JP2008003231A - Scanning optical apparatus - Google Patents

Scanning optical apparatus Download PDF

Info

Publication number
JP2008003231A
JP2008003231A JP2006171491A JP2006171491A JP2008003231A JP 2008003231 A JP2008003231 A JP 2008003231A JP 2006171491 A JP2006171491 A JP 2006171491A JP 2006171491 A JP2006171491 A JP 2006171491A JP 2008003231 A JP2008003231 A JP 2008003231A
Authority
JP
Japan
Prior art keywords
deflecting device
circuit board
rotating
receiving member
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006171491A
Other languages
Japanese (ja)
Inventor
Hiroshi Murotani
拓 室谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006171491A priority Critical patent/JP2008003231A/en
Publication of JP2008003231A publication Critical patent/JP2008003231A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the tilt of a shaft caused in a primary assembly on "a motor substrate fixed only around a rotor" which is effective to a thermal shock measures. <P>SOLUTION: A through hole is provided on an optical box for inserting a tool and a motor substrate end part is supported by the inserted tool. Electric components are not mounted on the supported part of the motor substrate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、レーザビームプリンタやデジタル複写機、デジタルFAX等に使用される走査光学装置に関するものであって、更に詳しくは光源からの光ビームを偏向して被照射体上を走査する走査光学装置に関するものである。   The present invention relates to a scanning optical device used in a laser beam printer, a digital copying machine, a digital FAX, and the like, and more specifically, a scanning optical device that scans an irradiated object by deflecting a light beam from a light source. It is about.

近年光学系として用いられる走査光学装置は、より小型で低価格な構成が要求されている。この種の小型で低価格な走査光学装置として、図6に示すように偏向装置112の回路基板101を略長方形の板状にして短手方向の基板長さを回転部材であるロータ102の直径と略同等の長さまで小さくする構成が知られている。これらの走査光学装置は、光源である半導体レーザ103から発生されたレーザ光がコリメータレンズ104によって平行化され、シリンドリカルレンズ105によって偏向走査手段である回転多面鏡106の反射面に線状に集光され、結像レンズ107、108を経て、光学箱109の窓から図示しない回転ドラムに向かって取り出される。回転多面鏡106や結像レンズ107、108は筐体である光学箱109に収容され、回転多面鏡106を回転させる偏向装置112は光学箱109の底面にネジ110a,110bで止められる。   In recent years, a scanning optical device used as an optical system is required to have a smaller and lower cost configuration. As a small and low-cost scanning optical apparatus of this type, as shown in FIG. 6, the circuit board 101 of the deflecting device 112 is formed in a substantially rectangular plate shape, and the length of the board in the short direction is the diameter of the rotor 102 as a rotating member. A configuration is known in which the length is reduced to approximately the same length as the above. In these scanning optical devices, a laser beam generated from a semiconductor laser 103 as a light source is collimated by a collimator lens 104 and condensed by a cylindrical lens 105 into a linear shape on a reflection surface of a rotary polygon mirror 106 as a deflection scanning unit. Then, it passes through the imaging lenses 107 and 108 and is taken out from the window of the optical box 109 toward a rotating drum (not shown). The rotating polygon mirror 106 and the imaging lenses 107 and 108 are accommodated in an optical box 109 that is a casing, and a deflecting device 112 that rotates the rotating polygon mirror 106 is fixed to the bottom surface of the optical box 109 with screws 110 a and 110 b.

回転多面鏡106を備えた偏向装置112は、光学箱109に軸受を介して支承された回転軸111と、回転軸111と一体である座金に結合されたヨークおよびロータマグネットからなる回転部材であるロータ102と、軸受ハウジングと一体である回路基板101に固定されたステータコイル等を有する。回路基板101上の駆動回路から供給された駆動電流によってステータコイルが励磁されると、回転多面鏡106と共に高速度で回転し、前述のように回転多面鏡106に照射された光ビームを偏向走査する。   A deflecting device 112 having a rotating polygon mirror 106 is a rotating member including a rotating shaft 111 supported on an optical box 109 via a bearing, a yoke coupled to a washer integral with the rotating shaft 111, and a rotor magnet. A rotor 102 and a stator coil fixed to a circuit board 101 integral with the bearing housing are included. When the stator coil is excited by the drive current supplied from the drive circuit on the circuit board 101, it rotates at a high speed together with the rotary polygon mirror 106, and deflects and scans the light beam applied to the rotary polygon mirror 106 as described above. To do.

