JP2008002738A - Operation system for drying device - Google Patents

Operation system for drying device Download PDF

Info

Publication number
JP2008002738A
JP2008002738A JP2006171605A JP2006171605A JP2008002738A JP 2008002738 A JP2008002738 A JP 2008002738A JP 2006171605 A JP2006171605 A JP 2006171605A JP 2006171605 A JP2006171605 A JP 2006171605A JP 2008002738 A JP2008002738 A JP 2008002738A
Authority
JP
Japan
Prior art keywords
drying
dryer
solvent
amount
coating liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006171605A
Other languages
Japanese (ja)
Other versions
JP4972346B2 (en
Inventor
Yasumasa Tominaga
保昌 富永
Mikio Nagumo
幹夫 南雲
Satoru Kamei
悟 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Kikai Kogyo Co Ltd
Original Assignee
Fuji Kikai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Kikai Kogyo Co Ltd filed Critical Fuji Kikai Kogyo Co Ltd
Priority to JP2006171605A priority Critical patent/JP4972346B2/en
Publication of JP2008002738A publication Critical patent/JP2008002738A/en
Application granted granted Critical
Publication of JP4972346B2 publication Critical patent/JP4972346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Supply, Installation And Extraction Of Printed Sheets Or Plates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively reduce equipment costs by setting a drying capacity of a drier to an adequate value. <P>SOLUTION: This operation system for a drying device comprises a necessary heat quantity operating means 33 for operating heat quantity necessary for drying coating liquid on the basis of data such as a conveying speed of a base material introduced into the drier, and a drying capacity operating means 34 for operating drying capacity of the drier on the basis of data such as a drying air blasting area and a film coefficient of heat-transfer, the drying capacity of the drier operated by the drying capacity operating means 34 is corrected by using a drying capacity correction coefficient set so that the smaller a coating area ratio of the coating liquid to the base material is, the larger a value is, and the drying capacity after the correction and the necessary heat quantity operated by the necessary heat quantity operating means are compared to discriminate whether the drier has the necessary drying capacity or not. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、塗工ユニットにおいて基材に塗工された塗工液を乾燥させる乾燥装置の演算システムに関するものである。   The present invention relates to a calculation system for a drying apparatus that dries a coating solution applied to a substrate in a coating unit.

従来、下記特許文献1に示されるように、輪転印刷機で印刷された紙等のウエブからなる基材に熱風からなる乾燥用エアを吹き付けることにより塗工液を乾燥させて溶剤を蒸発させる乾燥器と、乾燥器の排気中に含まれる溶剤を除去し、溶剤の臭いを低減させる溶剤処理手段(脱臭処理装置)とを有する印刷機の乾燥脱臭装置において、輪転印刷機で印刷されてフロアと平行に走行する2つ以上の基材を処理するための少なくとも2つの乾燥器と、少なくとも一つの溶剤処理手段とを有し、上下に積み重ねられた2つの乾燥器の間に設けられた空間部内に上記溶剤処理手段を装着することが行われている。
特開平10−193566号公報
Conventionally, as shown in Patent Document 1 below, drying is performed by drying a coating liquid by blowing drying air made of hot air onto a base material made of a web such as paper printed by a rotary printing press to evaporate the solvent. And a deodorizing device for a printing press having a solvent processing means (deodorizing device) for removing the solvent contained in the exhaust of the dryer and reducing the odor of the solvent. In a space provided between two dryers stacked at the top and bottom having at least two dryers for processing two or more substrates traveling in parallel and at least one solvent treatment means The above-mentioned solvent treatment means is mounted on the surface.
JP-A-10-193666

上記特許文献1に開示されているように、乾燥器内に導入された基材に乾燥用エアを吹き付けることにより基材上の塗工液を乾燥させる場合には、基材に塗工された塗工液中の溶剤を完全に蒸発させることができるように乾燥用エアの風量および温度等を設定する必要がある。しかし、上記塗工液の種類および塗工量等が変化すると、必要な乾燥用エアの風量および温度等も変化するため、塗工液の乾燥が不充分なるという事態の発生を防止することができるように、乾燥器の乾燥能力に充分な余力を持たせることが行われており、必要以上に設備コストが嵩むという問題があった。   As disclosed in Patent Document 1, when the coating liquid on the substrate is dried by spraying drying air onto the substrate introduced into the dryer, the substrate is coated on the substrate. It is necessary to set the air volume and temperature of the drying air so that the solvent in the coating solution can be completely evaporated. However, if the type of coating liquid and the coating amount change, the necessary air volume and temperature of the drying air also change, so that it is possible to prevent the situation where the coating liquid is insufficiently dried. In order to make it possible, there has been a problem that a sufficient remaining capacity is provided for the drying capacity of the dryer, resulting in an increase in equipment cost more than necessary.

また、上記特許文献1に開示されているように乾燥器から排出された排気中の溶剤成分を浄化する溶剤処理手段を備えた乾燥装置では、上記乾燥器に供給される乾燥用エア量が多いととともに、これに対応して溶剤処理手段にも大量の排気が導入されるため、乾燥用エア供給手段の熱風供給能力および溶剤処理手段の処理能力を充分に確保する必要があり、設備コストを効果的に削減することが困難である。特に、最近では、印刷機の多色化により印刷機一台当たりの塗工ユニットおよび乾燥器の台数が増大するとともに、印刷機のライン速度が高速化される等により1台の乾燥器に供給される乾燥用エア量が増大する傾向があるため、これに対応して、大型の乾燥用エア供給手段と、多量の排気を処理することができる大型の溶剤処理手段とを印刷機に設置する必要があり、その設備コストが増大することが避けられないという問題がある。   Moreover, in the drying apparatus provided with the solvent processing means for purifying the solvent component in the exhaust gas discharged from the dryer as disclosed in Patent Document 1, the amount of drying air supplied to the dryer is large. In response to this, a large amount of exhaust gas is also introduced into the solvent processing means, so it is necessary to sufficiently secure the hot air supply capacity of the drying air supply means and the processing capacity of the solvent processing means, and the equipment cost is reduced. It is difficult to reduce effectively. In recent years, the number of coating units and dryers per printing press has increased due to the increase in the number of printing presses, and the line speed of the printing press has been increased to supply a single dryer. Corresponding to this, a large drying air supply means and a large solvent treatment means capable of treating a large amount of exhaust gas are installed in the printing machine. There is a problem that it is necessary to increase the equipment cost.

本発明は、上記の問題点に鑑みてなされたものであり、乾燥器の乾燥能力を適正値に設定して設備コストを効果的に削減することができる乾燥装置の演算システムを提供することを目的としている。   The present invention has been made in view of the above problems, and provides a calculation system for a drying apparatus that can effectively reduce equipment costs by setting the drying capacity of the dryer to an appropriate value. It is aimed.

請求項1に係る発明は、塗工液が塗工された基材に乾燥用エアを吹き付けて塗工液を乾燥させる乾燥器を備えた乾燥装置の演算システムであって、乾燥器に導入される基材の搬送速度および基材に塗工された塗工液量等のデータに基づいてこの塗工液を乾燥させるのに必要な熱量を演算する必要熱量演算手段と、上記塗工液を乾燥させるために吹き付けられる乾燥用エアの吹付面積および境膜伝熱係数等のデータに基づいて乾燥器の乾燥能力を演算する乾燥能力演算手段とを備え、この乾燥能力演算手段において演算される乾燥器の乾燥能力を、上記基材に対する塗工液の塗工面積率が小さくなるのに応じて値が大きくなるように設定された乾燥能力補正係数を用いて補正するとともに、この補正後の乾燥能力と、上記必要熱量演算手段により演算された必要熱量とを比較することにより、上記乾燥器が必要な乾燥能力を有しているか否かを判別するように構成したものである。   The invention according to claim 1 is an arithmetic system for a drying apparatus including a dryer for drying the coating liquid by spraying drying air onto the base material coated with the coating liquid, and is introduced into the dryer. The necessary heat amount calculating means for calculating the amount of heat necessary for drying the coating liquid based on the data such as the conveyance speed of the base material to be coated and the amount of the coating liquid applied to the base material, and the coating liquid A drying capacity calculating means for calculating the drying capacity of the dryer based on data such as the spray area of the drying air sprayed for drying and the film heat transfer coefficient, and the drying calculated by the drying capacity calculating means. The drying capacity of the vessel is corrected using a drying capacity correction coefficient that is set so that the value increases as the coating area ratio of the coating liquid with respect to the base material decreases. Capacity and the required heat amount calculation means. By comparing the computed heat requirements, which is constituted so as to determine whether the dryer has a drying capacity required.

請求項2に係る発明は、塗工液が塗工された基材に乾燥用エアを吹き付けて塗工液を乾燥させる乾燥器内に新鮮な乾燥用エアを供給する空気供給ダクトと、上記乾燥器から排出された排気の一部を乾燥器内に還流する排気還流ダクトとを備えた乾燥装置の演算システムであって、上記乾燥器に導入される基材の搬送速度および基材に塗工された塗工液量および上記排気還流ダクトを介して乾燥器内に還流される排気還流割合等に基づき排気中の溶剤量を演算する溶剤量演算手段と、この溶剤量演算手段により演算された排気中の溶剤量に基づいてこの溶剤の爆発危険度を演算する爆発危険度演算手段とを備え、上記溶剤量演算手段において演算される排気中の溶剤量を、上記基材に対する塗工液の塗工面積率が大きくなるのに応じて値が大きくなるように設定された面積率補正係数を用いて補正するとともに、この補正後の溶剤量に応じて上記爆発危険度演算手段により演算された溶剤の爆発危険度に基づき、上記排気の還流割合が適正であるか否かを判別するように構成したものである。   According to a second aspect of the present invention, there is provided an air supply duct for supplying fresh drying air into a dryer for drying the coating liquid by spraying the drying air onto the substrate coated with the coating liquid, and the drying Computation system for a drying apparatus comprising an exhaust gas recirculation duct that circulates a part of the exhaust discharged from the dryer into the dryer, wherein the substrate transport speed and the substrate applied to the dryer are coated A solvent amount calculating means for calculating the amount of solvent in the exhaust based on the applied coating liquid amount and the exhaust gas recirculation ratio recirculated into the dryer via the exhaust gas recirculation duct, and the solvent amount calculating means Explosion risk calculating means for calculating the explosion risk of the solvent based on the amount of solvent in the exhaust, and the amount of solvent in the exhaust calculated by the solvent amount calculating means The value increases as the coating area ratio increases. The exhaust gas recirculation ratio is calculated based on the explosion risk of the solvent calculated by the explosion risk calculation means in accordance with the corrected solvent amount. It is configured to determine whether or not it is appropriate.

請求項1に係る発明によれば、上記塗工液の種類および塗工量等が変化した場合においても、塗工液中の溶剤を完全に蒸発させることができる乾燥器の乾燥能力を、乾燥装置の設計段階で適正に検証することでき、上記乾燥器の乾燥能力に不必要な余力を持たせること起因して設備コストが嵩む等の問題を生じることなく、上記乾燥装置を適正に設計できる等の利点がある。   According to the first aspect of the present invention, the drying ability of the dryer capable of completely evaporating the solvent in the coating liquid even when the type and amount of the coating liquid are changed, It can be properly verified at the design stage of the apparatus, and the drying apparatus can be appropriately designed without causing problems such as an increase in equipment cost due to having an unnecessary margin in the drying capacity of the dryer. There are advantages such as.

請求項2に係る発明によれば、溶剤量演算手段において演算される排気中の溶剤量を、上記基材に対する塗工液の塗工面積が大きくなるのに応じて値が大きくなるように設定された面積率補正係数を用いて補正することにより、排気中の溶剤量を適正に演算することができるとともに、この溶剤量の演算値に応じ、爆発危険度演算手段において溶剤の爆発危険度を適正に演算することにより、排気の還流割合が適正であるか否かを、容易かつ適正に判別でき、設備コストが嵩む等の問題を生じることなく、乾燥装置を適正に設計できる等の利点がある。   According to the invention of claim 2, the solvent amount in the exhaust gas calculated by the solvent amount calculating means is set so that the value increases as the coating area of the coating liquid on the substrate increases. The amount of solvent in the exhaust gas can be calculated appropriately by correcting using the area ratio correction coefficient, and the explosion risk of the solvent is calculated by the explosion risk calculation means according to the calculated value of the solvent amount. By calculating appropriately, it is possible to easily and appropriately determine whether or not the exhaust gas recirculation ratio is appropriate, and there is an advantage that the drying apparatus can be appropriately designed without causing problems such as increased equipment costs. is there.

図1は、本発明に係る演算システムが適用される印刷機の乾燥装置を示し、この乾燥装置には、図外の塗工ユニットにおいて基材1上に塗工された塗工液を乾燥させる乾燥器2と、この乾燥器2内に乾燥用エアを供給するエア供給手段3と、上記乾燥器2から排出された排気を溶剤処理手段4の設置部に導出する排気導出手段5と、上記乾燥器2の乾燥能力に必要なデータを入力するデータ入力手段6と、このデータ入力手段6により入力されたデータ等に基づいて上記塗工液を乾燥させるのに必要な熱量および上記乾燥器2の乾燥能力等を演算する演算装置7とを有している。   FIG. 1 shows a drying device of a printing press to which an arithmetic system according to the present invention is applied. In this drying device, a coating liquid coated on a substrate 1 in a coating unit (not shown) is dried. A dryer 2, an air supply means 3 for supplying drying air into the dryer 2, an exhaust derivation means 5 for leading the exhaust discharged from the dryer 2 to an installation section of the solvent treatment means 4, and Data input means 6 for inputting data necessary for the drying capacity of the dryer 2, the amount of heat necessary for drying the coating liquid based on the data input by the data input means 6, and the dryer 2 And a computing device 7 for computing the drying capacity of the machine.

上記乾燥器2は、下端部の基材搬入口から導入された基材1を上端部の基材搬出口に向けて案内する複数本の案内ローラ9と、これらの案内ローラ9によって案内されつつ搬送される基材1に向けて乾燥用エアを吹き付ける多数のノズルが設けられたエア吹付部10と、上記乾燥器2の上部に設けられた給気ヘッダ11と、この給気ヘッダ11に隣接して配設された上部排気ヘッダ12と、乾燥器2の下部に設けられた下部排気ヘッダ13とを有している。   The dryer 2 is guided by a plurality of guide rollers 9 that guide the base material 1 introduced from the base material carry-in port at the lower end portion toward the base material carry-out port at the upper end portion, and these guide rollers 9. An air blowing section 10 provided with a number of nozzles for blowing drying air toward the substrate 1 to be conveyed, an air supply header 11 provided on the upper portion of the dryer 2, and adjacent to the air supply header 11 And the lower exhaust header 13 provided at the lower part of the dryer 2.

また、上記エア供給手段3は、外部から導入された新鮮空気を乾燥用エアとして乾燥器2内に供給する空気供給ダクト14と、乾燥器2から排出された排気を乾燥器2内に還流する排気還流ダクト15とを有している。上記空気供給ダクト14には、上記給気ヘッダ11に向けて乾燥用エアを圧送する給気ファン16と、乾燥器2内に供給される乾燥用エアを塗工液の乾燥に適した温度に加熱する蒸気ヒータ17と、上記空気供給ダクト14を介して乾燥器2内に供給される新鮮空気の圧力損失を抑制するための新鮮空気用固定ダンパー18と、外部から取り入れられて上記乾燥器2内に供給される新鮮空気の供給量を調節する新鮮空気量調節用ダンパー19とが設けられている。この新鮮空気量調節用ダンパー19は、駆動モータ20によって開閉駆動される開閉弁を有し、この開閉弁が開閉駆動されることにより、上記空気供給ダクト14から乾燥器2内に供給される新鮮空気量を調節するように構成されている。   The air supply means 3 supplies the fresh air introduced from the outside into the dryer 2 as drying air and returns the exhaust discharged from the dryer 2 to the dryer 2. And an exhaust gas recirculation duct 15. In the air supply duct 14, an air supply fan 16 that pumps drying air toward the air supply header 11, and a drying air supplied into the dryer 2 at a temperature suitable for drying the coating liquid. A steam heater 17 for heating, a fixed damper 18 for fresh air for suppressing pressure loss of fresh air supplied into the dryer 2 through the air supply duct 14, and the dryer 2 introduced from the outside. A fresh air amount adjusting damper 19 for adjusting the amount of fresh air supplied to the inside is provided. The fresh air amount adjusting damper 19 has an open / close valve that is driven to open and close by a drive motor 20, and the fresh air supplied from the air supply duct 14 into the dryer 2 when the open / close valve is driven to open and close. It is comprised so that air quantity may be adjusted.

上記排気還流ダクト15は、上記排気導出手段5の排気導出ダクト21と上記空気供給ダクト14とを連結することにより、上記乾燥器2から排気導出ダクト21に導出された排気の一部を、上記蒸気ヒータ17の設置部と新鮮空気用固定ダンパー18との間に還流するように構成されている。上記排気還流ダクト15には、この排気還流ダクト15を介して乾燥器2内に還流される排気の圧力損失を抑制するための還流用固定ダンパー22と、上記排気の還流量を調節する還流量調節用ダンパー23とが設けられている。この還流量調節用ダンパー23は、駆動モータ24によって開閉駆動される開閉弁を有し、この開閉弁が開閉駆動されることにより、上記排気還流ダクト15を介して乾燥器2内に還流される排気の還流量を調節するように構成されている。   The exhaust gas recirculation duct 15 connects the exhaust gas exhaust duct 21 of the exhaust gas exhaust means 5 and the air supply duct 14, so that part of the exhaust gas led out from the dryer 2 to the exhaust gas exhaust duct 21 It is configured to recirculate between the installation portion of the steam heater 17 and the fresh air fixed damper 18. The exhaust gas recirculation duct 15 includes a recirculation fixed damper 22 for suppressing pressure loss of exhaust gas recirculated into the dryer 2 through the exhaust gas recirculation duct 15 and a recirculation amount for adjusting the recirculation amount of the exhaust gas. An adjustment damper 23 is provided. The recirculation amount adjusting damper 23 has an open / close valve that is opened and closed by a drive motor 24, and is returned to the dryer 2 through the exhaust gas recirculation duct 15 by being opened and closed. The exhaust gas recirculation amount is adjusted.

