JP2008002056A - Method for producing moisture-permeable waterproof fabric - Google Patents
Method for producing moisture-permeable waterproof fabric Download PDFInfo
- Publication number
- JP2008002056A JP2008002056A JP2007246702A JP2007246702A JP2008002056A JP 2008002056 A JP2008002056 A JP 2008002056A JP 2007246702 A JP2007246702 A JP 2007246702A JP 2007246702 A JP2007246702 A JP 2007246702A JP 2008002056 A JP2008002056 A JP 2008002056A
- Authority
- JP
- Japan
- Prior art keywords
- fabric
- moisture
- permeable
- waterproof fabric
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Woven Fabrics (AREA)
Abstract
Description
本発明は、ダル感を有する薄地の基布からなる引裂き強力に優れた透湿防水性布帛の製造方法に関する。 The present invention relates to a method for producing a moisture-permeable and waterproof fabric made of a thin base fabric having a dull feeling and excellent in tearing strength.
近年、特に衣料、生活資材用途を中心に快適性や、健康への関心が高まってくるにつれ透湿、防水、撥水機能を有し、かつ、軽く風合が柔軟な布帛が求められるようになってきている。従来、このような要求を実現する方法として、例えば、ナイロン66マルチフィラメントから得られた嵩高糸よりなる布帛に重合体皮膜を積層する方法などが一般的に用いられており、得られる透湿・防水・撥水機能を有する布帛は、ウインドブレーカー等のスポーツ衣料やその高度の除塵性や発塵性の低さを利用して除塵性衣料等に多く用いられている。このようなナイロンやポリエステル織物の裏面に防水、透湿性を有するウレタン樹脂膜を有した防水布帛は、透湿性、防水性は優れているものの、布帛の引裂強力が低い欠点があった。これは布帛の繊維組織内部に樹脂が侵入し、かつこれが繊維を拘束し繊維の自由度を著しく低めるため、得られる布帛の風合が硬化し、またその引裂強力が低下するためと考えられている。この風合の硬化、引裂強力低下という問題は、例えウレタン等のソフトな樹脂を用いても避けることが極めて困難である。その引裂強力を高めるための方策として一般的には70デシテックス以上のマルチフィラメントを用いて対応している。 In recent years, fabrics that have moisture permeability, water resistance, water repellency, and are light and flexible have become more demanding as comfort and health concerns increase, especially in clothing and lifestyle materials. It has become to. Conventionally, as a method for realizing such a demand, for example, a method of laminating a polymer film on a fabric made of bulky yarn obtained from nylon 66 multifilament has been generally used, and the moisture permeability / Fabrics having a waterproof / water-repellent function are often used for dust-removable clothing and the like by utilizing sports clothing such as a windbreaker and its high degree of dust removal and low dust generation. Such a waterproof fabric having a waterproof and moisture-permeable urethane resin film on the back surface of nylon or polyester fabric has a defect that the tear strength of the fabric is low although it is excellent in moisture permeability and waterproof properties. This is thought to be because the resin penetrates into the fabric structure of the fabric, and this restrains the fiber and significantly reduces the degree of freedom of the fiber, so that the texture of the resulting fabric is cured and its tear strength is reduced. Yes. This problem of texture hardening and tear strength reduction is extremely difficult to avoid even if a soft resin such as urethane is used. As a measure for increasing the tear strength, generally, a multifilament of 70 dtex or more is used.
またアラミド繊維などの高弾性糸を交織する対策もとられているが、高弾性糸とナイロン糸やポリエステル糸との収縮率の差が大きすぎるため、特に染色や熱処理の後で織物が凹凸状になり、この状態で透湿性、防水性を有するウレタン膜をラミネートしても、織物とウレタン膜との接着性が悪く、ウレタン膜が剥がれやすかった。
さらに、高弾性糸をナイロン糸やポリエステル糸と交織したもののうち、高弾性糸をタテ、ヨコ方向に格子状に交織したものは、染色や熱処理の後で特に高弾性糸のタテ、ヨコ糸の交点の厚さが厚くなり、ウレタン膜をラミネートした後でも、交点部分が最も突出した状態となる。このため、布帛を洗濯したさいに突出部分が摩耗されやすく、洗濯後の耐水性試験では摩耗部分が簡単に破れるため、耐水性の低い布帛しか得ることができなかった。従ってこの加工方法で耐水性も向上させるにはウレタン膜を非常に厚くするなどの手段を用いたため、布帛が厚くなり、重くなる欠点があった。
Although measures are taken to interweave high-elastic yarns such as aramid fibers, the difference in shrinkage between high-elastic yarns and nylon yarns or polyester yarns is too great, so that the fabric is uneven particularly after dyeing and heat treatment. Thus, even when a urethane film having moisture permeability and waterproof properties was laminated in this state, the adhesion between the fabric and the urethane film was poor, and the urethane film was easily peeled off.
Furthermore, among high-elasticity yarns woven with nylon and polyester yarns, high-elasticity yarns that are woven in a lattice shape in the vertical and horizontal directions are especially high-elasticity warp and horizontal yarns after dyeing and heat treatment. The thickness of the intersection becomes thick, and even after the urethane film is laminated, the intersection is in the most protruding state. For this reason, when the fabric is washed, the protruding portion is easily worn, and in the water resistance test after washing, the worn portion is easily broken, so that only a fabric with low water resistance can be obtained. Therefore, in order to improve the water resistance by this processing method, means such as making the urethane film very thick was used, so that there was a disadvantage that the fabric became thick and heavy.
その対策として低収縮性有機糸Aと、高弾性糸Bを含む糸から成り、高弾性糸Bが織物の重量の10%以下に成るようにタテおよび/まはたヨコ方向に間欠的に織り込んだ、平坦で且つ高弾性糸Bに弛みがない防水布帛が提案されているが、高弾性糸特に繊度の大きい高弾性糸を用いているため生地が分厚くなり風合いが硬くなったり、染色性が異なることによって意匠性が劣り衣料として好ましいものではなかった(例えば、特許文献1参照。)。
本発明の目的は、ダル感を有し、薄地であるにも関わらず、引裂き強力に優れた透湿防水性布帛の製造方法を提供することにある。 An object of the present invention is to provide a method for producing a moisture-permeable and waterproof fabric having a dull feeling and excellent tear strength despite being thin.
本発明者らは、上記目的を達成するため鋭意検討した結果、基布を構成するマルチフィラメントのポリマーの相対粘度と無機微粒子の含有量、単糸繊度、マルチフィラメントの繊度、織物の組織を改良することで、薄地の基布に樹脂を塗布しても引裂き強力を満足する透湿防水性布帛の製造方法に係る発明に至った。即ち本発明は、
1.厚みが0.15mm以下で、経糸引裂き方向及び緯糸引裂き方向の引裂き強力が10N以上の透湿防水性布帛を製造する方法であって、
透湿防水性布帛を製造する工程が、(i)酸化チタンを1wt%以上含有し、相対粘度が2.7以下の固体のポリアミドレジンチップを減圧加熱して相対粘度2.8以上にし、ワンステップ紡糸法により総繊度30〜45デシテックス、かつ単糸繊度0.5〜1.5デシテックスのマルチフィラメント糸を製造する工程、(ii)リップストップ組織からなる織物基布を製織する工程、(iii)該織物に少なくとも一層の樹脂層を設ける工程、を含むことを特徴とする透湿防水性布帛の製造方法である。
2.リップストップ組織が、経方向及び緯方向の複数糸挿入部の糸挿入本数がそれぞれ20〜80本/2.54cm以上であることを特徴とする第1の発明に記載の透湿防水性布帛の製造方法である。
3.織物基布の経糸と緯糸のカバーファクターの合計が1500〜2200であり、かつそれらの比(経糸/緯糸)が45:55〜60:40であることを特徴とする第1または2の発明に記載の透湿防水性布帛の製造方法である。
4.樹脂層が多孔質膜であり、透湿度がA−1法で6000g/m2・24hrs以上、及び耐水圧が60kPa以上の布帛であることを特徴とする第1〜3の発明のいずれかに記載の透湿防水性布帛の製造方法である。
5.樹脂層が無孔質膜であり、透湿度がB−1法で18000g/m2・24hrs以上、及び耐水圧が100kPa以上の布帛であることを特徴とする第1〜3の発明のいずれかに記載の透湿防水性布帛の製造方法である。
As a result of diligent studies to achieve the above object, the present inventors have improved the relative viscosity of the multifilament polymer constituting the base fabric, the content of inorganic fine particles, the single yarn fineness, the multifilament fineness, and the fabric structure. Thus, the present invention has reached an invention relating to a method for producing a moisture-permeable and waterproof fabric that satisfies the tearing strength even when a resin is applied to a thin base fabric. That is, the present invention
1. A method for producing a moisture-permeable waterproof fabric having a thickness of 0.15 mm or less and a tear strength in the warp tear direction and the weft tear direction of 10 N or more,
The step of producing a moisture-permeable and waterproof fabric includes (i) a solid polyamide resin chip containing 1 wt% or more of titanium oxide and having a relative viscosity of 2.7 or less by heating under reduced pressure to a relative viscosity of 2.8 or more. A step of producing a multifilament yarn having a total fineness of 30 to 45 dtex and a single yarn fineness of 0.5 to 1.5 dtex by a step spinning method, (ii) a step of weaving a woven fabric comprising a ripstop structure, (iii) And a step of providing at least one resin layer on the woven fabric.
2. The moisture-permeable waterproof fabric according to the first aspect of the invention is characterized in that the number of inserted yarns in the warp direction and weft direction plural yarn insertion portions is 20 to 80 / 2.54 cm or more, respectively. It is a manufacturing method.
3. In the first or second invention, the total of the warp and weft cover factors of the woven base fabric is 1500 to 2200, and the ratio thereof (warp / weft) is 45:55 to 60:40. It is a manufacturing method of the moisture-permeable waterproof fabric of description.
4). Any one of the first to third inventions characterized in that the resin layer is a porous film, and the moisture permeability is a fabric of 6000 g / m 2 · 24 hrs or more by the A-1 method and the water pressure resistance is 60 kPa or more. It is a manufacturing method of the moisture-permeable waterproof fabric of description.
5. Any one of the first to third inventions characterized in that the resin layer is a nonporous membrane, the moisture permeability is a fabric of 18000 g / m 2 · 24 hrs or more by the B-1 method, and the water pressure resistance is 100 kPa or more. A method for producing a moisture-permeable and waterproof fabric as described in 1. above.
本発明によれば、織物基布を構成する繊維の相対粘度と無機微粒子の含有量、単糸繊度、マルチフィラメントの繊度、織物の組織を適切に調節することによって、ダル感を有し、薄地であるにも関わらず引裂き強力に優れた透湿防水性布帛の提供が可能となった。 According to the present invention, by appropriately adjusting the relative viscosity of the fibers constituting the fabric base fabric and the content of inorganic fine particles, the single yarn fineness, the multifilament fineness, and the texture of the fabric, the fabric has a dull feeling and is thin. In spite of this, it has become possible to provide a moisture-permeable and waterproof fabric excellent in tearing strength.
以下、本発明について詳細に説明する。
本発明の透湿防水性布帛は合成フィラメント糸から形成された織物基布に少なくとも1層のポリウレタン系重合体などから選ばれた樹脂層が設けられてなる透湿防水性布帛である。
Hereinafter, the present invention will be described in detail.
The moisture-permeable and waterproof fabric of the present invention is a moisture-permeable and waterproof fabric in which a resin layer selected from at least one polyurethane polymer is provided on a fabric base fabric formed from synthetic filament yarns.
本発明で言う合成フィラメント糸とはポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリテトラメチレンテレフタレートなどのポリエステルからなるフィラメント糸、あるいは、脂肪族ポリアミド、芳香族ポリアミドなどのポリアミド、例えばナイロン6、ナイロン66からなるフィラメント糸、あるいは、ポリエチレン、ポリプロピレンなどのポリオレフィンからなるフィラメント糸、アクリルやアクリレート系のフィラメント糸等の合成樹脂からなるフィラメント糸を意味する。布帛の風合いや引裂き強度からはナイロンフィラメント特にナイロン6が好ましく採用される。ポリエステルの場合では本発明の目的を損なわない程度の範囲内で他の第3成分を共重合してもよい。具体的にはアジピン酸、シュウ酸、セバシン酸、イソフタル酸、5―ソジュームスルホイソフタル酸などのジカルボン酸類、ジエチレングリコール、ポリエチレングリコールなどのグリコール類、ビスフェノールAまたはそのエチレンオキサイド付加物、ヒドキシ安息香酸などのオキシカルボン酸などを単独あるいは2種以上を組み合わて用いることができる。また本発明の目的を損なわない範囲で、さらにつや消し剤、抗酸化剤、蛍光増白剤、紫外線吸収剤、制電剤、難燃剤などの添加物を配合しても良い。 The synthetic filament yarn referred to in the present invention is composed of a filament yarn made of polyester such as polyethylene terephthalate, polytrimethylene terephthalate, polytetramethylene terephthalate, or a polyamide such as aliphatic polyamide or aromatic polyamide, such as nylon 6 or nylon 66. It means a filament yarn, or a filament yarn made of a synthetic resin such as a filament yarn made of polyolefin such as polyethylene or polypropylene, or an acrylic or acrylate filament yarn. Nylon filaments, particularly nylon 6, are preferably employed from the texture and tear strength of the fabric. In the case of polyester, other third component may be copolymerized within a range that does not impair the object of the present invention. Specifically, dicarboxylic acids such as adipic acid, oxalic acid, sebacic acid, isophthalic acid, 5-sodiumsulfoisophthalic acid, glycols such as diethylene glycol and polyethylene glycol, bisphenol A or its ethylene oxide adduct, hydroxybenzoic acid, etc. These oxycarboxylic acids can be used alone or in combination of two or more. Further, additives such as matting agents, antioxidants, fluorescent brighteners, ultraviolet absorbers, antistatic agents, flame retardants and the like may be blended within the range not impairing the object of the present invention.
合成フィラメント糸が含有する無機微粒子としては特に限定はなく、いかなる無機微粒子をも使用することができる。添加する無機微粒子の種類は目的とする繊維によって異なるが、例えば紫外線遮蔽性繊維を得ることが目的である場合には、紫外線を反射または吸収する微粒子、すなわち紫外線を実質的に透過しない微粒子が用いられる。その代表例としては、二酸化チタン、酸化亜鉛、酸化マグネシウム、アルミナ、二酸化ケイ素、硫酸バリウム、炭酸カルシウム、炭酸ナトリウム、タルク、カオリン等の無機化合物および無機化合物の各種処理微粒子が挙げられ、これらの中から一種または二種以上を混合して使用することができる。より好ましくは、二酸化チタン、酸化亜鉛、アルミナである。特に好ましくは二酸化チタンである。その添加量は表面のダル感を出すためには1wt%以上含有させることが望ましく、さらには2wt%以上が好ましいが、5wt%を超えると紡糸操業性が著しく悪化することや、繊維の強度が低下することなどから、好ましくは4wt%以下が良い。またこれ以外に、例えば鮮やかに着色された繊維を得ることを目的とする場合には、無機顔料が無機微粒子として用いられる。さらに導電性の繊維を得ることが目的の場合には、導電性金属酸化物や金属粉末などが無機微粒子として用いられ、磁性繊維を得ることを目的とする場合には、鉄、コバルト、ニッケル等の金属およびこれらの酸化物あるいはフェライトなどの磁性粉末が無機微粒子として用いられる。なお無機添加物の含有量はJIS L 1013(8.25灰分)に準じて測定して求めるが、無機添加物が酸化チタンの場合はJIS L 1013(8.26酸化チタン)に準じて測定することもできる。無機微粒子の平均粒子径は5μ以下、特に1μ以下が好ましい。粒子径が大きすぎると、紡糸時のフィルターでの詰まりや糸切れなどの問題を生じ、さらに延伸時にも糸切れが発生する。ここで言う平均粒子径とは、堀場製作所製粒度分布測定装置(CAPA−500)を用いて測定される値である。無機微粒子の形状は、多角形、針状、球状、立方体状、紡錘状、板状など限定することなく使用可能であるが、分散性および耐磨耗性の点から球状または紡錘状をしたもののほうが好ましい。 The inorganic fine particles contained in the synthetic filament yarn are not particularly limited, and any inorganic fine particles can be used. The type of inorganic fine particles to be added differs depending on the target fiber. For example, when the purpose is to obtain an ultraviolet shielding fiber, fine particles that reflect or absorb ultraviolet rays, that is, fine particles that do not substantially transmit ultraviolet rays are used. It is done. Typical examples include inorganic compounds such as titanium dioxide, zinc oxide, magnesium oxide, alumina, silicon dioxide, barium sulfate, calcium carbonate, sodium carbonate, talc and kaolin, and various treated fine particles of inorganic compounds. 1 type or 2 types or more can be mixed and used. More preferred are titanium dioxide, zinc oxide, and alumina. Particularly preferred is titanium dioxide. The added amount is desirably 1 wt% or more in order to obtain a dull feeling on the surface, and more preferably 2 wt% or more. However, if it exceeds 5 wt%, the spinning operability is significantly deteriorated, and the strength of the fiber is increased. From the viewpoint of lowering, 4 wt% or less is preferable. In addition to this, for example, an inorganic pigment is used as the inorganic fine particles in order to obtain a vividly colored fiber. Furthermore, when the purpose is to obtain conductive fibers, conductive metal oxides or metal powders are used as inorganic fine particles, and when the purpose is to obtain magnetic fibers, iron, cobalt, nickel, etc. These metals and their magnetic powders such as oxides or ferrite are used as inorganic fine particles. The content of the inorganic additive is determined according to JIS L 1013 (8.25 ash), but when the inorganic additive is titanium oxide, it is measured according to JIS L 1013 (8.26 titanium oxide). You can also. The average particle size of the inorganic fine particles is preferably 5 μ or less, particularly preferably 1 μ or less. If the particle diameter is too large, problems such as clogging in the filter during spinning and yarn breakage occur, and yarn breakage also occurs during drawing. The average particle size referred to here is a value measured using a particle size distribution measuring apparatus (CAPA-500) manufactured by Horiba. The shape of the inorganic fine particles can be used without limitation, such as polygonal, needle-like, spherical, cubic, spindle-like, and plate-like, but those that are spherical or spindle-like in terms of dispersibility and wear resistance Is preferred.
織物基布を構成するフィラメント糸の繊度は50デシテックス以下である事が望ましい。50デシテックスを超えると布帛が厚くなり従来のものとの差が無くなってしまうため本発明の範囲外とする。布帛の風合いや軽さから好ましくは45デシテックス以下であり、さらには40デシテックス以下が一層好ましい。これにより透湿防水性布帛の厚みが0.15mm以下にすることができる。厚みの好ましい範囲としては0.13mm以下が軽さと柔らかさの点で良い。単糸繊度も風合いに大きく影響を与えるため好ましくは1.5デシテックス以下、さらには1.0デシテックス以下が一層好ましい。断面形状は丸、三角、四角などの多角形、偏平、中空、星、歯車型などどんな形状でも構わず、本発明において特に限定はない。 The fineness of the filament yarn constituting the woven fabric is preferably 50 dtex or less. If it exceeds 50 dtex, the fabric becomes thick and there is no difference from the conventional one, so it is out of the scope of the present invention. From the texture and lightness of the fabric, it is preferably 45 dtex or less, and more preferably 40 dtex or less. Thereby, the thickness of a moisture-permeable waterproof fabric can be 0.15 mm or less. A preferable thickness range is 0.13 mm or less in terms of lightness and softness. Since the single yarn fineness greatly affects the texture, it is preferably 1.5 dtex or less, more preferably 1.0 dtex or less. The cross-sectional shape may be any shape such as a polygon such as a circle, a triangle or a square, a flat shape, a hollow shape, a star, or a gear shape, and is not particularly limited in the present invention.
透湿防水性布帛を構成する少なくとも一層の樹脂層に利用される樹脂は、ポリウレタン系、アクリル系、ポリエステル系、ポリアミド系、シリコーン系、フッ素系ポリマーなどを主成分とする樹脂単独、あるいはこれらの混合物により構成され、無機微粒子、有機微粒子、特に高吸放湿吸湿発熱性を有する微粒子を一種以上配合して使用することも可能である。 The resin used for at least one resin layer constituting the moisture-permeable and waterproof fabric is a resin based on polyurethane, acrylic, polyester, polyamide, silicone, fluorine polymer, etc. alone, or these It is also possible to mix and use one or more kinds of inorganic fine particles, organic fine particles, particularly fine particles having high moisture absorption and moisture absorption exothermic properties.
透湿防水性布帛の引裂き強力は経糸引裂き方向および緯糸引裂き方向ともに5N以上であることが望ましい。引裂き強力が5N未満では着用時に特にひじ部などの伸縮性が必要とされる部位での引裂かれが発生しやすいため、好ましくは7N以上、さらには10N以上が一層好ましい。布帛の厚みを増せば、つまり構成する繊維の繊度を増せば引裂き強力を向上させることはできるが、厚ぼったくなるため、使用する繊維の繊度は50デシテックス以下であることが好ましい。引裂き強力は高いほど良いが、30N程度を超えると、紡糸操業性の劣ったものとなりやすく、安定的には生産しづらくなるため、あまり好ましくない。 It is desirable that the tearing strength of the moisture permeable waterproof fabric is 5 N or more in both the warp tear direction and the weft tear direction. If the tear strength is less than 5N, tearing is likely to occur particularly at the site where elasticity such as the elbow is required during wearing. Therefore, the tear strength is preferably 7N or more, more preferably 10N or more. If the thickness of the fabric is increased, that is, if the fineness of the constituent fibers is increased, the tearing strength can be improved. However, since it becomes thicker, the fineness of the fibers used is preferably 50 decitex or less. The higher the tear strength, the better. However, if it exceeds about 30 N, the spinning operability tends to be inferior, and it is difficult to produce stably, which is not preferable.
ポリアミドフィラメントの相対粘度は2.8以上であることが好ましい。本発明では樹脂層を付与しても引裂き強力が著しく低下しない布帛とするためには、織物基布の組織よりもフィラメントの分子量、換言すれば相対粘度を大きくすることが重要であることを解明した。より好ましい範囲は3.0以上であるが、紡糸性から判断して5.0未満、さらには4.0未満であることが一層好ましい。 The relative viscosity of the polyamide filament is preferably 2.8 or more. In the present invention, it is clarified that it is important to increase the molecular weight of the filament, in other words, the relative viscosity, rather than the texture of the fabric base fabric in order to make the fabric in which the tearing strength does not significantly decrease even when the resin layer is applied. did. A more preferable range is 3.0 or more, but it is more preferably less than 5.0, more preferably less than 4.0 in view of spinnability.
本発明の透湿防水性布帛を構成する織物基布はシングルリップやダブルリップなどのリップストップ組織の織物であることが好ましい。太糸や引き揃え糸を数mm間隔で経緯に配置したリップストップ組織は引裂きに強く、特にパラグライダー等の軽くて引裂きが必要とされる分野で多用されているが、本発明で好ましく採用するリップストップ組織は経緯方向共に地糸が同口にて2〜3本引き揃えられてなる多糸挿入部を少なくとも6つ/2.54cm以上有するものが好ましく、特に2.54cm(=1インチ)間の多糸挿入部の数と単一の多糸挿入部に引き揃えられた糸本数とを乗じた糸挿入本数が20以上であることが好ましい。同口にて引き揃えられる糸本数が4本以上となると,引き揃えられた糸条同士が重なり合いやすくなって地組織部との間に段差(凹凸)が生じ,樹脂被覆処理後における多糸挿入部の樹脂被膜が薄くなり、耐久性に劣ったり剥離しやすくなってしまうためあまり好ましくない。2.54cm間の多糸挿入部の数と引き揃え糸本数とを乗じた糸挿入本数が20未満であると引裂き強力が5Nを満足しにくくなるため好ましくない。また、80を超えると生地風合いが硬くなってしまうため好ましくない。より好ましくは25以上70以下、一層好ましくは30以上60以下である。 The fabric base fabric constituting the moisture-permeable and waterproof fabric of the present invention is preferably a fabric having a ripstop structure such as a single lip or a double lip. The ripstop structure in which thick yarns and aligned yarns are arranged at intervals of several millimeters is resistant to tearing, and is especially used in fields that require light tearing, such as paragliders. It is preferable that the top structure has at least 6 / 2.54 cm or more of multi-thread insertion parts in which two to three ground yarns are aligned at the same opening in the weft direction, particularly 2.54 cm (= 1 inch). It is preferable that the number of yarn insertions obtained by multiplying the number of the multi-thread insertion portions by the number of yarns aligned in a single multi-thread insertion portion is 20 or more. If the number of yarns aligned at the same port becomes 4 or more, the aligned yarns tend to overlap each other, resulting in a level difference (unevenness) between the textured portion, and insertion of multiple yarns after resin coating treatment This is not preferable because the resin film on the part becomes thin and is inferior in durability or easily peeled off. If the number of inserted yarns obtained by multiplying the number of multi-thread inserting portions between 2.54 cm and the number of aligned yarns is less than 20, it is not preferable because the tearing strength becomes difficult to satisfy 5N. On the other hand, if it exceeds 80, the texture of the fabric becomes hard, which is not preferable. More preferably, they are 25 or more and 70 or less, More preferably, they are 30 or more and 60 or less.
本発明において、繊維強度が同じ場合、基布の密度が増し、カバーファクターが高まるにつれて、引裂き強力が高まることを見出した。経糸引裂き方向と緯糸引裂き方向の引裂き強力のバランスを取るためには透湿防水性布帛を構成する織物基布の経糸と緯糸のカバーファクターの比が45:55〜60:40であることが好ましい。経糸のカバーファクター比が45%より低いと製織時の操業性が悪化することや、経糸引裂き方向の強力が5N未満となりやすく、60%を超えると緯糸引裂き方向の強力が5N未満となりやすい。より好ましくは47:53〜55:45であり、さらには50:50〜53:47が一層好ましい。なおカバーファクター(CF)とは単位面積間の糸断面の占める割合の程度を表す係数であって、式:{糸の繊度(デシテックス)}1/2×{織物密度(本/2.54cm)}で表され、カバーファクター値が高いと隙間が小さく、つまり緻密性が高いことを示す。 In the present invention, it has been found that when the fiber strength is the same, the tear strength increases as the density of the base fabric increases and the cover factor increases. In order to balance the tear strength in the warp tear direction and the weft tear direction, the ratio of the cover factor between the warp and the weft of the fabric base fabric constituting the moisture-permeable waterproof fabric is preferably 45:55 to 60:40. . When the cover factor ratio of the warp is lower than 45%, the operability during weaving deteriorates, and the strength in the warp tearing direction tends to be less than 5N, and when it exceeds 60%, the strength in the weft tearing direction tends to be less than 5N. More preferably, it is 47: 53-55: 45, and 50: 50-53: 47 is still more preferable. The cover factor (CF) is a coefficient representing the ratio of the cross section of the yarn between the unit areas, and is represented by the formula: {yarn fineness (decitex)} 1/2 × {woven fabric density (pieces / 2.54 cm) }, When the cover factor value is high, the gap is small, that is, the denseness is high.
経糸と緯糸のカバーファクターの合計は1500〜2200が好ましく、さらには1550〜2150、そして1600〜2100の間が一層好ましい。
本発明の透湿防水性布帛を構成する樹脂層が多孔質膜タイプの場合、透湿防水性布帛の透湿度は、JIS L−1099(A−1法)の測定法で6000g/m2・24hr以上であることが好ましく、かつ耐水圧がJIS L−1092の測定法60kPa以上であることが好ましい。(A−1法)透湿度が6000g/m2・24hr未満では、夏場の着用時に蒸れ感を感ずることになり、また、耐水圧が60kPa以下になると、十分な防水性能が得られず、雨中での着衣時に漏水することがあり、あまり好ましくない。より好ましくは(A−1法)透湿度は7000g/m2・24hr以上、さらには8000g/m2・24hr以上が一層好ましいが、あまり高すぎると耐水圧が低下しやすくなるため、15000g/m2・24hr以下、さらに好ましくは14000g/m2・24hr以下が好ましい。また、耐水圧についても高すぎると透湿性が低下しやすくなることから、好ましい範囲としては70kPaから160kPa、一層好ましくは80kPaから140kPaの範囲である。
The total cover factor of the warp and the weft is preferably 1500 to 2200, more preferably 1550 to 2150, and more preferably 1600 to 2100.
When the resin layer constituting the moisture-permeable and waterproof fabric of the present invention is a porous membrane type, the moisture permeability of the moisture-permeable and waterproof fabric is 6000 g / m 2 · according to the measurement method of JIS L-1099 (A-1 method). It is preferably 24 hours or more, and the water pressure resistance is preferably 60 kPa or more according to the measurement method of JIS L-1092. (Method A-1) If the moisture permeability is less than 6000 g / m 2 · 24 hr, a feeling of sultry will be felt when worn in the summer, and if the water pressure resistance is 60 kPa or less, sufficient waterproof performance cannot be obtained, and in the rain Water leakage may occur during clothing, which is not preferable. More preferably (A-1 method) moisture permeability 7000g / m 2 · 24hr or more, but even more preferably at least 8000g / m 2 · 24hr, since the excessively high water pressure resistance tends to decrease, 15000 g / m It is preferably 2 · 24 hr or less, more preferably 14000 g / m 2 · 24 hr or less. Further, if the water pressure resistance is too high, the moisture permeability tends to be lowered. Therefore, the preferable range is from 70 kPa to 160 kPa, and more preferably from 80 kPa to 140 kPa.
本発明の透湿防水性布帛を構成する樹脂層が無孔質膜タイプの場合、透湿度は、JIS L−1099(B−1法)の測定法で18,000g/m2・24hr以上であり、かつ耐水圧がJIS L−1092の測定法60kPa以上の性能が必要である。(B−1法)透湿度が18,000g/m2・24hr未満では、冬場の着用時に蒸れ感を感ずることになり、また、耐水圧が100kPa以下になると、十分な防水性能が得られず、雨中での着衣時に漏水することがある。好ましくは(B−1法)透湿度は20000g/m2・24hr以上、さらには22000g/m2・24hr以上が一層好ましいが、あまり高すぎると耐水圧が低下しやすくなるため、上限が60000g/m2・24hr以下、さらに好ましくは40000g/m2・24hr以下である。また耐水圧が高すぎると透湿性が低下しやすくなることから好ましい範囲としては120kPaから250kPa、一層好ましくは150kPaから210kPaの範囲である。 When the resin layer constituting the moisture-permeable waterproof fabric of the present invention is a nonporous membrane type, the moisture permeability is 18,000 g / m 2 · 24 hr or more according to the measurement method of JIS L-1099 (B-1 method). In addition, the water pressure resistance must be at least 60 kPa as measured by JIS L-1092. (Method B-1) If the moisture permeability is less than 18,000 g / m 2 · 24 hr, a feeling of stuffiness will be felt when worn in winter, and if the water pressure resistance is 100 kPa or less, sufficient waterproof performance cannot be obtained. , Water may leak during clothing in the rain. Preferably (B-1 method) moisture permeability 20000g / m 2 · 24hr or more, but even more preferably at least 22000g / m 2 · 24hr, since the excessively high water pressure resistance tends to decrease, the upper limit is 60 000 g / m 2 · 24 hr or less, more preferably 40000 g / m 2 · 24 hr or less. In addition, if the water pressure is too high, the moisture permeability tends to decrease, so a preferable range is from 120 kPa to 250 kPa, and more preferably from 150 kPa to 210 kPa.
本発明の透湿防水性布帛を製造する方法に特に限定はないが、好ましい態様として、酸化チタンを1wt%以上含有する相対粘度が2.7以下の固体のポリアミドレジンチップを減圧加熱して相対粘度2.8以上にし、ワンステップ紡糸法により総繊度30から50デシテックス、かつ単糸繊度が0.5から1.5デシテックスのマルチフィラメントを得て、高密度織物としたのち樹脂層を付与することを挙げることができる。樹脂層を付与する前の段階で一回又は複数回、片面又は両面にカレンダー加工して、耐水圧を高める工夫をしておくことも好ましい。酸化チタンを1wt%以上含有するポリアミドレジンを溶融状態で減圧加熱して重合度を高めることも可能であるが、溶融粘度が高くなりすぎ配管での詰まりが発生しやすくなるばかりでなく、特に相対粘度が2.7を超えるような高粘度においては酸化チタンの偏析が起こりやすいため品質が安定しないため好ましくない。固相重合法によりポリマー重合度を高めることがそれらの問題を最小限に抑える手段となる。紡糸方法においても紡糸工程と延伸工程をの2工程からなる2ステップ法と紡糸連続延伸法や超高速紡糸法などの1ステップ法の両方で製造することは可能であるが、酸化チタンを多く含有する繊維はガイド等との摩擦によりそれらを磨耗させてしまうため、できる限り紡糸工程はシンプルにするほうが良い。さらには延伸速度が遅い2ステップ紡糸法では、延伸ひずみが部分的に発生しやすく、例えば酸化チタンの存在割合が多い部分に集中してひずみが発生し糸切れが発生しやすくなるといった問題もあるため、1ステップ紡糸法が好ましく採用される。 The method for producing the moisture-permeable and waterproof fabric of the present invention is not particularly limited. However, as a preferred embodiment, a solid polyamide resin chip containing 1 wt% or more of titanium oxide and having a relative viscosity of 2.7 or less is heated under reduced pressure. A multifilament having a viscosity of 2.8 or more, a total fineness of 30 to 50 dtex and a single yarn fineness of 0.5 to 1.5 dtex is obtained by a one-step spinning method, and a resin layer is applied after forming a high-density fabric. Can be mentioned. It is also preferable to devise to increase the water pressure resistance by calendering one or both times once or a plurality of times before applying the resin layer. It is possible to increase the degree of polymerization by heating a polyamide resin containing 1 wt% or more of titanium oxide under reduced pressure in a molten state, but not only the melt viscosity becomes too high, but clogging in pipes is likely to occur. A high viscosity exceeding 2.7 is not preferable because segregation of titanium oxide is likely to occur and the quality is not stable. Increasing the degree of polymer polymerization by solid phase polymerization is a means of minimizing these problems. The spinning method can be manufactured by both a two-step method comprising a spinning step and a drawing step, and a one-step method such as a continuous spinning method and an ultra-high speed spinning method, but contains a large amount of titanium oxide. Since the fibers to be worn will be worn by friction with the guide or the like, it is better to simplify the spinning process as much as possible. Furthermore, in the two-step spinning method with a slow drawing speed, drawing strain is likely to occur partially, for example, there is a problem that the strain is concentrated in a portion where the presence ratio of titanium oxide is large and yarn breakage is likely to occur. Therefore, the one-step spinning method is preferably employed.
以下、具体的実施例を挙げて本発明を説明するが、本発明はこれらに限定されるものではない。なお、実施例における各特性値は下記方法により測定した。 Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited thereto. In addition, each characteristic value in an Example was measured with the following method.
無機微粒子の含有量:JIS L 1013に準じて測定した。 Content of inorganic fine particles: Measured according to JIS L 1013.
繊度:JIS L 1013に準じ測定した。 Fineness: Measured according to JIS L 1013.
引裂き強力:JIS L−1096に記載されるペンジュラム法に準じて測定した。 Tear strength: Measured according to the pendulum method described in JIS L-1096.
相対粘度:96.3±0.1wt%試薬特級濃硫酸中に重合体濃度が10mg/mlになるように試料を溶解させてサンプル溶液を調整し、20℃±0.05℃の温度で水落下秒数6から7秒のオストワルド粘度計を用い、溶液相対粘度を測定する。測定に際し、同一の粘度計を用い、サンプル溶液を調整したときと同じ硫酸20mlの落下時間T0(秒)と、サンプル溶液20mlの落下時間T1(秒)の比より相対粘度RVを下記の式を用いて算出する。
RV=T1/T0
Relative viscosity: The sample solution was prepared by dissolving the sample in 96.3 ± 0.1 wt% reagent-grade concentrated sulfuric acid so that the polymer concentration was 10 mg / ml, and water at a temperature of 20 ° C. ± 0.05 ° C. The solution relative viscosity is measured using an Ostwald viscometer with a drop time of 6 to 7 seconds. In the measurement, using the same viscometer, the relative viscosity RV is calculated from the ratio of the drop time T0 (second) of 20 ml of sulfuric acid and the drop time T1 (second) of 20 ml of the sample solution, which is the same as when the sample solution is adjusted, by Use to calculate.
RV = T1 / T0
透湿度:
(A−1):JIS L−1099(A−1法)に準じて測定した。
(B−1):JIS L−1099(B−1法)に準じて測定した。
Moisture permeability:
(A-1): Measured according to JIS L-1099 (A-1 method).
(B-1): Measured according to JIS L-1099 (B-1 method).
耐水圧:JIS L−1092に準じて測定した。 Water pressure resistance: Measured according to JIS L-1092.
布帛厚み:透湿防水性布帛の厚みをJIS L−1096の厚さに準じて測定した。 Fabric thickness: The thickness of the moisture-permeable and waterproof fabric was measured according to the thickness of JIS L-1096.
光沢感:目視により判定した。 Glossiness: Judged visually.
(実施例1)
酸化チタンを2wt%含有する相対粘度2.5のナイロン6樹脂を減圧加熱による固相重合法にて相対粘度を3.1にし、常法の紡糸連続延伸法にて強度4.7dN/dtex、伸度46%、沸水収縮率11.5%の44デシテックス、34フィラメントのナイロン6繊維を得た。該繊維を経糸及び緯糸に用い、ミニリップ組織(図1)にて製織し、常法により染色し、カレンダー加工した後、仕上げ加工を施した。得られた布帛のカバーファクター比は51:49であり、挿入本数は経43本、緯41本であった。この布帛にアサヒガードAG710(旭硝子株式会社製撥水剤)の6%溶液を織物に含浸させ、マングルで絞り、乾燥した後、160℃で30秒間熱処理した。この布帛に下記樹脂をナイフコーターにて樹脂を塗布し、これを水中に導き、2分間凝固させた後、55℃の湯で8分間洗浄し、乾燥させた。多孔質膜用に次ぎの樹脂組成を配合した。
酸化ケイ素含有エステル系ポリウレタン樹脂 75部
エーテル系ポリウレタン樹脂 35部
N,N‘−ジメチルホルムアミド 80部
HU−720P(吸放湿性微粒子:日本エクスラン工業(株)製) 10部
コロネートHL 3部
得られた布帛の生地面はダル感を有し、薄地にもかかわらず引裂き強力に優れた透湿防水性布帛であった。各物性を表1に示す。
(Example 1)
A nylon 6 resin having a relative viscosity of 2.5 containing 2% by weight of titanium oxide is adjusted to a relative viscosity of 3.1 by solid-phase polymerization by heating under reduced pressure, and a strength of 4.7 dN / dtex by a conventional continuous spinning method. A 44 dtex, 34 filament nylon 6 fiber having an elongation of 46% and a boiling water shrinkage of 11.5% was obtained. The fibers were used for warps and wefts, woven with a mini lip structure (FIG. 1), dyed by a conventional method, calendered, and then finished. The cover factor ratio of the obtained fabric was 51:49, and the number of insertions was 43 warps and 41 wefts. The fabric was impregnated with a 6% solution of Asahi Guard AG710 (water repellent manufactured by Asahi Glass Co., Ltd.), squeezed with mangle, dried, and then heat treated at 160 ° C. for 30 seconds. The following resin was applied to this fabric with a knife coater, guided into water, allowed to solidify for 2 minutes, washed with hot water at 55 ° C. for 8 minutes, and dried. The following resin composition was blended for the porous membrane.
Silicon oxide-containing ester polyurethane resin 75 parts Ether polyurethane resin 35 parts N, N'-dimethylformamide 80 parts HU-720P (Hygroscopic fine particles: manufactured by Nippon Exlan Industries Co., Ltd.) 10 parts Coronate HL 3 parts The fabric surface of the fabric had a dull feeling and was a moisture-permeable and waterproof fabric excellent in tearing strength despite being thin. Each physical property is shown in Table 1.
(実施例2)
繊維を構成する樹脂成分をナイロン66に変更し、ダブルリップ組織(図2)で織製後、乾式法にて下記樹脂の製膜を施し付与したことを除いて、実施例1とほぼ同様に作成した。
製膜条件:基布を公知の染色仕上げ加工を施した後、アサヒガードAG710(旭硝子株式会社製撥水剤)の6%溶液を織物に含浸させ、マングルで絞り、乾燥した後、160℃で30秒間熱処理した。一方離型紙上に下記樹脂をナイフコーターにて塗布し、エアオーブンを用いて100℃で乾燥し、無孔質膜を得た。接着性樹脂を用い前記布帛にラミネート法にて樹脂膜を付与した。
水膨潤性エステル系ポリウレタン樹脂 75部
水膨潤性エーテル系ポリウレタン樹脂 35部
N,N‘−ジメチルホルムアミド 80部
HU−720P(吸放湿性微粒子:日本エクスラン工業(株)製) 10部
コロネートHL 3部
得られた布帛はダル感を有し、薄地にもかかわらず引裂き強力に優れた透湿防水性布帛であった。各物性を表1に示す。
(Example 2)
The resin component constituting the fiber was changed to nylon 66, and after weaving with a double lip structure (FIG. 2), it was applied in the same manner as in Example 1 except that the following resin film was formed by a dry method. Created.
Film forming conditions: After applying a known dyeing finish to the base fabric, the fabric was impregnated with a 6% solution of Asahi Guard AG710 (Asahi Glass Co., Ltd. water repellent), squeezed with mangle, dried, and then at 160 ° C. Heat treated for 30 seconds. On the other hand, the following resin was coated on a release paper with a knife coater and dried at 100 ° C. using an air oven to obtain a nonporous film. A resin film was applied to the fabric using an adhesive resin by a laminating method.
Water-swellable ester-based polyurethane resin 75 parts Water-swellable ether-based polyurethane resin 35 parts N, N'-dimethylformamide 80 parts HU-720P (hygroscopic fine particles: manufactured by Nippon Exlan Industries Co., Ltd.) 10 parts Coronate HL 3 parts The obtained fabric had a dull feeling and was a moisture-permeable and waterproof fabric excellent in tearing strength despite being thin. Each physical property is shown in Table 1.
(比較例1)
相対粘度2.5のナイロン6レジンを紡糸連続延伸法にて78T34フィラメントを作成し、カバーファクター比を56:44にした以外は実施例1に従った。得られた布帛はダル感を有し、引裂き強力に優れた透湿防水性布帛であったが、経方向と緯方向の引裂き強力バランスが悪く、厚みは0.22mmと厚ぼったいものであった。各物性を表1に示す。
(Comparative Example 1)
A nylon 6 resin having a relative viscosity of 2.5 was prepared by a continuous spinning method of 78T34 filaments, and Example 1 was followed except that the cover factor ratio was 56:44. The obtained fabric had a dull feeling and was a moisture-permeable waterproof fabric excellent in tear strength, but the tear strength balance in the warp direction and the weft direction was poor, and the thickness was as thick as 0.22 mm. Each physical property is shown in Table 1.
(比較例2)
相対粘度2.5のナイロン6レジンを公知のワンステップ紡糸法にてフィラメントを作成した以外は実施例1に従った。得られた布帛は薄く、またダル感を有してはいたが、引裂き強力に劣った透湿防水性布帛であった。各物性を表1に示す。
(Comparative Example 2)
Example 1 was followed except that a nylon 6 resin having a relative viscosity of 2.5 was prepared by a known one-step spinning method. The obtained fabric was thin and had a dull feeling, but was a moisture-permeable waterproof fabric with poor tearing strength. Each physical property is shown in Table 1.
(比較例3)
酸化チタンを0.3wt%含有するナイロン6レジンを公知のワンステップ紡糸法にて56T34フィラメントを作成し、平組織(図3)の織物を製織したことを除いて、実施例2に従って作成した。得られた布帛はダル感を有さず、引裂き強力に劣ったやや厚ぼったい透湿防水性布帛であった。各物性を表1に示す。
(Comparative Example 3)
A nylon 6 resin containing 0.3 wt% of titanium oxide was prepared in accordance with Example 2 except that 56T34 filaments were prepared by a known one-step spinning method, and a plain fabric (FIG. 3) was woven. The obtained fabric did not have a dull feeling and was a slightly thick and moisture-permeable waterproof fabric that was inferior in tearing strength. Each physical property is shown in Table 1.
本発明によれば、織物基布の繊維を構成するポリアミドの相対粘度と無機微粒子の含有量、単糸繊度、マルチフィラメントの繊度、織物の組織を適切に調節することによって、ダル感を有し、薄地であるにも関わらず引裂き強力に優れた透湿防水性布帛の製造方法の提供が可能となった。本発明で得られる透湿防水性布帛は、ウインドブレーカー等のスポーツ衣料用途等として好適に使用できるものである。 According to the present invention, by appropriately adjusting the relative viscosity of the polyamide constituting the fibers of the fabric base fabric and the content of inorganic fine particles, the single yarn fineness, the multifilament fineness, and the fabric structure, the fabric has a dull feeling. Thus, it has become possible to provide a method for producing a moisture-permeable and waterproof fabric excellent in tearing strength despite being thin. The moisture-permeable and waterproof fabric obtained in the present invention can be suitably used for sports clothing applications such as windbreakers.
Claims (5)
透湿防水性布帛を製造する工程が、(i)酸化チタンを1wt%以上含有し、相対粘度が2.7以下の固体のポリアミドレジンチップを減圧加熱して相対粘度2.8以上にし、ワンステップ紡糸法により総繊度30〜45デシテックス、かつ単糸繊度0.5〜1.5デシテックスのマルチフィラメント糸を製造する工程、(ii)リップストップ組織からなる織物基布を製織する工程、(iii)該織物に少なくとも一層の樹脂層を設ける工程、を含むことを特徴とする透湿防水性布帛の製造方法。 A method for producing a moisture-permeable waterproof fabric having a thickness of 0.15 mm or less and a tear strength in the warp tear direction and the weft tear direction of 10 N or more,
The step of producing a moisture-permeable and waterproof fabric includes (i) a solid polyamide resin chip containing 1 wt% or more of titanium oxide and having a relative viscosity of 2.7 or less by heating under reduced pressure to a relative viscosity of 2.8 or more. A step of producing a multifilament yarn having a total fineness of 30 to 45 dtex and a single yarn fineness of 0.5 to 1.5 dtex by a step spinning method, (ii) a step of weaving a woven fabric comprising a ripstop structure, (iii) And a step of forming at least one resin layer on the woven fabric.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007246702A JP2008002056A (en) | 2002-12-04 | 2007-09-25 | Method for producing moisture-permeable waterproof fabric |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002352532 | 2002-12-04 | ||
JP2007246702A JP2008002056A (en) | 2002-12-04 | 2007-09-25 | Method for producing moisture-permeable waterproof fabric |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003402518A Division JP4120875B2 (en) | 2002-12-04 | 2003-12-02 | Moisture permeable and waterproof fabric excellent in tearing strength and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008002056A true JP2008002056A (en) | 2008-01-10 |
Family
ID=39006664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007246702A Pending JP2008002056A (en) | 2002-12-04 | 2007-09-25 | Method for producing moisture-permeable waterproof fabric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008002056A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010030289A (en) * | 2008-06-23 | 2010-02-12 | Toray Ind Inc | Laminated cloth and method for manufacturing the same |
JP2010156064A (en) * | 2008-12-26 | 2010-07-15 | Teijin Fibers Ltd | Rip-stop taffeta fabric with capability of releasing dust, and fiber product |
FR2942481A1 (en) * | 2009-02-24 | 2010-08-27 | Porcher Ind | LIGHT AND / OR HIGH COMPACT FABRIC, IN PARTICULAR FOR PARACHUTE. |
JP2018162543A (en) * | 2017-03-27 | 2018-10-18 | 旭化成アドバンス株式会社 | Abrasion resistant woven fabric |
-
2007
- 2007-09-25 JP JP2007246702A patent/JP2008002056A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010030289A (en) * | 2008-06-23 | 2010-02-12 | Toray Ind Inc | Laminated cloth and method for manufacturing the same |
JP2010156064A (en) * | 2008-12-26 | 2010-07-15 | Teijin Fibers Ltd | Rip-stop taffeta fabric with capability of releasing dust, and fiber product |
FR2942481A1 (en) * | 2009-02-24 | 2010-08-27 | Porcher Ind | LIGHT AND / OR HIGH COMPACT FABRIC, IN PARTICULAR FOR PARACHUTE. |
WO2010097550A1 (en) * | 2009-02-24 | 2010-09-02 | Porcher Industries | Light and/or high compactness fabric, in particular for parachutes |
JP2018162543A (en) * | 2017-03-27 | 2018-10-18 | 旭化成アドバンス株式会社 | Abrasion resistant woven fabric |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101300855B1 (en) | Sealing tape and fiber product making use of the same | |
EP1857265B1 (en) | Textile product | |
KR101075108B1 (en) | Polyester woven fabric | |
WO2004113601A1 (en) | Woven or knitted fabric containing two different yarns and clothing comprising the same | |
JP5363145B2 (en) | Moisture permeable waterproof fabric and textile products | |
JP4896779B2 (en) | Method for producing moisture-permeable and waterproof fabric, moisture-permeable and waterproof fabric and textile product | |
JP2008002056A (en) | Method for producing moisture-permeable waterproof fabric | |
TW201937025A (en) | Plain-weave fabric, method for manufacturing same, and stent graft | |
JP5161516B2 (en) | Moisture permeable waterproof fabric | |
JP4120875B2 (en) | Moisture permeable and waterproof fabric excellent in tearing strength and method for producing the same | |
JP3953455B2 (en) | Futon side fabric | |
JP2013226750A (en) | Moisture-permeable waterproof fabric and fiber product | |
CN111372775A (en) | Multilayered fabric, process for producing the same, and textile product | |
JP2008144310A (en) | Moisture permeable and waterproof fabric | |
JP4451613B2 (en) | Waterproof fabric with antistatic and water repellency | |
JP2003311862A (en) | Moisture-permeable and water-proofed cloth and clothing using the cloth | |
JP2004044018A (en) | High-density textile fabric | |
WO2004050345A1 (en) | Moisture permeable waterproof woven fabric excelling in tearing strength and process for producing the same | |
JP2010280073A (en) | Moisture-permeable waterproof fabric and fiber product | |
JP2020125558A (en) | fabric | |
JP2000017578A (en) | Bag cloth and bag using the same | |
JP3063115U (en) | High density multiplex fabric | |
JPH11302947A (en) | Napped high-density woven fabric having excellent waterproofness | |
JP5022290B2 (en) | Waterproof and breathable fabric and apparel | |
JP4427709B2 (en) | Elastic knitted fabric and its textile products |