また、走査光学装置における偏向装置の光学箱への取り付け方法は、走査光学装置の保管環境や動作時の画像形成装置内の機内昇温、特にヒートサイクルや熱衝撃によって発生する偏向装置の回転軸の傾きを低減して、画像品質の劣化を防ぐことを目的として、偏向装置の光学箱へ取り付ける固定部を回転部材であるロータ近傍に配置し、固定部を2箇所のみ設けた構成がある。   In addition, the method of attaching the deflecting device to the optical box in the scanning optical device includes the storage environment of the scanning optical device and the temperature rise in the image forming apparatus during operation, particularly the rotating shaft of the deflecting device generated by a heat cycle or thermal shock. In order to reduce the inclination of the image and prevent the image quality from deteriorating, there is a configuration in which a fixing portion to be attached to the optical box of the deflecting device is arranged in the vicinity of the rotor which is a rotating member, and only two fixing portions are provided.

又、別の従来例としては、特許文献1をあげることが出来る。
特開2003-295099号公報
As another conventional example, Patent Document 1 can be cited.
JP2003-295099

しかしながら上述した従来の技術によれば、走査光学装置を小型化するために、偏向装置の回路基板を略長方形にして、短手方向の基板長さを回転部材であるロータの直径と略同等の長さまで小さくしているが、回路基板の大きさが小さくなると偏向装置を光学箱へ取り付ける際の姿勢が不安定になる恐れがある。更に、偏向装置の固定部を回転部材であるロータ近傍に2箇所設けた構成は、固定部間の距離が短く、偏向装置を光学箱へ取り付ける際の姿勢が不安定な状態になることが懸念される。偏向装置の姿勢が不安定になり、回路基板が傾いた状態でビスを締結することになると、ビス締結終了後も偏向装置に傾きが残り、偏向装置の回転軸および回転多面鏡の反射面に傾きを発生させて、所望のビーム形状に歪を生じさせたり、被照射体上で走査線の曲がりを発生させたりして、画像品質を悪化させることになる。   However, according to the conventional technique described above, in order to reduce the size of the scanning optical device, the circuit board of the deflecting device is made substantially rectangular, and the substrate length in the short direction is substantially equal to the diameter of the rotor that is the rotating member. Although the length is reduced, the posture when attaching the deflecting device to the optical box may become unstable if the size of the circuit board is reduced. Furthermore, the configuration in which the fixing unit of the deflecting device is provided at two locations in the vicinity of the rotor, which is a rotating member, has a short distance between the fixing units and may cause an unstable posture when the deflecting device is attached to the optical box. Is done. If the position of the deflection device becomes unstable and the screw is tightened with the circuit board tilted, the deflection device will remain tilted even after the screw has been tightened, and the rotation axis of the deflection device and the reflecting surface of the rotary polygon mirror will remain. An inclination is generated to cause a distortion in a desired beam shape, or a scanning line is bent on the irradiated body, thereby deteriorating the image quality.

そこで本発明は、上記従来技術の有する未解決の課題に鑑みてなされたものであり、略長方形の小型な偏向装置の回転基板を光学箱へ2箇所で固定する場合でも、偏向装置を光学箱へ取り付ける際の姿勢を一定にさせて、偏向装置の回転軸が傾いたまま光学箱へビスで固定されることを防止し、安定した光学特性が得られ、良好な印字精度である走査光学装置を提供することを目的とするものである。   Therefore, the present invention has been made in view of the above-mentioned unsolved problems of the prior art, and even when the rotating substrate of a substantially rectangular small-sized deflecting device is fixed to the optical box at two locations, the deflecting device is mounted on the optical box. A scanning optical device that maintains a constant posture when attached to the optical device, prevents the deflection device from being fixed to the optical box with the rotation shaft tilted, and provides stable optical characteristics and good printing accuracy. Is intended to provide.

上記目的を達成するため、本出題に係る発明は、
光源から出射された光ビームを偏向走査する回転多面鏡と、該回転多面鏡と共に回転する回転部材と、前記回転部材を駆動させるための回路基板を有した偏向装置と、該偏向装置を取り付けるための固定部を前記回転部材近傍に2箇所設けた光学箱とを有する走査光学装置において、前記光学箱は前記回転部材から離れた位置にあって、前記回路基板と対向する面に貫通穴を設けており、該貫通穴の上部に位置する前記回路基板には、電気部品や回路を実装しない非回路実装部を設けたことを特徴とする。
In order to achieve the above object, the invention according to this question is
A rotating polygon mirror that deflects and scans a light beam emitted from a light source, a rotating member that rotates together with the rotating polygon mirror, a deflecting device having a circuit board for driving the rotating member, and a mounting device for the deflecting device In the scanning optical device having an optical box provided with two fixing portions in the vicinity of the rotating member, the optical box is located away from the rotating member, and a through hole is provided on a surface facing the circuit board. The circuit board located above the through hole is provided with a non-circuit mounting portion on which no electrical component or circuit is mounted.

また、前記偏向装置を一時的に支持するための受け部材を前記貫通穴から挿入し、前記偏向装置を前記受け部材と前記固定部とによって支持した後に、前記固定部へビスで締結するとよい。   Further, a receiving member for temporarily supporting the deflection device may be inserted from the through hole, and the deflection device may be supported by the receiving member and the fixing portion, and then fastened to the fixing portion with a screw.

また、前記偏向装置は、前記非回路実装部を押圧する押圧手段と前記受け部材とによって挟み込んだ後に、前期固定部へビスで締結するとよい。   Moreover, the said deflection | deviation apparatus is good to fasten with a screw | thread to the fixed part of the previous period, after pinching | pinching with the press means and the said receiving member which press the said non-circuit mounting part.

更には、前記受け部材は、前記固定部との相対高さを調整することが可能であり、前記回転部材の傾き量を検知しつつ、前記偏向装置を前記固定部へ取り付けるとよい。   Furthermore, the receiving member can adjust the relative height to the fixed portion, and the deflection device may be attached to the fixed portion while detecting the amount of inclination of the rotating member.

以上説明したように、本発明によれば、光学箱に設けた2箇所の固定部へ偏向装置を取り付ける際に、光学箱に設けた貫通穴を通して偏向装置の受け部材を挿入することが容易にでき、2箇所で支持された偏向装置に3箇所目の支持部を新たに設けることが簡単な構成で可能となる。これによって、偏向装置の姿勢を安定させて偏向装置の回転軸が傾くことを防止することができ、被照射体上で所望のビーム形状を形成して、安定した光学特性が得られ、高精度な印字品質を得ることができる走査光学装置を提供することができるという効果が期待できる。   As described above, according to the present invention, when the deflection device is attached to two fixed portions provided in the optical box, it is easy to insert the receiving member of the deflection device through the through hole provided in the optical box. In addition, it is possible to provide a third support portion to the deflecting device supported at two locations with a simple configuration. As a result, the posture of the deflecting device can be stabilized to prevent the rotation shaft of the deflecting device from being tilted, and a desired beam shape can be formed on the irradiated object, resulting in stable optical characteristics and high accuracy. The effect that it is possible to provide a scanning optical device capable of obtaining a good print quality can be expected.

次に、本発明の詳細を実施例の記述に従って説明する。   Next, details of the present invention will be described in accordance with the description of the embodiments.

本発明の実施の形態を図に基づいて説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、その相対配置などは特に特定的な記載が無い限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。また各図の符号において、同一の符号は同一の部材を表している。   Embodiments of the present invention will be described with reference to the drawings. However, the dimensions, materials, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to those unless otherwise specified. Moreover, in the code | symbol of each figure, the same code | symbol represents the same member.

(本発明の実施形態)
図1a,図1bは、本発明の実施形態における走査光学装置について説明したものである。
(Embodiment of the present invention)
1a and 1b illustrate a scanning optical device according to an embodiment of the present invention.

光源である図示しない半導体レーザから発生された光ビームは、コリメータレンズ6によって平行化され、シリンドリカルレンズ7によって回転多面鏡1の反射面に線状に集光され、結像レンズ2、3を経て、光学箱4の窓から回転ドラムに向かって取り出される。回転ドラム上の感光体に結像する走査光は、回転多面鏡1による主走査と回転ドラムの回転による副走査に伴って静電潜像を形成する。回転多面鏡1や結像レンズ2、3は筐体である光学箱4に収容され、半導体レーザを保持した光源ユニット5は、光学箱4の側壁等に組み付けられる。回転多面鏡1を回転駆動させる偏向装置8は、図示しない液体の軸受等を介して支承された回転軸9と、回転軸9と一体である座金に結合された回転部材であるロータ10と、軸受ハウジングと一体である回路基板11等を有する。回路基板11は、回転を制御するための駆動用IC12やコネクタ13等を実装する制御部を有する略長方形の板状であり、光学箱4の底部に設けた固定部15a、15bにビス16a、16bで止められる。また固定部15a、15bは、回転部材であるロータ10近傍に有しており、それぞれが光学箱4に円形の座面として設けられている。一方、光学箱4の底部の前記ロータ10近傍から離れた位置には、貫通穴14を有していて、偏向装置8の回路基板11の前記貫通穴14に相当する位置には、電気部品や回路部等を配置しない非回路実装部21が設けられている。偏向装置8を光学箱4へ取り付ける際に、まず偏向装置8を支持する受け部材17が貫通穴14を通して挿入される。偏向装置8の回路基板11は、固定部15a、15bと受け部材17との3箇所で支持して、ビス16a,16bで固定部15a、15bに固定され、その後受け部材17は貫通穴14から退避する。   A light beam generated from a semiconductor laser (not shown), which is a light source, is collimated by a collimator lens 6, is condensed linearly on the reflecting surface of the rotary polygon mirror 1 by a cylindrical lens 7, and passes through imaging lenses 2 and 3. Then, it is taken out from the window of the optical box 4 toward the rotating drum. The scanning light that forms an image on the photosensitive member on the rotating drum forms an electrostatic latent image along with the main scanning by the rotary polygon mirror 1 and the sub scanning by the rotation of the rotating drum. The rotating polygon mirror 1 and the imaging lenses 2 and 3 are accommodated in an optical box 4 which is a casing, and the light source unit 5 holding the semiconductor laser is assembled to the side wall of the optical box 4 or the like. A deflection device 8 that rotationally drives the rotary polygon mirror 1 includes a rotary shaft 9 supported via a liquid bearing (not shown), a rotor 10 that is a rotary member coupled to a washer integral with the rotary shaft 9, and The circuit board 11 is integrated with the bearing housing. The circuit board 11 is a substantially rectangular plate having a control part for mounting a driving IC 12 for controlling rotation, a connector 13 and the like, and screws 16a, fixed parts 15a, 15b provided at the bottom of the optical box 4, It stops at 16b. Further, the fixing portions 15a and 15b are provided in the vicinity of the rotor 10 that is a rotating member, and each is provided in the optical box 4 as a circular seating surface. On the other hand, there is a through hole 14 at a position away from the vicinity of the rotor 10 at the bottom of the optical box 4, and an electrical component or the like is provided at a position corresponding to the through hole 14 of the circuit board 11 of the deflection device 8. A non-circuit mounting part 21 in which no circuit part or the like is arranged is provided. When attaching the deflection device 8 to the optical box 4, first, the receiving member 17 that supports the deflection device 8 is inserted through the through hole 14. The circuit board 11 of the deflecting device 8 is supported at three locations of the fixing portions 15a and 15b and the receiving member 17, and is fixed to the fixing portions 15a and 15b with screws 16a and 16b. evacuate.

偏向装置8を回転部材であるロータ10近傍の2箇所15a、15bのみで固定した場合は、偏向装置8に傾きが発生する。傾き発生の現象について、図2a,図2bで説明する。   When the deflection device 8 is fixed only at the two locations 15a and 15b in the vicinity of the rotor 10 that is a rotating member, the deflection device 8 is inclined. The phenomenon of tilting will be described with reference to FIGS. 2a and 2b.

略長方形である回路基板11を備えた偏向装置8を光学箱4に設けた固定部15a、15bの2箇所に取り付けた場合、偏向装置8は、固定部15a,15b間の距離Lが短く、また回路基板11が略長方形の板状であるため、偏向装置8の自重によって回路基板11の下に受け部を設けていない15c部において矢印A方向への倒れが発生する。矢印A方向の倒れは、偏向装置8の回転軸9に傾きを発生させて、回転軸9に傾きが残った状態でビス16a、16bが締結されることになり、ビス16a、16b締結後の回転軸9の傾きにばらつきを生じさせる。また、ビス16a、16bが締結される最後に、回路基板11がビス16a、16bの連れ回りにより、軸受保持部18と光学箱の勘合部19とが干渉することにより、軸受保持部18にラジアル方向の力Fが発生し、これに伴って偏向装置8の回転軸9が傾くことになる。発生した回転軸9の傾きは、レーザ光のスポット形状を崩し、走査線に曲がりを発生させる原因となり、回転軸9の傾きのばらつきは、走査光学装置の品質を不安定にさせる要因となる。   When the deflection device 8 having the substantially rectangular circuit board 11 is attached to two places of the fixing portions 15a and 15b provided in the optical box 4, the deflection device 8 has a short distance L between the fixing portions 15a and 15b, Further, since the circuit board 11 has a substantially rectangular plate shape, the deflection in the direction of the arrow A occurs in the portion 15c where the receiving portion is not provided under the circuit board 11 due to the weight of the deflecting device 8. The tilt in the direction of arrow A causes the rotation shaft 9 of the deflecting device 8 to be tilted, and the screws 16a and 16b are fastened with the tilt remaining on the rotation shaft 9, and after the screws 16a and 16b are fastened. Variations occur in the inclination of the rotation shaft 9. Further, at the end of fastening the screws 16a and 16b, the circuit board 11 is rotated together with the screws 16a and 16b so that the bearing holding portion 18 and the fitting portion 19 of the optical box interfere with each other. Directional force F is generated, and accordingly, the rotation shaft 9 of the deflecting device 8 is tilted. The generated tilt of the rotating shaft 9 causes the spot shape of the laser beam to be broken and causes the scanning line to bend, and the variation in the tilt of the rotating shaft 9 causes the quality of the scanning optical apparatus to become unstable.

そこで、上述した図1a,図1bの形態を用いると以下の効果が得られる。   Therefore, the following effects can be obtained by using the above-described configurations shown in FIGS. 1a and 1b.

図1a,図1bの構成では、偏向装置を光学箱へ取り付ける際、偏向装置の回路基板を3箇所で一時的に支持することが容易に可能となり、図3aに示すように、偏向装置8を支持する支持点間の距離Lが長くなると同時に、各支持点を結んでできる面Mで回路基板11を受けることになり、偏向装置8の姿勢が安定して、偏向装置8の回転軸9に発生する傾きを低減することができる。図3bは、偏向装置を光学箱へ取り付けたときに発生する偏向装置の回転軸の傾き量をオートコリメータにて測定した結果である。本実施形態の構成図1a,図1bを用いたときと従来例図6の構成を用いたときでは、偏向装置の回転軸の傾き量とそのばらつきに差があることが分かる。よって本発明の実施形態を用いると、偏向装置の回転軸の傾きを低減し、安定させることができると確認することができた。   In the configuration of FIGS. 1a and 1b, when the deflection device is attached to the optical box, the circuit board of the deflection device can be easily temporarily supported at three locations. As shown in FIG. At the same time as the distance L between the supporting points to be supported is increased, the circuit board 11 is received on the surface M formed by connecting the supporting points, so that the posture of the deflecting device 8 is stabilized and the rotating shaft 9 of the deflecting device 8 is fixed. The generated tilt can be reduced. FIG. 3b shows the result of measuring the amount of tilt of the rotating shaft of the deflecting device that occurs when the deflecting device is attached to the optical box with an autocollimator. It can be seen that there is a difference between the amount of inclination of the rotation axis of the deflecting device and its variation when the configuration of FIGS. 1a and 1b of the present embodiment is used and when the configuration of the conventional example of FIG. 6 is used. Therefore, it was confirmed that when the embodiment of the present invention is used, the tilt of the rotation shaft of the deflecting device can be reduced and stabilized.

次に、本発明における実施形態の変形例について図4で説明する。   Next, a modification of the embodiment of the present invention will be described with reference to FIG.

本変形例では、実施形態図1a、図1bの構成に加えて、押圧棒20を回路基板11上面側に設けている。押圧棒20は、偏向装置を支える受け部材17に同軸上で対向して配置し、回路基板11に対して垂直方向に駆動降下させ、回路基板11を回路基板下部の受け部材17とで挟み込む構成となっている。また、押圧棒20は、回路基板11の回路を実装していない非回路実装部21を加圧することで、回路基板11を付勢している。押圧棒20と受け部材17の個数は1つに限定するものではなく、複数設けていてもよい。   In this modification, in addition to the configuration of the embodiment shown in FIGS. 1 a and 1 b, a pressing rod 20 is provided on the upper surface side of the circuit board 11. The pressing bar 20 is disposed so as to be coaxially opposed to the receiving member 17 that supports the deflecting device, is driven down in the vertical direction with respect to the circuit board 11, and the circuit board 11 is sandwiched between the receiving member 17 below the circuit board. It has become. Further, the pressing bar 20 presses the non-circuit mounting portion 21 on which the circuit of the circuit board 11 is not mounted, thereby biasing the circuit board 11. The number of pressing bars 20 and receiving members 17 is not limited to one, and a plurality of pressing bars 20 and receiving members 17 may be provided.

本変形例を用いると、押圧棒20と受け部材17とで回路基板11を挟持した状態で保持してビス16a,16bの締結を行うことにより、ビス締結時の連れ回りを防ぎ、ラジアル方向の力Fが軸受保持部材18に掛かることを防止することができ、より一層回転軸9の傾きを防止することが可能となり、所望のスポット形状と走査線を得ることができ、画像品質を向上させることができる。   When this modification is used, by holding the circuit board 11 between the pressing rod 20 and the receiving member 17 and fastening the screws 16a and 16b, the rotation at the time of screw fastening is prevented, and the radial direction It is possible to prevent the force F from being applied to the bearing holding member 18, to further prevent the rotation shaft 9 from being tilted, to obtain a desired spot shape and scanning line, and to improve the image quality. be able to.

更に、本発明における実施形態の第2の変形例について説明する。   Furthermore, a second modification of the embodiment of the present invention will be described.

偏向装置8を光学箱4へ取り付ける際、図1a,図1bで説明したように、まず貫通穴14を通して偏向装置8を支持する受け部材17が挿入され、偏向装置8の回路基板11を固定部15a,15bと受け部材17との3箇所で支持する。そして、図5に示すように、ビス16a,16b締結前に、偏向装置8の回転中である回転軸9の傾き変化量を、回転多面鏡1、ロータユニット10、回転軸9の少なくともいずれかの上面の鏡面となっている部分をオートコリメータ22で定量的に測定する。測定によって、回転軸9の傾き量および傾き方向を判定し、受け部材が上下駆動して固定部15a,15bとの相対高さを調整する。ビス16a,16b締結前に、回転軸9の傾き量を低減させて偏向装置8の姿勢を安定させた状態を作り、その後ビス16a,16bを締結する。これによって、回転軸9の傾きを低減すると共に、回転軸9の傾き方向のばらつきを安定させることができる。特に回転軸9の傾きの影響が大きく出る、回転多面鏡1へのレーザ入射方向と結像レンズ2,3の光軸との2等分線方向Tと略一致する方向に回転軸9の傾きが発生しないように、受け部材を用いて偏向装置の姿勢を一定にすることで、その効果を十分に発揮することができる。また、偏向装置8取り付け後には、受け部材17を貫通穴14から退避させ、回転軸9の傾き量をオートコリメータ22で測定し、傾き方向の自動判定を行ことで、不良品の抽出を防ぐことも可能となり、かつ原因対処が迅速に行え、品質を維持および安定させることができる。   When the deflecting device 8 is attached to the optical box 4, as described with reference to FIGS. 1a and 1b, first, the receiving member 17 that supports the deflecting device 8 is inserted through the through hole 14, and the circuit board 11 of the deflecting device 8 is fixed to the fixing unit. It supports in three places, 15a, 15b, and the receiving member 17. FIG. Then, as shown in FIG. 5, before the screws 16a and 16b are fastened, the amount of change in the inclination of the rotating shaft 9 during rotation of the deflecting device 8 is set to at least one of the rotary polygon mirror 1, the rotor unit 10, and the rotating shaft 9. The part which becomes the mirror surface of the upper surface of is quantitatively measured by the autocollimator 22. By measuring, the inclination amount and the inclination direction of the rotating shaft 9 are determined, and the receiving member is driven up and down to adjust the relative height with the fixing portions 15a and 15b. Before the screws 16a and 16b are fastened, the tilt amount of the rotary shaft 9 is reduced to create a state where the posture of the deflecting device 8 is stabilized, and then the screws 16a and 16b are fastened. As a result, the inclination of the rotation shaft 9 can be reduced, and variations in the inclination direction of the rotation shaft 9 can be stabilized. In particular, the tilt of the rotary shaft 9 is substantially in the direction of the bisector T between the laser incident direction on the rotary polygon mirror 1 and the optical axes of the imaging lenses 2 and 3, which greatly affects the tilt of the rotary shaft 9. The effect can be sufficiently exhibited by making the posture of the deflecting device constant by using the receiving member so as not to occur. Further, after the deflecting device 8 is attached, the receiving member 17 is retracted from the through hole 14, the amount of inclination of the rotating shaft 9 is measured by the autocollimator 22, and the inclination direction is automatically determined, thereby preventing the extraction of defective products. In addition, the cause can be quickly dealt with, and the quality can be maintained and stabilized.

a,bは本発明の実施形態を説明した図。FIGS. 5A and 5B are diagrams illustrating an embodiment of the present invention. FIGS. a,bは本発明との比較で、従来の偏向装置固定方法で発生する回転軸の傾きを説明した図。FIGS. 9A and 9B are diagrams illustrating the inclination of the rotation shaft generated by a conventional deflection device fixing method in comparison with the present invention. FIGS. 本発明の実施形態を説明した図。The figure explaining embodiment of this invention. 筆者らの回転軸の傾き量を検討した結果を示した図。The figure which showed the result of having examined the inclination amount of the author's rotating shaft. a,bは本発明の実施形態における第1の変形例を説明した図。FIGS. 9A and 9B are diagrams illustrating a first modification of the embodiment of the present invention. 本発明の実施形態における第2の変形例を示した図。The figure which showed the 2nd modification in embodiment of this invention. 従来例を説明した図。The figure explaining the prior art example.

符号の説明Explanation of symbols

4 光学箱
8 偏向装置
9 回転軸
10 回転部材(ロータ)
11 回路基板
14 貫通穴
15a、15b 固定部
17 受け部材
20 押圧部材
21 回路費実装部
22 オートコリメータ
4 Optical box 8 Deflector 9 Rotating shaft 10 Rotating member (rotor)
DESCRIPTION OF SYMBOLS 11 Circuit board 14 Through-hole 15a, 15b Fixing part 17 Receiving member 20 Pressing member 21 Circuit cost mounting part 22 Autocollimator

Claims (4)

光源から出射された光ビームを偏向走査する回転多面鏡と、該回転多面鏡と共に回転する回転部材と、前記回転部材を駆動させるための回路基板を有した偏向装置と、該偏向装置を取り付けるための固定部を前記回転部材近傍に2箇所設けた光学箱とを有する走査光学装置において、
前記光学箱は前記回転部材から離れた位置にあって、前記回路基板と対向する面に貫通穴を設けており、該貫通穴の上部に位置する前記回路基板には、電気部品や回路を実装しない非回路実装部を設けたことを特徴とする走査光学装置。
A rotating polygon mirror that deflects and scans a light beam emitted from a light source, a rotating member that rotates together with the rotating polygon mirror, a deflecting device having a circuit board for driving the rotating member, and a mounting device for the deflecting device In a scanning optical apparatus having an optical box provided with two fixed portions in the vicinity of the rotating member,
The optical box is located away from the rotating member, and a through hole is provided on a surface facing the circuit board, and electrical components and circuits are mounted on the circuit board located above the through hole. A non-circuit mounting portion that is not provided is provided.
前記偏向装置を一時的に支持するための受け部材を前記貫通穴から挿入し、前記偏向装置を前記受け部材と前記固定部とによって支持した後に、前記固定部へビスで締結することを特徴とする請求項1に記載の走査光学装置。   A receiving member for temporarily supporting the deflecting device is inserted from the through hole, the deflecting device is supported by the receiving member and the fixing portion, and then fastened to the fixing portion with a screw. The scanning optical device according to claim 1. 前記偏向装置は、前記非回路実装部を押圧する押圧手段と前記受け部材とによって挟み込んだ後に、前期固定部へビスで締結することを特徴とする請求項1又は、請求項2に記載の走査光学装置。   3. The scanning according to claim 1, wherein the deflecting device is clamped by a pressing unit that presses the non-circuit mounting portion and the receiving member, and then fastened to the fixing portion by a screw. Optical device. 前記受け部材は、前記固定部との相対高さを調整することが可能であり、前記回転部材の傾き量を検知しつつ、前記偏向装置を前記固定部へ取り付けたことを特徴とする請求項1から請求項3のいずれかに記載の走査光学装置。   The receiving member is capable of adjusting a relative height with the fixed portion, and the deflection device is attached to the fixed portion while detecting an inclination amount of the rotating member. The scanning optical device according to any one of claims 1 to 3.
JP2006171491A 2006-06-21 2006-06-21 Scanning optical apparatus Withdrawn JP2008003231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006171491A JP2008003231A (en) 2006-06-21 2006-06-21 Scanning optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006171491A JP2008003231A (en) 2006-06-21 2006-06-21 Scanning optical apparatus

Publications (1)

Publication Number Publication Date
JP2008003231A true JP2008003231A (en) 2008-01-10

Family

ID=39007685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006171491A Withdrawn JP2008003231A (en) 2006-06-21 2006-06-21 Scanning optical apparatus

Country Status (1)

Country Link
JP (1) JP2008003231A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242786A (en) * 2011-05-24 2012-12-10 Canon Inc Scanning optical device
CN103383490A (en) * 2012-05-01 2013-11-06 富士施乐株式会社 Optical scanning device and image forming apparatus
JP2013231904A (en) * 2012-05-01 2013-11-14 Fuji Xerox Co Ltd Optical scanning device and image forming apparatus
US20140111840A1 (en) * 2009-11-30 2014-04-24 Canon Kabushiki Kaisha Optical scanning apparatus and image forming apparatus
JP2014115575A (en) * 2012-12-12 2014-06-26 Canon Inc Scanning optical device and image forming apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140111840A1 (en) * 2009-11-30 2014-04-24 Canon Kabushiki Kaisha Optical scanning apparatus and image forming apparatus
US9690095B2 (en) * 2009-11-30 2017-06-27 Canon Kabushiki Kaisha Optical scanning apparatus and image forming apparatus
JP2012242786A (en) * 2011-05-24 2012-12-10 Canon Inc Scanning optical device
CN103383490A (en) * 2012-05-01 2013-11-06 富士施乐株式会社 Optical scanning device and image forming apparatus
US20130293659A1 (en) * 2012-05-01 2013-11-07 Fuji Xerox Co., Ltd. Optical scanning device and image forming apparatus
JP2013231904A (en) * 2012-05-01 2013-11-14 Fuji Xerox Co Ltd Optical scanning device and image forming apparatus
JP2013231903A (en) * 2012-05-01 2013-11-14 Fuji Xerox Co Ltd Optical scanning device and image forming apparatus
US8810621B2 (en) 2012-05-01 2014-08-19 Fuji Xerox Co., Ltd. Optical scanning device including a rotating body
JP2014115575A (en) * 2012-12-12 2014-06-26 Canon Inc Scanning optical device and image forming apparatus

Similar Documents

Publication Publication Date Title
US9581929B2 (en) Optical scanning apparatus, image forming apparatus, and support member for an optical scanning apparatus
CN102081230A (en) Optical scanning apparatus and image forming apparatus
JP2008003231A (en) Scanning optical apparatus
US7471433B2 (en) Optical scanning apparatus
JP2001281587A (en) Holding structure of light source part for optical scanner
JP2008102487A (en) Optical scanner and image forming apparatus with the same
JP2010276983A (en) Image forming apparatus and optical scanner
JP2010237432A (en) Optical scanner and image forming apparatus using the same
JP2010243747A (en) Scanning optical apparatus and method of manufacturing the same
JP6789666B2 (en) Scanning optical device and image forming device
KR100224615B1 (en) Apparatus for adjusting clearance in rotating axis for which fluid bearing is adapted
JP2007078722A (en) Optical scanner
JP2008145952A (en) Scanning optical apparatus
JPH11231251A (en) Mirror rotary driving device and multi-beam scanning device using the same
JP2017072777A (en) Scan optical device and image formation apparatus
JP2004333559A (en) Light source device and scanning optical device
JP2005205808A (en) Multi-beam light source device and optical scanning device equipped with the same
JP2000275558A (en) Optical deflecting scanner
JP2012194393A (en) Optical scanning device
JP2001100137A (en) Scanning optical device
JP2015215446A (en) Optical scanner and adjustment method thereof
JP2000258710A (en) Light source device
JP2013171256A (en) Optical scanning device
JP2016126268A (en) Optical scanner and image formation device
JP2004334015A (en) Scanning optical device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901