上記排気導出手段5は、乾燥器2の上部排気ヘッダ12に接続された上部排気ダクト25と、乾燥器2の下部排気ヘッダ13に接続された下部排気ダクト26と、これらの上部排気ダクト25および下部排気ダクト26を介して乾燥器2の外部に排出された排気を上記溶剤処理手段4の設置部に導出する排気導出ダクト21とを有している。この排気導出ダクト21には、上記溶剤処理手段4の設置部に向けて排気を圧送する排気ファン27と、この排気ファン27により圧送される排気の圧力損失を抑制するための排気用固定ダンパー28と、上記排気導出ダクト21を介して上記溶剤処理手段4の設置部に導出される上記排気の導出量を調節する排気量調節用ダンパー29とが設けられている。上記排気量調節用ダンパー29は、駆動モータ31によって開閉駆動される開閉弁を有し、この開閉弁が開閉駆動されることにより、上記排気導出ダクト21を介して溶剤処理手段4の設置部に導出される排気量を調節するように構成されている。   The exhaust derivation means 5 includes an upper exhaust duct 25 connected to the upper exhaust header 12 of the dryer 2, a lower exhaust duct 26 connected to the lower exhaust header 13 of the dryer 2, these upper exhaust ducts 25, and An exhaust outlet duct 21 is provided for exhausting the exhaust discharged to the outside of the dryer 2 through the lower exhaust duct 26 to the installation portion of the solvent processing means 4. The exhaust lead-out duct 21 includes an exhaust fan 27 that pumps exhaust toward the installation portion of the solvent treatment means 4, and an exhaust fixed damper 28 that suppresses the pressure loss of the exhaust pumped by the exhaust fan 27. And an exhaust amount adjustment damper 29 for adjusting the exhaust amount of the exhaust gas led out to the installation portion of the solvent processing means 4 through the exhaust gas exhaust duct 21. The exhaust amount adjusting damper 29 has an open / close valve that is driven to open and close by a drive motor 31. When the open / close valve is driven to open and close, the exhaust amount adjusting damper 29 is connected to the installation portion of the solvent processing means 4 via the exhaust exhaust duct 21. The exhaust amount to be derived is adjusted.

上記溶剤処理手段4は、乾燥器2内において基材1に塗工された印刷用インクが加熱される等により蒸発したトルエン、メチルエチルケトンまたは酢酸エチル等からなる溶剤を除去して、排気を浄化処理する従来周知の浄化処理装置、例えば上記溶剤を燃焼させる直燃タイプの処理装置、触媒を用いて上記溶剤を分解する触媒タイプの処理装置、または上記溶剤を分離して回収する溶剤回収タイプの処理装置等からなっている。そして、上記乾燥器2から上下部排気ダクト25,26および排気導出ダクト21を介して排出された排気が、上記溶剤処理手段4の設置部に供給されて排気中の溶剤が除去されることにより、クリーンな状態となって放出されるように構成されている。   The solvent processing means 4 purifies the exhaust gas by removing the solvent composed of toluene, methyl ethyl ketone, ethyl acetate or the like evaporated by heating the printing ink applied to the substrate 1 in the dryer 2. Conventionally known purification treatment devices such as a direct combustion type treatment device that burns the solvent, a catalyst type treatment device that decomposes the solvent using a catalyst, or a solvent recovery type treatment that separates and recovers the solvent It consists of devices. The exhaust gas discharged from the dryer 2 through the upper and lower exhaust ducts 25 and 26 and the exhaust exhaust duct 21 is supplied to the installation portion of the solvent treatment means 4 to remove the solvent in the exhaust gas. It is configured to be discharged in a clean state.

上記データ入力手段6は、基材1の幅寸法W(M)、その搬送速度V(M/min)、単位面積当たりの基材重量g(gr/M)、単位面積当たりの塗工液総重量gw(gr/M)、単位面積当たりの塗工液固形分重量gd(gr/M)、溶剤の種類および比率(w%)、基材1の種類および厚み、乾燥用エアの温度T(℃)、基材入口温度ti(℃)、定常状態の溶剤蒸発温度に相当する溶剤湿球温度tw(℃)、溶剤蒸発潜熱ql(kcal/kg)、基材1および塗工液の比熱C(kcal/kg)等からなる基材情報および塗工液情報を入力するキーボード等からなり、入力された上記各データは、下記演算装置7の記憶手段37において記憶される。また、基材1に塗工された塗工液の塗工領域を作業者が判別し、この判別結果に応じた塗工液の塗工面積率を、上記データ入力手段6を使用して手動で入力するように構成されている。 The data input means 6 includes a width dimension W (M) of the base material 1, a conveyance speed V (M / min), a base material weight g (gr / M 2 ) per unit area, and a coating liquid per unit area. Total weight gw (gr / M 2 ), coating solution solid content weight gd (gr / M 2 ) per unit area, solvent type and ratio (w%), base material 1 type and thickness, drying air Temperature T (° C.), substrate inlet temperature ti (° C.), solvent wet bulb temperature tw (° C.) corresponding to the steady-state solvent evaporation temperature, solvent evaporation latent heat ql (kcal / kg), substrate 1 and coating solution A keyboard or the like for inputting the base material information and coating liquid information consisting of the specific heat C (kcal / kg), etc., and each of the inputted data is stored in the storage means 37 of the computing device 7 described below. Further, the operator discriminates the coating area of the coating liquid applied to the substrate 1 and manually calculates the coating area ratio of the coating liquid according to the discrimination result using the data input means 6. It is configured to input with.

上記演算装置7には、図2に示すように、乾燥器2に導入される基材1の搬送速度および基材に塗工された塗工液量等のデータに基づいてこの塗工液を乾燥させるのに必要な熱量を演算する必要熱量演算手段33と、上記塗工液を乾燥させるために吹き付けられる乾燥用エアの吹付面積および境膜伝熱係数等のデータに基づいて乾燥器2の乾燥能力を演算する乾燥能力演算手段34と、上記基材1の搬送速度および基材1に塗工された塗工液量および上記排気還流ダクト15を介して乾燥器2内に還流される排気還流割合等に基づき排気中の溶剤量を演算する溶剤量演算手段35と、この溶剤量演算手段35により演算された排気中の溶剤量に基づいてこの溶剤の爆発危険度を演算する爆発危険度演算手段36と、上記各データの入力値等を記憶する記憶手段37とが設けられている。   As shown in FIG. 2, the arithmetic unit 7 receives the coating liquid based on data such as the conveyance speed of the base material 1 introduced into the dryer 2 and the amount of coating liquid applied to the base material. Based on the necessary heat amount calculating means 33 for calculating the amount of heat necessary for drying, the drying air spray area to be sprayed to dry the coating liquid, the film heat transfer coefficient, etc. Drying capacity calculating means 34 for calculating the drying capacity, the conveying speed of the base material 1, the amount of coating liquid applied to the base material 1, and the exhaust gas recirculated into the dryer 2 through the exhaust gas recirculation duct 15. Solvent amount calculating means 35 for calculating the amount of solvent in the exhaust based on the reflux ratio and the like, and an explosion risk for calculating the explosion risk of this solvent based on the amount of solvent in the exhaust calculated by the solvent amount calculating means 35 The calculation means 36 and the input values of the above data are A storage unit 37 is provided for 憶.

上記必要熱量演算手段33は、データ入力手段6により入力された上記基材1の幅寸法W(M)、基材1の搬送速度V(M/min)および単位面積当たりの基材重量g(gr/M)からなる各データに応じ、乾燥器2内に導入される一時間当たりの基材導入重量Gb(kg/hr)を下記式(1)に基づいて演算し、かつ上記基材1の幅寸法W(M)、基材1の搬送速度V(M/min)、単位面積当たりの塗工液総重量gw(gr/m)および単位面積当たりの塗工液固形分重量gd(gr/m)からなる各データに応じ、乾燥器2内に導入される一時間当たりの塗工液固形分重量Gbd(kg/hr)および乾燥器2内に導入される一時間当たりの塗工液溶剤分重量Gs(kg/hr)を下記式(2),3に基づいて演算する機能を有している。 The necessary heat amount calculating means 33 is configured such that the width dimension W (M) of the base material 1 input by the data input means 6, the transport speed V (M / min) of the base material 1, and the base material weight g (per unit area) gr / M 2 ), the base material introduction weight Gb (kg / hr) per hour introduced into the dryer 2 is calculated based on the following formula (1), and the base material 1 width dimension W (M), conveyance speed V (M / min) of the substrate 1, total coating liquid weight gw (gr / m 2 ) per unit area, and coating liquid solid content weight gd per unit area According to each data consisting of (gr / m 2 ), the coating liquid solid content weight Gbd (kg / hr) per hour introduced into the dryer 2 and per hour introduced into the dryer 2 The coating solution solvent weight Gs (kg / hr) is calculated based on the following formulas (2) and (3). It has a function.

Gb=60・V・W・g・10−3 (1)
Ggd=60・V・W・gd・10−3 (2)
Gs=60・V・W・(gw−gd)・10−3 (3)
例えば上記基材1の幅寸法Wが1.1M、基材1の搬送速度Vを200M/min、単位面積当たりの基材重量gが20gr/M、単位面積当たりの塗工液総重量gwが4gr/Mであり、かつ単位面積当たりの塗工液固形分重量gdが1gr/Mである場合に、これらの値をそれぞれ式(1)〜(3)に代入して演算を行うと、乾燥器2内に導入される一時間当たりの基材導入重量Gbは、264kg/hrとなり、かつ乾燥器2内に導入される一時間当たりの塗工液固形分重量Gbdおよび塗工液溶剤分重量Gsは、それぞれ13.2kg/hrおよび39.6kg/hrであるという演算結果が得られる。
Gb = 60 · V · W · g · 10 −3 (1)
Ggd = 60 · V · W · gd · 10 −3 (2)
Gs = 60 · V · W · (gw−gd) · 10 −3 (3)
For example, the width dimension W of the substrate 1 is 1.1 M, the conveyance speed V of the substrate 1 is 200 M / min, the substrate weight g per unit area is 20 gr / M 2 , and the total coating liquid weight gw per unit area. Is 4 gr / M 2 and the coating liquid solid content weight gd per unit area is 1 gr / M 2 , these values are substituted into the formulas (1) to (3), respectively, for calculation. The base material introduction weight Gb per hour introduced into the dryer 2 is 264 kg / hr, and the coating liquid solid content weight Gbd per hour introduced into the dryer 2 and the coating liquid Calculation results are obtained that the solvent weight Gs is 13.2 kg / hr and 39.6 kg / hr, respectively.

また、必要熱量演算手段33は、上記式(1)〜(3)に基づいて演算された基材導入重量Gb、塗工液固形分重量Gbdおよび塗工液溶剤分重量Gsと、データ入力手段6により入力された基材1および塗工液の比熱Cと、基材入口温度tiおよび溶剤湿球温度twと、溶剤蒸発潜熱qlとからなる各データに応じ、下記式(4)〜(8)に基づいて、基材昇温に必要な顕熱Qb(kcal/hr)、塗工液固形分昇温に必要な顕熱Qs(kcal/hr)、塗工液溶剤分昇温に必要な顕熱Ql(kcal/hr)および塗工液溶剤分蒸発に必要な潜熱QL(kcal/hr)を演算するとともに、これらの値に基づいて基材1の表面に塗工された塗工液を乾燥させるのに必要な熱量の合計値QT(kcal/hr)を演算するように構成されている。   The necessary heat amount calculating means 33 includes a base material introduction weight Gb, a coating liquid solid content weight Gbd and a coating liquid solvent weight Gs calculated based on the above formulas (1) to (3), and data input means. 6 according to each data consisting of the specific heat C of the base material 1 and the coating liquid, the base material inlet temperature ti, the solvent wet bulb temperature tw, and the solvent evaporation latent heat ql input by the following formulas (4) to (8): ) Sensible heat Qb (kcal / hr) required for substrate temperature increase, sensible heat Qs (kcal / hr) required for coating solution solid temperature increase, and coating solution solvent temperature increase required While calculating the sensible heat Ql (kcal / hr) and the latent heat QL (kcal / hr) necessary for solvent evaporation of the coating solution, the coating solution applied to the surface of the substrate 1 based on these values is calculated. It is configured to calculate the total value QT (kcal / hr) of the amount of heat necessary for drying. It has been.

Qb=Gb・(tw−ti)・C (4)
Qs=Ggd・(tw−ti)・C (5)
Ql=Gs・(tw−ti)・C (6)
QL=Gs・ql (7)
QT=Qb+Qs+Ql+QL (8)
例えば、上記各式(4)〜(8)に、基材1および塗工液の比熱Cとして、紙、フィルム、樹脂または固形分等の比熱に相当する値0.4kcal/kgを代入するとともに、上記溶剤蒸発潜熱qlとして各溶剤の加重平均に相当する値101kcal/kgをそれぞれ代入し、上記式(4)〜(8)に基づいて演算を行うと、それぞれ基材昇温に必要な顕熱Qbは、1161.6kcal/hr、塗工液固形分昇温に必要な顕熱Qsは、58.1kcal/hr、塗工液溶剤分昇温に必要な顕熱Qlは、174.2kcal/hr、塗工液溶剤分蒸発に必要な潜熱QLは、4000kcal/hrとなり、これら合計値である上記塗工液を乾燥させるのに必要な熱量の合計QTは、5394kcal/hrであるという演算結果が得られる。なお、上記塗工液に複数種の溶剤が使用されている場合には、最大の溶剤湿球温度twを有する溶剤の値を使用し、あるいは各溶剤の加重平均に基づいて上記溶剤湿球温度twを設定する。
Qb = Gb. (Tw-ti) .C (4)
Qs = Ggd · (tw−ti) · C (5)
Ql = Gs · (tw−ti) · C (6)
QL = Gs · ql (7)
QT = Qb + Qs + Ql + QL (8)
For example, the value 0.4 kcal / kg corresponding to the specific heat of paper, film, resin, solids, etc. is substituted as the specific heat C of the substrate 1 and the coating liquid into the above formulas (4) to (8). Substituting a value 101 kcal / kg corresponding to the weighted average of each solvent as the solvent evaporation latent heat ql and performing calculations based on the above equations (4) to (8), The heat Qb is 1161.6 kcal / hr, the sensible heat Qs required for the coating liquid solid temperature increase is 58.1 kcal / hr, and the sensible heat Ql required for the coating liquid solvent temperature increase is 174.2 kcal / hr, the latent heat QL required for evaporation of the coating liquid solvent is 4000 kcal / hr, and the total QT of the amount of heat required to dry the coating liquid, which is the total value, is 5394 kcal / hr. Is obtained When a plurality of types of solvents are used in the coating solution, the value of the solvent having the maximum solvent wet bulb temperature tw is used, or the solvent wet bulb temperature is based on the weighted average of each solvent. Set tw.

一方、上記乾燥能力演算手段34は、エア吹付ノズルの配設ピッチP(mm)およびノズル本数Z(本)のデータに応じ、下記式(9)に基づいて有効乾燥長Lを演算するとともに、上記乾燥用エアの温度T(℃)および溶剤湿球温度tw(℃)からなるデータに応じ、下記式(10)に基づいて乾燥器2内における基材1および乾燥有効温度Δtlnを演算し、かつ塗工液の塗工幅Wと有効乾燥長Lとからなるデータに応じ、下記式(11)基づき乾燥器2内における乾燥用エアの吹付面積A(M)を演算する機能を有している。 On the other hand, the drying capacity calculating means 34 calculates the effective drying length L based on the following formula (9) according to the data of the arrangement pitch P (mm) of the air blowing nozzles and the number of nozzles Z (lines), According to the data consisting of the temperature T (° C.) of the drying air and the solvent wet bulb temperature tw (° C.), the base material 1 and the drying effective temperature Δtln in the dryer 2 are calculated based on the following formula (10): And according to the data consisting of the coating width W and the effective drying length L of the coating liquid, it has a function of calculating the spraying area A (M 2 ) of the drying air in the dryer 2 based on the following formula (11) ing.

L=P・(Z−1)・0.001 (9)
Δtln=T−tw (10)
A=W×L (11)
例えば、上記エア吹付ノズルの配設ピッチPが150mmでノズル本数Zが6本である場合、上記式(9)から有効乾燥長Lは0.75Mであると演算され、乾燥用エアの温度Tが60℃で溶剤湿球温度twが31℃の場合、上記式(10)から乾燥有効温度Δtlnは、29℃であると演算される。また、上記塗工液の塗工幅Wが1.1M、有効乾燥長Lが0.75Mである場合、上記式(11)から乾燥器2内における乾燥用エアの吹付面積Aは、0.825Mであると演算される。
L = P · (Z-1) · 0.001 (9)
Δtln = T−tw (10)
A = W × L (11)
For example, when the arrangement pitch P of the air blowing nozzles is 150 mm and the number of nozzles Z is 6, the effective drying length L is calculated as 0.75 M from the above equation (9), and the temperature T of the drying air is calculated. When the solvent wet bulb temperature tw is 31 ° C., the effective drying temperature Δtln is calculated to be 29 ° C. from the above equation (10). When the coating width W of the coating liquid is 1.1M and the effective drying length L is 0.75M, the spraying area A of the drying air in the dryer 2 from the above formula (11) is 0.00. 825M 2 is calculated.

また、上記乾燥能力演算手段34は、基材1までの距離およびノズルピッチ等に対応したノズル形状係数Hd(kcal/Mhr℃)と、乾燥用エアの風速に対応した風速係数ηvと、ノズル間のピッチに対応したピッチ係数ηsと、乾燥用エアの温度に対応した温度係数ηtとに応じ、下記式(12)に基づき単位面積・単位温度差当たりにおける毎時の対流伝熱の程度を表す境膜伝熱係数U(kcal/Mhr℃)を演算する機能を有している。 Further, the drying capacity calculating means 34 includes a nozzle shape factor Hd (kcal / M 2 hr ° C.) corresponding to the distance to the substrate 1, the nozzle pitch, and the like, a wind velocity coefficient ηv corresponding to the wind velocity of the drying air, According to the pitch coefficient ηs corresponding to the pitch between the nozzles and the temperature coefficient ηt corresponding to the temperature of the drying air, the degree of convective heat transfer per hour per unit area / unit temperature difference is calculated based on the following equation (12). It has a function of calculating the expressed film heat transfer coefficient U (kcal / M 2 hr ° C.).

U=Hd・ηv・ηt (12)
ドライヤー設計資料に基づいて、上記基材1までの距離およびノズル形状等に対応したノズル形状係数Hdを114kcal/Mhr℃、乾燥用エアの風速係数ηvを0.88、ノズル間のピッチ係数ηsを1.27、乾燥用エアの温度係数ηtを1.18に設定し、これらの値を上記式(12)代入して演算を行うと、上記境膜伝熱係数Uは、150kcal/Mhr℃であるという演算結果が得られる。
U = Hd · ηv · ηt (12)
Based on the dryer design data, the nozzle shape factor Hd corresponding to the distance to the substrate 1 and the nozzle shape, etc. is 114 kcal / M 2 hr ° C., the air velocity coefficient ηv of the drying air is 0.88, and the pitch coefficient between the nozzles When ηs is set to 1.27 and the temperature coefficient ηt of drying air is set to 1.18, and these values are substituted into the above equation (12) and calculation is performed, the above-mentioned film heat transfer coefficient U is 150 kcal / M. An operation result of 2 hr ° C. is obtained.

そして、乾燥能力演算手段34は、上記式(12)に基づいて演算された境膜伝熱係数U(kcal/Mhr℃)と、上記式(11)に基づいて演算された乾燥器2内における乾燥用エアの吹付面積A(M)と、上記式(10)に基づいて演算された基材1および乾燥有効温度Δtlnとに応じ、下記の伝熱計算式(13)に基づき乾燥器2が有する塗工液の乾燥能力QDを演算する機能を有している。 And the drying capacity calculating means 34 is the dryer 2 calculated based on the film heat transfer coefficient U (kcal / M 2 hr ° C.) calculated based on the above formula (12) and the above formula (11). Drying based on the following heat transfer calculation formula (13) according to the spraying area A (M 2 ) of the drying air in the inside and the base material 1 calculated based on the above formula (10) and the effective drying temperature Δtln The device 2 has a function of calculating the drying ability QD of the coating liquid.

QD=U・A・Δtln (13)
上記式(10)〜(12)に基づいて演算された乾燥器2内における上記吹付面積Aの値0.825Mと、乾燥有効温度Δtlnの値29℃と、境膜伝熱係数Uの値150kcal/Mhr℃とを上記式(13)に代入して上記乾燥能力QDを演算すると、その値は、3597kcal/hrとなる。
QD = U · A · Δtln (13)
The value 0.825M 2 of the spray area A in the dryer 2 calculated based on the above formulas (10) to (12), the value 29 ° C. of the effective drying temperature Δtln, and the value of the boundary film heat transfer coefficient U When the drying capacity QD is calculated by substituting 150 kcal / M 2 hr ° C. into the equation (13), the value becomes 3597 kcal / hr.

上記式(8)に基づいて演算された塗工液の乾燥に必要な熱量QTと、上記式(13)に基づいて演算された塗工液の乾燥能力QDとを比較し、この乾燥能力QDが上記必要熱量QTよりも大きい場合には、充分な乾燥能力を有し、上記乾燥能力QDが上記必要熱量QTよりも小さい場合には、乾燥能力が不足していることになる。そして、上記乾燥能力TDが上記必要熱量QTよりも小さく、乾燥能力が不足している場合には、下記式(14)に基づいて塗工液の乾燥率(%)を演算することができるとともに、全溶剤量に上記乾燥率を掛け合わせることにより乾燥が完了した溶剤量を演算することができる。   The amount of heat QT required for drying the coating liquid calculated based on the above formula (8) is compared with the drying capacity QD of the coating liquid calculated based on the above formula (13). Is larger than the necessary heat quantity QT, it has a sufficient drying capacity, and when the drying capacity QD is smaller than the necessary heat quantity QT, the drying capacity is insufficient. And when the said drying capability TD is smaller than the said required calorie | heat amount QT and drying capability is insufficient, while being able to calculate the drying rate (%) of a coating liquid based on following formula (14). The amount of solvent that has been dried can be calculated by multiplying the total solvent amount by the drying rate.

乾燥率=(QD/QT)・100 (14)
上記実施例では、必要熱量QTが5394kcal/hrで、乾燥能力QDが3597kcal/hrであるため、乾燥能力が不足している状態にあることが分かる。そして、これらの値を上記式(14)に代入することにより、上記乾燥率は約67%であるという演算結果が得られる。
Drying rate = (QD / QT) · 100 (14)
In the above example, the necessary heat quantity QT is 5394 kcal / hr and the drying capacity QD is 3597 kcal / hr, so that it can be seen that the drying capacity is insufficient. Then, by substituting these values into the above equation (14), the calculation result that the drying rate is about 67% is obtained.

一方、上記乾燥能力QDが必要熱量QTよりも大きく、乾燥器2が充分な乾燥能力を有している場合には、下記式(15)に基づいて乾燥器2の入り口から乾燥完了地点までの基材面積Aa(M)を演算することができるとともに、下記式(16)に基づいて乾燥完了地点から乾燥器2の出口までの基材面積Ab(M)を演算することができる。 On the other hand, when the drying capacity QD is larger than the necessary heat quantity QT and the dryer 2 has a sufficient drying capacity, from the entrance of the dryer 2 to the point of completion of drying based on the following formula (15). The substrate area Aa (M 2 ) can be calculated, and the substrate area Ab (M 2 ) from the drying completion point to the outlet of the dryer 2 can be calculated based on the following formula (16).

Aa=A・(QD/QT) (15)
Ab=A−Aa (16)
また、上記乾燥器2の出口部における基材1の出口温度tfとし、ΔTemを対数平均温度差とすると、伝熱計算式および一般的な対数平均温度差の式に基づいて、以下の式(17),(18)が成立する。
Aa = A · (QD / QT) (15)
Ab = A−Aa (16)
Further, assuming that the outlet temperature tf of the substrate 1 at the outlet of the dryer 2 and ΔTem is a logarithmic average temperature difference, the following formula ( 17) and (18) are established.

Q=C・M・Δt=U・A・ΔTem (17)
ΔTem=((T−tw)−(T−tf))/log((T−tw)−(T−tf)) (18)
ここで、Cは、0.4程度の値となる基材1および塗工液の比熱、Mは、単位面積当たりの基材重量と塗工液固形分重量との和(Gb+Ggd)、Δtは、上記基材1の出口温度と溶剤湿球温度との差(tf−tw)である。
Q = C · M · Δt = U · A · ΔTem (17)
ΔTem = ((T−tw) − (T−tf)) / log ((T−tw) − (T−tf)) (18)
Here, C is the specific heat of the base material 1 and the coating liquid having a value of about 0.4, M is the sum of the weight of the base material per unit area and the weight of the solid content of the coating liquid (Gb + Ggd), and Δt is The difference between the outlet temperature of the substrate 1 and the solvent wet bulb temperature (tf−tw).

上記基材1の出口温度tfとして所定の推定値を上記式(18)に代入し、対数平均温度差ΔTemを演算するとともに、この値を上記式(17)に代入してこの式(17)が成立するか否か、つまり式(17)の左辺と右辺とが等しくなるか否かを検証し、この作業を繰り返すことにより、出口温度Tfを適正に求めることができる。   A predetermined estimated value is substituted into the above equation (18) as the outlet temperature tf of the substrate 1, and the logarithmic average temperature difference ΔTem is calculated, and this value is substituted into the above equation (17). It is possible to appropriately determine the outlet temperature Tf by verifying whether or not is satisfied, that is, whether or not the left side and the right side of Equation (17) are equal and repeating this operation.

上記実施例における演算は、基材1の表面全体に塗工液が塗工された場合、つまり塗工面積率が100%の場合を想定しており、実際には、塗工液の塗工面積率が種々の値に変化し、この塗工面積率の変化に応じて乾燥器2の乾燥能力にも差が生じる。この乾燥器2の乾燥能力が上記塗工面積率の変化に対応して、どうのように変動するか検証するために、種々の塗工面積率を有する版胴を使用して実験を繰り返したところ、図3に示すようなデータが得られた。このデータにおいて、yは乾燥能力倍率であり、xは塗工液の塗工面積率(%)である。   The calculation in the above embodiment assumes that the coating liquid is applied to the entire surface of the substrate 1, that is, the coating area ratio is 100%. In practice, the coating liquid is applied. The area ratio changes to various values, and the drying capacity of the dryer 2 varies depending on the change in the coating area ratio. In order to verify how the drying capacity of the dryer 2 fluctuates in response to the change in the coating area ratio, the experiment was repeated using plate cylinders having various coating area ratios. However, data as shown in FIG. 3 was obtained. In this data, y is the drying capacity magnification, and x is the coating area ratio (%) of the coating liquid.

図3に示すデータから、次式(19)からなる近似式が得られるとともに、この式(19)に基づいて求められた塗工面積率xに対応する乾燥能力倍率yを補正係数として、上記式(13)に基づき次式(20)が得られ、上記塗工面積率xが小さくなるのに応じて乾燥能力倍率、つまり乾燥能力補正係数yが大きくなることが分かる。   From the data shown in FIG. 3, an approximate expression consisting of the following expression (19) is obtained, and the drying capacity magnification y corresponding to the coating area ratio x determined based on the expression (19) is used as a correction coefficient. The following equation (20) is obtained based on the equation (13), and it can be seen that the drying capacity magnification, that is, the drying capacity correction coefficient y increases as the coating area ratio x decreases.

y=0.6057x−1.2977x+1.6977 (19)
QD=U・A・Δtln・y (20)
このように乾燥器2に導入される基材1の搬送速度および基材1に塗工された塗工液量等のデータに基づいてこの塗工液を乾燥させるのに必要な熱量を演算する必要熱量演算手段33と、上記塗工液を乾燥させるために吹き付けられる乾燥用エアの吹付面積および境膜伝熱係数等のデータに基づいて乾燥器2の乾燥能力を演算する乾燥能力演算手段34とを設け、この乾燥能力演算手段34により演算される乾燥器2の乾燥能力を、上記基材1に対する塗工液の塗工面積率が小さくなるのに応じて値が大きくなるように設定された乾燥能力補正係数yを用いて補正するとともに、この補正後の乾燥能力と、上記必要熱量演算手段33により演算された塗工液の乾燥に必要な熱量とを比較することにより上記乾燥器2が必要な乾燥能力を有しているか否かを判別するように構成した場合には、上記乾燥器2の乾燥能力を適正値に設定して設備コストを効果的に削減することができる。
y = 0.0.6057x < 2 > -1.2977x + 1.69777 (19)
QD = U · A · Δtln · y (20)
Thus, the amount of heat required to dry the coating liquid is calculated based on the transport speed of the base material 1 introduced into the dryer 2 and the data such as the amount of the coating liquid applied to the base material 1. The required heat amount calculating means 33 and the drying capacity calculating means 34 for calculating the drying capacity of the dryer 2 based on data such as the spraying area of the drying air sprayed to dry the coating liquid and the film heat transfer coefficient. And the drying capacity of the dryer 2 calculated by the drying capacity calculator 34 is set so that the value increases as the coating area ratio of the coating liquid on the substrate 1 decreases. The drying capacity is corrected by using the drying capacity correction coefficient y, and the drying capacity after the correction is compared with the amount of heat necessary for drying the coating liquid calculated by the required heat amount calculation means 33. Have the necessary drying capacity If that is configured to determine whether Luke, can reduce the equipment cost effectively by setting the appropriate value drying capacity of the dryer 2.

すなわち、上記塗工液の種類および塗工量等が変化すると、必要な乾燥用エアの風量および温度等も変化するとともに、上記塗工液の塗工面積率が変化するのに応じて乾燥器2の乾燥能力も変化することになるが、これらの値が変化した場合においても、塗工液中の溶剤を完全に蒸発させることができるか否かを、乾燥装置の設計段階で、上記必要熱量演算手段33および乾燥能力演算手段34を有する演算システムを使用して適正に検証することできる。したがって、上記乾燥器2の乾燥能力に不必要な余力を持たせること起因して設備コストが嵩む等の問題を生じることなく、必要な乾燥能力を有する乾燥装置を容易かつ適正に設計できるという利点がある。   That is, when the type and the coating amount of the coating liquid change, the necessary air volume and temperature of the drying air also change, and the dryer varies depending on the change in the coating area ratio of the coating liquid. Although the drying capacity of No. 2 also changes, whether or not the solvent in the coating liquid can be completely evaporated even when these values change is necessary at the design stage of the drying apparatus. It is possible to appropriately verify using an arithmetic system having a calorific value calculating means 33 and a drying capacity calculating means 34. Therefore, there is an advantage that a drying apparatus having the necessary drying capacity can be easily and appropriately designed without causing problems such as an increase in equipment cost due to the unnecessary extra capacity in the drying capacity of the dryer 2. There is.

また、上記溶剤量演算手段35は、データ入力手段6により入力された上記基材1の搬送速度および基材1に塗工された塗工液量および上記排気還流ダクト15を介して乾燥器2内に還流される排気還流割合等に基づいて排気中の溶剤量を演算するとともに、上記基材1に対する塗工液の塗工面積率が小さくなるのに応じて値が大きくなるように設定された面積率補正係数を用いて溶剤量の演算値を補正する機能を有している。   The solvent amount calculation means 35 is connected to the dryer 2 through the conveying speed of the base material 1 input by the data input means 6, the coating liquid amount applied to the base material 1, and the exhaust gas recirculation duct 15. The amount of solvent in the exhaust gas is calculated based on the exhaust gas recirculation ratio that is recirculated inside, and the value is set to increase as the coating area ratio of the coating liquid to the substrate 1 decreases. It has a function of correcting the calculated value of the solvent amount using the area ratio correction coefficient.

例えば、基材の幅寸法Wが1.1M、基材1の搬送速度Vが150M/min、単位面積当たりの塗工液総重量gwが4gr/mおよび単位面積当たりの塗工液固形分重量gdが1gr/mに設定され、かつ上記塗工液の塗工面積率が1/1(100%)設定されるとともに、排気の還流割合が0%、つまり上記排気還流ダクト15を介した排気の還流量が0に設定された実施例において、上記基材1の搬送速度V等のデータをそれぞれ式(3)に代入して演算することにより、一時間当たりに蒸発する塗工液溶剤量Gsの値として29.7kg/hrが得られる。 For example, the width dimension W of the substrate is 1.1 M, the conveyance speed V of the substrate 1 is 150 M / min, the total coating liquid weight gw per unit area is 4 gr / m 2, and the coating liquid solid content per unit area The weight gd is set to 1 gr / m 2 and the coating area ratio of the coating liquid is set to 1/1 (100%), and the exhaust gas recirculation ratio is 0%, that is, through the exhaust gas recirculation duct 15. In the embodiment in which the exhaust gas recirculation amount is set to 0, the coating liquid that evaporates per hour is calculated by substituting data such as the conveyance speed V of the base material 1 into the equation (3). As the value of the solvent amount Gs, 29.7 kg / hr is obtained.

一方、上記実施例と同一の条件で、塗工液の塗工面積率だけを1/4(25%)に変化させた場合には、この塗工面積率の逆数を面積率補正係数zとして上記塗工液溶剤量Gsの演算値を補正することにより、一時間当たりに蒸発する塗工液溶剤量Gsとして7.4kg/hrが得られる。つまり、上記面積率補正係数zを用いて上記式(3)を修正することにより得られた下記式(21)に基づき、塗工面積率に応じて補正された塗工液溶剤量Gsを求めることができる。   On the other hand, when only the coating area ratio of the coating liquid is changed to 1/4 (25%) under the same conditions as in the above embodiment, the reciprocal of this coating area ratio is defined as the area ratio correction coefficient z. By correcting the calculated value of the coating solution solvent amount Gs, 7.4 kg / hr is obtained as the coating solution solvent amount Gs that evaporates per hour. That is, based on the following formula (21) obtained by correcting the formula (3) using the area ratio correction coefficient z, the coating liquid solvent amount Gs corrected according to the coating area ratio is obtained. be able to.

Gs=60・V・W・(gw−gd)・10−3・z (21)
また、上記溶剤量演算手段35は、上記排気還流ダクト15を介して乾燥器2に対する排気の還流が行われている場合に、この還流排気中に含有された溶剤量を加味して排気中の溶剤量を演算する機能を有している。すなわち、上記気還流ダクト25を介して乾燥器2内に還流される排気の還流割合(リサイクル率)と、新たに蒸発して排気中に含有された溶剤の濃度倍率との関係を検証する種々の実験を行ったところ、図4に示すようなデータが得られた。
Gs = 60 * V * W * (gw-gd) * 10 < -3 > * z (21)
In addition, when the exhaust gas recirculation to the dryer 2 is performed via the exhaust gas recirculation duct 15, the solvent amount calculation means 35 takes into account the amount of solvent contained in the recirculated exhaust gas, It has a function to calculate the amount of solvent. That is, various verifications are made on the relationship between the recirculation ratio (recycle rate) of the exhaust gas recirculated into the dryer 2 through the gas recirculation duct 25 and the concentration ratio of the solvent newly evaporated and contained in the exhaust gas. As a result of the experiment, data as shown in FIG. 4 was obtained.

図4に示すデータから、例えば排気の還流割合を1/2(50%)に設定し、50%の新鮮空気と、50%の排気とを混合して上記乾燥器2内に導入するように構成した場合には、上記濃度倍率が2倍となり、かつ上記排気の還流割合を3/4(75%)に設定し、25%の新鮮空気と、75%の排気とを混合して上記乾燥器2内に導入するように構成した場合には、上記濃度倍率が4倍となり、乾燥器2において蒸発することにより新たに排気中に含有された溶剤量と、乾燥器2に導入される新鮮空気割合の逆数からなる濃度倍率とに応じ、排気中の溶剤量を適正に演算できることが分かる。   From the data shown in FIG. 4, for example, the exhaust gas recirculation ratio is set to 1/2 (50%), and 50% fresh air and 50% exhaust gas are mixed and introduced into the dryer 2. When configured, the concentration magnification is doubled, the exhaust gas recirculation ratio is set to 3/4 (75%), and 25% fresh air and 75% exhaust gas are mixed and dried. In the case where it is configured to be introduced into the oven 2, the concentration factor becomes 4 times, and the amount of solvent newly contained in the exhaust gas by evaporation in the dryer 2 and the freshness introduced into the oven 2. It can be seen that the amount of solvent in the exhaust gas can be appropriately calculated according to the concentration factor consisting of the reciprocal of the air ratio.

すなわち、上記塗工液の塗工面積率が1/4(25%)に設定されるとともに、上記排気の還流割合が3/4(75%)に設定された上記実施例では、一時間当たりに基材1から新たに蒸発する塗工液の溶剤量が、上記式(21)に基づいて7.4kg/hrであると演算されるとともに、これに上記濃度倍率からなるリサイクル率補正係数の値4が掛け合わされることにより、上記乾燥器2内から導出される混合気中の溶剤量は29.6(kg/hr)になるという演算結果が得られる。   That is, in the above embodiment in which the coating area ratio of the coating liquid is set to 1/4 (25%) and the recirculation ratio of the exhaust gas is set to 3/4 (75%), per hour The solvent amount of the coating liquid newly evaporated from the substrate 1 is calculated to be 7.4 kg / hr based on the above formula (21), and the recycle rate correction coefficient consisting of the above concentration magnification is calculated. By multiplying the value 4, the calculation result is obtained that the amount of solvent in the air-fuel mixture derived from the inside of the dryer 2 is 29.6 (kg / hr).

また、上記爆発危険度演算手段36は、溶剤量演算手段35により演算された排気中の溶剤量に応じ、下式(22)に基づいて上記溶剤の爆発危険度K(%)を演算する機能を有している。この式(22)において、Gs(kg/hr)は排気中の溶剤量、B(g/mol)は当該溶剤の分子量、Rは一時間当たりにおける乾燥用エアの供給量(M/hr)、T(℃)は乾燥用エアの温度、LEL(Vol%)は溶剤の爆発限界濃度、つまり可燃ガスと空気との混合ガスに点火したときに炎が連鎖的に伝播してガス爆発を起こす限界となる可燃ガスの濃度である。 The explosion risk calculation means 36 calculates a solvent explosion risk K (%) based on the following equation (22) according to the solvent amount in the exhaust gas calculated by the solvent amount calculation means 35. have. In this formula (22), Gs (kg / hr) is the amount of solvent in the exhaust, B (g / mol) is the molecular weight of the solvent, and R is the supply amount of drying air per hour (M 2 / hr) , T (° C) is the temperature of the drying air, LEL (Vol%) is the explosive limit concentration of the solvent, that is, when the mixed gas of combustible gas and air is ignited, the flame propagates in a chain and causes a gas explosion It is the concentration of combustible gas that is the limit.

K=[(Gs・1000・22.4・10−3)/(B・R)]・100・(100/LEL)・[273/(273+T)] (22)
上記溶剤がトルエンである場合、その分子量Bは92.1g/molであるともに、その爆発限界濃度LELは1.3Vol%であり、これらの値が予め記憶手段37に記憶されている。そして、上記基材の幅寸法Wが1.1M、基材の搬送速度Vが150M/min、単位面積当たりの塗工液総重量gwが4gr/mおよび単位面積当たりの塗工液固形分重量gdが1gr/mであり、かつ上記塗工液の塗工面積率が1/4(25%)であるとともに、排気の還流割合が3/4(75%)である上記実施例において、乾燥用エアの供給量Rを3600M/hrに設定するとともに、温度Tを60℃に設定し、上記式(21)に基づいて排気中の溶剤量Gsを演算すると、その値は29.6kg/hrであるという演算結果が得られる。これらの値と、記憶手段37から読み出された上記分子量Bおよび爆発限界濃度LELを、上記式(22)に代入して演算すると、溶剤の爆発危険度Kは、12.6%になるという演算結果が得られることになる。
K = [(Gs · 1000 · 22.4 · 10 −3 ) / (B · R)] · 100 · (100 / LEL) · [273 / (273 + T)] (22)
When the solvent is toluene, the molecular weight B is 92.1 g / mol and the explosion limit concentration LEL is 1.3 Vol%, and these values are stored in the storage unit 37 in advance. And the width dimension W of the said base material is 1.1 M, the conveyance speed V of a base material is 150 M / min, the coating liquid total weight gw per unit area is 4 gr / m < 2 >, and the coating liquid solid content per unit area In the above embodiment where the weight gd is 1 gr / m 2 and the coating area ratio of the coating liquid is 1/4 (25%) and the exhaust gas recirculation ratio is 3/4 (75%). When the drying air supply amount R is set to 3600 M 2 / hr, the temperature T is set to 60 ° C., and the solvent amount Gs in the exhaust gas is calculated based on the above equation (21), the value is 29. A calculation result of 6 kg / hr is obtained. When these values and the molecular weight B and explosion limit concentration LEL read from the storage means 37 are substituted into the equation (22) and calculated, the explosion risk K of the solvent is 12.6%. An operation result is obtained.

このように溶剤量演算手段35において演算される排気中の溶剤量を、上記基材1に対する塗工液の塗工面積率が大きくなるのに応じて値が大きくなるように設定された面積率補正係数zを用いて補正するように構成した場合には、塗工液の塗工面積率に対応した排気中の溶剤量を適正に演算することができるとともに、この溶剤量の演算値に応じ、爆発危険度演算手段36において溶剤の爆発危険度K(%)を演算することにより、排気の還流割合が適正であるか否かを容易かつ、適正に判別することができる。   Thus, the solvent amount in the exhaust gas calculated by the solvent amount calculation means 35 is an area ratio that is set so that the value increases as the coating area ratio of the coating liquid to the substrate 1 increases. When the correction coefficient z is used for correction, the amount of solvent in the exhaust gas corresponding to the coating area ratio of the coating liquid can be calculated appropriately, and the calculated value of the amount of solvent depends on the calculated value. By calculating the explosion risk degree K (%) of the solvent in the explosion risk degree calculation means 36, it is possible to easily and appropriately determine whether or not the exhaust gas recirculation ratio is appropriate.

例えば、爆発危険度演算手段36において、上記式(22)を使用して演算された溶剤の爆発危険度K(%)が、予め設定された基準値以上であるか否かを判定し、この基準値以上であれば、上記排気還流ダクト15を介して乾燥器2内に還流される排気還流割合が多いため、排気中の溶剤濃度が高く爆発の危険性が高い状態にあると判断して、新鮮空気量調節用ダンパー19の開度を増大させるとともに、還流量調節用ダンパー23の開度を低減する制御を実行する等により、上記排気還流割合を低下させて安全性を確保することができる。   For example, the explosion risk calculation means 36 determines whether or not the explosion risk K (%) of the solvent calculated using the above equation (22) is equal to or higher than a preset reference value. If it is above the reference value, the exhaust gas recirculation ratio that is recirculated into the dryer 2 via the exhaust gas recirculation duct 15 is large, so it is judged that the solvent concentration in the exhaust gas is high and the risk of explosion is high. In addition to increasing the opening degree of the fresh air amount adjusting damper 19 and executing control for reducing the opening degree of the recirculation amount adjusting damper 23, the exhaust gas recirculation ratio can be reduced to ensure safety. it can.

また、上記の示すように乾燥器2から排出された排気中の溶剤を除去して排気を浄化処理する溶剤処理手段4を備えた乾燥装置では、上記爆発危険度演算手段36において溶剤の爆発危険度K(%)を予め求められるとともに、この値に対応した処理能力を有する溶剤処理手段4を用いるように乾燥装置を設計することにより、必要以上の性能を有する溶剤処理装置4を用いることなく、上記排気中の溶剤を充分に除去できるという利点がある。   Further, in the drying apparatus provided with the solvent processing means 4 for purifying the exhaust gas by removing the solvent in the exhaust gas discharged from the dryer 2 as described above, the explosion risk calculation means 36 performs the explosion risk of the solvent. The degree K (%) can be obtained in advance, and the drying apparatus is designed so as to use the solvent processing means 4 having a processing capacity corresponding to this value, so that the solvent processing apparatus 4 having an unnecessarily high performance can be used. There is an advantage that the solvent in the exhaust can be sufficiently removed.

なお、上記実施形態では、作業者が基材1に塗工された塗工液の塗工領域を判別し、上記データ入力手段6を使用して塗工液の塗工面積を手動で入力するように構成した例ついて説明したが、画像センサを使用して上記塗工液の塗工領域を読み取り、この塗工領域が基材1に占める割合を計算して求め、あるいは図外のホストコンピュータから入力される印刷データに応じて上記印刷絵柄の面積率を自動的に入力するように構成してもよい。   In the above embodiment, the operator discriminates the coating area of the coating liquid applied to the substrate 1 and manually inputs the coating area of the coating liquid using the data input means 6. Although the example configured as described above has been described, an image sensor is used to read the coating area of the coating solution and calculate the ratio of the coating area to the base material 1 or obtain a host computer (not shown) The area ratio of the print pattern may be automatically input in accordance with the print data input from.

また、上記実施形態では、乾燥器2の上部排気ヘッダ12に接続された上部排気ダクト25と、乾燥器2の下部排気ヘッダ13に接続された下部排気ダクト26とを設け、これらの上部排気ダクト25および下部排気ダクト26を介して乾燥器2の外部に排出された排気を、必要に応じて上記排気還流ダクト15により乾燥器2内に還流させるように構成した例について説明したが、上記上部排気ダクト25および下部排気ダクト26の一方を省略し、その他方から乾燥器2の外部に排出された排気だけを上記排気還流ダクト15により乾燥器2内に還流させるように構成してもよい。   In the above embodiment, the upper exhaust duct 25 connected to the upper exhaust header 12 of the dryer 2 and the lower exhaust duct 26 connected to the lower exhaust header 13 of the dryer 2 are provided, and these upper exhaust ducts are provided. In the above description, the exhaust gas discharged to the outside of the dryer 2 through the lower exhaust duct 26 and the lower exhaust duct 26 is recirculated into the dryer 2 by the exhaust gas recirculation duct 15 as necessary. One of the exhaust duct 25 and the lower exhaust duct 26 may be omitted, and only the exhaust discharged to the outside of the dryer 2 from the other side may be recirculated into the dryer 2 by the exhaust recirculation duct 15.

さらに、上記乾燥器2の上部排気ヘッダ12に接続された上部排気ダクト25と、乾燥器2の下部排気ヘッダ13に接続された下部排気ダクト26との間に、中間排気ダクトを設け、これらのダクトを介して乾燥器2の外部に排出された排気をそれぞれ上記排気還流ダクト15により乾燥器2内に還流させ、あるいは上記各ダクトのうち特定のダクトから排出された排気だけを上記乾燥器2内に還流させるように構成してもよい。   Further, an intermediate exhaust duct is provided between the upper exhaust duct 25 connected to the upper exhaust header 12 of the dryer 2 and the lower exhaust duct 26 connected to the lower exhaust header 13 of the dryer 2. Exhaust gas discharged to the outside of the dryer 2 through the duct is recirculated into the dryer 2 by the exhaust gas recirculation duct 15 or only the exhaust gas discharged from a specific duct among the ducts is recirculated to the dryer 2. You may comprise so that it may reflux inside.

本発明に係る演算システムの実施形態を示す説明図である。It is explanatory drawing which shows embodiment of the arithmetic system which concerns on this invention. 演算装置の具体的構成を示すブロック図である。It is a block diagram which shows the specific structure of an arithmetic unit. 溶剤濃度とリサイクル率および測定場所との関係を示すグラフである。It is a graph which shows the relationship between a solvent density | concentration, a recycle rate, and a measurement place. 塗工液の塗工面積率と乾燥能力倍率との関係を示すグラフである。It is a graph which shows the relationship between the coating area ratio of a coating liquid, and a drying capability magnification.

符号の説明Explanation of symbols

1 基材
2 乾燥器
6 データ入力手段
7 演算装置
14 空気供給ダクト
15 排気還流ダクト
33 必要熱量演算手段
34 乾燥能力演算手段
35 溶剤量演算手段
36 爆発危険度演算手段
DESCRIPTION OF SYMBOLS 1 Base material 2 Dryer 6 Data input means 7 Arithmetic apparatus 14 Air supply duct 15 Exhaust gas recirculation duct 33 Required heat amount calculation means 34 Drying capacity calculation means 35 Solvent amount calculation means 36 Explosion risk degree calculation means

Claims (2)

塗工液が塗工された基材に乾燥用エアを吹き付けて塗工液を乾燥させる乾燥器を備えた乾燥装置の演算システムであって、乾燥器に導入される基材の搬送速度および基材に塗工された塗工液量等のデータに基づいてこの塗工液を乾燥させるのに必要な熱量を演算する必要熱量演算手段と、上記塗工液を乾燥させるために吹き付けられる乾燥用エアの吹付面積および境膜伝熱係数等のデータに基づいて乾燥器の乾燥能力を演算する乾燥能力演算手段とを備え、この乾燥能力演算手段において演算される乾燥器の乾燥能力を、上記基材に対する塗工液の塗工面積率が小さくなるのに応じて値が大きくなるように設定された乾燥能力補正係数を用いて補正するとともに、この補正後の乾燥能力と、上記必要熱量演算手段により演算された必要熱量とを比較することにより、上記乾燥器が必要な乾燥能力を有しているか否かを判別するように構成したことを特徴とする乾燥装置の演算システム。   An operation system of a drying apparatus having a dryer for drying a coating liquid by spraying drying air onto the substrate on which the coating liquid has been applied, the conveyance speed and base of the substrate being introduced into the dryer Necessary calorific value calculation means for calculating the amount of heat necessary to dry the coating liquid based on data such as the amount of coating liquid applied to the material, and for drying to be sprayed to dry the coating liquid Drying capacity calculation means for calculating the drying capacity of the dryer based on data such as the air spray area and the film heat transfer coefficient, and the drying capacity of the dryer calculated by the drying capacity calculation means Correction is performed using a drying capacity correction coefficient set so that the value increases as the coating area ratio of the coating liquid with respect to the material decreases, and the corrected drying capacity and the necessary heat amount calculating means The required heat amount calculated by By comparison, a computing system of the drying apparatus characterized by being configured to determine whether the dryer has a drying capacity required. 塗工液が塗工された基材に乾燥用エアを吹き付けて塗工液を乾燥させる乾燥器内に新鮮な乾燥用エアを供給する空気供給ダクトと、上記乾燥器から排出された排気の一部を乾燥器内に還流する排気還流ダクトとを備えた乾燥装置の演算システムであって、上記乾燥器に導入される基材の搬送速度および基材に塗工された塗工液量および上記排気還流ダクトを介して乾燥器内に還流される排気還流割合等に基づき排気中の溶剤量を演算する溶剤量演算手段と、この溶剤量演算手段により演算された排気中の溶剤量に基づいてこの溶剤の爆発危険度を演算する爆発危険度演算手段とを備え、上記溶剤量演算手段において演算される排気中の溶剤量を、上記基材に対する塗工液の塗工面積率が大きくなるのに応じて値が大きくなるように設定された面積率補正係数を用いて補正するとともに、この補正後の溶剤量に応じて上記爆発危険度演算手段により演算された溶剤の爆発危険度に基づき、上記排気の還流割合が適正であるか否かを判別するように構成したことを特徴とする乾燥装置の演算システム。   An air supply duct that supplies fresh drying air into a dryer that blows drying air onto the substrate on which the coating solution has been applied to dry the coating solution, and an exhaust that is discharged from the dryer. Computation system of a drying apparatus comprising an exhaust gas recirculation duct that recirculates a part into a dryer, the transport speed of the base material introduced into the dryer, the amount of coating liquid applied to the base material, and the above Solvent amount calculation means for calculating the amount of solvent in the exhaust gas based on the exhaust gas recirculation ratio that is recirculated into the dryer through the exhaust gas recirculation duct, and based on the solvent amount in the exhaust gas calculated by the solvent amount calculation means An explosion risk degree calculation means for calculating the explosion risk degree of the solvent, and the amount of solvent in the exhaust gas calculated by the solvent amount calculation means increases the coating area ratio of the coating liquid to the substrate. The value was set to increase according to Whether or not the exhaust gas recirculation ratio is appropriate based on the explosion risk of the solvent calculated by the explosion risk calculation means in accordance with the corrected amount of solvent. An operation system for a drying apparatus, characterized in that it is configured to discriminate between the two.
JP2006171605A 2006-06-21 2006-06-21 Calculation system for drying equipment Active JP4972346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006171605A JP4972346B2 (en) 2006-06-21 2006-06-21 Calculation system for drying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006171605A JP4972346B2 (en) 2006-06-21 2006-06-21 Calculation system for drying equipment

Publications (2)

Publication Number Publication Date
JP2008002738A true JP2008002738A (en) 2008-01-10
JP4972346B2 JP4972346B2 (en) 2012-07-11

Family

ID=39007272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006171605A Active JP4972346B2 (en) 2006-06-21 2006-06-21 Calculation system for drying equipment

Country Status (1)

Country Link
JP (1) JP4972346B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020570A (en) * 2010-06-16 2012-02-02 Sakata Corp Method of optimizing organic solvent processing when printing
CN114544417A (en) * 2022-01-14 2022-05-27 西安航天华阳机电装备有限公司 Volatilization rate measuring device and method
WO2023212673A1 (en) * 2022-04-29 2023-11-02 Industrial Furnace Service Hub, Llc Apparatus for devolatizing solids at low temperatures
JP7438059B2 (en) 2020-08-18 2024-02-26 株式会社Screenホールディングス Drying device, printing system and drying device control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847979A (en) * 1981-09-14 1983-03-19 大日本印刷株式会社 Method of drying belt-like printing
JPH05321184A (en) * 1992-05-12 1993-12-07 Yokogawa Electric Corp Operation controller of drier
JPH09173960A (en) * 1995-12-28 1997-07-08 Kawasaki Steel Corp Method for continuously drying and baking coating material
JP2000062145A (en) * 1998-08-14 2000-02-29 Toppan Printing Co Ltd Method for controlling drying of printed matter and device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847979A (en) * 1981-09-14 1983-03-19 大日本印刷株式会社 Method of drying belt-like printing
JPH05321184A (en) * 1992-05-12 1993-12-07 Yokogawa Electric Corp Operation controller of drier
JPH09173960A (en) * 1995-12-28 1997-07-08 Kawasaki Steel Corp Method for continuously drying and baking coating material
JP2000062145A (en) * 1998-08-14 2000-02-29 Toppan Printing Co Ltd Method for controlling drying of printed matter and device therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020570A (en) * 2010-06-16 2012-02-02 Sakata Corp Method of optimizing organic solvent processing when printing
JP7438059B2 (en) 2020-08-18 2024-02-26 株式会社Screenホールディングス Drying device, printing system and drying device control method
CN114544417A (en) * 2022-01-14 2022-05-27 西安航天华阳机电装备有限公司 Volatilization rate measuring device and method
WO2023212673A1 (en) * 2022-04-29 2023-11-02 Industrial Furnace Service Hub, Llc Apparatus for devolatizing solids at low temperatures

Also Published As

Publication number Publication date
JP4972346B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP4972346B2 (en) Calculation system for drying equipment
JP2937200B2 (en) Control system for air-floating dry operation machine with built-in afterburner
JP2013515229A (en) Method and apparatus for drying drywall sheets
EP2742302B1 (en) Plate dryer and method of drying solvent based coating
JP2002513909A (en) Renewable heat source fully integrated web dryer
JP3178673U (en) Printing machine drying equipment
JP4668093B2 (en) Printer control device
JP2013087988A (en) White smoke preventing method and apparatus for achieving the same
JP5550841B2 (en) Drying system with heat pump unit
JP2013007532A (en) Heat treatment device
JP2004190982A (en) Continuous drying method and device
JP6443929B2 (en) Waste heat control system for web offset press
JP3657493B2 (en) Drying equipment
JP2004330560A (en) Print sheet drying device
JPH11254642A (en) Dryer
JP2007155297A (en) Drying method of coating sheet
JP3188389B2 (en) Continuous drying and baking method of paint
JP4176249B2 (en) Substrate dryer
JPH0791835A (en) Dryer
JP2005099790A (en) Drying apparatus
JP2007320183A (en) Exhausting system for printing machine
JPS595023B2 (en) Deodorizing method and equipment in painting line
JP3617131B2 (en) Method and apparatus for drying metal strip
JPH0550023A (en) Method for drying band-shaped material
JP2015089648A (en) Drying control system, drying control method, and dryer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4972346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250