JP2008002412A - Multiple stage centrifugal compressor - Google Patents

Multiple stage centrifugal compressor Download PDF

Info

Publication number
JP2008002412A
JP2008002412A JP2006174719A JP2006174719A JP2008002412A JP 2008002412 A JP2008002412 A JP 2008002412A JP 2006174719 A JP2006174719 A JP 2006174719A JP 2006174719 A JP2006174719 A JP 2006174719A JP 2008002412 A JP2008002412 A JP 2008002412A
Authority
JP
Japan
Prior art keywords
balance
seal
pressure
stage
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006174719A
Other languages
Japanese (ja)
Other versions
JP4839979B2 (en
Inventor
Keiji Oyabu
圭史 大藪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2006174719A priority Critical patent/JP4839979B2/en
Publication of JP2008002412A publication Critical patent/JP2008002412A/en
Application granted granted Critical
Publication of JP4839979B2 publication Critical patent/JP4839979B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • F04D29/0516Axial thrust balancing balancing pistons

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a quantity of seal gas for shaft sealing while keeping thrust balance in a multiple stage centrifugal compressor. <P>SOLUTION: In the multiple stage centrifugal compressor 80, many centrifugal impellers 1 to 7 are mounted to a rotary shaft 11 and the centrifugal impellers are stored in a casing. Cylindrical balance drums 21, 22 are provided at the suction side of the first stage impeller 1 mounted to the rotary shaft and at the delivery side of the final stage impeller 7 mounted to the rotary shaft, respectively, and balance spaces 31, 32 are formed at the shaft end side of each balance drum. Means 91, 92 communicating with delivery sides of the impellers 3, 5 of intermediate stages excluding a first stage and a final stage in the impellers formed in multiple stages are connected to the balance spaces. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は多段遠心圧縮機に係り、特に、同一の軸に多数の遠心羽根車を取り付けた多段遠心圧縮機に関する。   The present invention relates to a multistage centrifugal compressor, and more particularly to a multistage centrifugal compressor in which a number of centrifugal impellers are attached to the same shaft.

従来の一軸多段遠心圧縮機の例が、特許文献1に記載されている。この公報に記載の遠心圧縮機では、内部のガス漏れがなくかつ軸推力がバランスするように、低圧段である第1群の羽根車の吸込み側の外側に推力バランス環を設けている。推力バランス環の外側にはバランス室を設け、このバランス室に第1群の吐出ガスをバランスラインを経由して導いている。したがって、推力バランス環の両面には、吐出圧と吸込み圧が作用し、この差圧が羽根車方向への推力となり、推力がバランスする。また、仕切り板にラビリンスを設けて、第2群の吸込みガスが第1群羽根車側に漏れるのを防止している。   An example of a conventional single-shaft multistage centrifugal compressor is described in Patent Document 1. In the centrifugal compressor described in this publication, a thrust balance ring is provided outside the suction side of the first group of impellers, which are low pressure stages, so that there is no internal gas leakage and the axial thrust is balanced. A balance chamber is provided outside the thrust balance ring, and the first group of discharge gases are guided to the balance chamber via a balance line. Accordingly, the discharge pressure and the suction pressure act on both surfaces of the thrust balance ring, and this differential pressure becomes a thrust toward the impeller, and the thrust is balanced. Further, a labyrinth is provided on the partition plate to prevent the second group of suction gas from leaking to the first group impeller side.

特開平9−72292号公報JP-A-9-72292

ところで上記特許文献1に記載の多段遠心圧縮機では、バランス室を均圧化してスラスト力を低減することについては考慮されているものの、起動時に中間ノズル圧力が負圧になってドライガスシールに逆圧がかかる事態、を回避することについては十分には考慮されていない。   By the way, in the multistage centrifugal compressor described in the above-mentioned Patent Document 1, although it is considered to equalize the balance chamber and reduce the thrust force, the intermediate nozzle pressure becomes negative pressure at the time of startup and the dry gas seal is used. It is not considered enough to avoid the situation where back pressure is applied.

本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は、多段遠心圧縮機において、スラストバランスを維持しながらシールガス量を低減することにある。本発明の他の目的は、起動時のような過渡状態でも多段遠心圧縮機の信頼性を向上させることにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to reduce the amount of seal gas in a multistage centrifugal compressor while maintaining thrust balance. Another object of the present invention is to improve the reliability of a multi-stage centrifugal compressor even in a transient state such as at startup.

上記目的は、同一の回転軸に多数の遠心羽根車を取り付け、この遠心羽根車をケーシングに収容した多段遠心圧縮機において、回転軸に取り付けた初段羽根車の吸込み側位置および最終段羽根車の吐出側位置に、それぞれ円筒状のバランスドラムを設け、各バランスドラムよりも軸端側にバランス空間を形成し、このバランス空間に、前記多段に形成された羽根車の中で初段と最終段とを除く中間段の羽根車の吐出側を連通する手段を接続することにより達成される。そしてこの特徴において、吐出ガスを導く手段は、中間段羽根車の下流に設けた中間ノズルとバランス空間とを接続する配管であってもよい。   In the multistage centrifugal compressor in which a number of centrifugal impellers are attached to the same rotating shaft and the centrifugal impeller is accommodated in a casing, the suction side position of the first stage impeller attached to the rotating shaft and the final stage impeller Cylindrical balance drums are provided at the discharge side positions, a balance space is formed on the shaft end side of each balance drum, and the first stage and the last stage of the multistage impellers are formed in the balance space. This is achieved by connecting means for communicating with the discharge side of the intermediate stage impeller except for. In this feature, the means for guiding the discharge gas may be a pipe connecting an intermediate nozzle provided in the downstream of the intermediate stage impeller and the balance space.

また上記特徴において、ケーシングの内周部であって、各バランスドラムの外周に対向する部分に、ラビリンスシールを設け、バランス空間よりも軸端側にドライガスシール装置を設けるのが好ましく、ドライガスシール装置とバランス空間との間に第2のラビリンスシールを設け、この第2のラビリンスシール同士を連通する手段を設けてもよい。   In the above feature, it is preferable that a labyrinth seal is provided in an inner peripheral portion of the casing and opposed to the outer periphery of each balance drum, and a dry gas seal device is provided on the shaft end side from the balance space. A second labyrinth seal may be provided between the sealing device and the balance space, and a means for communicating the second labyrinth seals may be provided.

本発明によれば、軸端部にバランスドラムを設け、このバランスドラムよりもさらに軸端側に形成したバランス室に中間段羽根車からの吐出ガスの一部を導くようにしたので、スラストバランスを維持しながらシールガス量を低減できる。また、起動時のような過渡状態でも多段遠心圧縮機の信頼性を向上できる。   According to the present invention, the balance drum is provided at the shaft end, and a part of the discharge gas from the intermediate stage impeller is guided to the balance chamber formed further on the shaft end side than the balance drum. The amount of sealing gas can be reduced while maintaining the above. In addition, the reliability of the multistage centrifugal compressor can be improved even in a transient state such as at startup.

本発明に係る多段遠心圧縮機80の一実施例を、図1を用いて説明する。図1は、多段遠心圧縮機80の模式図である。図示しない駆動機により駆動される回転軸11には、複数個の遠心羽根車1〜7が固定されて取り付けられている。回転軸11および遠心羽根車1〜7で構成されるロータは、静止部であるケーシング15内に保持されている。回転軸11の両端部には図示を省略した軸受装置が取り付けられており、回転軸11を回転自在にラジアル方向及びスラスト方向に支持する。   An embodiment of a multistage centrifugal compressor 80 according to the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram of a multistage centrifugal compressor 80. A plurality of centrifugal impellers 1 to 7 are fixedly attached to a rotating shaft 11 driven by a driving machine (not shown). The rotor composed of the rotating shaft 11 and the centrifugal impellers 1 to 7 is held in a casing 15 that is a stationary part. A bearing device (not shown) is attached to both ends of the rotating shaft 11 and supports the rotating shaft 11 in a radial direction and a thrust direction so as to be rotatable.

初段羽根車1として用いられる最左端の羽根車と軸受装置間、および最終段羽根車7として用いられる最右端の羽根車と軸受装置間には、この遠心圧縮機80の作動ガスであるプロセスガスが、遠心圧縮機80の外部に漏れるのを防止するために、ドライガスシールタイプの軸封装置61,62が設けられている。軸封装置61,62は、回転軸11に取り付けたドライガスシール回転環61A,62Aと、このドライガスシール回転環61A,62Aに対向し、ケーシング15に取り付けたドライガスシール静止環61B,62Bとを有している。   Between the leftmost impeller used as the first stage impeller 1 and the bearing device and between the rightmost impeller used as the final stage impeller 7 and the bearing device, the process gas which is the working gas of the centrifugal compressor 80 However, in order to prevent leakage to the outside of the centrifugal compressor 80, dry gas seal type shaft seal devices 61 and 62 are provided. The shaft seal devices 61 and 62 are dry gas seal rotary rings 61A and 62A attached to the rotary shaft 11, and dry gas seal stationary rings 61B and 62B attached to the casing 15 so as to face the dry gas seal rotary rings 61A and 62A. And have.

初段羽根車1よりも軸端側であってこの初段羽根車1に隣り合って、円筒状のバランスドラム21が回転軸11に取り付けられている。同様に、最終段羽根車7よりも軸端側であってこの最終段羽根車7に隣り合って、円筒状のバランスドラム22が回転軸11に取り付けられている。バランスドラム21,22に対向するケーシング15の壁面には、バランスラビリンス26,27が取り付けられている。バランスドラム21,22の背面側である軸端側には、シールラビリンス33,34とバランスラビリンス26,27で仕切られたバランス空間31,32が形成されている。   A cylindrical balance drum 21 is attached to the rotary shaft 11 on the shaft end side of the first stage impeller 1 and adjacent to the first stage impeller 1. Similarly, a cylindrical balance drum 22 is attached to the rotary shaft 11 on the shaft end side of the final stage impeller 7 and adjacent to the final stage impeller 7. Balance labyrinths 26 and 27 are attached to the wall surface of the casing 15 facing the balance drums 21 and 22. Balance spaces 31 and 32 partitioned by seal labyrinths 33 and 34 and balance labyrinths 26 and 27 are formed on the shaft end side which is the back side of the balance drums 21 and 22.

シールラビリンス33,34は、回転軸11との間で非接触シールとして作用し、それぞれ2段のシール33a,33b;34a,34bで形成されている。シールラビリンス33,34に隣り合って上述のドライガスシール61,62が配置されている。ドライガスシール61,62の軸方向前後側には、シールガス空間51,52およびドライガスシールリーク空間71,72が形成されている。   The seal labyrinths 33 and 34 act as non-contact seals with the rotary shaft 11, and are formed of two-stage seals 33a and 33b; 34a and 34b, respectively. The above-mentioned dry gas seals 61 and 62 are disposed adjacent to the seal labyrinths 33 and 34. Seal gas spaces 51 and 52 and dry gas seal leak spaces 71 and 72 are formed on the front and rear sides of the dry gas seals 61 and 62 in the axial direction.

初段羽根車1の吸込み部には、吸込みライン41が接続されており、圧力Psでプロセスガスが吸込まれる。初段羽根車1から第6段羽根車6までは、各段の下流側にその段の吐出流路であって次段への吸込み流路となる静止流路42〜47が形成されている。この静止流路42〜47は、必要に応じて羽根付ディフューザや羽根無しディフューザ,リターンベーン等が配置されている。最終段羽根車7の下流側には吐出流路48が接続されており、最終段羽根車7で昇圧されたプロセスガスを集めて、圧縮機80外の需要元に供給する。   A suction line 41 is connected to the suction portion of the first stage impeller 1, and the process gas is sucked at the pressure Ps. From the first stage impeller 1 to the sixth stage impeller 6, stationary flow paths 42 to 47 are formed downstream of each stage, which are discharge flow paths of that stage and serve as suction flow paths to the next stage. The stationary flow paths 42 to 47 are provided with a vaned diffuser, a vaneless diffuser, a return vane, or the like as necessary. A discharge channel 48 is connected to the downstream side of the final stage impeller 7, and the process gas pressurized by the final stage impeller 7 is collected and supplied to a demand source outside the compressor 80.

ここで、左右のシールガス空間51,52同士は、シールガスライン(配管)94で接続されており、シール用のドライガス49がこのシールガスライン94を経てシールガス空間51,52に元圧Pgで吹き込まれる。また、左右のドライガスシールリーク空間
71,72同士は、ドライガスリークライン(配管)95で接続されている。ドライガスシール61,62部でシールに使用されドライガスシールリーク空間71,72に流入したガスは、このドライガスリークライン95から、圧力Pfでリークガス50としてフレアに送られる。さらに、2段に形成したシールラビリンス33,34では、各々の中間にシールガス吹き込み空間33c,34cが形成されており、このシールガス吹き込み空間33c,34c同士を、シールラビリンス均圧ライン(配管)93で接続している。
Here, the left and right seal gas spaces 51 and 52 are connected to each other by a seal gas line (pipe) 94, and the dry gas 49 for sealing passes through the seal gas line 94 to the seal gas spaces 51 and 52. Infused with Pg. The left and right dry gas seal leak spaces 71 and 72 are connected by a dry gas leak line (pipe) 95. The gas used for sealing at the dry gas seals 61 and 62 and flowing into the dry gas seal leak spaces 71 and 72 is sent from the dry gas leak line 95 to the flare as the leak gas 50 at the pressure Pf. Further, in the seal labyrinths 33 and 34 formed in two stages, seal gas blowing spaces 33c and 34c are formed in the middle of each, and the seal gas blowing spaces 33c and 34c are connected to each other with a seal labyrinth pressure equalization line (pipe). 93 is connected.

本実施例で最も特徴的な構成は、左右のバランス空間31,32に中間段羽根車の吐出側を接続したことにある。具体的には、初段羽根車1側に設けたバランスドラム21に隣り合うバランス空間31と第3段羽根車3の吐出流路44とを第1バランス配管91で接続する。一方、最終段羽根車7側に設けたバランスドラム21に隣り合うバランス空間
32と第5段羽根車の吐出流路46とを第2バランス配管92で接続する。
The most characteristic configuration in this embodiment is that the discharge side of the intermediate stage impeller is connected to the left and right balance spaces 31 and 32. Specifically, the balance space 31 adjacent to the balance drum 21 provided on the first stage impeller 1 side and the discharge flow path 44 of the third stage impeller 3 are connected by the first balance pipe 91. On the other hand, the balance space 32 adjacent to the balance drum 21 provided on the final stage impeller 7 side and the discharge flow path 46 of the fifth stage impeller are connected by a second balance pipe 92.

このように構成した本実施例の多段遠心圧縮機80の動作を、以下に説明する。回転軸11が回転駆動されると、各段の羽根車1〜7は吸込みライン41または前段の吐出ライン42〜46から吸込まれたプロセスガスを圧縮し、昇圧して次段羽根車2〜7または吐出ライン48に送る。   The operation of the multistage centrifugal compressor 80 of the present embodiment configured as described above will be described below. When the rotating shaft 11 is driven to rotate, the impellers 1 to 7 of each stage compress the process gas sucked from the suction line 41 or the discharge lines 42 to 46 of the previous stage, and increase the pressure to the next stage impellers 2 to 7. Or it sends to the discharge line 48.

その際、吸込み側のバランスドラム21には、圧縮機80の吸込み圧力Psと第3段羽根車3の吐出圧力P3dとの差圧が作用する。その結果、バランスドラム21には、図で白抜き矢印で示した右方向のスラスト力が発生する。吐出側のバランスドラム22には、最終段羽根車7の吐出圧力Pdと第5段羽根車5の吐出圧力P5dとの差圧が作用する。その結果、バランスドラム22には図で白抜き矢印で示した右方向のスラスト力が発生する。一方、各羽根車1〜7では、心板の背面に作用するガス圧と側板の背面に作用するガス圧の差に起因して、図で黒抜き矢印で示した左方向のスラスト力が発生する。そこで、2つのバランスドラム21,22の径を調整して、羽根車1〜7に作用するスラスト力に対抗させる。 At this time, the differential pressure between the suction pressure Ps of the compressor 80 and the discharge pressure P 3d of the third stage impeller 3 acts on the balance drum 21 on the suction side. As a result, a thrust force in the right direction indicated by a white arrow in the figure is generated on the balance drum 21. A differential pressure between the discharge pressure Pd of the final stage impeller 7 and the discharge pressure P 5d of the fifth stage impeller 5 acts on the discharge-side balance drum 22. As a result, a rightward thrust force indicated by a white arrow in the figure is generated on the balance drum 22. On the other hand, in each impeller 1-7, due to the difference between the gas pressure acting on the back surface of the core plate and the gas pressure acting on the back surface of the side plate, the thrust force in the left direction indicated by the black arrow in the figure is generated. To do. Therefore, the diameters of the two balance drums 21 and 22 are adjusted to oppose the thrust force acting on the impellers 1 to 7.

バランス空間31,32よりも軸端側に設けたシールラビリンス33,34では、シールガス吹込み空間33c,34c同士を、シールラビリンス均圧ライン93で接続しているので、2つのシールガス吹き込み空間33c,34cは均圧化される。さらに、シールガス吹き込み空間33c,34cはラビリンス33b,34aを介してバランス空間31,32に隣り合っているから、シールラビリンス33,34は、バランス空間31,32の中間の圧力で均圧される。   In the seal labyrinths 33 and 34 provided on the shaft end side with respect to the balance spaces 31 and 32, the seal gas blowing spaces 33 c and 34 c are connected to each other by the seal labyrinth pressure equalization line 93. The pressures 33c and 34c are equalized. Further, since the seal gas blowing spaces 33c and 34c are adjacent to the balance spaces 31 and 32 via the labyrinths 33b and 34a, the seal labyrinths 33 and 34 are equalized by a pressure intermediate between the balance spaces 31 and 32. .

つまり、第5段羽根車5の吐出圧力P5dと第3段羽根車3の吐出圧力P3dとの間の圧力で、均圧化される。シールラビリンス33,34部に作用する圧力を均圧化したので、シールガス吹込みライン(配管)94からシールガス空間51,52に吹き込むシールガスの圧力Pgを、同一圧力とすることができる。その結果、両側の軸封装置61,62を同一のものとすることができる。 That is, the pressure is equalized by the pressure between the discharge pressure P 5d of the fifth stage impeller 5 and the discharge pressure P 3d of the third stage impeller 3. Since the pressure acting on the seal labyrinths 33 and 34 is equalized, the pressure Pg of the seal gas blown into the seal gas spaces 51 and 52 from the seal gas blowing line (pipe) 94 can be made the same pressure. As a result, the shaft sealing devices 61 and 62 on both sides can be made the same.

ところで、プロセス用の多段遠心圧縮機80では、構成が比較的簡単で信頼性が高いので、軸封装置61,62にドライガスシールを多く用いる。本実施例でもドライガスシール61,62を回転軸11の両端部に配置している。ドライガスシール61,62ではシールガスの供給が不可欠である。シールガスとしては、圧縮機80から吐出されるプロセスガスを用いるのが最も容易である。   By the way, since the multistage centrifugal compressor 80 for process has a relatively simple configuration and high reliability, a lot of dry gas seals are used for the shaft seal devices 61 and 62. Also in this embodiment, the dry gas seals 61 and 62 are disposed at both ends of the rotating shaft 11. In the dry gas seals 61 and 62, supply of seal gas is indispensable. It is easiest to use process gas discharged from the compressor 80 as the seal gas.

そこで、図示しないシールガス供給装置がプロセスガスの一部を必要圧力であるPgまで減圧して、シールガス空間51,52に吹き込む。シールガスのうちの微小量は、軸封装置61,62の回転環61A,62Aと静止環61B,62Bの間を通り抜けてフレアとして排出される。大部分のシールガスは、シールラビリンス33,34の隙間を通って圧縮機80の吸込み側へ戻る。   Therefore, a seal gas supply device (not shown) reduces a part of the process gas to the required pressure Pg and blows it into the seal gas spaces 51 and 52. A minute amount of the seal gas passes between the rotary rings 61A and 62A and the stationary rings 61B and 62B of the shaft seal devices 61 and 62 and is discharged as flare. Most of the seal gas returns to the suction side of the compressor 80 through the gap between the seal labyrinths 33 and 34.

ドライガスシール61,62では、シールガス空間51,52とフレアに連通するシールリーク空間71,72の間が逆圧にならないよう、シールガス圧力Pgをフレア圧力
Pfより高圧に保つ必要がある(Pg>Pf)。逆圧が作用すると、ドライガスシール
61,62は破損に至るおそれがある。そこで、フレア圧力Pfが高い場合には、シールガス圧力Pgも高くせざるを得ない。通常シールガス圧力Pgは圧縮機80の吸込み圧力よりも10kPa程度だけ高くする。このようにフレア圧力Pfを設定すると、シールラビリンス41,42に作用する差圧が小さくなり、シールガス量を低減できる。
In the dry gas seals 61 and 62, it is necessary to keep the seal gas pressure Pg higher than the flare pressure Pf so that a reverse pressure does not occur between the seal gas spaces 51 and 52 and the seal leak spaces 71 and 72 communicating with the flare ( Pg> Pf). When the reverse pressure is applied, the dry gas seals 61 and 62 may be damaged. Therefore, when the flare pressure Pf is high, the seal gas pressure Pg must be increased. Usually, the sealing gas pressure Pg is set higher than the suction pressure of the compressor 80 by about 10 kPa. When the flare pressure Pf is set in this manner, the differential pressure acting on the seal labyrinths 41 and 42 is reduced, and the amount of seal gas can be reduced.

しかしながら、本発明を冷凍機系圧縮機に適用した場合には、フレア圧力Pfが高くなり、しかも圧縮機80の吸込み圧力がほぼ大気圧となる。そこで、ドライガスシール61,62に逆圧が作用しないように、圧縮機80の吸込み圧力Psよりも高圧のシールガスを供給する必要がある。   However, when the present invention is applied to a refrigerator compressor, the flare pressure Pf increases and the suction pressure of the compressor 80 becomes substantially atmospheric pressure. Therefore, it is necessary to supply a seal gas having a pressure higher than the suction pressure Ps of the compressor 80 so that a reverse pressure does not act on the dry gas seals 61 and 62.

たとえば、フレア圧力Pfが0.3MPa のエチレン冷凍圧縮機80のシールガス圧力Pgは、0.31MPa以上必要である。このときの圧縮機80の吸込み圧力Psが0.155MPaであれば、従来方法によるシールラビリンス部33,34の差圧は、0.16MPaにもなり、シールガスの洩れ量が増大する。   For example, the seal gas pressure Pg of the ethylene refrigeration compressor 80 having a flare pressure Pf of 0.3 MPa needs to be 0.31 MPa or more. If the suction pressure Ps of the compressor 80 at this time is 0.155 MPa, the differential pressure of the seal labyrinth portions 33 and 34 according to the conventional method becomes 0.16 MPa, and the leakage amount of the seal gas increases.

ここで、エチレン冷凍圧縮機80を例にとり本発明を説明すると、その圧縮比は10.5で、吸込み圧力は上述したように、0.155MPa である。また、吸込み側のバランス空間31が第3段羽根車3の吐出ライン44に連通し、吐出側のバランス空間32が第5段羽根車5の吐出ライン46に連通している。これらの圧力は、第3段羽根車3の吐出圧力が0.535MPa、第5段羽根車5の吐出圧力が0.98MPaである。   Here, taking the ethylene refrigeration compressor 80 as an example, the present invention will be described. The compression ratio is 10.5, and the suction pressure is 0.155 MPa as described above. The suction-side balance space 31 communicates with the discharge line 44 of the third stage impeller 3, and the discharge-side balance space 32 communicates with the discharge line 46 of the fifth stage impeller 5. As for these pressures, the discharge pressure of the third stage impeller 3 is 0.535 MPa, and the discharge pressure of the fifth stage impeller 5 is 0.98 MPa.

このとき、シールラビリンス部33,34の圧力は0.535〜0.980MPaの間の圧力となる。したがって、フレア圧力Pfが0.30MPa と高くなっても、シールガス圧力Pgをシールラビリンス部33,34の圧力より10kPa程度高くすればよい。すなわち、シールラビリンス部33,34の差圧が10kPa程度であるから、従来技術で必要であった160kPa程度に比べて、シールガス圧の差圧が低下し、シールガス吹込み量を低減できる。   At this time, the pressure of the seal labyrinth parts 33 and 34 is a pressure between 0.535 and 0.980 MPa. Therefore, even if the flare pressure Pf is as high as 0.30 MPa, the seal gas pressure Pg may be set higher by about 10 kPa than the pressure of the seal labyrinth portions 33 and 34. That is, since the differential pressure of the seal labyrinth parts 33 and 34 is about 10 kPa, the differential pressure of the seal gas pressure is reduced as compared with about 160 kPa required in the prior art, and the seal gas blowing amount can be reduced.

バランス空間31,32は、それぞれ第3段および第5段羽根車3,5の吐出ライン
44,46に連通しているので、圧縮機80を起動するとすぐに各羽根車3,5の吐出圧力が上昇する。したがって、吸込み圧力Psが負圧となり、さらにシールガスの供給が瞬間的に間に合わなくても、シールガス空間51,52にはバランス空間31,32およびシールラビリンス均圧ライン93を通じて、第3段および第5段羽根車3,5で圧縮された吐出ガスが流れ込み、シールガス空間51,52が負圧になるのを防止できる。このように、ドライガスシール61,62に逆圧がかからず、圧縮機80の信頼性が向上する。
Since the balance spaces 31 and 32 communicate with the discharge lines 44 and 46 of the third and fifth stage impellers 3 and 5, respectively, the discharge pressure of each impeller 3 and 5 immediately after the compressor 80 is started. Rises. Therefore, even if the suction pressure Ps becomes a negative pressure and the supply of the seal gas is not in time, the third stage and the seal gas spaces 51 and 52 are passed through the balance spaces 31 and 32 and the seal labyrinth pressure equalization line 93. It is possible to prevent the discharge gas compressed by the fifth stage impellers 3 and 5 from flowing and the seal gas spaces 51 and 52 from becoming negative pressure. Thus, no back pressure is applied to the dry gas seals 61 and 62, and the reliability of the compressor 80 is improved.

本実施例では、バランス空間31を第3段羽根車3の吐出ライン44に、バランス空間32を第5段羽根車5の吐出ライン46に連通させているが、バランス空間31,32が連通する羽根車の吐出ラインは、これに限るものではなく、必要に応じて他の段の吐出ラインに変えることができる。ただし、シールラビリンス部33,34の圧力は、それぞれ連通させる段の圧力範囲で均圧されるので、フレア圧力Pfより高い圧力となるように連通する吐出ラインを選択する。   In the present embodiment, the balance space 31 communicates with the discharge line 44 of the third stage impeller 3 and the balance space 32 communicates with the discharge line 46 of the fifth stage impeller 5, but the balance spaces 31 and 32 communicate with each other. The discharge line of an impeller is not restricted to this, It can change to the discharge line of another stage as needed. However, since the pressure of the seal labyrinth parts 33 and 34 is equalized in the pressure range of the stage to be communicated, the discharge line that communicates so as to be higher than the flare pressure Pf is selected.

また、バランス空間31,32を図示しない中間ノズルに接続してもよい。ただし、中間ノズルが吸込用のノズルのときには、起動時に中間ノズル圧力が負圧になるおそれがあるので、ドライガスシールに逆圧が付加されないように保護手段を設ける必要がある。   Further, the balance spaces 31 and 32 may be connected to an intermediate nozzle (not shown). However, when the intermediate nozzle is a suction nozzle, there is a possibility that the intermediate nozzle pressure may become negative at the time of start-up, and thus it is necessary to provide a protection means so that a reverse pressure is not applied to the dry gas seal.

本実施例によれば、圧縮機80の吸込み圧力Psが低く、フレア圧力Pfが高い場合でも、従来に比べシールガス量を低減できる。シールガス量を低減したので、シールガスを圧縮機に供給するシールガス供給装置をコンパクト化でき、圧縮機システムのコストを低減できる。さらに、起動時のような過渡状態でも、軸封装置に逆圧が負荷されず、圧縮機の信頼性が向上する。   According to this embodiment, even when the suction pressure Ps of the compressor 80 is low and the flare pressure Pf is high, the amount of seal gas can be reduced compared to the conventional case. Since the amount of seal gas is reduced, the seal gas supply device that supplies the seal gas to the compressor can be made compact, and the cost of the compressor system can be reduced. Furthermore, even in a transient state such as when starting up, no back pressure is applied to the shaft seal device, and the reliability of the compressor is improved.

本発明に係る多段遠心圧縮機の一実施例の模式図である。It is a schematic diagram of one Example of the multistage centrifugal compressor which concerns on this invention.

符号の説明Explanation of symbols

1〜7…羽根車、11…回転軸、15…ケーシング、21,22…バランスドラム、
26,27…バランスラビリンス、31,32…バランス空間、33,34…シールラビリンス、51,52…シールガス空間、61,62…軸封装置(ドライガスシール)、
61A,62A…ドライガスシール回転環、61B,62B…ドライガスシール静止環、71,72…ドライガスシールリーク空間、80…多段遠心圧縮機、91〜95…配管、Pg…シールガス圧力、Ps…圧縮機吸込み圧力、Pd…圧縮機吐出圧力、Pf…フレア圧力。
1-7 ... impeller, 11 ... rotating shaft, 15 ... casing, 21, 22 ... balance drum,
26, 27 ... balance labyrinth, 31, 32 ... balance space, 33, 34 ... seal labyrinth, 51, 52 ... seal gas space, 61, 62 ... shaft seal device (dry gas seal),
61A, 62A ... dry gas seal rotating ring, 61B, 62B ... dry gas seal stationary ring, 71, 72 ... dry gas seal leak space, 80 ... multistage centrifugal compressor, 91-95 ... piping, Pg ... seal gas pressure, Ps ... Compressor suction pressure, Pd ... Compressor discharge pressure, Pf ... Flare pressure.

Claims (4)

同一の回転軸に多数の遠心羽根車を取り付け、この遠心羽根車をケーシングに収容した多段遠心圧縮機において、前記回転軸に取り付けた初段羽根車の吸込み側位置および最終段羽根車の吐出側位置に、それぞれ円筒状のバランスドラムを設け、各バランスドラムよりも軸端側にバランス空間を形成し、各バランス空間に、前記多段に形成された羽根車の中で初段と最終段とを除く中間段の羽根車の吐出側と連通する手段を接続したことを特徴とする多段遠心圧縮機。   In a multistage centrifugal compressor in which a number of centrifugal impellers are attached to the same rotating shaft and the centrifugal impellers are housed in a casing, the suction side position of the first stage impeller and the discharge side position of the last stage impeller attached to the rotating shaft In addition, a cylindrical balance drum is provided, a balance space is formed on the shaft end side of each balance drum, and an intermediate except for the first stage and the last stage in the multistage impeller formed in each balance space. A multistage centrifugal compressor, characterized in that a means communicating with the discharge side of the stage impeller is connected. 前記吐出ガスを導く手段は、中間段羽根車の下流に設けた中間ノズルとバランス空間とを接続する配管であることを特徴とする請求項1に記載の多段遠心圧縮機。   The multistage centrifugal compressor according to claim 1, wherein the means for guiding the discharge gas is a pipe connecting an intermediate nozzle and a balance space provided downstream of the intermediate stage impeller. 前記ケーシングの内周部であって、各バランスドラムの外周に対向する部分に、ラビリンスシールを設け、前記バランス空間よりも軸端側にドライガスシール装置を設けたことを特徴とする請求項1に記載の多段遠心圧縮機。   2. A labyrinth seal is provided in an inner peripheral portion of the casing, which is opposed to the outer periphery of each balance drum, and a dry gas seal device is provided closer to the shaft end than the balance space. The multistage centrifugal compressor described in 1. 前記ドライガスシール装置と前記バランス空間との間に第2のラビリンスシールを設け、この第2のラビリンスシール同士を連通する手段を設けたことを特徴とする請求項3に記載の多段遠心圧縮機。
The multi-stage centrifugal compressor according to claim 3, wherein a second labyrinth seal is provided between the dry gas seal device and the balance space, and means for communicating the second labyrinth seals is provided. .
JP2006174719A 2006-06-26 2006-06-26 Multistage centrifugal compressor Expired - Fee Related JP4839979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006174719A JP4839979B2 (en) 2006-06-26 2006-06-26 Multistage centrifugal compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006174719A JP4839979B2 (en) 2006-06-26 2006-06-26 Multistage centrifugal compressor

Publications (2)

Publication Number Publication Date
JP2008002412A true JP2008002412A (en) 2008-01-10
JP4839979B2 JP4839979B2 (en) 2011-12-21

Family

ID=39006991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006174719A Expired - Fee Related JP4839979B2 (en) 2006-06-26 2006-06-26 Multistage centrifugal compressor

Country Status (1)

Country Link
JP (1) JP4839979B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113107873A (en) * 2021-05-11 2021-07-13 内蒙古兴洋科技有限公司 Centrifugal compression method for electronic high-purity gas
US11415143B2 (en) 2019-02-18 2022-08-16 Sulzer Management Ag Process fluid lubricated pump and seawater injection system
EP3808984B1 (en) * 2019-10-15 2023-05-24 Sulzer Management AG Process fluid lubricated pump and seawater injection system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972292A (en) * 1995-09-07 1997-03-18 Toyo Eng Corp Compound multi-stage centrifugal compressor provided with two group impellers coaxially

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972292A (en) * 1995-09-07 1997-03-18 Toyo Eng Corp Compound multi-stage centrifugal compressor provided with two group impellers coaxially

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11415143B2 (en) 2019-02-18 2022-08-16 Sulzer Management Ag Process fluid lubricated pump and seawater injection system
EP3808984B1 (en) * 2019-10-15 2023-05-24 Sulzer Management AG Process fluid lubricated pump and seawater injection system
CN113107873A (en) * 2021-05-11 2021-07-13 内蒙古兴洋科技有限公司 Centrifugal compression method for electronic high-purity gas
CN113107873B (en) * 2021-05-11 2023-03-07 内蒙古兴洋科技股份有限公司 Centrifugal compression method for electronic high-purity gas

Also Published As

Publication number Publication date
JP4839979B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
US10197063B2 (en) Centrifugal fluid machine
US7338251B2 (en) Turbo compressor
US8444379B2 (en) Sealing device for rotary fluid machine, and rotary fluid machine
JP5948892B2 (en) Centrifugal compressor
US9835161B2 (en) Rotary machine
JP7074442B2 (en) Compressor
JP2006234075A (en) Thrust bearing structure for fluid compressor
JP4839979B2 (en) Multistage centrifugal compressor
US20160238015A1 (en) Sealing clearance control in turbomachines
JP2005307978A (en) Multi-stage vacuum pump and pump facility equipped with that kind of pump
US10871164B2 (en) Centrifugal compressor
US9004857B2 (en) Barrel-shaped centrifugal compressor
JP2010031777A (en) Multistage centrifugal compressor
JP6496736B2 (en) Multi-section centrifugal compressor
CN102656368B (en) For the anticorrosive shaft sealing of vacuum pump
US10077778B2 (en) Multistage centrifugal compressor
JP2006183465A (en) Centrifugal compressor
JP2014173499A (en) Centrifugal compressor and refrigerator with centrifugal compressor
JP5425009B2 (en) Fluid machinery
RU2518785C2 (en) Two-cycle centrifugal compressor
KR20010011629A (en) Diffuser for turbo compressor
WO2020129326A1 (en) Turbo compressor and refrigeration cycle device
JPH0631196Y2 (en) Balance piston seal device for compressor
JP2023077695A (en) Multistage compressor
JPH05248548A (en) Labyrinth seal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees