JP2008002358A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2008002358A
JP2008002358A JP2006172720A JP2006172720A JP2008002358A JP 2008002358 A JP2008002358 A JP 2008002358A JP 2006172720 A JP2006172720 A JP 2006172720A JP 2006172720 A JP2006172720 A JP 2006172720A JP 2008002358 A JP2008002358 A JP 2008002358A
Authority
JP
Japan
Prior art keywords
catalyst device
occluding
fuel
reducing catalyst
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006172720A
Other languages
Japanese (ja)
Other versions
JP4175394B2 (en
Inventor
Kohei Yoshida
耕平 吉田
Shinya Hirota
信也 広田
Takamitsu Asanuma
孝充 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006172720A priority Critical patent/JP4175394B2/en
Priority to DE102007028638A priority patent/DE102007028638A1/en
Priority to FR0755951A priority patent/FR2902824A1/en
Publication of JP2008002358A publication Critical patent/JP2008002358A/en
Application granted granted Critical
Publication of JP4175394B2 publication Critical patent/JP4175394B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable regeneration processing of only a downstream side NOx storage-reduction catalyst device, in an exhaust emission control device of an internal combustion engine having an upstream side NOx storage-reduction catalyst device and the downstream side NOx storage-reduction catalyst device. <P>SOLUTION: This exhaust emission control device has a first fuel supply means 4 supplying additional fuel supplied to a first NOx storage-reduction catalyst device 1, and a second fuel supply means 5 supplying the additional fuel between the first NOx storage-reduction catalyst device and a second NOx storage-reduction catalyst device 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

ディーゼルエンジンのように希薄燃焼を実施する内燃機関が公知であり、このような内燃機関の排気通路には、NOXを浄化するためのNOX吸蔵還元触媒装置が配置される。排気ガス中のNOXを十分に浄化するために、二つのNOX吸蔵還元触媒装置を排気通路に直列に配置することが提案されている(例えば、特許文献1参照)。 Internal combustion engine carrying out the lean burn like a diesel engine are known, the exhaust passage of such an internal combustion engine, NO X occluding and reducing catalyst device for purifying NO X is arranged. In order to sufficiently purify NO x in the exhaust gas, it has been proposed to arrange two NO x storage reduction catalyst devices in series in the exhaust passage (see, for example, Patent Document 1).

NOX吸蔵還元触媒装置は、無制限にNOXを吸蔵することはできず、NOXの最大吸蔵可能量を有している。それにより、NOX吸蔵還元触媒装置は、吸蔵NOX量が最大吸蔵可能量に達する以前に、吸蔵NOXを放出して還元浄化する再生処理が必要とされる。NOX吸蔵還元触媒装置からNOXを放出させるためには、排気ガス中の酸素濃度を低下させれば良く、こうして放出されたNOXは、排気ガス中に還元物質が存在すれば、還元浄化される。それにより、再生処理は、NOX吸蔵還元触媒装置へ流入する排気ガスの空燃比を理論空燃比よりリッチにすることにより実施される。 The NO X storage reduction catalyst device cannot store NO X without limitation, and has a maximum NO X storage capacity. Thus, NO X occluding and reducing catalyst device, before the amount occluded NO X reaches the maximum storable amount, regeneration process of reduction and purification by releasing occluded NO X is required. In order to release NO X from the NO X storage reduction catalyst device, it is only necessary to reduce the oxygen concentration in the exhaust gas. The NO X thus released is reduced and purified if a reducing substance exists in the exhaust gas. Is done. Thus, the regeneration process is performed by making the air-fuel ratio of the exhaust gas flowing into the NO x storage reduction catalyst device richer than the stoichiometric air-fuel ratio.

特開平11−210526JP-A-11-210526 特開平6−146870JP-A-6-146870 特許第2825137号Japanese Patent No. 2825137 特開2000−130212JP2000-130212A 特開平6−336914JP-A-6-336914 特開2005−133610JP-A-2005-133610

前述の背景技術において、NOX吸蔵還元触媒装置を再生処理するためには、燃焼空燃比をリーンからリッチへ変化させている。しかしながら、こうして燃焼空燃比を変化させるとトルクショックが発生するために、トルクショックを運転者に感じさせないような処置が必要となる。再生処理に際して、トルクショックを発生させないように、膨張行程又は排気行程において気筒内へ追加燃料を供給したり、又は、上流側のNOX吸蔵還元触媒装置の上流側において、機関排気系へ追加燃料を供給したりして、排気ガスの空燃比をリッチにすることが考えられる。 In the background art described above, in order to regenerate the NO x storage reduction catalyst device, the combustion air-fuel ratio is changed from lean to rich. However, if the combustion air-fuel ratio is changed in this way, a torque shock is generated, so that a measure is required to prevent the driver from feeling the torque shock. In the regeneration process, additional fuel is supplied into the cylinder in the expansion stroke or the exhaust stroke so as not to generate a torque shock, or additional fuel is supplied to the engine exhaust system upstream of the upstream NO x storage reduction catalyst device. It is conceivable that the air-fuel ratio of the exhaust gas is made rich, for example.

このような追加燃料は、上流側のNOX吸蔵還元触媒装置において、排気ガス中の酸素を消費するのに使用されると共に、酸素濃度の低下により上流側のNOX吸蔵還元触媒装置から放出されたNOXの還元浄化にも使用される。それにより、下流側のNOX吸蔵還元触媒装置へリッチ空燃比の排気ガスを流入させて下流側のNOX吸蔵還元触媒装置だけを再生処理することが望まれる場合にも、上流側のNOX吸蔵還元触媒装置を再生処理する分を合わせて供給しなければならず、追加燃料量は比較的多くなる。 Such additional fuel, in the NO X storage reduction catalyst device on the upstream side, while being used to consume the oxygen in the exhaust gas, released by reduction of the oxygen concentration from the upstream side of the NO X occluding and reducing catalyst device It is also used for NO x reduction and purification. Thus, when that downstream of the NO X occluding and reducing catalyst device by introducing the exhaust gas of a rich air-fuel ratio to the reproduction processing only the NO X storage reduction catalyst device downstream is also desired, the upstream-side NO X It is necessary to supply a portion for regenerating the storage reduction catalyst device, and the amount of additional fuel becomes relatively large.

こうして、下流側のNOX吸蔵還元触媒装置だけを再生処理することができないだけでなく、このように比較的多量の燃料を上流側のNOX吸蔵還元触媒装置へ流入させると、特に、機関排気系に追加燃料が供給される場合には、上流側のNOX吸蔵還元触媒装置に担持された酸化触媒が液状燃料により濡らされて良好に機能しないこともある。 Thus, not only the downstream NO x storage reduction catalyst device cannot be regenerated, but when a relatively large amount of fuel flows into the upstream NO x storage reduction catalyst device in this way, engine exhaust particularly When additional fuel is supplied to the system, the oxidation catalyst supported on the upstream NO x storage reduction catalyst device may be wetted by the liquid fuel and may not function well.

上流側のNOX吸蔵還元触媒装置の酸化触媒が良好に機能しなければ、排気ガス中の酸素を使用して追加燃料を良好に燃焼させることができず、排気ガス中の酸素濃度が低下しないために、上流側のNOX吸蔵還元触媒装置だけでなく下流側のNOX吸蔵還元触媒装置においても良好な再生処理を実現することができない。 If the oxidation catalyst of the upstream NO x storage reduction catalyst device does not function well, the oxygen in the exhaust gas cannot be burned well and the oxygen concentration in the exhaust gas does not decrease for, it is impossible even to realize good reproduction process in the nO X storage reduction catalyst device downstream well upstream of the nO X occluding and reducing catalyst device.

従って、本発明の目的は、上流側のNOX吸蔵還元触媒装置及び下流側のNOX吸蔵還元触媒装置を備える内燃機関の排気浄化装置において、下流側のNOX吸蔵還元触媒装置だけの再生処理を可能とすることである。 Accordingly, an object of the present invention, in the exhaust purification system for an internal combustion engine having a the NO X storage reduction catalyst device on the upstream side of the NO X occluding and reducing catalyst device and the downstream side, reproduction of only the NO X storage reduction catalyst device downstream Is to make it possible.

本発明による請求項1に記載の内燃機関の排気浄化装置は、機関排気系に直列に配置された上流側の第1NOX吸蔵還元触媒装置及び下流側の第2NOX吸蔵還元触媒装置を備える内燃機関の排気浄化装置において、前記第1NOX吸蔵還元触媒装置へ供給される追加燃料を供給する第1燃料供給手段と、前記第1NOX吸蔵還元触媒装置と前記第2NOX吸蔵還元触媒装置との間に追加燃料を供給する第2燃料供給手段とを具備することを特徴とする。 Combustion exhaust gas control apparatus according to claim 1 according to the invention, comprising a first 2NO X occluding and reducing catalyst device of the 1NO X occluding and reducing catalyst device and the downstream side of the upstream side arranged in series in the engine exhaust system in the exhaust purification system of the engine, between the first fuel supply means for supplying additional fuel to be supplied, and the second 1NO X occluding and reducing catalyst device and the second 2NO X occluding and reducing catalyst device to said first 1NO X occluding and reducing catalyst device And a second fuel supply means for supplying additional fuel therebetween.

本発明による請求項2に記載の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、前記第1NOX吸蔵還元触媒装置及び前記第2NOX吸蔵還元触媒装置の両方の再生処理を実施する際には、前記第1NOX吸蔵還元触媒装置へ流入する排気ガスの空燃比が理論空燃比又はリッチ空燃比となるように前記第1燃料供給手段により供給される追加燃料量が決定され、前記第2NOX吸蔵還元触媒装置へ流入する排気ガスの空燃比が前記第2NOX吸蔵還元触媒装置を再生処理するためのリッチ空燃比となるように前記第2燃料供給手段により供給される追加燃料量が決定されることを特徴とする。 An exhaust purification system of an internal combustion engine according to claim 2 of the present invention, both the exhaust gas control apparatus according to claim 1, wherein said 1NO X occluding and reducing catalyst device and the second 2NO X occluding and reducing catalyst device When the regeneration process is performed, the additional fuel supplied by the first fuel supply means so that the air-fuel ratio of the exhaust gas flowing into the first NO X storage reduction catalyst device becomes the stoichiometric air-fuel ratio or the rich air-fuel ratio. the amount is determined by the second fuel supply means so that the rich air-fuel ratio for the air-fuel ratio of the exhaust gas flowing into the first 2NO X occluding and reducing catalyst device to playback processing said first 2NO X occluding and reducing catalyst device The amount of additional fuel to be supplied is determined.

本発明による請求項3に記載の内燃機関の排気浄化装置は、請求項2に記載の内燃機関の排気浄化装置において、前記第1NOX吸蔵還元触媒装置及び前記第2NOX吸蔵還元触媒装置の両方の再生処理を実施する際に、前記第2NOX吸蔵還元触媒装置から流出する排気ガスの空燃比が理論空燃比となるように、前記第1燃料供給手段により供給される追加燃料量及び前記第2燃料供給手段により供給される追加燃料量が決定されることを特徴とする。 An exhaust purification system of an internal combustion engine according to claim 3 of the present invention, both the exhaust gas control apparatus according to claim 2, wherein said 1NO X occluding and reducing catalyst device and the second 2NO X occluding and reducing catalyst device When the regeneration process is performed, the amount of additional fuel supplied by the first fuel supply means and the first amount so that the air-fuel ratio of the exhaust gas flowing out from the second NO x storage reduction catalyst device becomes the stoichiometric air-fuel ratio. The amount of additional fuel supplied by the two fuel supply means is determined.

本発明による請求項4に記載の内燃機関の排気浄化装置は、請求項3に記載の内燃機関の排気浄化装置において、前記第1NOX吸蔵還元触媒装置及び前記第2NOX吸蔵還元触媒装置の両方の再生処理を実施する際に、前記第1NOX吸蔵還元触媒装置から燃料と共にNOXの流出が推定又は検出される時には、前記第2燃料供給手段により供給される追加燃料量を増量して前記第2NOX吸蔵還元触媒装置から流出する排気ガスの空燃比がリッチ空燃比となるようにし、推定又は検出された流出NOX量が多いほど前記第2燃料供給手段による増量分の燃料を多くすることを特徴とする。 An exhaust purification system of an internal combustion engine according to claim 4 of the present invention, both the exhaust gas control apparatus according to claim 3, wherein said 1NO X occluding and reducing catalyst device and the second 2NO X occluding and reducing catalyst device When performing the regeneration process, when the outflow of NO x together with the fuel is estimated or detected from the first NO x storage reduction catalyst device, the amount of additional fuel supplied by the second fuel supply means is increased to increase the amount of the additional fuel. air-fuel ratio of the exhaust gas flowing out from the 2NO X occluding and reducing catalyst device as a rich air-fuel ratio, to increase the increase amount of the fuel by the estimated or detected outflow amount of NO X is large enough the second fuel supply means It is characterized by that.

本発明による請求項5に記載の内燃機関の排気浄化装置は、請求項2から4のいずれか一項に記載の内燃機関の排気浄化装置において、前記第1NOX吸蔵還元触媒装置及び前記第2NOX吸蔵還元触媒装置の両方の再生処理を実施する際に、前記第2NOX吸蔵還元触媒装置が設定温度範囲内となるように、前記第1燃料供給手段により供給される追加燃料量が決定されることを特徴とする。 An exhaust purification system of an internal combustion engine according to claim 5 of the present invention, in the exhaust purification system of an internal combustion engine according to any one of claims 2 to 4, wherein said 1NO X occluding and reducing catalyst device and the second 2NO When the regeneration processing of both the X storage reduction catalyst devices is performed, the amount of additional fuel supplied by the first fuel supply means is determined so that the second NO X storage reduction catalyst device is within a set temperature range. It is characterized by that.

本発明による請求項6に記載の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、前記第1NOX吸蔵還元触媒装置及び前記第2NOX吸蔵還元触媒装置の両方の再生処理を実施する際に、前記第2燃料供給手段により追加燃料を供給して前記第2NOX吸蔵還元触媒装置の再生処理を実施した後に、前記第1燃料供給手段により追加燃料を供給して前記第1NOX吸蔵還元触媒装置の再生処理を実施することを特徴とする。 An exhaust purification system of an internal combustion engine according to claim 6 of the present invention, both the exhaust gas control apparatus according to claim 1, wherein said 1NO X occluding and reducing catalyst device and the second 2NO X occluding and reducing catalyst device in carrying out the regeneration process, after performing the reproduction process of the first 2NO X occluding and reducing catalyst device and supplying additional fuel by said second fuel supply means, an additional fuel is supplied by the first fuel supply means which comprises carrying out the regeneration process of the first 1NO X occluding and reducing catalyst device Te.

本発明による請求項7に記載の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、前記第1NOX吸蔵還元触媒装置の上流側にはSトラップ装置が配置され、前記第1NOX吸蔵還元触媒装置と前記第2NOX吸蔵還元触媒装置との間には、NOX濃度を検出するNOXセンサが配置されていることを特徴とする。 An exhaust purification system of an internal combustion engine according to claim 7 of the present invention, in the exhaust purification system of an internal combustion engine according to claim 1, is disposed S trap device on the upstream side of the first 1NO X occluding and reducing catalyst device the between the first 1NO X occluding and reducing catalyst device and the second 2NO X occluding and reducing catalyst device, wherein the NO X sensor for detecting the NO X concentration is disposed.

本発明による請求項8に記載の内燃機関の排気浄化装置は、請求項7に記載の内燃機関の排気浄化装置において、前記第2NOX吸蔵還元触媒装置の下流側にも、NOX濃度を検出するNOXセンサが配置されていることを特徴とする。 An exhaust purification system of an internal combustion engine according to claim 8 of the present invention, in the exhaust purification system of an internal combustion engine according to claim 7, also on the downstream side of the first 2NO X occluding and reducing catalyst device, detecting the NO X concentration The NO x sensor is arranged.

本発明による請求項9に記載の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、前記第1NOX吸蔵還元触媒装置の上流側にはSトラップ装置が配置され、前記第1燃料供給手段により供給された追加燃料は前記Sトラップ装置を通過するようになっており、追加燃料の通過により前記Sトラップ装置からSOXが放出されることが予測される時には、前記第1燃料供給手段による追加燃料の供給を中止又は抑制することを特徴とする。 An internal combustion engine exhaust gas purification apparatus according to a ninth aspect of the present invention is the exhaust gas purification apparatus for the internal combustion engine according to the first aspect, wherein an S trap device is disposed upstream of the first NO x storage reduction catalyst device. The additional fuel supplied by the first fuel supply means passes through the S trap device, and when it is predicted that SO X is released from the S trap device due to the passage of the additional fuel, The supply of the additional fuel by the first fuel supply means is stopped or suppressed.

本発明による請求項10に記載の内燃機関の排気浄化装置は、請求項9に記載の内燃機関の排気浄化装置において、前記Sトラップ装置が設定温度以上である時にSOXが放出されることが予測され、前記設定温度は前記Sトラップ装置へのSOX吸蔵量が多いほど低くされることを特徴とする。 According to a tenth aspect of the present invention, in the exhaust gas purification apparatus for an internal combustion engine according to the ninth aspect, the SO X is released when the S trap device is at a set temperature or higher. It is predicted that the set temperature is lowered as the SO X storage amount in the S trap device increases.

本発明による請求項1に記載の内燃機関の排気浄化装置によれば、機関排気系に直列に配置された上流側の第1NOX吸蔵還元触媒装置及び下流側の第2NOX吸蔵還元触媒装置を備える内燃機関の排気浄化装置において、第1NOX吸蔵還元触媒装置へ供給される追加燃料を供給する第1燃料供給手段と、第1NOX吸蔵還元触媒装置と第2NOX吸蔵還元触媒装置との間に追加燃料を供給する第2燃料供給手段とを具備するために、例えば、第1NOX吸蔵還元触媒装置が劣化した場合等において、第2燃料供給手段により供給される必要最小限の追加燃料により第2NOX吸蔵還元触媒装置だけを再生処理することができる。 According to the exhaust purification system of an internal combustion engine according to claim 1 according to the present invention, the first 2NO X occluding and reducing catalyst device of the 1NO X occluding and reducing catalyst device and the downstream side of the upstream side arranged in series in the engine exhaust system between the exhaust gas purifying apparatus for an internal combustion engine, a first fuel supply means for supplying additional fuel to be supplied to the first 1NO X occluding and reducing catalyst device, the first 1NO X occluding and reducing catalyst device and the 2NO X occluding and reducing catalyst device comprising in order to and a second fuel supply means for supplying additional fuel, for example, in such case where the 1NO X occluding and reducing catalyst device has deteriorated, the minimum additional fuel supplied by the second fuel supply means Only the second NO x storage reduction catalyst device can be regenerated.

本発明による請求項2に記載の内燃機関の排気浄化装置によれば、請求項1に記載の内燃機関の排気浄化装置において、第1NOX吸蔵還元触媒装置及び第2NOX吸蔵還元触媒装置の両方の再生処理を実施する際には、第1NOX吸蔵還元触媒装置へ流入する排気ガスの空燃比が理論空燃比又はリッチ空燃比となるように第1燃料供給手段により供給される追加燃料量が決定され、第2NOX吸蔵還元触媒装置へ流入する排気ガスの空燃比が第2NOX吸蔵還元触媒装置を再生処理するためのリッチ空燃比となるように前記第2燃料供給手段により供給される追加燃料量が決定されるために、第1燃料供給手段により第1NOX吸蔵還元触媒装置及び第2NOX吸蔵還元触媒装置の両方を再生処理するのに必要な多量の追加燃料が供給される場合に比較して、第2燃料供給手段の追加燃料供給により、第1燃料供給手段により供給される追加燃料量を減少させることができ、多量の追加燃料が第1NOX吸蔵還元触媒装置へ流入して第1NOX吸蔵還元触媒装置に担持された酸化触媒が多量の追加燃料により濡らされて機能低下する等の不具合を防止することができ、第1NOX吸蔵還元触媒装置及び第2NOX吸蔵還元触媒装置の良好な再生処理を実現することができる。 According to the exhaust purification system of an internal combustion engine according to claim 2 according to the present invention, both the exhaust gas control apparatus according to claim 1, the 1NO X occluding and reducing catalyst device and the 2NO X occluding and reducing catalyst device in carrying out the regeneration process, the additional amount of fuel air-fuel ratio of the exhaust gas flowing into the first 1NO X occluding and reducing catalyst device is supplied by the first fuel supply means such that the stoichiometric air-fuel ratio or rich air-fuel ratio are determined, added to the air-fuel ratio of the exhaust gas flowing into the first 2NO X occluding and reducing catalyst device is supplied by the second fuel supply means so that the rich air-fuel ratio for reproducing processing first 2NO X occluding and reducing catalyst device for the amount of fuel is determined, place a large amount of additional fuel required for both the first 1NO X occluding and reducing catalyst device and the 2NO X occluding and reducing catalyst device by the first fuel supply means for reproduction processing is supplied Compared to, the additional fuel supply of the second fuel supply means, it is possible to reduce the additional amount of fuel supplied by the first fuel supply means, it flows a large amount of additional fuel to the first 1NO X occluding and reducing catalyst device It carried to a 1NO X occluding and reducing catalyst device Te oxidation catalyst can be prevented a problem such as a decrease function is wetted by a large amount of additional fuel, the 1NO X occluding and reducing catalyst device and the 2NO X occluding and reducing catalyst Good reproduction processing of the apparatus can be realized.

本発明による請求項3に記載の内燃機関の排気浄化装置によれば、請求項2に記載の内燃機関の排気浄化装置において、第1NOX吸蔵還元触媒装置及び第2NOX吸蔵還元触媒装置の両方の再生処理を実施する際に、第2NOX吸蔵還元触媒装置から流出する排気ガスの空燃比が理論空燃比となるように、第1燃料供給手段により供給される追加燃料量及び第2燃料供給手段により供給される追加燃料量が決定されるようになっている。それにより、第1燃料供給手段により供給される追加燃料量が第1NOX吸蔵還元触媒装置を再生処理するのに必要な燃料量より多い場合には、第2燃料供給手段により供給される追加燃料量は、第2NOX吸蔵還元触媒装置からの放出NOXを還元浄化するのに必要な燃料量より少なくされ、不足分は第1NOX吸蔵還元触媒装置からの流出する余剰燃料により補われるようになっており、この余剰燃料は第1NOX吸蔵還元触媒装置において改質されて反応し易く、第2NOX吸蔵還元触媒装置において良好に放出NOXを還元浄化する。また、第1燃料供給手段により供給される追加燃料量が第1NOX吸蔵還元触媒装置を再生処理するのに必要な燃料量より少ない場合には、第2燃料供給手段により供給される追加燃料量は、第2NOX吸蔵還元触媒装置からの放出NOXを還元浄化するのに必要な燃料量より多くされ、この時には第1NOX吸蔵還元触媒装置における放出NOXの還元浄化が不十分となるために第1NOX吸蔵還元触媒装置からNOXが流出するが、このNOXは、第2NOX吸蔵還元触媒装置において放出NOXと共に良好に還元浄化される。いずれの場合にも、第2NOX吸蔵還元触媒装置から流出する排気ガスの空燃比は理論空燃比となり、第1燃料供給手段及び第2燃料供給手段により供給される追加燃料を合わせて、第1NOX吸蔵還元触媒装置及び第2NOX吸蔵還元触媒装置を再生処理する必要最小限の追加燃料が供給される。 According to the exhaust purification system of an internal combustion engine according to claim 3 of the present invention, both the exhaust gas control apparatus according to claim 2, the 1NO X occluding and reducing catalyst device and the 2NO X occluding and reducing catalyst device When the regeneration process is performed, the additional fuel amount and the second fuel supply supplied by the first fuel supply means so that the air-fuel ratio of the exhaust gas flowing out from the second NO x storage reduction catalyst device becomes the stoichiometric air-fuel ratio. The amount of additional fuel supplied by the means is determined. Thus, when the additional amount of fuel supplied by the first fuel supply means is greater than the amount of fuel required to regenerate process the first 1NO X occluding and reducing catalyst device, the additional fuel supplied by the second fuel supply means the amount is less than the amount of fuel required to reduce and purify the released NO X from the 2NO X occluding and reducing catalyst device, the shortfall as supplemented by the surplus fuel flowing from the first 1NO X occluding and reducing catalyst device it is, the excess fuel is likely to react reformed in the first 1NO X occluding and reducing catalyst device, to reduce and purify satisfactorily released NO X in the first 2NO X occluding and reducing catalyst device. Further, when the additional amount of fuel supplied by the first fuel supply means is less than the amount of fuel required to regenerate process the first 1NO X occluding and reducing catalyst device, the additional amount of fuel supplied by the second fuel supply means is larger than the fuel amount required to reduce and purify the released NO X from the 2NO X occluding and reducing catalyst device, since at this time the reduction purification of the released NO X in the 1NO X occluding and reducing catalyst device becomes insufficient Although NO X flows out from the 1NO X occluding and reducing catalyst device, the NO X is satisfactorily reduced and purified with release NO X in the first 2NO X occluding and reducing catalyst device. In either case, the air-fuel ratio of the exhaust gas flowing out from the second NO x storage reduction catalyst device becomes the stoichiometric air-fuel ratio, and the additional fuel supplied by the first fuel supply means and the second fuel supply means is combined to give the first NO The minimum additional fuel required to regenerate the X storage reduction catalyst device and the second NO X storage reduction catalyst device is supplied.

本発明による請求項4に記載の内燃機関の排気浄化装置によれば、請求項3に記載の内燃機関の排気浄化装置において、第1NOX吸蔵還元触媒装置及び第2NOX吸蔵還元触媒装置の両方の再生処理を実施する際に、第1NOX吸蔵還元触媒装置から燃料と共にNOXの流出が推定又は検出される時には、第1NOX吸蔵還元触媒装置において低温等の理由によりNOXの還元浄化が不十分となっている場合であり、この時に、第1NOX吸蔵還元触媒装置から流出する燃料とNOXとを単に第2NOX吸蔵還元触媒装置へ流入させても、同様に、NOXの還元浄化が不十分となる可能性が高く、それにより、第2燃料供給手段により供給される追加燃料量を増量して第2NOX吸蔵還元触媒装置から流出する排気ガスの空燃比がリッチ空燃比となるようにし、推定又は検出された流出NOX量が多いほど第2燃料供給手段による増量分の燃料を多くするようになっている。こうして、第2NOX吸蔵還元触媒装置において、増量燃料によりNOXの還元浄化を活発にし、第1NOX吸蔵還元触媒装置からの流出NOX及び第2NOX吸蔵還元触媒装置からの放出NOXを確実に還元浄化するようにしている。 According to the exhaust purification system of an internal combustion engine according to claim 4 according to the present invention, both the exhaust gas control apparatus according to claim 3, the 1NO X occluding and reducing catalyst device and the 2NO X occluding and reducing catalyst device of the carrying out the regeneration process, when the outflow of the NO X is estimated or detected with the fuel from the 1NO X occluding and reducing catalyst device, the reduction purification of the NO X reasons cold etc. in a 1NO X occluding and reducing catalyst device In this case, even if the fuel flowing out from the first NO x storage reduction catalyst device and NO x simply flow into the second NO x storage reduction catalyst device, the reduction of NO x is similarly performed. purification is likely to be insufficient, whereby the air-fuel ratio is a rich air-fuel ratio of the exhaust gas flowing out from the 2NO X occluding and reducing catalyst device by increasing the additional amount of fuel supplied by the second fuel supply means Na In this way, the larger the estimated or detected amount of outflow NO x is, the more fuel is increased by the second fuel supply means. Thus, in the 2NO X occluding and reducing catalyst device, to actively reduce and purify of the NO X by increasing the fuel, the outlet NO X and release NO X from the 2NO X occluding and reducing catalyst device from the first 1NO X occluding and reducing catalyst device securely To reduce and purify.

本発明による請求項5に記載の内燃機関の排気浄化装置によれば、請求項2から4のいずれか一項に記載の内燃機関の排気浄化装置において、第1NOX吸蔵還元触媒装置及び第2NOX吸蔵還元触媒装置の両方の再生処理を実施する際に、第1燃料供給手段により供給される追加燃料が第1NOX吸蔵還元触媒装置において燃焼して排気ガス温度を高めるために、この排気ガスの流入により第2NOX吸蔵還元触媒装置は昇温する。NOX吸蔵還元触媒装置はNOXを吸蔵作用が活発となる設定温度範囲を有しており、第1燃料供給手段により供給される追加燃料量が少ないほど、第2NOX吸蔵還元触媒装置へ流入する排気ガス温度が低くなることを利用して、第2NOX吸蔵還元触媒装置の温度を設定温度範囲内となるように、第1燃料供給手段により供給される追加燃料量が決定される。こうして、再生処理が完了した直後において、第2NOX吸蔵還元触媒装置が設定温度範囲内とされるために、第1NOX吸蔵還元触媒装置が設定温度範囲外となっていても第2NOX吸蔵還元触媒装置によって排気ガス中のNOXを良好に吸蔵することができる。 According to the exhaust purification system of an internal combustion engine according to claim 5 according to the present invention, in the exhaust purification system of an internal combustion engine according to any one of claims 2 to 4, the 1NO X occluding and reducing catalyst device and the 2NO When the regeneration processing of both of the X storage reduction catalyst devices is performed, the additional fuel supplied by the first fuel supply means burns in the first NO X storage reduction catalyst device to increase the exhaust gas temperature. the of the 2NO X occluding and reducing catalyst device by the inflow raising the temperature. The NO X storage reduction catalyst device has a set temperature range in which NO X storage action is active, and the smaller the amount of additional fuel supplied by the first fuel supply means, the more the NO X storage reduction catalyst device flows into the second NO X storage reduction catalyst device. by utilizing the fact that the temperature of exhaust gas is lowered, so that the temperature of the set temperature range of the 2NO X occluding and reducing catalyst device, additional amount of fuel supplied is determined by the first fuel supply means. Thus, reproduction processing immediately after the is complete, to the 2NO X occluding and reducing catalyst device is within the set temperature range, even if the first 1NO X occluding and reducing catalyst device becomes the set temperature range second 2NO X occluding and reducing The catalyst device can store NO x in the exhaust gas satisfactorily.

本発明による請求項6に記載の内燃機関の排気浄化装置によれば、請求項1に記載の内燃機関の排気浄化装置において、第1NOX吸蔵還元触媒装置及び第2NOX吸蔵還元触媒装置の両方の再生処理を実施する際に、第2燃料供給手段により追加燃料を供給して第2NOX吸蔵還元触媒装置の再生処理を実施した後に、第1燃料供給手段により追加燃料を供給して第1NOX吸蔵還元触媒装置の再生処理を実施するようになっている。それにより、第1NOX吸蔵還元触媒装置の再生処理中にNOXが流出しても、第2NOX吸蔵還元触媒装置は、再生処理が完了して十分にNOXを還元浄化することができるようになっており、第1NOX吸蔵還元触媒装置から流出するNOXを大気中へ放出させることなく良好に浄化することができる。 According to the exhaust purification system of an internal combustion engine according to claim 6 according to the present invention, both the exhaust gas control apparatus according to claim 1, the 1NO X occluding and reducing catalyst device and the 2NO X occluding and reducing catalyst device in carrying out the regeneration process, after performing the reproduction processing of the 2NO X occluding and reducing catalyst device and supplying additional fuel by the second fuel supply means, first 1NO to supply additional fuel by the first fuel supply means The regeneration process of the X storage reduction catalyst device is carried out. Thereby, even if NO X flows out during reproduction of the first 1NO X occluding and reducing catalyst device, the 2NO X occluding and reducing catalyst device, so that it is possible to reduce and purify sufficient NO X and playback processing is completed Thus, NO x flowing out from the first NO x storage reduction catalyst device can be purified well without being released into the atmosphere.

本発明による請求項7に記載の内燃機関の排気浄化装置によれば、請求項1に記載の内燃機関の排気浄化装置において、第1NOX吸蔵還元触媒装置の上流側にはSトラップ装置が配置されている。NOX吸蔵還元触媒装置にはNOXだけでなくSOXも吸蔵され、SOXは容易に放出させることができないために、NOXの最大吸蔵可能量を減少させる。それにより、第1NOX吸蔵還元触媒装置の上流側にSトラップ装置を配置して、排気ガス中のSOXがSトラップ装置により吸蔵されるようにし、NOX吸蔵還元触媒装置へのSOXの吸蔵を防止している。しかしながら、Sトラップ装置にも無制限にSOXを吸蔵することはできず、さらにSOXを吸蔵することができなくなると、SOXは第1NOX吸蔵還元触媒装置に吸蔵されるようになってNOXの最大吸蔵可能量を減少させ、遂には、再生処理を実施しても第1NOX吸蔵還元触媒装置において全くNOXを吸蔵することができなるくなる。再生処理の完了直後であるにも係わらずに、NOXセンサによりNOXが検出されれば、第1NOX吸蔵還元触媒装置は最大限のSOXを吸蔵して全くNOXが吸蔵できない状態であり、この時には、Sトラップ装置及び第1NOX吸蔵還元触媒装置を交換することにより、第2NOX吸蔵還元触媒装置までもがSOXを吸蔵してしまうことを防止することができる。 According to the exhaust purification device for an internal combustion engine according to claim 7 of the present invention, in the exhaust purification device for the internal combustion engine according to claim 1, the S trap device is disposed upstream of the first NO x storage reduction catalyst device. Has been. Since the NO X storage reduction catalyst device stores not only NO X but also SO X , and SO X cannot be easily released, the maximum amount of NO X that can be stored is reduced. Thus, by the S trap device disposed upstream of the first 1NO X occluding and reducing catalyst device, SO X in the exhaust gas is to be absorbed by the S trap device, the SO X into the NO X storage reduction catalyst device Occlusion is prevented. However, SO X cannot be stored in the S trap device without limitation, and when SO X cannot be stored further, SO X is stored in the first NO X storage reduction catalyst device, and NO X is stored. Even if the maximum storable amount of X is reduced and finally the regeneration process is performed, the first NO X storage reduction catalyst device cannot store NO X at all. If NO X is detected by the NO X sensor even after the regeneration process is completed, the first NO X storage reduction catalyst device stores the maximum amount of SO X and cannot store NO X at all. There, at this time, by exchanging the S trap device and the 1NO X occluding and reducing catalyst device can be up to the 2NO X occluding and reducing catalyst device is prevented from being occluding SO X.

本発明による請求項8に記載の内燃機関の排気浄化装置によれば、請求項7に記載の内燃機関の排気浄化装置において、第2NOX吸蔵還元触媒装置の下流側にも、NOX濃度を検出するNOXセンサが配置されている。それにより、前述したように、第1NOX吸蔵還元触媒装置と第2NOX吸蔵還元触媒装置との間の配置されたNOXセンサにより、Sトラップ装置及び第1NOX吸蔵還元触媒装置の交換時期を判断することができると共に、再生処理の完了直後において、第1NOX吸蔵還元触媒装置へ流入する排気ガス中の推定NOX濃度と、NOXセンサにより検出されるNOX濃度との差が設定値より小さくなれば、第1NOX吸蔵還元触媒装置はSOX吸蔵の場合を含めてNOX吸蔵能力がかなり低下していると判断することができ、再生処理が無駄となるために第1燃料供給手段による追加燃料の供給を停止することができる。また、第2NOX吸蔵還元触媒装置がNOXを殆ど吸蔵していない状態において、NOXセンサにより検出される第1NOX吸蔵還元触媒装置から流出する排気ガス中のNOX濃度と、第2NOX吸蔵還元触媒装置の下流側に配置されたNOXセンサにより検出される第2NOX吸蔵還元触媒装置から流出する排気ガス中のNOX濃度との差が設定値より小さくなれば、第2NOX吸蔵還元触媒装置のNOX吸蔵能力がかなり低下していると判断することができ、再生処理が無駄となるために第2燃料供給手段による追加燃料の供給を停止することができる。 According to the exhaust purification system of an internal combustion engine according to claim 8 according to the present invention, in the exhaust purification system of an internal combustion engine according to claim 7, in the downstream side of the 2NO X occluding and reducing catalyst device, the NO X concentration NO X sensor for detecting is arranged. Thereby, as described above, the arranged NO X sensor between the first 1NO X occluding and reducing catalyst device and the 2NO X occluding and reducing catalyst device, the replacement timing of the S trap device and the 1NO X occluding and reducing catalyst device it is possible to determine, in immediately after completion of the reproduction process, and the estimated concentration of NO X in the exhaust gas flowing into the first 1NO X occluding and reducing catalyst device, the difference between the NO X concentration detected by the NO X sensor setpoint if smaller, the 1NO X occluding and reducing catalyst device can be judged that the NO X storage ability, including the case of SO X storage is considerably reduced, the first fuel supply for regeneration processing is useless The supply of additional fuel by the means can be stopped. Further, in the state where the 2NO X occluding and reducing catalyst device has not almost absorb NO X, the concentration of NO X in the exhaust gas flowing out from the 1NO X occluding and reducing catalyst device detected by the NO X sensor, the 2NO X if the difference between the concentration of NO X in the exhaust gas flowing out from the 2NO X occluding and reducing catalyst device detected by the NO X sensor arranged downstream of the storage reduction catalyst device is smaller than the set value, the 2NO X occluding It can be determined that the NO x storage capacity of the reduction catalyst device is considerably lowered, and the regeneration process is wasted, so that the supply of additional fuel by the second fuel supply means can be stopped.

本発明による請求項9に記載の内燃機関の排気浄化装置によれば、請求項1に記載の内燃機関の排気浄化装置において、第1NOX吸蔵還元触媒装置の上流側にはSトラップ装置が配置され、第1燃料供給手段により供給された追加燃料はSトラップ装置を通過するようになっており、追加燃料の通過によりSトラップ装置からSOXが放出されることが予測される時には、第1燃料供給手段による追加燃料の供給を中止又は抑制するようになっている。それにより、SトラップからSOXが放出されて、このSOXが第1NOX吸蔵還元触媒装置に吸蔵されることは防止又は抑制される。 According to the exhaust purification device for an internal combustion engine according to claim 9 of the present invention, in the exhaust purification device for the internal combustion engine according to claim 1, the S trap device is disposed upstream of the first NO x storage reduction catalyst device. The additional fuel supplied by the first fuel supply means passes through the S trap device, and when it is predicted that SO X is released from the S trap device due to the passage of the additional fuel, the first fuel is supplied. The supply of additional fuel by the fuel supply means is stopped or suppressed. Thereby, SO X is released from the S trap, and this SO X is prevented or suppressed from being stored in the first NO X storage reduction catalyst device.

本発明による請求項10に記載の内燃機関の排気浄化装置によれば、請求項9に記載の内燃機関の排気浄化装置において、Sトラップ装置が設定温度以上である時にSOXが放出されることが予測され、設定温度はSトラップ装置へのSOX吸蔵量が少ないほど高くされるようになっている。それにより、第1燃料供給手段による追加燃料の供給を中止又は抑制する機会は減少し、第1NOX吸蔵還元触媒装置の良好な再生処理を実施することができる。 According to the exhaust gas purification apparatus for an internal combustion engine according to claim 10 of the present invention, in the exhaust gas purification apparatus for the internal combustion engine according to claim 9, SO X is released when the S trap device is equal to or higher than a set temperature. Therefore, the set temperature is increased as the SO X storage amount in the S trap device is smaller. As a result, the opportunity to stop or suppress the supply of additional fuel by the first fuel supply means is reduced, and a favorable regeneration process of the first NO x storage reduction catalyst device can be performed.

図1は本発明による内燃機関の排気浄化装置を示す機関排気系の概略図である。内燃機関は、ディーゼルエンジンのような希薄燃焼を実施するものであり、その排気ガス中には、比較的多くのNOXが含まれる。それにより、機関排気系には、NOX浄化するための第1NOX吸蔵還元触媒装置1及び第2NOX吸蔵還元触媒装置2が直列に配置されている。上流側の第1NOX吸蔵還元触媒装置1は、例えば、比較的小型として、エンジンルーム内に配置すれば、機関本体近くに位置して熱容量が小さいために、機関始動直後に活性化して排気ガス中のNOXを良好に吸蔵することができる。しかしながら、小型とされた第1NOX吸蔵還元触媒装置1では、排気ガス量が多い時には排気ガス中のNOXを十分に吸蔵することができない。それにより、下流側の第2NOX吸蔵還元触媒装置2を比較的大型として、車両床下等に配置することにより、排気ガス量が多い時にも排気ガス中のNOXを十分に吸蔵することができる。もちろん、第1NOX吸蔵還元触媒装置1及び第2NOX吸蔵還元触媒装置2をいずれも車両床下に配置するようにしても良い。 FIG. 1 is a schematic view of an engine exhaust system showing an exhaust gas purification apparatus for an internal combustion engine according to the present invention. Engine is to implement lean combustion such as a diesel engine, during the exhaust gases include a relatively large number of NO X. Thereby, the exhaust system, the 1NO X occluding and reducing catalyst device 1 and 2NO X occluding and reducing catalyst device 2 for purifying NO X are arranged in series. The 1NO X occluding and reducing catalyst device 1 on the upstream side, for example, as a relatively small, if placed in the engine room, the heat capacity is located near the engine body is small, the exhaust gas is activated immediately after the engine start the NO X in it can be satisfactorily occluded. However, the first NO x storage reduction catalyst device 1 that is made compact cannot sufficiently store NO x in the exhaust gas when the amount of exhaust gas is large. Thereby, a relatively large the first 2NO X occluding and reducing catalyst device 2 on the downstream side, by arranging the vehicle floor or the like, can be even when the amount of exhaust gas is large sufficiently absorb NO X in the exhaust gas . Of course, both the first 1NO X occluding and reducing catalyst device 1 and 2NO X occluding and reducing catalyst device 2 may be arranged under the vehicle floor.

第1NOX吸蔵還元触媒装置1及び第2NOX吸蔵還元触媒装置2は、アルミナ等を使用してNOX吸蔵触媒と白金Ptのような貴金属触媒とが担持されたモノリス担体又はペレット担体を有するものである。NOX吸蔵触媒は、例えば、カリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つである。このNOX吸蔵触媒は、流入する既燃ガスの空燃比がリーンの時、すなわち、酸素濃度が高い時にはNOXを吸蔵し、空燃比が理論空燃比又はリッチになると、すなわち、酸素濃度が低下すると、吸蔵したNOXを放出するNOXの吸放出作用を行う。酸化触媒として機能する貴金属触媒としては、通常、白金Ptが用いられる。 The first NO x storage reduction catalyst device 1 and the second NO x storage reduction catalyst device 2 have a monolith support or pellet support on which a NO x storage catalyst and a noble metal catalyst such as platinum Pt are supported using alumina or the like. It is. The NO x storage catalyst is selected from, for example, alkali metals such as potassium K, sodium Na, lithium Li and cesium Cs, alkaline earth metals such as barium Ba and calcium Ca, and rare earths such as lanthanum La and yttrium Y. Is at least one. This the NO X storage catalyst, when the air-fuel ratio of the burnt gas flowing into the lean, i.e., occludes NO X when the oxygen concentration is high, the air-fuel ratio becomes the stoichiometric air-fuel ratio or rich, that is, lowering the oxygen concentration then, do the absorption and release action of NO X to release the occluded NO X. As a noble metal catalyst that functions as an oxidation catalyst, platinum Pt is usually used.

ディーゼルエンジンの排気ガス中には、パティキュレートも含まれており、例えば、第2NOX吸蔵還元触媒装置2を、NOX吸蔵触媒と貴金属触媒とを担持するウォールフロー型のパティキュレートフィルタとしても良い。NOX吸蔵触媒は、NOXの吸放出に際して活性酸素を放出し、この活性酸素は輝炎を発生させることなくパティキュレートを酸化除去する。それにより、捕集パティキュレートを自動的に酸化除去することができる。 The exhaust gas from diesel engines, also includes particulates, for example, the first 2NO X occluding and reducing catalyst device 2 may be a wall-flow type particulate filter carrying the the NO X storage catalyst and the noble metal catalyst . The NO x storage catalyst releases active oxygen when NO x is absorbed and released, and this active oxygen oxidizes and removes particulates without generating a luminous flame. Thereby, the collected particulates can be automatically oxidized and removed.

第1NOX吸蔵還元触媒装置1及び第2NOX吸蔵還元触媒装置2のいずれにおいても、無制限にNOXを吸蔵することはできず、それぞれに、最大吸蔵可能量を有している。本実施形態において、排気ガス中のNOXは、第1NOX吸蔵還元触媒装置1及び第2NOX吸蔵還元触媒装置2のいずれかに吸蔵されるために、例えば、機関運転状態毎の単位時間当たりのNOX排出量を予めマップ化しておき、各機関運転状態においてNOX排出量を積算すれば、この積算値を第1NOX吸蔵還元触媒装置1及び第2NOX吸蔵還元触媒装置2のNOX吸蔵量とすることができる。このNOX吸蔵量が、第1NOX吸蔵還元触媒装置1の最大吸蔵可能量と第2NOX吸蔵還元触媒装置2の最大吸蔵可能量との合計吸蔵可能量に達する以前の設定値となった時を、第1NOX吸蔵還元触媒装置1及び第2NOX吸蔵還元触媒装置2から吸蔵NOXを放出させて還元浄化する再生時期と判断することができる。このように再生時期を判断することなく、設定車両走行時間毎又は設定車両走行距離毎に再生時期として再生処理を実施するようにしても良い。 In any of the 1NO X occluding and reducing catalyst device 1 and 2NO X occluding and reducing catalyst device 2, it is impossible to occlude unlimited NO X, respectively, has a maximum storable amount. In the present embodiment, NO X in the exhaust gas, in order to be inserted in either of the first 1NO X occluding and reducing catalyst device 1 and 2NO X occluding and reducing catalyst device 2, for example, per unit time for each engine operating condition advance map the of the NO X emissions, if integrating the NO X emissions in each engine operating state, the integrated value of the 1NO X occluding and reducing catalyst device 1 and 2NO X occluding and reducing catalyst device 2 NO X It can be the amount of occlusion. When the the NO X storage amount became previous setting to reach total storable amount of the first 1NO X maximum storable amount of storage reduction catalyst device 1 and the maximum storable amount of the 2NO X occluding and reducing catalyst device 2 and it is possible to determine regeneration timing and that to release the occluded NO X from the 1NO X occluding and reducing catalyst device 1 and 2NO X occluding and reducing catalyst device 2 is reduced and purified by. As described above, the regeneration process may be performed as the regeneration time for each set vehicle travel time or for each set vehicle travel distance without determining the regeneration time.

図2は、再生処理を実施するための第1フローチャートである。先ず、ステップ101において、再生時期であるか否かが判断される。この判断が否定される時にはそのまま終了するが、肯定される時にはステップ102へ進む。ステップ102では、第1NOX吸蔵還元触媒装置1へ追加燃料を供給するための第1燃料供給手段FIによる追加燃料量が決定されて供給される。本実施形態において、第1燃料供給手段FIは、第1NOX吸蔵還元触媒装置1の上流側において機関排気系へ追加燃料を供給する第1燃料供給装置4である。しかしながら、第1燃料供給手段FIは、例えば、膨張行程又は排気行程において気筒内へ追加燃料を供給する気筒燃料噴射弁であっても良い。 FIG. 2 is a first flowchart for performing the reproduction process. First, in step 101, it is determined whether or not it is a reproduction time. When this determination is denied, the process is terminated as it is, but when the determination is affirmed, the process proceeds to step 102. In step 102, additional fuel quantity by the first fuel supply means FI for feeding additional fuel to the first 1NO X occluding and reducing catalyst device 1 is supplied is determined. In the present embodiment, the first fuel supply means FI is the first fuel supply device 4 that supplies additional fuel to the engine exhaust system on the upstream side of the first NO x storage reduction catalyst device 1. However, the first fuel supply means FI may be, for example, a cylinder fuel injection valve that supplies additional fuel into the cylinder in the expansion stroke or the exhaust stroke.

再生時期を判断するのに使用する前述の設定量は、例えば、第1NOX吸蔵還元触媒装置の最大吸蔵可能量A1に第2NOX吸蔵還元触媒装置の最大吸蔵可能量A2の例えば八割(又は九割)を加えた値(A1+A2*0.8)とされる。ここで、第2NOX吸蔵還元触媒装置2は、第1NOX吸蔵還元触媒装置1より大きな容量を有するために、最大吸蔵可能量A2はA1より大きな値となる。排気ガス中のNOXは、上流側に位置する第1NOX吸蔵還元触媒装置に吸蔵され易いために、再生時期として、上流側に位置する第1NOX吸蔵還元触媒装置1にはその最大吸蔵可能量A1のNOXが吸蔵されており、下流側に位置する第2NOX吸蔵還元触媒装置2には、余裕を持たせて、その最大吸蔵可能量A2の八割が吸蔵されている状態が想定される。 Setting the amount of the aforementioned used to determine the regeneration timing, for example, the maximum storable amount A2 of example 80 percent of the 2NO X occluding and reducing catalyst device to the maximum storable amount A1 of the 1NO X occluding and reducing catalyst device (or 90%) plus (A1 + A2 * 0.8). Here, the 2NO X occluding and reducing catalyst device 2, in order to have a larger capacity than the 1NO X occluding and reducing catalyst device 1, the maximum storable amount A2 becomes greater than A1. NO X in the exhaust gas, in order easily occluded in the 1NO X occluding and reducing catalyst device positioned upstream, as regeneration timing, the maximum storable in the 1NO X occluding and reducing catalyst device 1 located upstream and NO X amount A1 is occluded, the first 2NO X occluding and reducing catalyst device 2 located downstream, with a margin, it is assumed a state in which 80 percent of the maximum storable amount A2 is occluded Is done.

第1燃料供給手段FIにより供給される追加燃料量Q1は、現在のリーン空燃比の排気ガスを理論空燃比とするのに必要な燃料量qsと第1NOX吸蔵還元触媒装置1の最大吸蔵可能量A1のNOXを還元浄化するのに必要な燃料量qr1との合計に設定燃料量qeを加算した燃料量とする(Q1=qs+qr1+qe)。第1燃料供給手段FIにより供給される追加燃料量Q1は、第1NOX吸蔵還元触媒装置1を再生するのに必要な最小量(qs+qr1)に設定燃料量qeが加算されているだけであるために、第1NOX吸蔵還元触媒装置1において酸化触媒が多量の燃料により濡らされて機能低下するようなことはない。こうして、第1NOX吸蔵還元触媒装置1へ流入する排気ガスの空燃比はリッチ空燃比となる。 The additional fuel amount Q1 supplied by the first fuel supply means FI is the maximum amount of fuel that can be stored in the first NO X storage reduction catalyst device 1 and the fuel amount qs that is required to make the current lean air-fuel ratio exhaust gas the stoichiometric air-fuel ratio. a fuel amount obtained by adding the total set fuel quantity qe of the fuel quantity qr1 necessary to reduce and purify the NO X amount A1 (Q1 = qs + qr1 + qe). For additional fuel amount Q1 supplied by the first fuel supply means FI is the only minimum amount necessary for reproducing a first 1NO X occluding and reducing catalyst device 1 (qs + qr1) to set the fuel quantity qe is added In addition, in the first NO x storage reduction catalyst device 1, the oxidation catalyst is not wetted by a large amount of fuel and the function is not deteriorated. Thus, the air-fuel ratio of the exhaust gas flowing into the first NO X storage reduction catalyst device 1 becomes a rich air-fuel ratio.

こうして、第1燃料供給手段FIにより追加燃料量Q1が供給されると、追加燃料の一部qsにより第1NOX吸蔵還元触媒装置1内において排気ガス中の酸素は殆ど消費されるために、第1NOX吸蔵還元触媒装置1からは最大吸蔵可能量A1のNOXが放出され、こうして放出されたNOXは、追加燃料の一部qr1によってほぼ全て還元浄化される。それにより、第1NOX吸蔵還元触媒装置1からは追加燃料の一部qeを含む理論空燃比よりリッチな空燃比の排気ガスが流出する。 Thus, if the additional fuel quantity Q1 is fed by the first fuel supply means FI, for oxygen in the exhaust gas in some first 1NO X occluding and reducing catalyst device 1 by qs is consumed most of the additional fuel, the NO X of the maximum storable amount A1 is discharged from 1NO X occluding and reducing catalyst device 1, thus released NO X is almost all reduced and purified by a part of the additional fuel qr1. As a result, the exhaust gas having an air-fuel ratio richer than the stoichiometric air-fuel ratio including a part qe of the additional fuel flows out from the first NO X storage reduction catalyst device 1.

ステップ103では、こうして第1NOX吸蔵還元触媒装置1から流出する排気ガス中へ第2燃料供給手段RIより追加燃料が供給される。本実施形態において、第2燃料供給手段RIは、第1NOX吸蔵還元触媒装置1と第2NOX吸蔵還元触媒装置2との間において機関排気系へ追加燃料を供給する第2燃料供給装置5である。この追加燃料量Q2は、第2NOX吸蔵還元触媒装置2の最大吸蔵可能量A2の八割のNOXを還元浄化するのに必要な燃料量qr2から前述の設定燃料量qeを減算した燃料量とする(Q2=qr2−qe)。 At step 103, thus it is more additional fuel second fuel supply means RI supplied to the first 1NO X occluding and reducing catalyst exhaust gas flowing out of the device 1. In this embodiment, the second fuel supply means RI is a first 1NO X occluding and reducing catalyst device 1 and the second fuel supply device for supplying additional fuel into the exhaust system between the first 2NO X occluding and reducing catalyst device 2 5 is there. This additional amount of fuel Q2, the fuel amount obtained by subtracting the set fuel amount qe described above from the fuel quantity qr2 necessary to reduce and purify 80 percent of the NO X of the 2NO X occluding and reducing catalyst device 2 of the maximum storable amount A2 (Q2 = qr2-qe).

こうして、第2NOX吸蔵還元触媒装置2へは、第2NOX吸蔵還元触媒装置2の最大吸蔵可能量A2の八割のNOXを還元浄化するのに必要な燃料量qr2を含み殆ど酸素を含まない排気ガスが流入することとなる。それにより、第2NOX吸蔵還元触媒装置2からはほぼ全ての吸蔵NOXが放出され、しかも、排気ガス中の燃料量qr2のうちの僅かな燃料量qeは、第1NOX吸蔵還元触媒装置1を通過する際に改質されて気化しており、第2NOX吸蔵還元触媒装置2において放出NOXを非常に良好に還元浄化する。また、第2燃料供給手段RIにより供給された追加燃料量Q2(qr2−qe)も、第1燃料供給手段FIにより供給された追加燃料量Q1の一部qeの分だけ少なくなるために、第2NOX吸蔵還元触媒装置2において気化し易くなり、放出NOXを良好に還元浄化することができる。この再生処理においては、第2NOX吸蔵還元触媒装置2から流出する排気ガスの空燃比はほぼ理論空燃比となる。 Thus, to the first 2NO X occluding and reducing catalyst device 2, including a little oxygen comprises fuel amount qr2 necessary to reduce and purify 80 percent of the NO X of the 2NO X occluding and reducing catalyst device 2 of the maximum storable amount A2 There will be no exhaust gas flowing in. As a result, almost all of the stored NO x is released from the second NO x storage reduction catalyst device 2, and the slight fuel amount qe of the fuel amount qr2 in the exhaust gas is reduced to the first NO x storage reduction catalyst device 1. the has been vaporized reformed when it passes through very satisfactorily reduced and purified release NO X in the first 2NO X occluding and reducing catalyst device 2. Further, the additional fuel amount Q2 (qr2-qe) supplied by the second fuel supply means RI is also reduced by a part qe of the additional fuel amount Q1 supplied by the first fuel supply means FI. liable to evaporate in 2NO X occluding and reducing catalyst device 2, can be satisfactorily reduced and purified release NO X. In this regeneration process, the air-fuel ratio of the exhaust gas flowing out from the 2NO X occluding and reducing catalyst device 2 becomes substantially the stoichiometric air-fuel ratio.

第1燃料供給手段FI及び第2燃料供給手段RIにより供給される追加燃料量は、両方を合わせてqs+qr1+qr2とされれば良い。例えば、第1燃料供給手段FIにより供給される追加燃料量Q1’として、現在のリーン空燃比の排気ガスを理論空燃比とするのに必要な燃料量qsと第1NOX吸蔵還元触媒装置1の最大吸蔵可能量A1のNOXを還元浄化するのに必要な燃料量qr1との合計としても良い。この場合には、第2燃料供給手段RIにより供給される追加燃料量Q2’は、第2NOX吸蔵還元触媒装置2の最大吸蔵可能量A2の八割のNOXを還元浄化するのに必要な燃料量qr2とされる。 The additional fuel amount supplied by the first fuel supply unit FI and the second fuel supply unit RI may be set to qs + qr1 + qr2 together. For example, as the additional fuel amount Q1 ′ supplied by the first fuel supply means FI, the fuel amount qs required to set the exhaust gas having the current lean air-fuel ratio to the stoichiometric air-fuel ratio and the first NO X storage reduction catalyst device 1 the NO X of the maximum storable amount A1 may be the sum of the fuel quantity qr1 necessary to reduce and purify. In this case, the additional fuel quantity Q2 supplied by the second fuel supply means RI 'is the required 80 percent of the NO X of the 2NO X occluding and reducing the maximum storable amount A2 of the catalytic converter 2 to reduce and purify The fuel amount is qr2.

また、第1燃料供給手段FIにより供給される追加燃料量Q1”として、現在のリーン空燃比の排気ガスを理論空燃比とするのに必要な燃料量qsと第1NOX吸蔵還元触媒装置1の最大吸蔵可能量A1のNOXを還元浄化するのに必要な燃料量qr1との合計から設定燃料量qe”を減算した燃料量としても良い。この場合には、第1NOX吸蔵還元触媒装置1から放出NOXの一部(減算した設定燃料量qe”に対応する量)が還元浄化されずに第2NOX吸蔵還元触媒装置2へ流入し、第2NOX吸蔵還元触媒装置2において還元浄化されることとなる。第2燃料供給手段RIにより供給される追加燃料量Q2”は、第2NOX吸蔵還元触媒装置2の最大吸蔵可能量A2の八割のNOXを還元浄化するのに必要な燃料量qr2に設定燃料量qe”が加算された燃料量とされる。いずれの場合にも、第1NOX吸蔵還元触媒装置1に多量の追加燃料が供給されて酸化触媒が燃料により濡らされて機能低下するようなことはない。これらの場合において、第2NOX吸蔵還元触媒装置2から流出する排気ガスの空燃比はほぼ理論空燃比となる。設定燃料量qe”は、最大値として、第1NOX吸蔵還元触媒装置1の最大吸蔵可能量A1のNOXを還元浄化するのに必要な燃料量qr1とすることができる。この時には、第1NOX吸蔵還元触媒装置1へ流入する排気ガスの空燃比が理論空燃比となる。 Further, as the additional fuel amount Q1 ″ supplied by the first fuel supply means FI, the fuel amount qs necessary for setting the exhaust gas having the current lean air-fuel ratio to the stoichiometric air-fuel ratio and the first NO X storage reduction catalyst device 1 A fuel amount obtained by subtracting the set fuel amount qe ″ from the sum of the fuel amount qr1 necessary for reducing and purifying the maximum storable amount NO X may be used. In this case, flows into the first 2NO X occluding and reducing catalyst device 2 to a 1NO X occluding and reducing catalyst device portion of the emitted NO X from 1 (an amount corresponding to the subtracted set fuel quantity qe ") is not reduced and purified , and thus be reduced and purified in the first 2NO X occluding and reducing catalyst device 2. additional fuel quantity Q2 supplied by the second fuel supply means RI "is the first 2NO X occluding and reducing the maximum storable amount A2 of the catalytic converter 2 80 percent of the NO X set fuel quantity qe the fuel amount qr2 necessary to reduce and purify "is the amount of fuel is added. in either case, additional large amount to a 1NO X occluding and reducing catalyst device 1 is not as oxidation catalyst fuel is supplied to degraded wetted by the fuel. in these cases, the air-fuel ratio of the exhaust gas flowing out from the 2NO X occluding and reducing catalyst device 2 becomes substantially the stoichiometric air-fuel ratio Set fuel amount qe ” As the maximum value may be a fuel quantity qr1 the required NO X of the 1NO X occluding and reducing the maximum storable amount A1 of the catalytic converter 1 for reduction and purification. At this time, the air-fuel ratio of the exhaust gas flowing into the first NO x storage reduction catalyst device 1 becomes the stoichiometric air-fuel ratio.

また、第1燃料供給手段FIにより供給される追加燃料量が、排気ガスを理論空燃比とするのに必要な燃料量qsに、第1NOX吸蔵還元触媒装置1の最大吸蔵可能量A1のNOXを還元浄化するのに必要な燃料量qr1又はそれ以上の燃料量が加算されている場合(追加燃料量が前述のQ1’又はQ1とされる場合)において、もし、NOXを還元浄化するはずの燃料と共に第1NOX吸蔵還元触媒装置1からNOXが流出すれば、排気ガス量が多い又は第1NOX吸蔵還元触媒装置1の温度が低い等の理由により、第1NOX吸蔵還元触媒装置1ではNOXを十分に還元浄化することができなかったと考えられ、このままでは、第2NOX吸蔵還元触媒装置2においても、放出NOX及び第1NOX吸蔵還元触媒装置1から流入するNOXを良好に還元浄化することができない。 Moreover, additional fuel amount supplied by the first fuel supply means FI is, the fuel amount qs necessary to exhaust gas the stoichiometric air-fuel ratio, NO of the 1NO X occluding and reducing catalyst device maximum storable amount A1 of 1 In the case where the fuel amount qr1 necessary for reducing and purifying X is added or more (when the additional fuel amount is Q1 ′ or Q1 described above), NO X is reduced and purified. if with croton fuel from the 1NO X occluding and reducing catalyst device 1 NO X flows out, because of the temperature is low, such as the amount of exhaust gas is large or the 1NO X occluding and reducing catalyst device 1, the 1NO X occluding and reducing catalyst device considered one in NO X and could not be sufficiently reduced and purified, in this state, also in the 2NO X occluding and reducing catalyst device 2, the release NO X and NO X flowing from the 1NO X occluding and reducing catalyst device 1 Well It cannot be reduced and purified.

それにより、第1燃料供給手段FIによる追加燃料量が前述のQ1(又はQ1’)とされている場合において、例えば、第1NOX吸蔵還元触媒装置1と第2NOX吸蔵還元触媒装置2との間に配置されたNOXの濃度を検出する第1NOXセンサ6により第1NOX吸蔵還元触媒装置1からNOXが流出していることが検出された時(この時には、流出NOX量に対応する燃料も流出している)には、第2燃料供給手段RIの追加燃料量は、前述のQ2(又はQ2’)より多くし、すなわち、第1燃料供給手段FI及び第2燃料供給手段RIにより供給される追加燃料量の合計が、排気ガスの空燃比を理論空燃比とするのに必要な燃料量qsと、第1NOX吸蔵還元触媒装置1の最大吸蔵可能量A1のNOXを還元浄化するのに必要な燃料量qr1と、第2NOX吸蔵還元触媒装置2の最大吸蔵可能量A2の八割のNOXを還元浄化するのに必要な燃料量qr2との合計より多くする。 Thereby, when the amount of additional fuel by the first fuel supply means FI is Q1 (or Q1 ′) described above, for example, between the first NO X storage reduction catalyst device 1 and the second NO X storage reduction catalyst device 2 when the 1NO X sensor 6 by a 1NO X occluding and reducing catalyst device 1 from NO X for detecting the concentration of the deployed NO X has been detected that the outflow between (at this time, corresponds to the outflow amount of NO X The amount of additional fuel in the second fuel supply means RI is larger than the aforementioned Q2 (or Q2 ′), that is, the first fuel supply means FI and the second fuel supply means RI. reducing the total additional amount of fuel supplied is, the fuel amount qs necessary to the air-fuel ratio of the exhaust gas the stoichiometric air-fuel ratio, the NO X of the 1NO X occluding and reducing the maximum storable amount A1 of the catalyst device 1 by Fuel amount qr1 required for purification Is greater than the sum of the fuel quantity qr2 the required 80 percent of the NO X of the maximum storable amount A2 of the 2NO X occluding and reducing catalyst device 2 to reduce and purify.

それにより、第2NOX吸蔵還元触媒装置2において、放出NOX量及び第1NOX吸蔵還元触媒装置1から流入するNOX量に対応する以上の燃料を存在させるようにし、還元作用を活発にしてNOXを良好に還元浄化する。この場合において、第2NOX吸蔵還元触媒装置2から流出する排気ガスの空燃比は理論空燃比よりリッチとなる。第2燃料供給手段RIの追加燃料量(Q2又はQ2’)の増量分は、第1NOX吸蔵還元触媒装置1から流出するNOX量が多いほど多くすることが好ましい。 Thereby, in the 2NO X occluding and reducing catalyst device 2, so as to present the fuel than that corresponding to the NO X amount flowing from the discharge amount of NO X and a 1NO X occluding and reducing catalyst device 1, in the actively reducing action satisfactorily reduced and purified NO X. In this case, the air-fuel ratio of the exhaust gas flowing out from the 2NO X occluding and reducing catalyst device 2 becomes richer than the stoichiometric air-fuel ratio. Increment of additional fuel quantity of the second fuel supply means RI (Q2 or Q2 '), it is preferable to increase as the amount of NO X flowing out from the 1NO X occluding and reducing catalyst device 1 is large.

また、第1NOX吸蔵還元触媒装置1において、燃料は、排気ガス中の酸素を使用して燃焼し、また、放出NOXを還元する。これらは発熱反応であるために、第1NOX吸蔵還元触媒装置1から流出する排気ガス温度を高める。ところで、NOX吸蔵還元触媒装置は、良好にNOXを吸蔵する温度範囲(例えば、250から500℃)を有しており、再生処理が完了しても、NOX吸蔵還元触媒装置がこの温度範囲外となっていれば、排気ガス中のNOXを良好に吸蔵することができない。それにより、第1燃料供給手段FIにより供給する追加燃料は、第1NOX吸蔵還元触媒装置1において高められた排気ガス温度によって、第2NOX吸蔵還元触媒装置2の温度が前述の温度範囲内となるように決定されることが好ましい。このようにして第1燃料供給手段FIの追加燃料量が決定された後に、前述のいずれかのようにして第2燃料供給手段RIの追加燃料量を決定すれば良い。 Further, in the first NO x storage reduction catalyst device 1, the fuel is burned using oxygen in the exhaust gas, and the released NO x is reduced. Since these are exothermic reactions, the temperature of the exhaust gas flowing out from the first NO x storage reduction catalyst device 1 is increased. By the way, the NO x storage reduction catalyst device has a temperature range (for example, 250 to 500 ° C.) that favorably stores NO x , and even if the regeneration process is completed, the NO x storage reduction catalyst device has this temperature. If it is out of the range, NO x in the exhaust gas cannot be stored well. As a result, the additional fuel supplied by the first fuel supply means FI has the temperature of the second NO X storage reduction catalyst device 2 within the above-mentioned temperature range due to the exhaust gas temperature raised in the first NO X storage reduction catalyst device 1. It is preferable to be determined as follows. After the additional fuel amount of the first fuel supply unit FI is determined in this way, the additional fuel amount of the second fuel supply unit RI may be determined as described above.

第1燃料供給手段FIにより供給される追加燃料量は、排気ガス中の酸素を消費する燃料量qsに第1NOX吸蔵還元触媒装置1の最大吸蔵可能量のNOXを還元浄化するための燃料量qr1を加算した燃料量とされる時が排気ガスを最も昇温させる。第1燃料供給手段FIによる追加燃料をさらに増量しても排気ガス温度を高めることはできない。一方、追加燃料量を減量するほど、排気ガスの昇温程度が低下する。追加燃料量は排気ガスの空燃比を理論空燃比とする燃料量qsまでは減量可能であり、それにより、第1NOX吸蔵還元触媒装置1からの排気ガスによって、第2NOX吸蔵還元触媒装置2が前述の温度範囲を超える場合には、第1燃料供給手段FIによる追加燃料量を減量することが好ましい。 Additional amount of fuel supplied by the first fuel supply means FI, a fuel for reducing purify NO X of the maximum storable amount of the 1NO X occluding and reducing catalyst device 1 to the fuel quantity qs to consume oxygen in the exhaust gas When the fuel amount is obtained by adding the amount qr1, the temperature of the exhaust gas is raised most. Even if the amount of additional fuel by the first fuel supply means FI is further increased, the exhaust gas temperature cannot be increased. On the other hand, the lower the amount of additional fuel, the lower the temperature rise of the exhaust gas. Additional fuel quantity to the fuel quantity qs to make the air-fuel ratio of the exhaust gas the stoichiometric air-fuel ratio is possible weight loss, whereby the exhaust gas from the 1NO X occluding and reducing catalyst device 1, the 2NO X occluding and reducing catalyst device 2 Is more than the above-mentioned temperature range, it is preferable to reduce the amount of additional fuel by the first fuel supply means FI.

前述したように、第1NOX吸蔵還元触媒装置1から還元浄化されないNOXが燃料と共に流出する場合において、第2NOX吸蔵還元触媒装置2の再生処理が完了していれば、第1NOX吸蔵還元触媒装置1から流出するNOXを第2NOX吸蔵還元触媒装置2において良好に還元浄化することができる。図3は、このような再生処理を実施するための第2フローチャートである。先ず、ステップ201において、再生時期であるか否かが判断される。この判断が否定される時にはそのまま終了するが、肯定される時にはステップ202へ進む。ステップ202では、第2NOX吸蔵還元触媒装置2を最初に再生処理するために、第2燃料供給手段RIによる追加燃料量が決定されて供給される。第2燃料供給手段RIによる追加燃料量は、排気ガスの空燃比を理論空燃比にするための燃料量qsに第2NOX吸蔵還元触媒装置2の最大吸蔵可能量A2の八割のNOXを還元浄化する燃料量qr2が加算された燃料量である。それにより、第2NOX吸蔵還元触媒装置2において再生処理が実施される。 As described above, when the NO X that is not reduced and purified from the 1NO X occluding and reducing catalyst device 1 flows out together with the fuel, if reproduction processing of the 2NO X occluding and reducing catalyst device 2 is completed, the 1NO X occluding and reducing it can be satisfactorily reduced and purified in the NO X the first 2NO X occluding and reducing catalyst device 2 flowing out of the catalytic converter 1. FIG. 3 is a second flowchart for carrying out such a reproduction process. First, in step 201, it is determined whether or not it is a reproduction time. When this determination is denied, the process is terminated as it is, but when the determination is affirmed, the process proceeds to step 202. In step 202, to regenerate the first 2NO X occluding and reducing catalyst device 2 for the first, additional fuel amount by the second fuel supply means RI is supplied is determined. Additional fuel amount by the second fuel supply means RI is a 80 percent of the NO X of the maximum storable amount A2 of the 2NO X occluding and reducing catalyst device 2 to the fuel quantity qs for the air-fuel ratio of the exhaust gas the stoichiometric air-fuel ratio This is the fuel amount obtained by adding the fuel amount qr2 to be reduced and purified. Thereby, reproducing processing is performed in the first 2NO X occluding and reducing catalyst device 2.

次いで、ステップ203において、第1NOX吸蔵還元触媒装置1を再生処理するために、第1燃料供給手段FIによる追加燃料量が決定されて供給される。第1燃料供給手段FIによる追加燃料量は、排気ガスの空燃比を理論空燃比にするための燃料量qsに第1NOX吸蔵還元触媒装置1の最大吸蔵可能量A1のNOXを還元浄化する燃料量qr1が加算された燃料量である。それにより、第1NOX吸蔵還元触媒装置1の再生処理において放出NOXの還元浄化が不十分であって、NOXと共に燃料が第2NOX吸蔵還元触媒装置2へ流入しても、第2NOX吸蔵還元触媒装置2では再生処理が完了しており、この時には排気ガス中の酸素濃度が低いために第1NOX吸蔵還元触媒装置1から流入するNOXを吸蔵することはできないが、第2NOX吸蔵還元触媒装置2においては、放出されるNOXが存在しないために、第1NOX吸蔵還元触媒装置1から流入する燃料を使用して第1NOX吸蔵還元触媒装置1から流入するNOXを良好に還元浄化することができる。 Then, in step 203, to regenerate the first 1NO X occluding and reducing catalyst device 1, additional fuel quantity by the first fuel supply means FI is supplied is determined. Additional fuel quantity by the first fuel supply means FI will reduce and purify NO X in the first 1NO X occluding and reducing catalyst device maximum storable amount A1 of 1 to the fuel quantity qs for the air-fuel ratio of the exhaust gas the stoichiometric air-fuel ratio This is the fuel amount to which the fuel amount qr1 is added. As a result, even if the reduction and purification of the released NO X is insufficient in the regeneration process of the first NO X storage reduction catalyst device 1 and the fuel flows into the second NO X storage reduction catalyst device 2 together with the NO X , the second NO X storage reduction catalyst device and 2 the reproduction process is completed, but this can not be occluded nO X flowing from the 1NO X occluding and reducing catalyst device 1 due to the low oxygen concentration in the exhaust gas in time, the 2NO X storage in the reducing catalyst device 2, in order emitted nO X is absent, good nO X flowing fuel from a 1NO X occluding and reducing catalyst device 1 using flowing from the 1NO X occluding and reducing catalyst device 1 Can be reduced and purified.

ところで、NOX吸蔵還元触媒装置は、NOXと同様なメカニズムによって排気ガス中のSOXも吸蔵してしまう。SOXが吸蔵されると、その分、NOXの最大吸蔵可能量を低減させる。SOXは安定な硫酸塩として吸蔵されているために、放出させるには、NOX吸蔵還元触媒装置を約650℃へ昇温して排気ガス中の酸素濃度を低下させなければならない。しかしながら、このような約650℃への昇温によってNOX吸蔵還元触媒装置は熱劣化してしまう。それにより、NOX吸蔵還元触媒装置には、SOXを吸蔵させないようにすることが望ましく、本実施形態においては、第1NOX吸蔵還元触媒装置1の上流側にSトラップ装置3が配置され、排気ガス中のSOXを吸蔵するようになっている。 By the way, the NO X storage reduction catalyst device also stores SO X in the exhaust gas by the same mechanism as NO X. When SO x is occluded, the maximum occlusion amount of NO x is reduced accordingly. Since SO x is stored as a stable sulfate, in order to release it, the NO x storage reduction catalyst device must be heated to about 650 ° C. to reduce the oxygen concentration in the exhaust gas. However, the NO x storage reduction catalyst device is thermally deteriorated by such a temperature rise to about 650 ° C. Accordingly, it is desirable that the NO X storage reduction catalyst device does not store SO X , and in this embodiment, the S trap device 3 is disposed upstream of the first NO X storage reduction catalyst device 1, It is designed to store SO X in the exhaust gas.

Sトラップ装置3は、基本的にはNOX吸蔵還元触媒装置と同じ構成を有し、好ましくは、SOXを吸蔵させるためのNOX吸蔵触媒を多量に担持している。Sトラップ装置3においては、NOXも吸蔵されるが、排気ガス中のSOXが到来すると、NOXとSOXとが置換されて、SOXが吸蔵されNOXが放出される。 The S trap device 3 basically has the same configuration as the NO x storage reduction catalyst device, and preferably carries a large amount of an NO x storage catalyst for storing SO x . In the S trap device 3, NO x is also occluded, but when SO x in the exhaust gas arrives, NO x and SO x are replaced, so that SO x is occluded and NO x is released.

こうして、Sトラップ装置3において排気ガス中のSOXが吸蔵されることとなるが、Sトラップ装置3においても無制限にSOXを吸蔵することはできず、Sトラップ3において最大吸蔵可能量のSOXが吸蔵された時には、排気ガス中のSOXは、第1NOX吸蔵還元触媒装置1に吸蔵されるようになる。次いで、第1NOX吸蔵還元触媒装置1において最大吸蔵可能量A1のSOXが吸蔵された時には、排気ガス中のSOXは、第2NOX吸蔵還元触媒装置2に吸蔵されるようになる。このようにSOXが第2NOX吸蔵還元触媒装置2にまで吸蔵されてしまうと、Sトラップ装置3及び第1NOX吸蔵還元触媒装置1に加えて第2NOX吸蔵還元触媒装置2まで交換しなければならなくなる。 In this way, SO X in the exhaust gas is occluded in the S trap device 3, but the S trap device 3 cannot occlude SO x indefinitely, and the S trap 3 can store the maximum amount of SO x that can be occluded. When X is stored, SO X in the exhaust gas is stored in the first NO X storage reduction catalyst device 1. Then, when the SO X of the maximum storable amount A1 In a 1NO X occluding and reducing catalyst device 1 is occluded, the SO X in the exhaust gas will be absorbed in the first 2NO X occluding and reducing catalyst device 2. With such SO X from being occluded to the first 2NO X occluding and reducing catalyst device 2, it is replaced in addition to the S trap device 3 and the 1NO X occluding and reducing catalyst device 1 until the 2NO X occluding and reducing catalyst device 2 I will have to.

本実施形態においては、第1NOX吸蔵還元触媒装置1と第2NOX吸蔵還元触媒装置2との間に第1NOXセンサ6が配置されているために、これを利用して、このような多大な費用を伴う二つのNOX吸蔵還元触媒装置の交換を防止している。図4はSトラップ装置の交換のための第3フローチャートである。先ず、ステップ301において、前述の第1又は第2フローチャートのようにして再生処理が完了したか否かが判断される。この判断が否定される時には、そのまま終了するが、肯定される時には、ステップ302へ進む。ステップ302において、第1NOXセンサ6によりNOXが検出されるか否かが判断される。この判断が否定される時にはそのまま終了する。 In the present embodiment, in order to first 1NO X sensor 6 is disposed between the first 1NO X occluding and reducing catalyst device 1 and the 2NO X occluding and reducing catalyst device 2, by using this, such great thereby preventing the exchange of two of the NO X occluding and reducing catalyst device with a cost. FIG. 4 is a third flowchart for exchanging the S trap device. First, in step 301, it is determined whether or not the reproduction process has been completed as in the first or second flowchart described above. When this determination is denied, the process is terminated as it is, but when the determination is affirmed, the process proceeds to step 302. In step 302, it is determined whether or not NO X is detected by the first NO X sensor 6. When this judgment is denied, the process is terminated as it is.

一方、ステップ302の判断が肯定されれば、再生処理が完了した直後であるにも係わらずに、第1NOX吸蔵還元触媒装置1の直下流側においてNOXが検出されており、第1NOX吸蔵還元触媒装置1は、最大吸蔵可能量A1近傍のSOXを吸蔵して殆どNOXを吸蔵することができなくなっていると判断することができる。それにより、ステップ303において、Sトラップ装置3及び第1NOX吸蔵還元触媒装置1を交換する。こうして、第2NOX吸蔵還元触媒装置2がSOXを吸蔵することが防止され、第2NOX吸蔵還元触媒装置までもが交換されなくて良いようにしている。 On the other hand, if the determination in step 302 is affirmative, the despite it is immediately after the regeneration process has been completed, NO X has been detected in the first 1NO immediately downstream of the X occluding and reducing catalyst device 1, the 1NO X The storage reduction catalyst device 1 can determine that the SO X in the vicinity of the maximum storable amount A1 is occluded and almost no NO x can be occluded. Thus, in step 303, to replace the S trap device 3 and the 1NO X occluding and reducing catalyst device 1. Thus, the second NO X storage reduction catalyst device 2 is prevented from storing SO X , and even the second NO X storage reduction catalyst device need not be replaced.

また、本実施形態においては、第2NOX吸蔵還元触媒装置2の下流側にも排気ガス中のNOX濃度を検出する第2NOXセンサ7が配置されている。第1NOXセンサ6及び第2NOXセンサ7を使用して、第1NOX吸蔵還元触媒装置1及び第2NOX吸蔵還元触媒装置2の劣化を判断することができる。図5はそのための第4フローチャートである。先ず、ステップ401において、前述の第1又は第2フローチャートのようにして再生処理が完了したか否かが判断される。この判断が否定される時には、そのまま終了するが、肯定される時には、ステップ402へ進む。ステップ402において、現在の機関運転状態に基づき推定される現在の排気ガス中のNOX濃度C0と、この排気ガスが流入して第1NOX吸蔵還元触媒装置1から流出する排気ガス中のNOX濃度C1との差が設定値a以上であるか否かが判断される。 Further, in the present embodiment, the 2NO X sensor 7 to the downstream side of the 2NO X occluding and reducing catalyst device 2 for detecting the concentration of NO X in the exhaust gas is disposed. Use first 1NO X sensor 6 and the 2NO X sensor 7, it is possible to determine the deterioration of the 1NO X occluding and reducing catalyst device 1 and 2NO X occluding and reducing catalyst device 2. FIG. 5 is a fourth flowchart for this purpose. First, in step 401, it is determined whether or not the reproduction process is completed as in the first or second flowchart described above. If this determination is negative, the process ends. If the determination is positive, the process proceeds to step 402. In step 402, the NO X concentration C0 of the current exhaust gas to be estimated based on the current engine operating conditions, NO X in the exhaust gas flowing out from the 1NO X occluding and reducing catalyst device 1 the exhaust gas flows into It is determined whether or not the difference from the density C1 is greater than or equal to the set value a.

この判断が肯定される時には、第1NOX吸蔵還元触媒装置1において良好にNOXを吸蔵しており、ステップ404へ進む。しかしながら、ステップ402における判断が否定される時には、再生処理が完了した直後であるにも係わらずに第1NOX吸蔵還元触媒装置1において良好にNOXが吸蔵されていないこととなるために、ステップ403において第1NOX吸蔵還元触媒装置1は劣化していると判断することができる。 If this determination is affirmative, the first NO x storage reduction catalyst device 1 has occluded NO x well, and the routine proceeds to step 404. However, when the result at step 402 is negative, in order to be able to satisfactorily NO X in the first 1NO X occluding and reducing catalyst device 1 is not occluded in spite of immediately after the regeneration process has been completed, step the 1NO X occluding and reducing catalyst device 1 in 403 can be determined to have deteriorated.

ステップ404では、第1NOX吸蔵還元触媒装置1から流出する排気ガス中の酸素濃度C1が設定値C以上であるか否かが判断される。第1NOX吸蔵還元触媒装置1が劣化していなければ、第1NOX吸蔵還元触媒装置1は良好にNOXを吸蔵するために、その下流側において排気ガス中のNOX濃度は低い。しかしながら、時間経過と共に第1NOX吸蔵還元触媒装置1には最大吸蔵可能量A1のNOXが吸蔵され、第1NOX吸蔵還元触媒装置1はNOXを吸蔵することができなくなる。この時にステップ404の判断が肯定され(第1NOX吸蔵還元触媒装置1が劣化している時には直ぐにステップ404の判断は肯定される)、ステップ405において、第2NOX吸蔵還元触媒装置2へ流入する排気ガス中のNOX濃度C1と第2NOX吸蔵還元触媒装置2から流出する排気ガス中のNOX濃度C2との差が設定値b以上であるか否かが判断される。 In step 404, whether the 1NO X occluding and reducing catalyst device 1 oxygen concentration C1 of the exhaust gas flowing out is set value C or more is determined. Unless the 1NO X occluding and reducing catalyst device 1 is deteriorated, because the first 1NO X occluding and reducing catalyst device 1 for storing a good NO X, NO X concentration in the exhaust gas at the downstream side is low. However, NO X of the maximum storable amount A1 is occluded in the first 1NO X occluding and reducing catalyst device 1 over time, the 1NO X occluding and reducing catalyst device 1 will not be able to occlude NO X. At this time, the determination in step 404 is affirmed (the determination in step 404 is affirmed immediately when the first NO X storage reduction catalyst device 1 is deteriorated), and in step 405, the flow enters the second NO X storage reduction catalyst device 2. whether the difference between the NO X concentration C2 of the exhaust gas to NO X concentration C1 in the exhaust gas flowing out from the 2NO X occluding and reducing catalyst device 2 is the set value b or not is determined.

第2NOX吸蔵還元触媒装置2が劣化していなければ、再生処理が完了してNOXを吸蔵していない状態であり、排気ガス中のNOXを良好に吸蔵してステップ405の判断が肯定されるはずである。それにより、この判断が肯定される時には、第2NOX吸蔵還元触媒装置2は劣化しておらず、そのまま終了する。しかしながら、ステップ405の判断が否定される時には、NOXを吸蔵していない状態であるにも係わらずにNOXを良好に吸蔵することができないこととなり、ステップ406において、第2NOX吸蔵還元触媒装置2は劣化していると判断することができる。 If not degraded first 2NO X occluding and reducing catalyst device 2, a state that does not absorb NO X in the reproduction processing is completed, the good storage to determine in step 405 the NO X in the exhaust gas affirmative Should be done. Thus, this determination when the result is YES, the first 2NO X occluding and reducing catalyst device 2 does not deteriorate, and exit. However, when the determination in step 405 is negative, NO x cannot be stored well in spite of the state in which NO x is not stored. In step 406, the second NO x storage reduction catalyst. It can be determined that the device 2 has deteriorated.

こうして、第1NOX吸蔵還元触媒装置1及び第2NOX吸蔵還元触媒装置2を別々に劣化判断することができ、劣化と判断されたNOX吸蔵還元触媒装置では再生処理を実施しても燃料の無駄となるために再生処理を中止して燃料を節約することが好ましい。本実施形態では、第2NOX吸蔵還元触媒装置2へ直接的に追加燃料を供給する第2燃料供給手段RIが、第1NOX吸蔵還元触媒装置1へ追加燃料を供給する第1燃料供給手段FIとは別に設けられているために、第1NOX吸蔵還元触媒装置及び第2NOX吸蔵還元触媒装置の一方だけを再生処理することができる。 Thus, the 1NO X occluding and reducing catalyst device 1 and 2NO X occluding and reducing catalyst device 2 can be separately degraded judge, in the NO X storage reduction catalyst device which is determined to deterioration of the fuel be carried out reproduction process In order to be wasted, it is preferable to stop the regeneration process to save fuel. In the present embodiment, the 2NO X occluding and reducing catalyst device second fuel supply means RI supplying directly add the fuel to the 2, first 1NO X occluding and reducing catalyst device first fuel supply means FI supplying additional fuel to 1 the to is provided separately, it is possible to only a reproduction process one of the first 1NO X occluding and reducing catalyst device and the 2NO X occluding and reducing catalyst device.

本実施形態において、図1に示すように、第1燃料供給手段4は、Sトラップ装置3の上流側に配置されている。気筒内へ追加燃料を供給する場合も含めて、このように再生処理に際して追加燃料がSトラップ装置3を通過する場合において、機関高負荷時のように排気ガス温度が高い場合に再生処理が実施されると、最も機関本体に近いSトラップ装置3は約600℃のように高温となっていることがあり、この時には、Sトラップ装置3内において追加燃料が燃焼して排気ガス中の酸素濃度が低下すると、Sトラップ装置3からSOXが放出されてしまう。こうして放出されたSOXは第1NOX吸蔵還元触媒装置1に吸蔵されてNOXの最大吸蔵可能量を低下させる。 In the present embodiment, as shown in FIG. 1, the first fuel supply means 4 is disposed on the upstream side of the S trap device 3. When additional fuel passes through the S trap device 3 during the regeneration process, including when supplying additional fuel into the cylinder, the regeneration process is performed when the exhaust gas temperature is high, such as when the engine is heavily loaded. Then, the S trap device 3 closest to the engine body may be as high as about 600 ° C. At this time, the additional fuel burns in the S trap device 3 and the oxygen concentration in the exhaust gas Decreases, SO X is released from the S trap device 3. Thus released SO X decreases the maximum storable amount of the NO X occluded in the 1NO X occluding and reducing catalyst device 1.

図6はこれを防止するための第5フローチャートである。先ず、ステップ501において、第1及び第2フローチャートにおいて説明したと同様に、再生時期であるか否かが判断される。この判断が否定される時にはそのまま終了する。一方、ステップ501の判断が肯定される時には、ステップ502において、推定又は測定されるSトラップ装置3の温度Tが設定温度T’以上であるか否かが判断される。この判断が否定される時には、Sトラップ装置3内を追加燃料が通過してもSOXは放出されることはないために、ステップ503において第1及び第2フローチャートのように再生処理を実施する。 FIG. 6 is a fifth flowchart for preventing this. First, in step 501, it is determined whether or not it is a regeneration time, as described in the first and second flowcharts. When this judgment is denied, the process is terminated as it is. On the other hand, when the determination in step 501 is affirmed, it is determined in step 502 whether or not the temperature T of the S trap device 3 to be estimated or measured is equal to or higher than a set temperature T ′. When this determination is negative, SO X is not released even if additional fuel passes through the S trap device 3, and therefore, in step 503, regeneration processing is performed as in the first and second flowcharts. .

しかしながら、ステップ502の判断が肯定される時には、Sトラップ装置3において、燃料が燃焼して排気ガス中の酸素濃度が低下すると、SOXが放出されてしまうために、ステップ504において第1燃料供給手段FIによる追加燃料の供給を中止して再生処理を中止し、Sトラップ装置が温度低下するのが待たれる。再生時期の判断は、第2NOX吸蔵還元触媒装置の最大吸蔵可能量A2の八割としているために、このように再生処理を暫く延期しても排気ガス中の多量のNOXが大気中へ放出されることはない。 However, when the determination in step 502 is affirmed, in the S trap device 3, if the fuel burns and the oxygen concentration in the exhaust gas decreases, SO x is released. The supply of additional fuel by means FI is stopped, the regeneration process is stopped, and it is waited for the temperature of the S trap device to drop. The regeneration timing determination, in order to have a 80 percent of the maximum storable amount A2 of the 2NO X occluding and reducing catalyst device, a large amount of the NO X in the exhaust gas even if while deferring the reproduced process into the atmosphere It will not be released.

ところで、Sトラップ装置3において、吸蔵されているSOXが少ない時には、比較的高温度であっても、酸素濃度が低下された時にSOXが放出されない。それにより、ステップ502の設定温度T’は、SOX吸蔵量が少ないほど高くすることができ、再生処理を中止する機会を減少させることができる。排気ガス中のSOXは主に燃料に含まれる硫黄により生成されるために、内燃機関の積算燃料消費量によりSトラップ装置3のSOX吸蔵量を推定することができる。 By the way, in the S trap device 3, when the stored SO x is small, SO x is not released when the oxygen concentration is lowered even at a relatively high temperature. As a result, the set temperature T ′ in step 502 can be increased as the SO X storage amount decreases, and the chance of stopping the regeneration process can be reduced. Since SO X in the exhaust gas is mainly generated by sulfur contained in the fuel, the SO X storage amount of the S trap device 3 can be estimated from the accumulated fuel consumption of the internal combustion engine.

また、Sトラップ装置3が設定温度T’以上であっても、排気ガス中の酸素濃度が十分に低下しなければSOXは放出されないために、ステップ503の判断が肯定される時には、再生処理を中止するのではなく、第1燃料供給手段FIにより供給する追加燃料量を排気ガスの空燃比を理論空燃比とする燃料量qsに第1NOX吸蔵還元触媒装置1の最大吸蔵可能量のNOXを還元浄化する燃料量qr1を加算した燃料量より少なくし、すなわち、追加燃料の供給を抑制し、その分を第2燃料供給手段RIの追加燃料量を増量するようにしても良い。この場合において、Sトラップ装置3の温度が高いほど、また、Sトラップ装置3に吸蔵されているSOX量が多いほど、第1燃料供給手段FIにより供給する追加燃料量を多く減少させるようにすることが好ましい。 Further, even if the S trap device 3 is equal to or higher than the set temperature T ′, SO X is not released unless the oxygen concentration in the exhaust gas is sufficiently lowered. rather than abort the, first 1NO X occluding and reducing catalyst device 1 of the maximum storable amount of NO additional amount of fuel supplied to the fuel quantity qs to make the air-fuel ratio of the exhaust gas the stoichiometric air-fuel ratio by the first fuel supply means FI The amount of fuel qr1 for reducing and purifying X may be made smaller than the sum of fuel amounts, that is, the supply of additional fuel may be suppressed, and the amount of additional fuel in the second fuel supply means RI may be increased accordingly. In this case, as the temperature of the S trap device 3 is higher and the amount of SO x stored in the S trap device 3 is larger, the amount of additional fuel supplied by the first fuel supply means FI is decreased. It is preferable to do.

また、Sトラップ装置3が設定温度T’上である時には、第1NOX吸蔵還元触媒装置1の再生処理は中止する一方で、排気ガスの空燃比を理論空燃比とする燃料量qsに第2NOX吸蔵還元触媒装置2の吸蔵NOXを還元浄化する燃料量qr2を加算した追加燃料量を第2燃料供給手段RIにより供給し、第2NOX吸蔵還元触媒装置2だけを再生処理するようにしても良い。 When the S trap device 3 is above the set temperature T ′, the regeneration process of the first NO X storage reduction catalyst device 1 is stopped, while the second NO is set to the fuel amount qs in which the air-fuel ratio of the exhaust gas is the stoichiometric air-fuel ratio. An additional fuel amount obtained by adding the fuel amount qr2 for reducing and purifying the stored NO X of the X storage reduction catalyst device 2 is supplied by the second fuel supply means RI, and only the second NO X storage reduction catalyst device 2 is regenerated. Also good.

本発明による内燃機関の排気浄化装置を示す機関排気系の概略図である。1 is a schematic diagram of an engine exhaust system showing an exhaust gas purification apparatus for an internal combustion engine according to the present invention. 再生処理のための第1フローチャートである。It is a 1st flowchart for reproduction | regeneration processing. 再生処理のための第2フローチャートである。It is a 2nd flowchart for reproduction | regeneration processing. Sトラップ装置及び第1NOX吸蔵還元触媒装置を交換するための第3フローチャートである。A third flow chart for exchanging the S trap device and the 1NO X occluding and reducing catalyst device. 第1NOX吸蔵還元触媒装置及び第2NOX吸蔵還元触媒装置の劣化を判断するための第4フローチャートである。A fourth flowchart for determining a deterioration of a 1NO X occluding and reducing catalyst device and the 2NO X occluding and reducing catalyst device. 再生処理のための第5フローチャートである。It is a 5th flowchart for reproduction processing.

符号の説明Explanation of symbols

1 第1NOX吸蔵還元触媒装置
2 第2NOX吸蔵還元触媒装置
3 Sトラップ装置
4 第1燃料供給装置
5 第2燃料供給装置
6 第1NOXセンサ
7 第2NOXセンサ
1 The 1NO X occluding and reducing catalyst device 2 first 2NO X occluding and reducing catalyst device 3 S trap device 4 first fuel supply device 5 second fuel supply device 6 first 1NO X sensor 7 first 2NO X sensor

Claims (10)

機関排気系に直列に配置された上流側の第1NOX吸蔵還元触媒装置及び下流側の第2NOX吸蔵還元触媒装置を備える内燃機関の排気浄化装置において、前記第1NOX吸蔵還元触媒装置へ供給される追加燃料を供給する第1燃料供給手段と、前記第1NOX吸蔵還元触媒装置と前記第2NOX吸蔵還元触媒装置との間に追加燃料を供給する第2燃料供給手段とを具備することを特徴とする内燃機関の排気浄化装置。 In the exhaust purification system for an internal combustion engine having a first 2NO X occluding and reducing catalyst device of the 1NO X occluding and reducing catalyst device and the downstream side of the arrangement in series with the upstream side to the exhaust system, supplied to the first 1NO X occluding and reducing catalyst device by comprising a first fuel supply means for supplying additional fuel, and a second fuel supply means for supplying additional fuel between the first 1NO X occluding and reducing catalyst device and the second 2NO X occluding and reducing catalyst device An exhaust gas purification apparatus for an internal combustion engine characterized by the above. 前記第1NOX吸蔵還元触媒装置及び前記第2NOX吸蔵還元触媒装置の両方の再生処理を実施する際には、前記第1NOX吸蔵還元触媒装置へ流入する排気ガスの空燃比が理論空燃比又はリッチ空燃比となるように前記第1燃料供給手段により供給される追加燃料量が決定され、前記第2NOX吸蔵還元触媒装置へ流入する排気ガスの空燃比が前記第2NOX吸蔵還元触媒装置を再生処理するためのリッチ空燃比となるように前記第2燃料供給手段により供給される追加燃料量が決定されることを特徴とする請求項1に記載の内燃機関の排気浄化装置。 Wherein in carrying out the first 1NO X occluding and reducing catalyst device and the reproduction of both of the first 2NO X occluding and reducing catalyst device, the air-fuel ratio is the stoichiometric air-fuel ratio of the exhaust gas flowing into the first 1NO X occluding and reducing catalyst device or additional amount of fuel supplied by the first fuel supply means so that the rich air-fuel ratio is determined, the air-fuel ratio of the exhaust gas flowing into the first 2NO X occluding and reducing catalyst device said first 2NO X occluding and reducing catalyst device 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the amount of additional fuel supplied by the second fuel supply unit is determined so as to obtain a rich air-fuel ratio for regeneration processing. 前記第1NOX吸蔵還元触媒装置及び前記第2NOX吸蔵還元触媒装置の両方の再生処理を実施する際に、前記第2NOX吸蔵還元触媒装置から流出する排気ガスの空燃比が理論空燃比となるように、前記第1燃料供給手段により供給される追加燃料量及び前記第2燃料供給手段により供給される追加燃料量が決定されることを特徴とする請求項2に記載の内燃機関の排気浄化装置。 In carrying out the regeneration process of both of said first 1NO X occluding and reducing catalyst device and the second 2NO X occluding and reducing catalyst device, the air-fuel ratio of the exhaust gas flowing out of the first 2NO X occluding and reducing catalyst device becomes the stoichiometric air-fuel ratio The internal combustion engine exhaust purification according to claim 2, wherein the additional fuel amount supplied by the first fuel supply means and the additional fuel amount supplied by the second fuel supply means are determined. apparatus. 前記第1NOX吸蔵還元触媒装置及び前記第2NOX吸蔵還元触媒装置の両方の再生処理を実施する際に、前記第1NOX吸蔵還元触媒装置から燃料と共にNOXの流出が推定又は検出される時には、前記第2燃料供給手段により供給される追加燃料量を増量して前記第2NOX吸蔵還元触媒装置から流出する排気ガスの空燃比がリッチ空燃比となるようにし、推定又は検出された流出NOX量が多いほど前記第2燃料供給手段による増量分の燃料を多くすることを特徴とする請求項3に記載の内燃機関の排気浄化装置。 In carrying out the regeneration process of both of said first 1NO X occluding and reducing catalyst device and the second 2NO X occluding and reducing catalyst device, when the outflow of the NO X is estimated or detected with the fuel from the first 1NO X occluding and reducing catalyst device The amount of additional fuel supplied by the second fuel supply means is increased so that the air-fuel ratio of the exhaust gas flowing out from the second NO x storage reduction catalyst device becomes a rich air-fuel ratio, and the estimated or detected outflow NO 4. The exhaust emission control device for an internal combustion engine according to claim 3, wherein the amount of fuel increased by the second fuel supply means increases as the amount of X increases. 前記第1NOX吸蔵還元触媒装置及び前記第2NOX吸蔵還元触媒装置の両方の再生処理を実施する際に、前記第2NOX吸蔵還元触媒装置が設定温度範囲内となるように、前記第1燃料供給手段により供給される追加燃料量が決定されることを特徴とする請求項2から4のいずれか一項に記載の内燃機関の排気浄化装置。 In carrying out the regeneration process of both of said first 1NO X occluding and reducing catalyst device and the second 2NO X occluding and reducing catalyst device, such that the first 2NO X occluding and reducing catalyst device is within the set temperature range, the first fuel The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 2 to 4, wherein the amount of additional fuel supplied by the supply means is determined. 前記第1NOX吸蔵還元触媒装置及び前記第2NOX吸蔵還元触媒装置の両方の再生処理を実施する際に、前記第2燃料供給手段により追加燃料を供給して前記第2NOX吸蔵還元触媒装置の再生処理を実施した後に、前記第1燃料供給手段により追加燃料を供給して前記第1NOX吸蔵還元触媒装置の再生処理を実施することを特徴とする請求項1に記載の内燃機関の排気浄化装置。 In carrying out the regeneration process of both of said first 1NO X occluding and reducing catalyst device and the second 2NO X occluding and reducing catalyst device, to supply additional fuel by said second fuel supply means of the first 2NO X occluding and reducing catalyst device 2. The exhaust gas purification of an internal combustion engine according to claim 1, wherein after the regeneration process is performed, additional fuel is supplied by the first fuel supply means to perform the regeneration process of the first NO x storage reduction catalyst device. apparatus. 前記第1NOX吸蔵還元触媒装置の上流側にはSトラップ装置が配置され、前記第1NOX吸蔵還元触媒装置と前記第2NOX吸蔵還元触媒装置との間には、NOX濃度を検出するNOXセンサが配置されていることを特徴とする請求項1に記載の内燃機関の排気浄化装置。 Wherein the upstream side of the 1NO X occluding and reducing catalyst device is disposed S trap device, wherein between the first 1NO X occluding and reducing catalyst device and the second 2NO X occluding and reducing catalyst device, NO for detecting the NO X concentration The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein an X sensor is disposed. 前記第2NOX吸蔵還元触媒装置の下流側にも、NOX濃度を検出するNOXセンサが配置されていることを特徴とする請求項7に記載の内燃機関の排気浄化装置。 8. The exhaust gas purification apparatus for an internal combustion engine according to claim 7, wherein a NO x sensor for detecting the NO x concentration is also arranged downstream of the second NO x storage reduction catalyst device. 前記第1NOX吸蔵還元触媒装置の上流側にはSトラップ装置が配置され、前記第1燃料供給手段により供給された追加燃料は前記Sトラップ装置を通過するようになっており、追加燃料の通過により前記Sトラップ装置からSOXが放出されることが予測される時には、前記第1燃料供給手段による追加燃料の供給を中止又は抑制することを特徴とする請求項1に記載の内燃機関の排気浄化装置。 An S trap device is disposed upstream of the first NO X storage reduction catalyst device, and the additional fuel supplied by the first fuel supply means passes through the S trap device, and the additional fuel passes therethrough. 2. The exhaust of the internal combustion engine according to claim 1, wherein when it is predicted that SO X is released from the S trap device, supply of additional fuel by the first fuel supply means is stopped or suppressed. Purification equipment. 前記Sトラップ装置が設定温度以上である時にSOXが放出されることが予測され、前記設定温度は前記Sトラップ装置へのSOX吸蔵量が多いほど低くされることを特徴とする請求項9に記載の内燃機関の排気浄化装置。 10. The SO X is predicted to be released when the S trap device is equal to or higher than a set temperature, and the set temperature is lowered as the amount of SO X stored in the S trap device increases. An exhaust gas purification apparatus for an internal combustion engine as described.
JP2006172720A 2006-06-22 2006-06-22 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4175394B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006172720A JP4175394B2 (en) 2006-06-22 2006-06-22 Exhaust gas purification device for internal combustion engine
DE102007028638A DE102007028638A1 (en) 2006-06-22 2007-06-21 Emission control system for an internal combustion engine
FR0755951A FR2902824A1 (en) 2006-06-22 2007-06-22 Exhaust gas cleaning system for internal combustion engine has first and second fuel delivery arrangements for delivering additional fuel to first and second NOx storage/reduction catalyzer systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006172720A JP4175394B2 (en) 2006-06-22 2006-06-22 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008002358A true JP2008002358A (en) 2008-01-10
JP4175394B2 JP4175394B2 (en) 2008-11-05

Family

ID=38777167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006172720A Expired - Fee Related JP4175394B2 (en) 2006-06-22 2006-06-22 Exhaust gas purification device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP4175394B2 (en)
DE (1) DE102007028638A1 (en)
FR (1) FR2902824A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187403A (en) * 2014-03-26 2015-10-29 三菱自動車工業株式会社 Internal combustion engine exhaust emission control device
JP2015187404A (en) * 2014-03-26 2015-10-29 三菱自動車工業株式会社 Internal combustion engine exhaust emission control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187403A (en) * 2014-03-26 2015-10-29 三菱自動車工業株式会社 Internal combustion engine exhaust emission control device
JP2015187404A (en) * 2014-03-26 2015-10-29 三菱自動車工業株式会社 Internal combustion engine exhaust emission control device

Also Published As

Publication number Publication date
FR2902824A1 (en) 2007-12-28
DE102007028638A1 (en) 2008-01-03
JP4175394B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
JP4304539B2 (en) NOx purification system control method and NOx purification system
EP1793099B1 (en) Method of exhaust gas purification and exhaust gas purification system
JP4304428B2 (en) Exhaust gas purification system for internal combustion engine
JP4100412B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
WO2011114501A1 (en) Exhaust purification device for internal combustion engine
JP2006274838A (en) Exhaust gas purifying system of internal combustion engine
JP4458070B2 (en) Exhaust gas purification device for internal combustion engine
JP2018053882A (en) Exhaust emission control system for internal combustion engine
JP4910930B2 (en) Exhaust gas purification device for internal combustion engine
JP4175394B2 (en) Exhaust gas purification device for internal combustion engine
JP2006207549A (en) Temperature raising method for exhaust emission control device and exhaust emission controlling system
JP4640062B2 (en) Exhaust gas purification device for internal combustion engine
JP4626439B2 (en) Exhaust gas purification device for internal combustion engine
JP4760289B2 (en) Exhaust gas purification device for internal combustion engine
JP4325606B2 (en) Exhaust gas purification device for internal combustion engine
JP4396159B2 (en) NOx purification system
JP2006233874A (en) Exhaust emission control device for internal combustion engine
JP2004036405A (en) Exhaust emission control device
JP4798085B2 (en) Exhaust gas purification device for internal combustion engine
JP4506544B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP4506545B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP4706404B2 (en) Exhaust gas purification device for internal combustion engine
JP2005171805A (en) Exhaust emission control device of internal combustion engine
JP4577161B2 (en) Exhaust gas purification device for internal combustion engine
JP2010043601A (en) Exhaust emission purifier of internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees