the entrainment of the coke precursor is relatively large. During the period (about 1 year), it was necessary to stop the operation and remove coke existing in the piping system around the top of the reaction tower.

従来、重質油熱分解装置の反応塔の配管系におけるコーク前駆体の付着とコーク層の生長を抑制する方法として、以下のものが提案されている。例えば、特公昭57−15797号(特許文献1)によれば、熱分解留出油留分を配管内壁にスプレーし、濡れ壁効果により、この配管内壁にコーク前駆体の付着を防止する方法が提案されている。   Conventionally, the following has been proposed as a method for suppressing adhesion of coke precursors and coke layer growth in a piping system of a reaction tower of a heavy oil pyrolysis apparatus. For example, according to Japanese Examined Patent Publication No. 57-15797 (Patent Document 1), there is a method in which a pyrolysis distillate oil fraction is sprayed on the inner wall of a pipe and the adhesion of the coke precursor to the inner wall of the pipe is prevented by the wet wall effect. Proposed.

しかしながら、重質油熱分解装置、特に、高温水蒸気による熱分解機能を利用した重質油熱分解装置(ユリカプロセス)にあっては、コーク前駆体の付着と、コーク層の生長を十分に抑制することは困難であった。   However, in heavy oil pyrolysis equipment, especially heavy oil pyrolysis equipment (Yureka process) using the thermal decomposition function by high-temperature steam, coke precursor adhesion and coke layer growth are sufficiently suppressed. It was difficult to do.

従って、現在、重質油熱分解装置、特に、高温水蒸気による熱分解機能を利用した重質油熱分解装置にあっては、コーク層の生長具合を監視し装置運転への影響を最小限にしてコークの除去を効率的に行う新たな技術の開発が要求されている。
特公昭57−15797号
Therefore, at present, in heavy oil pyrolysis equipment, especially heavy oil pyrolysis equipment using the thermal decomposition function using high-temperature steam, the growth of the coke layer is monitored to minimize the impact on the operation of the equipment. Therefore, development of a new technology for efficiently removing coke is required.
Japanese Patent Publication No.57-15797

本発明者等は、本発明時において、重質油熱分解装置の反応塔における塔頂の配管に、高圧水洗浄装置を備えてなることにより、装置運転の停止または運転条件を変更することなく、即ち、装置の通常稼働中に、塔頂配管内おけるコークの除去を有効に行うことができるとの知見を得た。よって、本発明は、反応塔の塔頂配管内におけるコーク層の除去を顕著に達成し、重質油熱分解装置の運転停止を伴うコーク除去作業および保守点検の回数を著しく低下させて、重質油熱分解装置の運転期間を長期化することを可能とした高圧水洗浄装置及び高圧水洗浄方法を提供するものである。   At the time of the present invention, the present inventors provided a high-pressure water washing device in the piping at the top of the reaction tower of the heavy oil pyrolysis device without stopping the operation of the device or changing the operating conditions. That is, it was found that coke can be effectively removed in the tower top pipe during normal operation of the apparatus. Therefore, the present invention remarkably achieves the removal of the coke layer in the tower top piping of the reaction tower, significantly reduces the number of coke removal work and maintenance inspections involving the shutdown of the heavy oil pyrolysis apparatus, The present invention provides a high-pressure water cleaning apparatus and a high-pressure water cleaning method capable of extending the operating period of a quality oil pyrolysis apparatus.

従って、本発明は、重質油熱分解装置の反応塔の塔頂に配置された配管の内部を高圧水により洗浄する方法であって、
高圧水を用意し、
高圧水を前記配管内部に付与し、
前記配管内部に存在するコークを洗浄除去する、ことを含んでなるものである。
Therefore, the present invention is a method for washing the inside of a pipe disposed at the top of a reaction tower of a heavy oil pyrolysis apparatus with high-pressure water,
Prepare high-pressure water,
High pressure water is applied to the inside of the pipe,
Washing and removing coke existing in the pipe.

本発明の別の態様により提供される高圧水洗浄装置は、重質油熱分解装置の反応塔の塔頂配管に配置されてなるものであって、
高圧水供給器と、
高圧水配送部と、
高圧水洗浄管とを備えてなり、
前記高圧水洗浄管が、その端部に排出ノズルを備えてなり、かつ、前記排出ノズルから前記配管内部に高圧水を付与し、前記配管内部に存在するコークを洗浄除去するものである。
The high-pressure water washing apparatus provided by another aspect of the present invention is arranged in the top piping of the reaction tower of the heavy oil pyrolysis apparatus,
A high-pressure water supply,
A high-pressure water delivery department;
With a high-pressure water washing tube,
The high-pressure water washing pipe is provided with a discharge nozzle at an end thereof, and high-pressure water is applied from the discharge nozzle to the inside of the pipe to wash away coke existing in the pipe.

高圧水洗浄管は、前記高圧水洗浄管の端部に排出ノズルを備えてなり、かつ、前記重質油熱分解装置の運転中に、前記排出ノズルから前記配管内部に高圧水を付与し、前記配管内部に存在するコーク前駆体又コークを洗浄するものであり、
前記配管内部に存在するコークを洗浄する際にのみ、前記反応塔の塔頂配管内部に挿入されるものである。
The high-pressure water washing pipe is provided with a discharge nozzle at an end of the high-pressure water washing pipe, and gives high-pressure water from the discharge nozzle to the inside of the pipe during operation of the heavy oil pyrolysis device, The coke precursor or coke present in the pipe is washed,
It is inserted into the top pipe of the reaction tower only when the coke existing inside the pipe is washed.

本発明による高圧水洗浄方法(装置)は、重質油熱分解装置、特に、高温水蒸気による熱分解機能を利用した重質油熱分解装置において、反応塔内の圧力上昇時に適宜、好ましくは定期的に実施することが可能である。特に、本発明による高圧水洗浄方法(装置)は、反応塔の塔頂に配置された配管の内部(内壁)を高圧水で洗浄することにより顕著にコーク除去を行うことができる。この結果、配管内の閉塞を防止して反応塔中の内圧の上昇を一定値以内に抑制し、重質油熱分解装置の2年以上の連続運転が可能になるとの効果を有する。   The high-pressure water washing method (apparatus) according to the present invention is a heavy oil pyrolysis apparatus, particularly a heavy oil pyrolysis apparatus utilizing a thermal decomposition function by high-temperature steam, and is preferably, preferably periodically, when the pressure in the reaction tower rises. Can be implemented automatically. In particular, the high-pressure water washing method (apparatus) according to the present invention can remarkably remove coke by washing the inside (inner wall) of a pipe disposed at the top of the reaction tower with high-pressure water. As a result, there is an effect that the blockage in the piping is prevented, the increase in the internal pressure in the reaction tower is suppressed within a certain value, and the heavy oil pyrolysis apparatus can be continuously operated for two years or more.

定義
(重質油)熱分解装置
本発明において、「(重質油)熱分解装置」とは、ディレードコーカー、ユリカプロセス、フレキシコーカー等のバッチ式またはセミバッチ式熱分解方法を実現することができるものをいう。ここで、これらのプロセスを、以下に概説する。ディレードコーカーは、石油精製残油を加熱下で穏やかに分解すると共に、コークスドラムにてコークス化を図るものである。フレキシコーカーは、フルードコーカーにコークスガス化装置を伴ったものであり、コークスはガシファイアーにおいて、ガス化されるものである。ユリカプロセス(装置)は、下記に説明する。
Definition
(Heavy oil) pyrolysis device In the present invention, "(heavy oil) pyrolysis device" can realize a batch or semi-batch pyrolysis method such as delayed coker, yurika process, flexi coker, etc. Say. Here, these processes are outlined below. In the delayed coker, petroleum refined residual oil is gently decomposed under heating and coked with a coke drum. The flexi coker is a fluid coker with a coke gasifier, and the coke is gasified in a gasifier. The Yurika process (apparatus) is described below.

ユリカプロセス(装置)
ユリカプロセス(装置)について、図1を用いて概説する。原油を蒸留処理した減圧残油が原料予熱炉1で加熱されて、蒸留塔3の塔底部に供給される。熱分解反応の原料油(減圧残油)は、蒸留塔3の塔底部から分解炉5に導入される。この減圧残油は分解炉5で一部加熱分解された後に、反応塔7a又は7b(2組で一つの反応塔を構成する)に供給される。減圧残油は、スイッチバルブ8等により反応塔7a又は7bに交互(セミバッチ方式)に供給される。つまり、反応塔7a又は7bの一方に原料油が供給されている間に、他方の反応塔7a又は7bにおいては、スチーム熱分解反応、冷却、ブローダウン等の各工程が行われる。一方の反応塔においては、スチーム熱分解反応が行われる際、スチーム加熱炉9から過熱スチームが反応塔に供給される。過熱スチームは、反応塔7a又は7bにおいて、分解熱の供給、分解油及び分解ガスのストリッピング及び反応塔内の攪拌を目的として供給される。分解油及び分解ガスは、反応塔7a又は7bの塔頂部分からスチームとともに、蒸留塔3に供給される。反応塔7a又は7bの反応液相には、ピッチが生成され、ピッチの重縮合度合いを軟化点(温度℃)により調整し、特定の軟化点に達した場合に、反応塔7a又は7bに、水を直接供給して冷却し、熱分解反応を終了させる。ピッチは、反応塔7a又は7bの下部に備えられたピッチ受槽11に送られて、ピッチフレーカー13により冷却搬送され、ピッチ製品20とされる。
Eureka process (equipment)
The Eureka process (apparatus) will be outlined with reference to FIG. A vacuum residue obtained by distillation of crude oil is heated in the raw material preheating furnace 1 and supplied to the bottom of the distillation column 3. The raw material oil (reduced pressure residue) for the pyrolysis reaction is introduced into the cracking furnace 5 from the bottom of the distillation column 3. The vacuum residue is partially decomposed by heating in the cracking furnace 5, and then supplied to the reaction tower 7a or 7b (two sets constitute one reaction tower). The vacuum residue is supplied alternately (semi-batch method) to the reaction tower 7a or 7b by the switch valve 8 or the like. That is, while the raw material oil is supplied to one of the reaction towers 7a or 7b, each process such as a steam pyrolysis reaction, cooling, and blow-down is performed in the other reaction tower 7a or 7b. In one reaction tower, when the steam pyrolysis reaction is performed, superheated steam is supplied from the steam heating furnace 9 to the reaction tower. In the reaction tower 7a or 7b, the superheated steam is supplied for the purpose of supplying cracking heat, stripping cracked oil and cracked gas, and stirring in the reaction tower. The cracked oil and cracked gas are supplied to the distillation tower 3 together with steam from the top of the reaction tower 7a or 7b. In the reaction liquid phase of the reaction tower 7a or 7b, pitch is generated, and when the degree of polycondensation of the pitch is adjusted by the softening point (temperature ° C.) and reaches a specific softening point, the reaction tower 7a or 7b Water is directly supplied and cooled to complete the pyrolysis reaction. The pitch is sent to a pitch receiving tank 11 provided at the lower part of the reaction tower 7a or 7b, and is cooled and conveyed by a pitch flaker 13 to be a pitch product 20.

高圧水洗浄方法/高圧水洗浄装置
本発明による高圧水洗浄装置および高圧水洗浄方法の内容を図1及び図2により説明する。図2は、図1に示した反応塔7a又は7b(以下、適宜「反応塔7」と云う。)の塔頂配管の拡大図である。図2は、本発明による高圧水洗浄装置21の配置拡大図及び高圧水洗浄管23の拡大図を示すものである。反応塔7の塔頂配管25の外側部に高圧水洗浄管23を取り付けることができる。塔頂配管25は、反応塔7で得られた分解油又は分解ガスをスチームとともに、蒸留塔3に供給するために設置されているものである。高圧水洗浄管23は塔頂配管25の外側部から内部に入り、高圧水洗浄管23の先端に備えられた排出ノズル27が塔頂配管25の管内に存在する。高圧水洗浄管23の上部には、高圧水が高圧水供給器から高圧水配給部を通じて供給される。供給された高圧水は、高圧水洗浄管23の排出ノズル27から塔頂配管25の管内に供給されて、塔頂配管25内に存在するコークを除去する。
High Pressure Water Cleaning Method / High Pressure Water Cleaning Device The contents of the high pressure water cleaning device and the high pressure water cleaning method according to the present invention will be described with reference to FIGS. FIG. 2 is an enlarged view of the tower top piping of the reaction tower 7a or 7b (hereinafter referred to as “reaction tower 7” as appropriate) shown in FIG. FIG. 2 shows an enlarged view of the arrangement of the high-pressure water washing apparatus 21 and an enlarged view of the high-pressure water washing pipe 23 according to the present invention. A high-pressure water washing pipe 23 can be attached to the outside of the tower top pipe 25 of the reaction tower 7. The tower top pipe 25 is installed to supply the cracked oil or cracked gas obtained in the reaction tower 7 to the distillation tower 3 together with steam. The high-pressure water washing pipe 23 enters the inside from the outside of the tower top pipe 25, and a discharge nozzle 27 provided at the tip of the high-pressure water washing pipe 23 exists in the pipe of the tower top pipe 25. High pressure water is supplied to the upper part of the high pressure water washing pipe 23 from a high pressure water supply device through a high pressure water distributor. The supplied high pressure water is supplied from the discharge nozzle 27 of the high pressure water washing pipe 23 into the pipe of the tower top pipe 25 to remove coke existing in the tower top pipe 25.

1)高圧水供給器
高圧水供給器は、水供給源から後記する所定の圧力を水に加える。水供給源は、工業用水から直接であってもよく、ボイラー用水、石油精製過程(蒸留工程等)、または重質油熱分解装置からの回収水を使用してもよい。
1) High-pressure water supply device A high-pressure water supply device applies a predetermined pressure, which will be described later, to water from a water supply source. The water supply source may be directly from industrial water, or boiler water, petroleum refining process (distillation process, etc.), or recovered water from heavy oil pyrolysis apparatus may be used.

2)高圧水配送部
高圧水供給器から排出された高圧水は、適切な高圧水配送部(手段)、例えば、配管、(耐高圧)ホース等により、高圧水洗浄管23に供給される。高圧水供給器から高圧水洗浄管23に至るまでは、調整弁、バルブ、圧力調整器等(これらは自動制御可変であってよい)を備えてなるものが好ましい。
2) High-pressure water delivery section The high-pressure water discharged from the high-pressure water feeder is supplied to the high-pressure water washing pipe 23 by an appropriate high-pressure water delivery section (means), for example, a pipe, a (high pressure resistant) hose, or the like. From the high-pressure water supply to the high-pressure water washing pipe 23, it is preferable to include a regulating valve, a valve, a pressure regulator, etc. (these may be automatically controlled variable).

3)高圧水洗浄管
高圧水洗浄管23は、耐圧性、耐久性を備えた材質で形成されてよく、例えばステンレス等の金属で形成されてなるものが好ましい。高圧水洗浄管23の排出ノズル27から塔頂配管25の内管に供給された高圧水により、塔頂配管25内を洗浄する開始時点は、重質油熱分解装置の反応塔7の内圧と蒸留塔3の塔底圧力の差圧の上昇度合いで判断して行われるが、より簡便的には反応塔7の内圧で判断しても良い。本発明にあっては、反応塔7a又は7bの内圧との差圧が30kPa以上、好ましくは20kPa以上を呈した場合に、高圧水洗浄を開始することが好ましい。本発明の好ましい態様によれば、一度上記した内圧の差圧が上昇した場合には、それ以降は定期的に高圧水洗浄を行うことが好ましい。これにより、反応塔7を長期的に運転することが可能となる。反応塔7の内圧と蒸留塔3の塔底圧力は、それぞれに設置された圧力計で測定することができる。また、測定した値を伝達する手段と、反応塔7の内圧と蒸留塔3の塔底圧力の差圧を算出し、かつ、内圧の差が上記値を呈した場合に、高圧水洗浄を自動的に開始することを予めプログラムした情報処理手段とを備えた自動制御装置をさらに用いて行うこともできる。
3) High-pressure water washing tube The high-pressure water washing tube 23 may be made of a material having pressure resistance and durability, and preferably made of a metal such as stainless steel. The starting point of cleaning the inside of the tower top pipe 25 with the high pressure water supplied from the discharge nozzle 27 of the high pressure water washing pipe 23 to the inner pipe of the tower top pipe 25 is the internal pressure of the reaction tower 7 of the heavy oil pyrolysis apparatus. The determination is made based on the degree of increase in the differential pressure of the bottom pressure of the distillation column 3, but more simply, the determination may be made based on the internal pressure of the reaction column 7. In the present invention, the high-pressure water washing is preferably started when the differential pressure from the internal pressure of the reaction tower 7a or 7b is 30 kPa or more, preferably 20 kPa or more. According to a preferred aspect of the present invention, once the above-described differential pressure of the internal pressure has increased, it is preferable to periodically perform high-pressure water washing thereafter. This makes it possible to operate the reaction tower 7 for a long time. The internal pressure of the reaction tower 7 and the bottom pressure of the distillation tower 3 can be measured by a pressure gauge installed in each. In addition, when the measured value is transmitted, the differential pressure between the internal pressure of the reaction column 7 and the bottom pressure of the distillation column 3 is calculated, and the high pressure water washing is automatically performed when the internal pressure difference exhibits the above value. It is also possible to further use an automatic control device provided with information processing means programmed beforehand.

高圧水の水圧は、適宜定めてよいが、高圧水洗浄管23の排出ノズル27の排出部における水圧が、5MPa以上であり、好ましくは20MPa以上であり、より好ましくは下限値が30MPa以上である。この水圧調整は、高圧水供給器で行われても良いし、高圧水供給器から高圧水洗浄管23に至るまでの高圧水配給部(手段)に設置された、調整弁、バルブ、圧力調整器等により行われても良い。これらの機器もまた上記した自動制御装置によって稼働され制御されてよい。   The water pressure of the high-pressure water may be determined as appropriate, but the water pressure at the discharge part of the discharge nozzle 27 of the high-pressure water washing tube 23 is 5 MPa or more, preferably 20 MPa or more, and more preferably the lower limit value is 30 MPa or more. . This water pressure adjustment may be performed by a high-pressure water supply device, or an adjustment valve, a valve, and a pressure adjustment device installed in a high-pressure water distribution section (means) from the high-pressure water supply device to the high-pressure water washing pipe 23. It may be performed by a vessel or the like. These devices may also be operated and controlled by the automatic control device described above.

4)排出ノズル
排出ノズル27の高圧水排出部分は洗浄対象配管の形状に応じたものであればいずれの形態であってもよく、また排出方向も様々な形態であってよい。図3は排出ノズル27の排出方向の具体例を示したものであり、図示した方向に高圧水が排出されてよい。また、排出ノズル27の孔の形状と数量は適宜定めてよいが、好ましくは、孔の平均径は1mm以上10mm以下、好ましくは下限値が3mm以上であり下限値が6mm以下である。また、孔数は好ましくは、複数であり、より好ましくは2個、3個程度がよい。排出ノズル27の孔の形状とその孔径と数量を設定することにより、洗浄水量も定まることになる。
4) Discharge nozzle The high pressure water discharge portion of the discharge nozzle 27 may have any form as long as it corresponds to the shape of the pipe to be cleaned, and the discharge direction may be various forms. FIG. 3 shows a specific example of the discharge direction of the discharge nozzle 27, and high-pressure water may be discharged in the illustrated direction. The shape and quantity of the holes of the discharge nozzle 27 may be determined as appropriate, but preferably the average diameter of the holes is 1 mm or more and 10 mm or less, preferably the lower limit is 3 mm or more and the lower limit is 6 mm or less. The number of holes is preferably plural, and more preferably about 2 or 3. By setting the shape of the hole of the discharge nozzle 27, the hole diameter, and the quantity, the amount of cleaning water is also determined.

本発明の好ましい態様によれば、排出ノズル27は、生長したコーク層を効率的に除去することを考慮して、塔頂配管の形状に応じて様々な形態のものを用意し、必要に応じて適用できるものであることが好ましい。また、排出ノズル27は、それ自体回転しうるものとされてなるものが好ましい。本発明のより好ましい態様によれば、通常時において、排出ノズル27を備えた高圧水洗浄管23は、通常運転時には、塔頂配管25の内管に挿入されていないことが好ましい。よって、高圧水洗浄管23は、洗浄中に限り、塔頂配管25の内管に挿入され、洗浄前後では塔頂配管25に存在しないものとされてなることが好ましい。本発明の好ましい態様によれば、高圧水洗浄管23は塔頂配管25の内管に自動的に挿入排出されてなる手段を備えてなるものが好ましい。本発明にあっては、高圧水洗浄管23の挿入排出、排出ノズル27の回転および高圧水排出は、上記した自動制御装置により制御されてよい。   According to a preferred aspect of the present invention, the discharge nozzle 27 is prepared in various forms according to the shape of the tower top piping, considering efficient removal of the grown coke layer, and if necessary It is preferable that it can be applied. Further, the discharge nozzle 27 is preferably one that can rotate itself. According to a more preferable aspect of the present invention, it is preferable that the high-pressure water washing pipe 23 provided with the discharge nozzle 27 is not inserted into the inner pipe of the tower top pipe 25 during normal operation. Therefore, it is preferable that the high-pressure water washing pipe 23 is inserted into the inner pipe of the tower top pipe 25 only during washing, and does not exist in the tower top pipe 25 before and after washing. According to a preferred embodiment of the present invention, the high-pressure water washing pipe 23 is preferably provided with means that is automatically inserted into and discharged from the inner pipe of the tower top pipe 25. In the present invention, the insertion / discharge of the high-pressure water washing tube 23, the rotation of the discharge nozzle 27, and the high-pressure water discharge may be controlled by the automatic control device described above.

好ましい態様
本発明による洗浄装置又は洗浄方法は、重質油熱分解装置、特に、高温水蒸気による熱分解機能を利用した重質油熱分解装置の反応塔の塔頂に配置された配管の内部に使用することができる。本発明にあっては、重質油熱分解装置の反応塔が1個のものに使用することができ、好ましくは複数備えたものに使用することができる。本発明の好ましい態様によれば、図1に示す通り、反応塔7a及び7bを備え、さらに必要に応じてピッチ受槽11を備えた高温水蒸気による熱分解反応を利用した重質油熱分解装置(ユリカ装置)に使用することが最も好ましい。
Preferred Embodiment The washing apparatus or washing method according to the present invention is used in a heavy oil pyrolysis apparatus, in particular, in a pipe arranged at the top of a reaction tower of a heavy oil pyrolysis apparatus utilizing a high temperature steam pyrolysis function. Can be used. In the present invention, the heavy oil pyrolysis apparatus can be used with one reaction tower, and preferably with a plurality of reaction towers. According to a preferred embodiment of the present invention, as shown in FIG. 1, a heavy oil pyrolysis apparatus (including a reaction tower 7 a and 7 b, and further equipped with a pitch receiving tank 11 as required) utilizing a pyrolysis reaction with high-temperature steam ( It is most preferable to use it in the Eureka apparatus.

本発明による洗浄装置または洗浄方法は、反応塔7a及び7bがセミバッチ方式により運転されてなるユリカ装置において好ましくは使用される。反応塔7a又は7bがセミバッチで切り替わる特定の期間内を利用して一方の反応塔の塔頂配管の管内を高圧水洗浄することが好ましい。セミバッチ切り替えの(特定の)期間内において高圧水洗浄を行うことが出来れば、高圧洗浄水の蒸発による蒸留塔3の運転圧力の一時的上昇を抑制し、圧力変動の影響を極力抑制した状況に保つことが可能となる。また、高圧洗浄水の温度と、反応塔内および塔頂配管内の温度との温度差による金属材料の脆弱化を緩和することができる。   The washing apparatus or washing method according to the present invention is preferably used in a yurika apparatus in which the reaction towers 7a and 7b are operated in a semibatch mode. It is preferable to wash the inside of the top piping of one reaction tower with high-pressure water using a specific period in which the reaction tower 7a or 7b is switched in a semibatch. If high-pressure water washing can be performed within the (specific) period of semi-batch switching, the temporary increase in the operating pressure of the distillation tower 3 due to evaporation of the high-pressure washing water is suppressed, and the effect of pressure fluctuations is minimized. It becomes possible to keep. Further, the weakening of the metal material due to the temperature difference between the temperature of the high-pressure washing water and the temperature in the reaction tower and in the tower top pipe can be alleviated.

本発明の好ましい態様によれば、反応塔7a又は7bの塔頂配管の管内を高圧水で洗浄する場合、当該配管系の反応塔が次のセミバッチ稼働(原料油供給)直前の状態にあることが好ましい。ここで、反応塔7a及び7bのセミバッチ稼働を説明する。反応塔7a又は7bのセミバッチ稼働サイクルを、例えば、3時間とした場合、反応塔7a又は7bは1.5時間毎原料油の供給を受けることとなる。そして、反応塔7a又は7bの一方が原料油の供給を受けている1.5時間の工程の間に、他方の反応塔7a又は7bは、原料油受け入れ後の後半部分の一定時間の熱分解反応工程の後、反応を停止するための冷却工程、生成した石油ピッチを抜き出すためのブローダウン工程を経て、必要に応じて反応時間分布調整のための低温原料油(減圧残渣油)を供給する初期供給工程へ進むが、これらの工程に要する全体の時間調整を目的として、次の原料油供給工程の前に、スタンバイ工程が設定される。反応塔7a又は7bの塔頂配管の管内を高圧水で洗浄する場合、次の原料油供給工程の直前、即ち、スタンバイ工程の間に行われることが好ましい。   According to a preferred embodiment of the present invention, when the inside of the tower top pipe of the reaction tower 7a or 7b is washed with high-pressure water, the reaction tower of the pipe system is in a state immediately before the next semi-batch operation (feeding of raw material oil). Is preferred. Here, the semi-batch operation of the reaction towers 7a and 7b will be described. When the semi-batch operation cycle of the reaction tower 7a or 7b is, for example, 3 hours, the reaction tower 7a or 7b is supplied with the feed oil every 1.5 hours. Then, during the 1.5-hour process in which one of the reaction towers 7a or 7b is supplied with raw material oil, the other reaction tower 7a or 7b is subjected to thermal decomposition for a certain period of time in the latter half after receiving the raw material oil. After the reaction step, a cooling step for stopping the reaction and a blow-down step for extracting the generated petroleum pitch are performed, and if necessary, low-temperature feedstock oil (vacuum residue oil) for adjusting the reaction time distribution is supplied. Although the process proceeds to the initial supply process, a standby process is set before the next feed oil supply process for the purpose of adjusting the overall time required for these processes. When the inside of the tower top piping of the reaction tower 7a or 7b is washed with high-pressure water, it is preferably carried out immediately before the next feed oil supply process, that is, during the standby process.

本発明の内容を下記の実施例により詳細に説明するが、本発明の範囲はこれら実施例に限定して解釈されるものではない。
実施例1(短期間稼働試験)
図1の概略図で示す、原料減圧残油処理能力3,800キロリットル/日のユリカ熱分解反応装置を用いて、本発明による高圧水洗浄機構を塔頂配管に備えたセミバッチ方式反応塔A及び反応塔Bを定常運転状態で2ヶ月間稼働した際の、反応塔A及び反応塔Bの圧力推移を測定した。測定結果は、下記表1に示す通りであった。表1中、横軸は2ヶ月間の運転日数(日)を示し、縦軸は反応器の缶圧[kPa]を示す。反応塔A及びBは、切り替え運転される一対の減圧残油熱分解反応塔であるが、運転継続と共に反応塔Aの圧力(缶圧)上昇傾向が認められたため、運転34日目に反応塔出口の管径600mmの立ち上がり配管部を対象に本発明による高圧水洗浄機構により運転中のコーク除去を実施した。表1の結果から、本発明の高圧水洗浄方法(装置)により、運転中のコーク除去が十分達成され、反応塔Aの缶圧低下が明らかに認められた。

Figure 2008007713
The contents of the present invention will be described in detail with reference to the following examples, but the scope of the present invention should not be construed as being limited to these examples.
Example 1 (Short-term operation test)
A semi-batch reactor A equipped with a high-pressure water washing mechanism according to the present invention in a tower top pipe using a Yurica pyrolysis reactor of 3,800 kiloliters / day of raw material vacuum residue processing capacity shown in the schematic diagram of FIG. And the pressure transition of the reaction tower A and the reaction tower B when the reaction tower B was operated for 2 months in the steady operation state was measured. The measurement results were as shown in Table 1 below. In Table 1, the horizontal axis indicates the number of operating days (days) for two months, and the vertical axis indicates the reactor can pressure [kPa]. The reaction towers A and B are a pair of reduced pressure residue pyrolysis reaction towers that are operated to be switched. However, as the operation (continuous operation) showed a tendency to increase the pressure (can pressure) of the reaction tower A, Coke removal during operation was carried out by a high-pressure water washing mechanism according to the present invention for a rising pipe portion having a diameter of 600 mm at the outlet. From the results shown in Table 1, coke removal during operation was sufficiently achieved by the high-pressure water washing method (apparatus) of the present invention, and a reduction in can pressure in the reaction tower A was clearly recognized.
Figure 2008007713

実施例2(長期間稼働試験)
実施例1と同様のユリカ熱分解反応装置を用いて、2年間の長期間連続運転時における反応塔Aの缶圧の推移を記録した。測定において、二種の洗浄方法、即ち、適宜(ランダム)に洗浄する方法と、定期的に洗浄する方法とをそれぞれ別個(2回)に行った。その測定結果は、下記表2に示す通りであった。表2中、横軸は2年間の長期連続運転の運転日数(日)を示し、縦軸はいずれも反応器Aの缶圧[kPa]を示す。これら2回の運転はいずれも平均稼働率90%程度の高稼働率での長期連続運転であったが、本発明による高圧水洗浄機構により、適宜洗浄する方法及び定期的に洗浄する方法のいずれの場合にも、運転中のコーク除去が達成され、反応塔Aの缶圧上昇はいずれも許容範囲内に収まったことが理解された。特に、反応塔Aの缶圧上昇が見られた後、本発明による高圧水洗浄機構により定期的に洗浄する方法を用いた場合、運転中のコーク除去を十分に行うことができ、2年近い運転期間を経たあとでも缶圧の上昇は僅かであり、缶圧上昇による熱分解反応条件、及びその他の運転条件への影響はなく、ユリカ熱分解反応装置の長期安定化した連続運転が可能になることが理解された。

Figure 2008007713
Example 2 (long-term operation test)
Using the same Yurika pyrolysis reactor as in Example 1, the change in the can pressure of the reaction tower A during a long-term continuous operation for 2 years was recorded. In the measurement, two types of cleaning methods, that is, a method of cleaning appropriately (randomly) and a method of periodically cleaning were performed separately (twice), respectively. The measurement results were as shown in Table 2 below. In Table 2, the horizontal axis represents the number of operating days (days) of long-term continuous operation for 2 years, and the vertical axis represents the can pressure [kPa] of the reactor A. Both of these two operations were long-term continuous operations with a high operation rate of about 90% on average, but either of the method of cleaning appropriately or the method of periodically cleaning by the high-pressure water cleaning mechanism according to the present invention. In this case, it was understood that the removal of coke during operation was achieved, and any increase in the can pressure of the reaction tower A was within the allowable range. In particular, when the method of periodically washing with the high-pressure water washing mechanism according to the present invention is used after an increase in the can pressure of the reaction tower A is observed, coke removal during operation can be sufficiently performed, and it is nearly two years. Even after the operation period has passed, the increase in can pressure is slight, and there is no effect on the pyrolysis reaction conditions and other operating conditions due to the increase in can pressure, enabling long-term stable and continuous operation of the Yurika pyrolysis reactor. It was understood that
Figure 2008007713

図1は、重質油熱分解装置の概略図を示したものである。FIG. 1 is a schematic view of a heavy oil pyrolysis apparatus. 図2は、本発明による高圧水洗浄装置の配置拡大図及び高圧水洗浄管の拡大図を示すものである。FIG. 2 shows an enlarged view of the arrangement of the high-pressure water washing apparatus according to the present invention and an enlarged view of the high-pressure water washing pipe. 図3は、本発明による高圧水洗浄管の排出ノズルの具体例を示したものである。FIG. 3 shows a specific example of the discharge nozzle of the high-pressure water washing pipe according to the present invention.

Claims (3)

重質油熱分解装置の反応塔の塔頂に配置された配管の内部を高圧水により洗浄する方法であって、
高圧水を用意し、
前記配管内部に前記高圧水を付与し、
前記配管内部に存在するコークを除去することを含んでなる、洗浄方法。
A method of washing the inside of a pipe arranged at the top of a reaction tower of a heavy oil pyrolysis apparatus with high-pressure water,
Prepare high-pressure water,
Giving the high-pressure water inside the pipe,
A cleaning method comprising removing coke existing in the pipe.
重質油熱分解装置の反応塔の塔頂部の配管に配置されてなる高圧水洗浄装置であって、
高圧水供給器と、
高圧水配給部と、
高圧水洗浄管とを備えてなり、
前記高圧水洗浄管が、その端部に排出ノズルを備えてなり、かつ、前記排出ノズルから前記配管内部に高圧水を付与し、前記配管内部に存在するコークを除去するものである、高圧水洗浄装置。
A high-pressure water washing apparatus arranged in a pipe at the top of a reaction tower of a heavy oil pyrolysis apparatus,
A high-pressure water supply,
A high-pressure water distribution department;
With a high-pressure water washing tube,
The high-pressure water cleaning pipe is provided with a discharge nozzle at an end thereof, and applies high-pressure water to the inside of the pipe from the discharge nozzle to remove coke existing in the pipe. Cleaning device.
重質油熱分解装置の反応塔の塔頂配管を洗浄する高圧水洗浄管であって、
前記高圧水洗浄管の端部に排出ノズルを備えてなり、かつ、前記排出ノズルから前記配管内部に高圧水を付与し、前記配管内部に存在するコークを除去するものであり、
前記配管内部に存在するコークを除去する際にのみ、前記反応塔の塔頂配管内部に挿入される高圧水洗浄管。
A high-pressure water washing pipe for washing the top pipe of the reaction tower of the heavy oil pyrolysis apparatus,
A discharge nozzle is provided at an end of the high-pressure water washing pipe, and high-pressure water is applied from the discharge nozzle to the inside of the pipe to remove coke existing in the pipe.
A high-pressure water washing pipe inserted into the top pipe of the reaction tower only when removing coke existing inside the pipe.
JP2006182162A 2006-06-30 2006-06-30 Cleaning method within overhead piping in reactor tower of heavy oil thermal cracking apparatus, cleaning apparatus and cleaning pipe Pending JP2008007713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006182162A JP2008007713A (en) 2006-06-30 2006-06-30 Cleaning method within overhead piping in reactor tower of heavy oil thermal cracking apparatus, cleaning apparatus and cleaning pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006182162A JP2008007713A (en) 2006-06-30 2006-06-30 Cleaning method within overhead piping in reactor tower of heavy oil thermal cracking apparatus, cleaning apparatus and cleaning pipe

Publications (1)

Publication Number Publication Date
JP2008007713A true JP2008007713A (en) 2008-01-17

Family

ID=39066200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006182162A Pending JP2008007713A (en) 2006-06-30 2006-06-30 Cleaning method within overhead piping in reactor tower of heavy oil thermal cracking apparatus, cleaning apparatus and cleaning pipe

Country Status (1)

Country Link
JP (1) JP2008007713A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014018883A1 (en) * 2012-07-27 2014-01-30 SerVaas Laboratories, Inc. Catalytic converter, a kit for servicing a catalytic converter, and method for servicing a catalytic converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014018883A1 (en) * 2012-07-27 2014-01-30 SerVaas Laboratories, Inc. Catalytic converter, a kit for servicing a catalytic converter, and method for servicing a catalytic converter
US8888921B2 (en) 2012-07-27 2014-11-18 SerVaas Laboratories, Inc. Catalytic converter, a kit for servicing a catalytic converter, and methods for servicing a catalytic converter
CN104736808A (en) * 2012-07-27 2015-06-24 塞尔瓦斯实验室有限公司 Catalytic converter, a kit for servicing a catalytic converter, and method for servicing a catalytic converter

Similar Documents

Publication Publication Date Title
CA2612725C (en) Method for processing hydrocarbon pyrolysis effluent
US8025773B2 (en) System for extending the range of hydrocarbon feeds in gas crackers
US8025774B2 (en) Controlling tar by quenching cracked effluent from a liquid fed gas cracker
US10336945B2 (en) Process and apparatus for decoking a hydrocarbon steam cracking furnace
CN113574138B (en) Method for in-service decoking
KR20130004270A (en) Methods for carbon black production using preheated feedstock and apparatus for same
US7998281B2 (en) Apparatus and method of cleaning a transfer line heat exchanger tube
KR20160127059A (en) A sequential cracking process
US11254877B2 (en) Coke mitigation in hydrocarbon pyrolysis
JP2008007713A (en) Cleaning method within overhead piping in reactor tower of heavy oil thermal cracking apparatus, cleaning apparatus and cleaning pipe
US9359555B2 (en) Delayed coker feed heater on-line steam-chemical decoking method
US20130239999A1 (en) Ethylene Furnace Decoking Method
CN109251758B (en) Production stoppage and rapid replacement method for modified asphalt
CN111854511A (en) Method for cleaning unconverted oil heat exchanger of fluidized bed residual oil hydrocracking device
Wisecarver Delayed coking
JP2008007721A (en) Method and apparatus for processing of cleaning treatment oil in distillation column of heavy oil thermal cracking apparatus
CN108559904A (en) Different hot propertys increase smelting furnace operation duration
US10968399B2 (en) Online coke removal in a heater pass
CN220265627U (en) Residual oil device for preventing pipeline and equipment from coking
RU2448149C1 (en) Plant for combined cleaning of furnace coil and transfer pipeline from coke deposits
JP2023123051A (en) Operation restart method for thermal decomposition furnace
RU183727U1 (en) THERMAL CRACKING REACTOR
KR102455669B1 (en) In situ coking of heavy pitches and other feedstocks that are prone to fouling
CN109929580B (en) Delayed coking unit and method for processing catalytic slurry oil
JP2021156568A (en) Cleaning method for heat exchanger for heavy oil desulfurization devices