JP2008004310A - Temperature control method and temperature control device of fuel cell - Google Patents

Temperature control method and temperature control device of fuel cell Download PDF

Info

Publication number
JP2008004310A
JP2008004310A JP2006170625A JP2006170625A JP2008004310A JP 2008004310 A JP2008004310 A JP 2008004310A JP 2006170625 A JP2006170625 A JP 2006170625A JP 2006170625 A JP2006170625 A JP 2006170625A JP 2008004310 A JP2008004310 A JP 2008004310A
Authority
JP
Japan
Prior art keywords
fuel cell
temperature
reaction gas
water
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006170625A
Other languages
Japanese (ja)
Other versions
JP5352944B2 (en
Inventor
Koji Morita
幸治 盛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006170625A priority Critical patent/JP5352944B2/en
Publication of JP2008004310A publication Critical patent/JP2008004310A/en
Application granted granted Critical
Publication of JP5352944B2 publication Critical patent/JP5352944B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To appropriately conduct the temperature control of a fuel cell cooled by evaporation latent heat of water. <P>SOLUTION: Air is supplied to a cathode 5 of a fuel cell 1, water 35 is supplied with a water pump 41, cooling is conducted by the evaporation latent heat of water, and air is humidified by steam. Control is conducted so that steam partial pressure in the vicinity of a reaction gas outlet part in the cathode 5 of the fuel cell 1 becomes saturated vapor pressure at target temperature in the temperature control of the fuel cell 1. Since the steam partial pressure in the reaction gas outlet of the fuel cell 1 is decided by the amount of steam in the reaction gas outlet, the amount of non-condensing gas, and gas pressure, by controlling the amount of the non-condensing gas (reaction gas) in the reaction gas outlet of the fuel cell1, the temperature of the fuel cell 1 can be controlled to the target temperature. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池の電極に反応ガスとともに水を供給し、水の気化潜熱により冷却を行うとともに、水の蒸気により反応ガスの加湿を行う燃料電池の温度制御方法および温度制御装置に関する。   The present invention relates to a temperature control method and a temperature control apparatus for a fuel cell in which water is supplied together with a reaction gas to an electrode of a fuel cell, cooling is performed by water vaporization latent heat, and the reaction gas is humidified by water vapor.

高分子固体電解質膜を利用した燃料電池では、一般的には高分子固体電解質膜のイオン伝導度を維持するために加湿が必要である。また、燃料電池の発電に伴う温度上昇を抑えるためには、一般的には燃料電池内に冷却水を導入し、熱を冷却水に伝熱させ、受熱後の冷却水を外部に排出する。   In a fuel cell using a polymer solid electrolyte membrane, humidification is generally required to maintain the ionic conductivity of the polymer solid electrolyte membrane. Moreover, in order to suppress the temperature rise accompanying the power generation of the fuel cell, cooling water is generally introduced into the fuel cell, heat is transferred to the cooling water, and the cooling water after receiving heat is discharged to the outside.

このため、燃料電池の外部には加湿器が、燃料電池の内部には冷却水を流す空間が、それぞれ必要になり、燃料電池本体の内外で、加湿および冷却のためのスペースが必要となって燃料電池装置全体の大型化を招くという不具合がある。   For this reason, a humidifier is required outside the fuel cell, and a space for flowing cooling water is required inside the fuel cell, and space for humidification and cooling is required inside and outside the fuel cell body. There is a problem that the entire fuel cell device is increased in size.

このような不具合を解消するものとして、例えば下記特許文献1に記載されているように、燃料電池内に、反応ガスと水とを同時に供給し、水の気化潜熱により冷却を行うとともに、気化した水蒸気により反応ガスを加湿する燃料電池が知られている。
特開平8−306375号公報
In order to solve such a problem, for example, as described in Patent Document 1 below, the reaction gas and water are simultaneously supplied into the fuel cell, and the water is cooled by the latent heat of vaporization and vaporized. A fuel cell that humidifies a reaction gas with water vapor is known.
JP-A-8-306375

しかしながら、燃料電池内に反応ガスと水とを同時に供給し、水の気化潜熱により冷却を行う燃料電池にあっては、燃料電池内に設けた冷却水通路に冷却水を流して冷却を行う燃料電池に比較すると、温度制御の自由度が低く、燃料電池の温度を適正に確保できず、安定した運転が確保できないという不具合が発生する。   However, in a fuel cell in which a reaction gas and water are supplied into the fuel cell at the same time and cooling is performed by latent heat of vaporization of the fuel, the fuel that is cooled by flowing cooling water through a cooling water passage provided in the fuel cell. Compared with a battery, the degree of freedom of temperature control is low, and the temperature of the fuel cell cannot be ensured properly, so that a stable operation cannot be ensured.

そこで、本発明は、水の気化潜熱により冷却を行う燃料電池の温度制御を適正に行えるようにすることを目的としている。   Therefore, an object of the present invention is to appropriately control the temperature of a fuel cell that is cooled by the latent heat of vaporization of water.

本発明は、燃料電池の電極に反応ガスとともに水を供給し、前記水の気化潜熱により冷却を行うとともに、前記水の蒸気により前記反応ガスの加湿を行う燃料電池の温度制御方法において、前記燃料電池の反応ガスが流出する反応ガス出口部付近の水蒸気分圧によって前記燃料電池の温度を制御することを最も主要な特徴とする。   The present invention provides a fuel cell temperature control method in which water is supplied together with a reaction gas to an electrode of a fuel cell, the water is cooled by latent heat of vaporization of the water, and the reaction gas is humidified by the water vapor. The most important feature is that the temperature of the fuel cell is controlled by the water vapor partial pressure in the vicinity of the reaction gas outlet where the cell reaction gas flows out.

本発明によれば、燃料電池の反応ガスが排出される反応ガス出口部付近の水蒸気分圧によって燃料電池の温度を制御するようにしたため、水蒸気分圧が、燃料電池を温度制御する際の目標温度における飽和水蒸気圧になるよう制御することで、燃料電池の温度を目標温度となるよう適正に制御することができる。   According to the present invention, since the temperature of the fuel cell is controlled by the water vapor partial pressure in the vicinity of the reaction gas outlet from which the reaction gas of the fuel cell is discharged, the target when the water vapor partial pressure controls the temperature of the fuel cell. By controlling so as to reach the saturated water vapor pressure at the temperature, the temperature of the fuel cell can be appropriately controlled so as to become the target temperature.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態に係わる燃料電池の温度制御装置を含む燃料電池システム全体の構成図である。燃料電池1は、高分子固体電解質膜3の両側に、カソード極5およびアノード極7をそれぞれ設けた膜電極接合体(MEA)を備えている。実際には、図2に断面図として示すように、一つの電池セル9が、高分子固体電解質膜3を挟持するようにその両面に位置するカソード極5およびアノード極7の外側に、電池セル9相互間の隔壁を成すバイポーラプレート11,13を備えており、通常は、この電池セル9を複数積層することで燃料電池スタックを構成している。   FIG. 1 is a configuration diagram of an entire fuel cell system including a temperature control device for a fuel cell according to a first embodiment of the present invention. The fuel cell 1 includes a membrane electrode assembly (MEA) in which a cathode electrode 5 and an anode electrode 7 are provided on both sides of a polymer solid electrolyte membrane 3. Actually, as shown in a cross-sectional view in FIG. 2, one battery cell 9 is placed outside the cathode electrode 5 and the anode electrode 7 positioned on both sides of the polymer solid electrolyte membrane 3 so as to sandwich the polymer cell 3. Bipolar plates 11 and 13 that form a partition wall between the nine are provided, and a fuel cell stack is usually configured by laminating a plurality of battery cells 9.

高分子固体電解質膜3は、フッ素系樹脂などの固体高分子材料により、プロトン伝導性の膜として形成している。この高分子固体電解質膜3の両面のカソード極5およびアノード極7は、白金または、白金とその他の金属とからなる触媒を担持するカーボン微粒子を塗布したカーボンクロス、またはカーボンペーパからなり、触媒の存在する塗布面が高分子固体電解質膜3と接触している。   The polymer solid electrolyte membrane 3 is formed as a proton conductive membrane from a solid polymer material such as a fluorine-based resin. The cathode electrode 5 and the anode electrode 7 on both surfaces of the solid polymer electrolyte membrane 3 are made of platinum, carbon cloth coated with carbon fine particles carrying a catalyst made of platinum and other metals, or carbon paper. The existing coated surface is in contact with the polymer solid electrolyte membrane 3.

バイポーラプレート11,13は、ガス不透過である緻密性カーボン材で構成している。一方のバイポーラプレート11は、カソード極5に対向する面に、反応ガスである酸素を含む空気が流通する空気流路11aを形成している。他方のバイポーラプレート13は、アノード極7に対向する面に、燃料ガスとして水素が流通する水素流路13aを形成している。   The bipolar plates 11 and 13 are made of a dense carbon material that is impermeable to gas. One bipolar plate 11 has an air flow path 11 a through which air containing oxygen as a reaction gas flows on the surface facing the cathode electrode 5. The other bipolar plate 13 forms a hydrogen flow path 13a through which hydrogen flows as fuel gas on the surface facing the anode electrode 7.

上記したような燃料電池1に対し、カソード極5には、反応ガス供給手段としての空気ブロア15により空気供給通路17を通して空気を圧送し、アノード極7には、水素タンク19から、水素供給通路21に設けた水素圧力調整弁23およびエジェクタ25を通して水素を導入する。   In the fuel cell 1 as described above, air is pumped to the cathode electrode 5 through the air supply passage 17 by the air blower 15 as a reaction gas supply means, and the hydrogen supply passage from the hydrogen tank 19 to the anode electrode 7. Hydrogen is introduced through a hydrogen pressure regulating valve 23 and an ejector 25 provided at 21.

空気および水素の供給を受けて発電する燃料電池1は、カソード極5から排出される空気を、空気排出通路27に設けた空気圧力センサ28,温度検出手段としての空気温度センサ29および圧力調整手段としての空気圧力調整弁31を通して外部に放出し、またアノード極7から排出される余剰の水素を、水素循環通路33に流出させてエジェクタ25により吸引して再度アノード極7に供給する。   The fuel cell 1 that generates electric power by receiving supply of air and hydrogen uses air pressure sensor 28 provided in the air discharge passage 27, air temperature sensor 29 as temperature detecting means, and pressure adjusting means for discharging air discharged from the cathode electrode 5. The excess hydrogen discharged from the air pressure adjusting valve 31 and discharged from the anode electrode 7 flows out to the hydrogen circulation passage 33 and is sucked by the ejector 25 and supplied to the anode electrode 7 again.

燃料電池1を蒸発潜熱により冷却しかつ反応ガス(ここでは空気)を蒸気により加湿するための水35は、水タンク37から、水配管39に設けた水ポンプ41で圧送し、水圧力調整弁43を通してカソード極5に、前記した空気とともに供給する。   Water 35 for cooling the fuel cell 1 with latent heat of vaporization and humidifying the reaction gas (air in this case) with steam is pumped from a water tank 37 by a water pump 41 provided in a water pipe 39, and a water pressure adjusting valve. 43 is supplied to the cathode 5 together with the air described above.

また、制御手段としてのコントローラ45は、上記した空気圧力センサ28や空気温度センサ29の検出信号を取り込み、空気ブロア15,空気圧力調整弁31,水素圧力調整弁23,水ポンプ41,水圧力調整弁43に対する駆動制御を行って燃料電池1の温度制御を行う。   The controller 45 as control means takes in the detection signals of the air pressure sensor 28 and the air temperature sensor 29 described above, and the air blower 15, air pressure adjustment valve 31, hydrogen pressure adjustment valve 23, water pump 41, water pressure adjustment. The drive control for the valve 43 is performed to control the temperature of the fuel cell 1.

上記した構成の燃料電池1においては、カソード極5に空気を、アノード極7に水素をそれぞれ供給して発電し、また発電とともに発熱する。その際、カソード極5に水35を供給することで、水の蒸発潜熱によって燃料電池1を冷却すると同時に、蒸発した水蒸気によって反応ガスである空気を加湿する。   In the fuel cell 1 having the above-described configuration, air is supplied to the cathode electrode 5 and hydrogen is supplied to the anode electrode 7 to generate electric power, and heat is generated together with power generation. At this time, by supplying water 35 to the cathode electrode 5, the fuel cell 1 is cooled by the latent heat of vaporization of the water, and at the same time, air as the reaction gas is humidified by the evaporated water vapor.

燃料電池1を冷却することで高温化を抑える一方、空気を加湿することで高分子固体電解質膜3のイオン伝導度を維持し、これにより燃料電池1は安定した運転が可能となる。   While cooling the fuel cell 1 suppresses the increase in temperature, the ionic conductivity of the polymer solid electrolyte membrane 3 is maintained by humidifying the air, whereby the fuel cell 1 can be stably operated.

次に、本発明における水蒸気分圧を利用した燃料電池の温度制御について説明する。   Next, temperature control of the fuel cell using the water vapor partial pressure in the present invention will be described.

次式(1)は、カソード極5に供給した水35の燃料電池1内で蒸発する水蒸気量NH2O,evpを求める式である。 The following equation (1) is an equation for determining the amount of water vapor N H2O, evp evaporated in the fuel cell 1 of the water 35 supplied to the cathode electrode 5.

H2O,evp=Heat/L……(1)
燃料電池1の発熱量Heatを水の蒸発潜熱Lで除することで、燃料電池1内で蒸発する水蒸気量NH2O,evpが求まる。厳密には、発熱量Heatの一部は非凝縮性ガス(空気中に含まれる窒素など)にも伝熱されるが、大まかには上記の式(1)で予測できる。
N H2O, evp = Heat / L (1)
By dividing the heat value Heat of the fuel cell 1 by the latent heat L of water evaporation, the amount of water vapor N H2O, evp evaporated in the fuel cell 1 is obtained. Strictly speaking, a part of the heat generation amount Heat is also transferred to a non-condensable gas (such as nitrogen contained in the air), but can be roughly predicted by the above equation (1).

なお、発熱量Heatの算出については、以下のようにして行う。燃料電池1における一つの電池セル9の発生電圧を、該電池セル9固有の定格電圧(1.25V:電圧換算した発熱量に相当)で割った数値が燃料電池1の発電効率ηになるので、その効率ηと発電量Pから、以下のようになる。   The calculation of the heat generation amount Heat is performed as follows. Since the numerical value obtained by dividing the generated voltage of one battery cell 9 in the fuel cell 1 by the rated voltage (1.25 V: equivalent to the calorific value converted to voltage) specific to the battery cell 9 is the power generation efficiency η of the fuel cell 1 From the efficiency η and the power generation amount P, the following is obtained.

Heat=P(1/η−1)
つまり、水素の持つエネルギと発電量との差分が発熱量Heatとなる。
Heat = P (1 / η−1)
That is, the difference between the energy of hydrogen and the power generation amount is the heat generation amount Heat.

なお、上記式での発熱量Heatの算出は、簡易的な方法であり、実際にはカソードガス(空気)の顕熱の影響を考慮する必要がある。   Note that the calculation of the heat generation amount Heat in the above formula is a simple method, and it is actually necessary to consider the influence of the sensible heat of the cathode gas (air).

また、次式(2)は、カソード極5の空気排出通路27への空気出口部での水蒸気量NH2Oを求める式である。 Further, the following equation (2) is an equation for obtaining the water vapor amount N H2O at the air outlet to the air discharge passage 27 of the cathode electrode 5.

H2O=NH2O,evp+NH2O,gen……(2)
この水蒸気量NH2Oは、前記した燃料電池1内の水蒸気量NH2O,evpに、燃料電池1の発電で生じた生成水(蒸気)量NH2O,genを加えたものである。厳密には、燃料電池1内で蒸発する水蒸気量NH2O,evpの一部は、高分子固体電解質膜3を透過してアノード極7に流れるが、大まかには上記の式(2)で予測できる。
N H2O = N H2O, evp + N H2O, gen (2)
This water vapor amount N H2O is obtained by adding the generated water (steam) amount N H2O, gen generated by power generation of the fuel cell 1 to the water vapor amount N H2O, evp in the fuel cell 1 described above. Strictly speaking, a part of the amount of water vapor N H2O, evp that evaporates in the fuel cell 1 passes through the polymer solid electrolyte membrane 3 and flows to the anode electrode 7, but is roughly predicted by the above equation (2). it can.

なお、生成水量NH2O,genは、燃料電池1で消費された水素量と同じなので、この消費水素量から求めることができる。もしくは、電池セル9の個数nと電流値Iとファラディ定数Fから、以下の式で求めることができる。 Note that the generated water amount N H2O, gen is the same as the amount of hydrogen consumed in the fuel cell 1, and therefore can be obtained from this consumed hydrogen amount. Alternatively, it can be obtained from the number n of battery cells 9, the current value I, and the Faraday constant F by the following formula.

H2O,gen=nI/2F
次式(3)は、カソード極5から空気排出通路27への空気出口部での水蒸気分圧PH2Oを求める式である。
N H2O, gen = nI / 2F
The following equation (3) is an equation for obtaining the water vapor partial pressure P H2O at the air outlet portion from the cathode electrode 5 to the air discharge passage 27.

H2O={(NH2O/(NH2O+Ndry))×P=Psat(Tset)……(3)
水蒸気分圧PH2Oは、空気排出通路27に排出される空気中の水蒸気分率(NH2O/(NH2O+Ndry)に、空気圧力センサ28で検出したガス圧力Pを乗じて求める。なお、Ndryは排出空気中の非凝縮性ガスの量である。
P H2O = {(N H2O / (N H2O + N dry )) × P = P sat (Tset) (3)
The water vapor partial pressure P H2O is obtained by multiplying the water vapor fraction (N H2O / (N H2O + N dry ) in the air discharged into the air discharge passage 27 by the gas pressure P detected by the air pressure sensor 28. N dry is the amount of non-condensable gas in the exhaust air.

図3は、燃料電池1の目標とする温度Tsetにおける飽和水蒸気圧Psat(Tset)[Pa]と、燃料電池1の温度[K]との関係を示す図で、この関係のマップを、前記したコントローラ45が内蔵するメモリに格納しており、上記した飽和水蒸気圧Psat(Tset)となるように、水蒸気分圧PH2Oを調整する。 FIG. 3 is a diagram showing the relationship between the saturated water vapor pressure P sat (Tset) [Pa] at the target temperature Tset of the fuel cell 1 and the temperature [K] of the fuel cell 1. The water vapor partial pressure P H2O is adjusted so that the saturated water vapor pressure P sat (Tset) is stored.

次に動作を説明する。燃料電池1の目標温度Tsetに該当する飽和水蒸気圧Psat(Tset)を、図3のマップよりコントローラ45が算出する。一方で、コントローラ45は、燃料電池1の出口水蒸気量NH2Oを、前記した式(1)および(2)から算出する。 Next, the operation will be described. The controller 45 calculates a saturated water vapor pressure P sat (Tset) corresponding to the target temperature Tset of the fuel cell 1 from the map of FIG. On the other hand, the controller 45 calculates the outlet water vapor amount N H2O of the fuel cell 1 from the above formulas (1) and (2).

続いてコントローラ45は、前記した式(3)の関係が成り立つように、つまり式(3)での非凝縮性ガス量Ndryと出口ガス圧力Pとの関係が成り立つように、空気ブロア15と空気圧力調整弁31を駆動制御する。 Subsequently, the controller 45 sets the air blower 15 and the air blower 15 so that the relationship of the above-described equation (3) is established, that is, the relationship between the non-condensable gas amount N dry and the outlet gas pressure P in the equation (3) is established. The air pressure adjustment valve 31 is driven and controlled.

そして、このようにして決定したカソード極5の出口ガス圧力Pに追随するように、コントローラ45は、水圧力調整弁43により水の圧力を、水素圧力調整弁23によりアノード極7の圧力をそれぞれ制御する。   Then, the controller 45 adjusts the water pressure by the water pressure adjusting valve 43 and the pressure of the anode 7 by the hydrogen pressure adjusting valve 23 so as to follow the outlet gas pressure P of the cathode electrode 5 determined in this way. Control.

図4は、上記のようにして目標温度Tsetに対応する水蒸気分圧PH2Oを算出したコントローラ45が、制御する燃料電池1の温度となる空気温度センサ29の検出値を参照してフィードバック制御する際のフローチャートである。 In FIG. 4, the controller 45 that calculates the water vapor partial pressure P H2O corresponding to the target temperature Tset as described above performs feedback control with reference to the detection value of the air temperature sensor 29 that is the temperature of the fuel cell 1 to be controlled. It is a flowchart at the time.

まず、目標温度Tsetと空気温度センサ29の検出温度Tsenとの差が、閾値ε以下か否かを判断し(ステップ101)、閾値εを超える場合(ステップ101でNO)には、検出温度Tsenが目標温度Tsetより低いか否かを判断する(ステップ103)。   First, it is determined whether or not the difference between the target temperature Tset and the detected temperature Tsen of the air temperature sensor 29 is less than or equal to the threshold ε (step 101). If the difference exceeds the threshold ε (NO in step 101), the detected temperature Tsen is determined. Is determined to be lower than the target temperature Tset (step 103).

ここで、検出温度Tsenが目標温度Tsetより低い場合(ステップ103でYES)には、非凝縮性ガス(反応ガスである空気)の流量を減らすように空気ブロア15を駆動制御する(ステップ105)。非凝縮性ガスの流量を減らすことで、水の気化潜熱による燃料電池1に対する冷却作用を抑える。逆に、検出温度Tsenが目標温度Tset以上の場合(ステップ103でNO)には、非凝縮性ガス(反応ガス)の流量を増やすように空気ブロア15を駆動制御する。非凝縮性ガスの流量を増やすことで、水の気化潜熱による燃料電池1に対する冷却作用を増大させる。   Here, when the detected temperature Tsen is lower than the target temperature Tset (YES in step 103), the air blower 15 is driven and controlled to reduce the flow rate of the non-condensable gas (reaction gas, air) (step 105). . By reducing the flow rate of the non-condensable gas, the cooling action on the fuel cell 1 due to the latent heat of vaporization of water is suppressed. Conversely, when the detected temperature Tsen is equal to or higher than the target temperature Tset (NO in step 103), the air blower 15 is driven and controlled to increase the flow rate of the non-condensable gas (reactive gas). By increasing the flow rate of the non-condensable gas, the cooling action on the fuel cell 1 due to the latent heat of vaporization of water is increased.

すなわち、燃料電池1の定常運転時では発熱量が固定しているので、蒸発量が殆ど変化せず、このため非凝縮性ガスの量を増やすと、水蒸気分圧が下がる。特に過渡運転状態では、非凝縮性ガスの量を増やすと、その温度の飽和水蒸気圧を維持しようと非凝縮性ガス量を増加させる前よりも、蒸発量が増える。蒸発量が増えるということは、今まで、発熱量と蒸発量(冷却量)とが釣り合っていた状態が、冷却量が発熱量を上回る状態となり、これにより冷却が進み温度が下がる。つまり、蒸発量が発熱量にバランスする温度に収まることとなる。   That is, since the amount of heat generated is fixed during steady operation of the fuel cell 1, the amount of evaporation hardly changes. For this reason, if the amount of non-condensable gas is increased, the partial pressure of water vapor decreases. In particular, in a transient operation state, increasing the amount of noncondensable gas increases the amount of evaporation compared to before increasing the amount of noncondensable gas so as to maintain the saturated water vapor pressure at that temperature. An increase in the amount of evaporation means that the state in which the amount of heat generation and the amount of evaporation (cooling amount) have been balanced so far becomes a state in which the amount of cooling exceeds the amount of heat generation, thereby cooling proceeds and the temperature decreases. That is, the evaporation amount falls within a temperature that balances the heat generation amount.

前記ステップ101で、目標温度Tsetと検出温度Tsenとの差が、閾値ε以下の場合(ステップ101でYES)には、非凝縮性ガスの流量の増減制御は実施しない。   If the difference between the target temperature Tset and the detected temperature Tsen is not more than the threshold value ε in step 101 (YES in step 101), the increase / decrease control of the flow rate of the non-condensable gas is not performed.

これにより、空気温度センサ29の検出温度Tsenと目標温度Tsetとの差が閾値ε以下になるように制御できる。   As a result, the difference between the detected temperature Tsen of the air temperature sensor 29 and the target temperature Tset can be controlled to be equal to or less than the threshold ε.

このように、本実施形態によれば、燃料電池1の反応ガスである空気が流出する反応ガス(空気)出口部付近の水蒸気分圧によって燃料電池1の温度を制御しており、この際水蒸気分圧が、燃料電池1を温度制御する際の目標温度Tsetでの飽和水蒸気圧Psat(Tset)になるよう制御することで、燃料電池1の温度を目標温度Tsetとなるよう適正に制御することができ、安定した運転を確保することができる。 As described above, according to the present embodiment, the temperature of the fuel cell 1 is controlled by the water vapor partial pressure in the vicinity of the outlet portion of the reaction gas (air) from which the air that is the reaction gas of the fuel cell 1 flows out. By controlling the partial pressure to be the saturated water vapor pressure P sat (Tset) at the target temperature Tset when the temperature of the fuel cell 1 is controlled, the temperature of the fuel cell 1 is appropriately controlled to become the target temperature Tset. And stable operation can be ensured.

また、本実施形態によれば、前記した水蒸気分圧を、燃料電池1の反応ガス(空気)流量を変化させることで変化させている。ここで、燃料電池1の反応ガス出口におけるガスの水蒸気分圧PH2Oは、前記した式(3)で示したように、燃料電池1の反応ガス出口における水蒸気量NH2O、非凝縮性のガスの量Ndry、ガス圧力Pによって決まるので、燃料電池1の反応ガス出口における非凝縮性のガス(反応ガス)の量Ndryを制御することにより、燃料電池1の温度を目標温度Tsetに制御できる。 Further, according to the present embodiment, the water vapor partial pressure is changed by changing the flow rate of the reaction gas (air) of the fuel cell 1. Here, the water vapor partial pressure P H2O of the gas at the reaction gas outlet of the fuel cell 1 is equal to the amount of water vapor N H2O at the reaction gas outlet of the fuel cell 1, as shown in the above equation (3). Since the amount N dry is determined by the gas pressure P, the temperature N of the fuel cell 1 is controlled to the target temperature Tset by controlling the amount N dry of the non-condensable gas (reaction gas) at the reaction gas outlet of the fuel cell 1. it can.

また、本実施形態では、前記制御する燃料電池1の温度を、反応ガス出口付近としている。フィードバック系制御を組む場合の参照温度をとる場合、最高温度と予測される燃料電池セル9内の部位である固体高分子電解質膜3とすることが望ましく、この際上記した反応ガス出口付近の温度は、高分子固体電解質膜3に極めて近いことから、より精度よくの燃料電池1の最高温度を制御できるという利点がある。   Further, in the present embodiment, the temperature of the fuel cell 1 to be controlled is set near the reaction gas outlet. When taking a reference temperature in the case of feedback system control, it is desirable to use the solid polymer electrolyte membrane 3 which is a portion in the fuel cell 9 that is predicted to be the maximum temperature. Is extremely close to the polymer solid electrolyte membrane 3, and therefore has the advantage that the maximum temperature of the fuel cell 1 can be controlled more accurately.

この際、本実施形態では、前記制御する燃料電池1の温度を、燃料電池1から流出するガス流量が多いほうの反応ガスである空気の出口温度としている。フィードバック系制御を組む場合の参照温度をとる場合、反応ガス流量の多いほうのガス出口温度が、燃料電池1の最高ガス温度となるので、燃料電池1の最高温度をより的確に制御できる。これは、反応ガス流量の多い空気側のほうが、少ない水素側より熱量の収支が大きく、温度変化がより明確となることによる。   At this time, in the present embodiment, the temperature of the fuel cell 1 to be controlled is set as the outlet temperature of air that is the reaction gas having the larger gas flow rate flowing out of the fuel cell 1. When taking the reference temperature when the feedback system control is set, the gas outlet temperature with the larger reaction gas flow rate becomes the maximum gas temperature of the fuel cell 1, so that the maximum temperature of the fuel cell 1 can be controlled more accurately. This is because the amount of heat is larger on the air side where the reaction gas flow rate is larger than on the hydrogen side where the reaction gas flow rate is smaller, and the temperature change becomes clearer.

本発明の第2の実施形態として、上記第1の実施形態における非凝縮性のガス(反応ガス)の量を制御する代わりに、燃料電池1の反応ガス圧力である、前記式(3)における出口ガス圧力Pを制御する。これにより、第1の実施形態と同様に、燃料電池1の温度を目標温度Tsetに制御できる。   As a second embodiment of the present invention, instead of controlling the amount of non-condensable gas (reactive gas) in the first embodiment, the reaction gas pressure of the fuel cell 1 is expressed by the above equation (3). The outlet gas pressure P is controlled. Thereby, the temperature of the fuel cell 1 can be controlled to the target temperature Tset as in the first embodiment.

なお、第3の実施形態として、前記した水蒸気分圧を、第1の実施形態における非凝縮性のガス(反応ガス)の量Ndryを制御するとともに、燃料電池1の反応ガス圧力である出口ガス圧力Pを制御することで、変化させるようにしてもよい。反応ガス流量、反応ガス圧力を変化させると、反応ガスの圧力損失も変化するため、反応ガス出口の流量と圧力の一方を制御しただけでは、入口の圧力も変化してしまうが、圧力と流量を同時に制御することにより、燃料電池1の温度を目標温度Tsetに制御する際に、入口の圧力変化を抑えることができる。入口の圧力変化を抑えることで、空気ブロア15の消費電力を安定化させるなどにより、結果として燃料電池1の発電効率を高めることができる。 In the third embodiment, the water vapor partial pressure described above controls the amount N dry of the non-condensable gas (reactive gas) in the first embodiment, and the outlet which is the reactive gas pressure of the fuel cell 1. It may be changed by controlling the gas pressure P. When the reaction gas flow rate and reaction gas pressure are changed, the pressure loss of the reaction gas also changes. Therefore, just controlling one of the reaction gas outlet flow rate and pressure changes the inlet pressure. Are controlled simultaneously, the pressure change at the inlet can be suppressed when the temperature of the fuel cell 1 is controlled to the target temperature Tset. By suppressing the pressure change at the inlet, the power generation efficiency of the fuel cell 1 can be increased as a result, for example, by stabilizing the power consumption of the air blower 15.

本発明の第4の実施形態として、カソード極5に供給した水の排出口を、図1における反応ガスである空気の出口付近とし、前記制御する燃料電池1の温度を、前記水の排出口温度とする。   As a fourth embodiment of the present invention, the outlet of the water supplied to the cathode 5 is set near the outlet of the air as the reaction gas in FIG. 1, and the temperature of the fuel cell 1 to be controlled is set as the outlet of the water. Let it be temperature.

図5は、空気流路11aを表面に備えるバイポーラプレート11を平面図として示しており、図5中の左側端部にて紙面に直交する方向、すなわち燃料電池1の各構成部品の積層方向に沿って、燃料電池1を貫通する反応ガス入口となる空気入口マニホールド47を設け、同右側端部にて紙面に直交する方向に沿って、燃料電池1を貫通する反応ガス出口となる空気出口マニホールド49を設け、これら各空気入口,出口マニホールド47,49相互を、前記した空気流路11aにより連通している。   FIG. 5 shows a plan view of the bipolar plate 11 provided with the air flow path 11a on the surface thereof, in the direction perpendicular to the paper surface at the left end in FIG. 5, that is, in the stacking direction of each component of the fuel cell 1. Along with this, an air inlet manifold 47 serving as a reaction gas inlet penetrating the fuel cell 1 is provided, and an air outlet manifold serving as a reaction gas outlet penetrating the fuel cell 1 along the direction perpendicular to the paper surface at the right end portion. 49, and the air inlet / outlet manifolds 47 and 49 communicate with each other through the air flow path 11a.

すなわち、上記した空気入口マニホールド47を流れる空気が、前記図2に示した各電池セル9の空気流路11aにそれぞれ分配供給される。   That is, the air flowing through the air inlet manifold 47 is distributed and supplied to the air flow paths 11a of the battery cells 9 shown in FIG.

同様にして、上記した空気入口,出口マニホールド47,49にそれぞれ隣接して、水素入口,出口マニホールド51,53を、図5中の紙面に直交する方向に貫通して設けている。そして、この水素においても、上記した空気と同様に、各電池セル9の水素流路13aに分配供給される。   Similarly, hydrogen inlet and outlet manifolds 51 and 53 are provided adjacent to the air inlet and outlet manifolds 47 and 49, respectively, penetrating in the direction perpendicular to the paper surface in FIG. And this hydrogen is also distributed and supplied to the hydrogen flow path 13a of each battery cell 9 like the above-mentioned air.

そして、本実施形態では、上記した空気出口マニホールド49における鉛直方向下方位置を、図5中で紙面に直交する方向に貫通する水の排出口となる水排出マニホールド55とし、この水排出マニホールド55に、水排出通路57を接続する。水排出通路57には開閉弁59を設け、排出した水は前記図1に示してある水タンク37に戻す。   In the present embodiment, the vertically downward position of the air outlet manifold 49 is a water discharge manifold 55 that serves as a water discharge port penetrating in a direction perpendicular to the paper surface in FIG. The water discharge passage 57 is connected. The water discharge passage 57 is provided with an opening / closing valve 59, and the discharged water is returned to the water tank 37 shown in FIG.

本実施形態によれば、フィードバック系制御を組む場合の参照温度をとる場合、水排出通路57を反応ガス流量の多いほうの反応ガス出口に近接させることにより、水の温度もそのガス温度にほぼ等しくなり、水温度を参照することにより燃料電池1の最高温度を制御できる。この際、水はガスより熱容量が大きいため、ガスを対象とするよりも水を対象とした方が、温度計測が容易になるという利点がある。   According to the present embodiment, when taking the reference temperature when the feedback system control is set, the water discharge passage 57 is brought close to the reaction gas outlet having the larger flow rate of the reaction gas, so that the temperature of the water is substantially equal to the gas temperature. The maximum temperature of the fuel cell 1 can be controlled by referring to the water temperature. At this time, since water has a larger heat capacity than gas, there is an advantage that temperature measurement is easier when water is used than when gas is used.

なお、本発明の前記した実施形態では、温度算出の手立てとして、式(1)〜(3)および図5のマップを利用しているが、当然ながら、上記の式およびマップに加え、顕熱を含めた算出手段を利用してもよい。   In the above-described embodiment of the present invention, the formulas (1) to (3) and the map of FIG. 5 are used as a means for calculating the temperature. Of course, in addition to the above formula and map, sensible heat is used. You may use the calculation means including.

また、前記した実施形態では水の供給手段として、水ポンプ41を利用しているが、当然ながら他の圧力源の利用を排除するものではない。   In the above-described embodiment, the water pump 41 is used as the water supply means. However, as a matter of course, the use of other pressure sources is not excluded.

また、前記した実施形態では、緻密性のバイポーラプレートに気液2相流として水を供給しているが、多孔性のバイポーラプレートから水を供給する方式を排除するものではない。   In the embodiment described above, water is supplied to the dense bipolar plate as a gas-liquid two-phase flow, but this does not exclude the method of supplying water from the porous bipolar plate.

さらに、前記した実施形態では、カソード極5に空気とともに水を供給する例を示しているが、これは非凝縮性ガスの流量が一般にカソードの方が大きいためであり、当然ながら非凝縮性ガスの流量がアノード側で大きい場合には、アノード極7に、水素とともに水を供給することになる。   Furthermore, in the above-described embodiment, an example is shown in which water is supplied to the cathode electrode 5 together with air. This is because the flow rate of the non-condensable gas is generally larger at the cathode, and of course the non-condensable gas. Is large on the anode side, water is supplied to the anode electrode 7 together with hydrogen.

本発明の第1の実施形態に係わる燃料電池の温度制御装置を含む燃料電池システム全体の構成図である。1 is a configuration diagram of an entire fuel cell system including a temperature control device for a fuel cell according to a first embodiment of the present invention. 燃料電池における電池セル1個分の断面図である。It is sectional drawing for one battery cell in a fuel cell. 燃料電池の目標温度における飽和水蒸気圧と燃料電池の温度との相関図である。It is a correlation diagram of the saturated water vapor pressure in the target temperature of a fuel cell, and the temperature of a fuel cell. 燃料電池の温度となる空気温度センサの検出値を参照してフィードバック制御する際のフローチャートである。It is a flowchart at the time of performing feedback control with reference to the detection value of the air temperature sensor used as the temperature of a fuel cell. 空気流路を表面に備えるバイポーラプレートの平面図である。It is a top view of the bipolar plate which equips the surface with an air flow path.

符号の説明Explanation of symbols

1 燃料電池
5 カソード極(燃料電池の電極)
7 アノード極(燃料電池の電極)
15 空気ブロア(反応ガス供給手段)
29 空気温度センサ(温度検出手段)
31 空気圧力調整弁(圧力調整手段)
35 水
55 水排出マニホールド(水の排出口)
1 Fuel cell 5 Cathode electrode (fuel cell electrode)
7 Anode electrode (fuel cell electrode)
15 Air blower (reaction gas supply means)
29 Air temperature sensor (temperature detection means)
31 Air pressure adjusting valve (pressure adjusting means)
35 Water 55 Water discharge manifold (water discharge port)

Claims (10)

燃料電池の電極に反応ガスとともに水を供給し、前記水の気化潜熱により冷却を行うとともに、前記水の蒸気により前記反応ガスの加湿を行う燃料電池の温度制御方法において、前記燃料電池の反応ガスが流出する反応ガス出口部付近の水蒸気分圧によって前記燃料電池の温度を制御することを特徴とする燃料電池の温度制御方法。   In the fuel cell temperature control method, water is supplied to the electrode of the fuel cell together with the reaction gas, the water is cooled by latent heat of vaporization of the water, and the reaction gas is humidified by the water vapor. A temperature control method for a fuel cell, wherein the temperature of the fuel cell is controlled by a water vapor partial pressure in the vicinity of a reaction gas outlet where gas flows out. 前記水蒸気分圧を、前記反応ガスの流量を変化させることで変化させることを特徴とする請求項1に記載の燃料電池の温度制御方法。   2. The temperature control method for a fuel cell according to claim 1, wherein the water vapor partial pressure is changed by changing a flow rate of the reaction gas. 3. 前記水蒸気分圧を、前記反応ガスの圧力を変化させることで変化させることを特徴とする請求項1または2に記載の燃料電池の温度制御方法。   3. The temperature control method for a fuel cell according to claim 1, wherein the water vapor partial pressure is changed by changing a pressure of the reaction gas. 前記制御する燃料電池の温度は、前記反応ガスの出口温度とすることを特徴とする請求項1ないし3のいずれか1項に記載の燃料電池の温度制御方法。   The temperature control method of a fuel cell according to any one of claims 1 to 3, wherein the temperature of the fuel cell to be controlled is an outlet temperature of the reaction gas. 前記制御する燃料電池の温度は、燃料電池から流出するガス流量が多いほうの反応ガスの出口温度とすることを特徴とする請求項4に記載の燃料電池の温度制御方法。   The temperature control method for a fuel cell according to claim 4, wherein the temperature of the fuel cell to be controlled is an outlet temperature of a reaction gas having a larger flow rate of gas flowing out of the fuel cell. 前記反応ガスとともに水を供給した電極からの反応ガス出口付近に、水の排出口を設け、前記制御する燃料電池の温度は、前記水の排出口温度とすることを特徴とする請求項1ないし3のいずれか1項に記載の燃料電池の温度制御方法。   2. A water discharge port is provided in the vicinity of a reaction gas outlet from an electrode supplied with water together with the reaction gas, and the temperature of the fuel cell to be controlled is set to the water discharge port temperature. 4. The temperature control method for a fuel cell according to any one of 3 above. 燃料電池の電極に反応ガスとともに水を供給し、前記水の気化潜熱により冷却を行うとともに、前記水の蒸気により前記反応ガスの加湿を行う燃料電池の温度制御装置において、前記燃料電池の反応ガスが流出する反応ガス出口部付近の水蒸気分圧を変化させることで、前記燃料電池の温度を制御する制御手段を設けたことを特徴とする燃料電池の温度制御装置。   In the fuel cell temperature control apparatus, water is supplied to the electrode of the fuel cell together with the reaction gas, cooling is performed by the latent heat of vaporization of the water, and the reaction gas is humidified by the vapor of the water. A temperature control device for a fuel cell, comprising a control means for controlling the temperature of the fuel cell by changing a partial pressure of water vapor in the vicinity of a reaction gas outlet where gas flows out. 前記制御手段は、前記反応ガスを前記燃料電池の電極に供給する反応ガス供給手段の駆動を制御することで、前記反応ガスの流量を変化させ、前記反応ガス出口部付近の水蒸気分圧を変化させることを特徴とする請求項7に記載の燃料電池の温度制御装置。   The control means controls the driving of the reaction gas supply means for supplying the reaction gas to the electrode of the fuel cell, thereby changing the flow rate of the reaction gas and changing the water vapor partial pressure near the reaction gas outlet. The temperature control device for a fuel cell according to claim 7, wherein 前記制御手段は、前記反応ガスの出口圧力を変化させる圧力調整手段を駆動制御することで、前記反応ガス出口部付近の水蒸気分圧を変化させることを特徴とする請求項7または8に記載の燃料電池の温度制御装置。   The said control means changes the water vapor partial pressure of the said reaction gas exit part vicinity by drive-controlling the pressure adjustment means which changes the exit pressure of the said reaction gas, The Claim 7 or 8 characterized by the above-mentioned. Fuel cell temperature control device. 前記反応ガス出口部付近に反応ガスの温度を検出する温度検出手段を設け、前記制御手段は、前記温度検出手段の検出温度と目標とする燃料電池の温度とを比較して、前記燃料電池の温度を制御することを特徴とする請求項7ないし9のいずれか1項に記載の燃料電池の温度制御装置。   Temperature detection means for detecting the temperature of the reaction gas is provided in the vicinity of the reaction gas outlet, and the control means compares the detected temperature of the temperature detection means with the target fuel cell temperature, The temperature control device for a fuel cell according to any one of claims 7 to 9, wherein the temperature is controlled.
JP2006170625A 2006-06-20 2006-06-20 Temperature control method and temperature control device for fuel cell Expired - Fee Related JP5352944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006170625A JP5352944B2 (en) 2006-06-20 2006-06-20 Temperature control method and temperature control device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006170625A JP5352944B2 (en) 2006-06-20 2006-06-20 Temperature control method and temperature control device for fuel cell

Publications (2)

Publication Number Publication Date
JP2008004310A true JP2008004310A (en) 2008-01-10
JP5352944B2 JP5352944B2 (en) 2013-11-27

Family

ID=39008536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006170625A Expired - Fee Related JP5352944B2 (en) 2006-06-20 2006-06-20 Temperature control method and temperature control device for fuel cell

Country Status (1)

Country Link
JP (1) JP5352944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049339A (en) * 2012-08-31 2014-03-17 Daihatsu Motor Co Ltd Fuel cell system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143732A (en) * 1999-11-12 2001-05-25 Toshiba Corp Solid polymer fuel cell power generating system and its operating method
JP2001210348A (en) * 1999-11-17 2001-08-03 Equos Research Co Ltd Fuel cell device
JP2001332279A (en) * 1999-11-17 2001-11-30 Equos Research Co Ltd Fuel cell device
JP2001332278A (en) * 1999-11-17 2001-11-30 Equos Research Co Ltd Fuel cell device
JP2002075417A (en) * 2000-08-29 2002-03-15 Equos Research Co Ltd Fuel cell device and power generating method
JP2002373692A (en) * 2001-04-11 2002-12-26 Denso Corp Fuel cell system
JP2004192995A (en) * 2002-12-12 2004-07-08 Equos Research Co Ltd Fuel cell device
JP2005294108A (en) * 2004-04-01 2005-10-20 Yamaha Motor Co Ltd Fuel cell system and transportation apparatus using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143732A (en) * 1999-11-12 2001-05-25 Toshiba Corp Solid polymer fuel cell power generating system and its operating method
JP2001210348A (en) * 1999-11-17 2001-08-03 Equos Research Co Ltd Fuel cell device
JP2001332279A (en) * 1999-11-17 2001-11-30 Equos Research Co Ltd Fuel cell device
JP2001332278A (en) * 1999-11-17 2001-11-30 Equos Research Co Ltd Fuel cell device
JP2002075417A (en) * 2000-08-29 2002-03-15 Equos Research Co Ltd Fuel cell device and power generating method
JP2002373692A (en) * 2001-04-11 2002-12-26 Denso Corp Fuel cell system
JP2004192995A (en) * 2002-12-12 2004-07-08 Equos Research Co Ltd Fuel cell device
JP2005294108A (en) * 2004-04-01 2005-10-20 Yamaha Motor Co Ltd Fuel cell system and transportation apparatus using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049339A (en) * 2012-08-31 2014-03-17 Daihatsu Motor Co Ltd Fuel cell system

Also Published As

Publication number Publication date
JP5352944B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP2006210004A (en) Fuel cell system
US6855442B2 (en) Fuel cell and method of operating same
JP4886170B2 (en) Fuel cell system
JP2012003981A (en) Fuel cell system
JP2013101914A (en) Fuel cell and method of operating the same
JP2017152113A (en) Low-temperature startup method of fuel cell system
JP5168859B2 (en) Fuel cell system
JP2008041505A (en) Fuel cell system and moisture content estimating device and method of fuel cell
JP4868095B1 (en) Fuel cell system
JPH11312531A (en) Fuel cell system
US7090941B2 (en) Fuel cell stack and a method of supplying reactant gases to the fuel cell stack
WO2010029729A1 (en) Fuel battery system
JP5109284B2 (en) Fuel cell system
JP5352944B2 (en) Temperature control method and temperature control device for fuel cell
CA2942629C (en) Fuel cell system with wetness control
EP2827419B1 (en) Fuel cell system
JP5947152B2 (en) Operation method of fuel cell
JP5411901B2 (en) Fuel cell system
JP5310740B2 (en) Fuel cell system
JP2006032094A (en) Fuel cell system
JP2009277620A (en) Fuel cell system
JP2011154802A (en) Fuel cell system
JP5286741B2 (en) Fuel cell system
JP2006032092A (en) Fuel cell system
JP2008226523A (en) Cooling system for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees