JP2008001999A - Flame-retardant polyester fiber - Google Patents

Flame-retardant polyester fiber Download PDF

Info

Publication number
JP2008001999A
JP2008001999A JP2006170113A JP2006170113A JP2008001999A JP 2008001999 A JP2008001999 A JP 2008001999A JP 2006170113 A JP2006170113 A JP 2006170113A JP 2006170113 A JP2006170113 A JP 2006170113A JP 2008001999 A JP2008001999 A JP 2008001999A
Authority
JP
Japan
Prior art keywords
component
flame
polyester fiber
retardant polyester
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006170113A
Other languages
Japanese (ja)
Inventor
Shuji Miyazaki
修二 宮崎
Shiro Ishibai
司郎 石灰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Fibers Ltd
Original Assignee
Unitika Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Fibers Ltd filed Critical Unitika Fibers Ltd
Priority to JP2006170113A priority Critical patent/JP2008001999A/en
Publication of JP2008001999A publication Critical patent/JP2008001999A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a flame-retardant polyester fiber having sufficient flame retardance, excellent drawability, slight fluffs caused by drawing and excellent processability of weaving or knitting machine, etc. <P>SOLUTION: The flame-retardant polyester fiber is a polyester fiber composed of a mixture of a polyethylene terephthalate (component A) copolymerized with a phosphorus compound and a polyethylene terephthalate (component B) in the mass ratio of the component A to the component B of 4:1-1:1 and has a phosphorus atom content of 3,000-7,000 ppm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高強度で優れた難燃性を有し、建築資材用として好適な難燃性ポリエステルに関するものである。   The present invention relates to a flame-retardant polyester having high strength and excellent flame retardancy and suitable for use as a building material.

安全ネットや土木シート、あるいはメッシュシート等の建築資材は難燃性が必要であるため、従来、難燃性を有しないポリエステル繊維を用いて形成したこれらの建築資材は、安全ネットや土木シート等に成形加工を行った後、難燃加工を行ったり、また、メッシュシート等は難燃性を有するポリ塩化ビニル樹脂等を用いて樹脂加工を行い、目ずれ防止と難燃性を付与するのが一般的である。   Building materials such as safety nets, civil engineering sheets, or mesh sheets need to be flame retardant. Therefore, these building materials that have been formed using polyester fibers that do not have flame retardants are conventionally used as safety nets, civil engineering sheets, etc. After the molding process is performed, flame retardant processing is performed, and mesh sheets and the like are subjected to resin processing using a flame retardant polyvinyl chloride resin, etc., to prevent misalignment and impart flame resistance. Is common.

しかし、近年、難燃加工を施した安全ネットや土木シートは、長期の使用や洗濯等による難燃性能の持続性が問題となっている。また、難燃性の樹脂で樹脂加工を行ったメッシュシート等は、廃棄する場合に焼却すると有害ガスが発生しやすいため、埋め立て処理されるが、埋め立て処理される産業廃棄物が増加し、環境への影響が問題となっている。   However, in recent years, safety nets and civil engineering sheets that have been subjected to flame retardant processing have been problematic in terms of sustainability of flame retardant performance due to long-term use and washing. In addition, mesh sheets, etc. that have been processed with flame-retardant resin are disposed of in landfills because they tend to generate harmful gases when incinerated. The impact on is a problem.

このようなことから、近年、ポリエステル繊維に特許文献1〜2に記載されているようなリン化合物を含有させた難燃性のポリエステル繊維を使用することで、安全ネットや土木シートに難燃性を付与したり、また、メッシュシート等の目ずれ防止が必要なものは、難燃性の繊維と難燃性能を阻害しない程度に少量の低融点の熱融着繊維を混繊や合撚し、メッシュシート等に製織した後、熱融着繊維の融点以上の温度で熱処理を行って交点部を接着することで目ずれ防止を行うことにより、難燃加工や樹脂加工を行わない建築資材が注目されている。   From such a thing, in recent years, using a flame-retardant polyester fiber containing a phosphorus compound as described in Patent Documents 1 and 2 in a polyester fiber, flame-retardant in a safety net or civil engineering sheet For those that need to prevent misalignment, such as mesh sheets, blend a small amount of low-melting-point heat-sealing fibers to the extent that they do not impair flame retardant performance. After weaving into a mesh sheet, etc., building materials that do not perform flame-retardant processing or resin processing by performing heat treatment at a temperature equal to or higher than the melting point of the heat-fusible fiber and bonding the intersections to prevent misalignment Attention has been paid.

このような建築資材用途に使用するポリエステル繊維は、ポリエステルの中でも安価で耐候性や寸法安定性に優れたポリエチレンテレフタレート(以下、PETと称することがある。)を用いるのがコスト面においても有利である。   Polyester terephthalate (hereinafter sometimes referred to as “PET”), which is inexpensive and has excellent weather resistance and dimensional stability, is advantageous in terms of cost. is there.

そして、PETに前記したようなリン化合物を含有させる方法としては、重合時のPETにリン原子が所定の含有量になるように、リン化合物を添加して共重合したものが難燃性の向上の面で好ましい。しかし、高強度が必要な土木資材用途に用いる繊維を得るためには、高倍率の延伸を行う必要があるが、難燃性を満足するだけのリン原子量のリン化合物を共重合させると、通常のPET繊維と比較して延伸性が劣るようになる。また、これが原因で延伸毛羽が多く発生して製編織時に毛羽による停台が多くなり、加工性が劣るようになる。   And as a method of making a phosphorus compound as mentioned above contain in PET, the thing which added the phosphorus compound and copolymerized so that a phosphorus atom may become predetermined content in PET at the time of superposition | polymerization improves flame retardance It is preferable in terms of However, in order to obtain fibers used for civil engineering materials that require high strength, it is necessary to stretch at a high magnification, but when a phosphorus compound having a phosphorus atomic weight sufficient to satisfy flame retardancy is copolymerized, It becomes inferior in stretchability compared with the PET fiber. In addition, due to this, a lot of stretched fluff is generated, and there are many stops due to the fluff during weaving and weaving, resulting in poor workability.

したがって、難燃性を満足するだけのリン原子量を含有していても、延伸性に優れ、延伸毛羽の少ない加工性に優れた難燃性ポリエステル繊維が要望されている。
特公昭53−13479公報 特公昭55−41610公報
Therefore, there is a demand for a flame-retardant polyester fiber that has excellent drawability and excellent workability with less stretched fluff even if it contains a phosphorus atom amount sufficient to satisfy flame retardancy.
Japanese Patent Publication No.53-13479 Japanese Patent Publication No. 55-41610

本発明は、上記の問題を解決し、十分な難燃性を有し、かつ、延伸性に優れ、延伸毛羽が少なく、製編織などの加工性に優れた難燃性ポリエステル繊維を提供することを技術的な課題とするものである。   The present invention provides a flame-retardant polyester fiber that solves the above-described problems, has sufficient flame retardancy, has excellent stretchability, has few stretch fluffs, and has excellent processability such as knitting and weaving. Is a technical issue.

本発明者らは、上記の課題を解決するために鋭意検討した結果、本発明に到達した。   As a result of intensive studies to solve the above problems, the present inventors have reached the present invention.

すなわち、本発明は、リン化合物が共重合されたポリエチレンテレフタレート(A成分)とポリエチレンテレフタレート(B成分)の混合物からなるポリエステル繊維であって、A成分とB成分の質量比が4:1〜1:1、リン原子の含有量が3000〜7000ppmであることを特徴とする難燃性ポリエステル繊維を要旨とするものである。   That is, the present invention is a polyester fiber made of a mixture of polyethylene terephthalate (component A) and polyethylene terephthalate (component B) copolymerized with a phosphorus compound, and the mass ratio of component A to component B is 4: 1 to 1. 1: The flame retardant polyester fiber is characterized in that the phosphorus atom content is 3000 to 7000 ppm.

本発明の難燃性ポリエステル繊維は、繊維に十分な難燃性を付与するのに必要なリン原子量を含有しているにもかかわらず、延伸性に優れているため、延伸毛羽が少なく品位に優れている。このため、製編織時に毛羽による停台が少なくなり、製編織時の加工性も良好となる。   The flame-retardant polyester fiber of the present invention is excellent in stretchability despite containing a phosphorus atom amount necessary for imparting sufficient flame retardancy to the fiber, and therefore has low stretch fluff and quality. Are better. For this reason, there are few stops by fluff at the time of weaving and weaving, and the workability at the time of weaving and weaving is also good.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の難燃性ポリエステル繊維は、主に建築資材用途に用いられるため、高強度で優れた耐候性を有し、かつ安価であることが必要であり、したがって、繊維を構成する成分としては、安価で耐候性に優れたPETを採用することが必要である。   Since the flame-retardant polyester fiber of the present invention is mainly used for building materials, it is necessary to have high strength, excellent weather resistance, and low cost. Therefore, as a component constituting the fiber, It is necessary to adopt PET that is inexpensive and excellent in weather resistance.

そして、本発明の難燃性ポリエステル繊維は、リン化合物が共重合されたPET(A成分)とPET(B成分)との混合物を用いることが必要である。その理由は、A成分のみからなる繊維とすると、前記したように延伸性が劣るようになるが、A成分とB成分との混合物にすることにより、難燃性を損なうことなく延伸性を向上させることができるためである。   And the flame-retardant polyester fiber of this invention needs to use the mixture of PET (A component) and PET (B component) by which the phosphorus compound was copolymerized. The reason is that if the fiber is composed of only the component A, the stretchability becomes inferior as described above. However, by using a mixture of the component A and the component B, the stretchability is improved without impairing the flame retardancy. It is because it can be made.

また、繊維を構成するA成分とB成分の質量比は、4:1〜1:1の範囲にする必要があり、好ましくは4:1〜3:2である。A成分がこの範囲より多くなると延伸性が劣るようになり、少なくなるとリン化合物が均一に分散されなくなり、難燃性能にばらつきが発生しやすくなるので好ましくない。   Further, the mass ratio of the A component and the B component constituting the fiber needs to be in the range of 4: 1 to 1: 1, and preferably 4: 1 to 3: 2. When the component A exceeds this range, the stretchability becomes poor, and when the component A decreases, the phosphorus compound is not uniformly dispersed and the flame retardancy tends to vary, which is not preferable.

次に、A成分に共重合させるリン化合物の種類は特に限定されるものではないが、前記した特許文献1〜2に記載されているリン化合物等を用いることができる。中でも、難燃性能や製糸性の面において、クラリアントジャパン社製の製品名:Oxa−Phospholan glycolester(3−メチルホスフィニコプロピオン酸とエチレングリコールのエステル化物)が好ましい。   Next, the type of the phosphorus compound copolymerized with the component A is not particularly limited, but the phosphorus compounds described in Patent Documents 1 and 2 described above can be used. Among these, in terms of flame retardancy and yarn production, a product name manufactured by Clariant Japan Co., Ltd .: Oxa-Phosphoran glycolester (ester of 3-methylphosphinicopropionic acid and ethylene glycol) is preferable.

そして、A成分にリン化合物を共重合させるには、PETの重縮合反応開始前にリン化合物を目的とするリン原子の含有量になるように添加し、重縮合反応を行って一旦チップ化し、その後、高強度が必要とされる土木資材用途に用いる場合は、常用のPETと同様に任意の粘度まで固相重合を行い、高粘度化するのが好ましい。   Then, in order to copolymerize the phosphorus compound with the component A, the phosphorus compound is added so as to have a target phosphorus atom content before the start of the polycondensation reaction of PET, and the polycondensation reaction is performed to form a chip once. Then, when using for the civil engineering material use for which high intensity | strength is required, it is preferable to solid-phase-polymerize to arbitrary viscosity similarly to normal PET, and to make high viscosity.

また、A成分中のリン原子の含有量は、繊維中におけるA成分とB成分の質量比及び繊維中のリン原子の含有量を考慮に入れると、3750〜14000ppmとすることが好ましい。   In addition, the phosphorus atom content in the component A is preferably 3750 to 14000 ppm in consideration of the mass ratio of the A component and the B component in the fiber and the phosphorus atom content in the fiber.

B成分としては、リン原子を含有せず、さらには実質的に他の成分を含有、共重合しないPETとすることが好ましい。   As B component, it is preferable to set it as PET which does not contain a phosphorus atom, and further contains other components and does not copolymerize.

次に、本発明の難燃性ポリエステル繊維を構成するA成分とB成分からなる混合物の極限粘度〔η〕は0.85〜1.1が好ましく、極限粘度が0.85より低いと高強度が得られ難くなりやすく、また、1.1より高くなると延伸性が劣るようになったり、コスト面において好ましくない。   Next, the intrinsic viscosity [η] of the mixture comprising the A component and the B component constituting the flame-retardant polyester fiber of the present invention is preferably 0.85 to 1.1, and if the intrinsic viscosity is lower than 0.85, the strength is high. Is difficult to obtain, and if it is higher than 1.1, the stretchability becomes inferior, and the cost is not preferable.

上記したA成分とB成分からなる混合物の極限粘度は、紡糸時に用いるA成分とB成分の極限粘度で決まり、A成分とB成分の極限粘度は同じであっても、異なっていてもよいが、粘度差があまり大きすぎると混合斑による単糸間での粘度差や繊維の長手方向の粘度斑が大きくなるため、強伸度等の性能面で均一性が劣るようになりやすい。したがって、A成分とB成分との極限粘度〔η〕の差は0.2以下とすることが品質の面において好ましい。   The intrinsic viscosity of the mixture composed of the A component and the B component is determined by the intrinsic viscosity of the A component and the B component used at the time of spinning, and the intrinsic viscosity of the A component and the B component may be the same or different. If the viscosity difference is too large, the difference in viscosity between the single yarns due to the mixed spots and the viscosity spots in the longitudinal direction of the fibers become large, so that the uniformity in terms of performance such as high elongation tends to be inferior. Therefore, the difference in intrinsic viscosity [η] between the A component and the B component is preferably 0.2 or less in terms of quality.

また、A成分とB成分の混合と紡糸は、各々別々の溶融押し出し機で溶融し、ポリマー化した後、計量ポンプで混合比を設定し、ミキサー等の混練器で混練しながら紡糸する方法、あるいは、原着繊維を紡糸する場合に一般的に用いる計量混合機等でドライブレンドしながら紡糸する方法を用いることができる。   The mixing and spinning of the component A and the component B are each melted and melted with separate melt extruders, polymerized, set with a metering pump, and spun while kneading with a kneader such as a mixer, Alternatively, it is possible to use a method of spinning while dry blending with a metering mixer or the like generally used when spinning the original fiber.

次に、本発明の難燃性ポリエステル繊維におけるリン原子の含有量は3000〜7000ppmとし、中でも3500〜6500ppmとすることが好ましく、さらには4000〜6000ppmとすることが好ましい。リン原子の含有量が3000ppmより少ないと難燃性が劣り、また、7000ppmより多くなると、リン化合物は高価であるためコスト面で不利益となる。   Next, the phosphorus atom content in the flame retardant polyester fiber of the present invention is 3000 to 7000 ppm, preferably 3500 to 6500 ppm, more preferably 4000 to 6000 ppm. If the phosphorus atom content is less than 3000 ppm, the flame retardancy is inferior, and if it exceeds 7000 ppm, the phosphorus compound is expensive, which is disadvantageous in terms of cost.

本発明の難燃性ポリエステル繊維は、主として建築資材用途に用いられるため、切断強度は5.5cN/dtex以上とすることが好ましい。一方、延伸性等の操業性を考慮すると、上限は7.5cN/dtex程度が好ましい。   Since the flame-retardant polyester fiber of the present invention is mainly used for building materials, the cutting strength is preferably 5.5 cN / dtex or more. On the other hand, in consideration of operability such as stretchability, the upper limit is preferably about 7.5 cN / dtex.

また、繊度は常用の産業資材用途に適した400〜3000dtexとすることが好ましく、単糸繊度は2〜30dtexとすることが好ましい。   The fineness is preferably 400 to 3000 dtex suitable for ordinary industrial materials, and the single yarn fineness is preferably 2 to 30 dtex.

さらに、本発明の難燃性ポリエステル繊維の断面形状は、丸断面、Y断面等の異形断面のいずれでもよい。   Furthermore, the cross-sectional shape of the flame-retardant polyester fiber of the present invention may be any of a round cross-section and an irregular cross-section such as a Y cross-section.

また、本発明の難燃性ポリエステル繊維には、本来の性能を損なわない程度に着色顔料や各種添加剤等が添加されていてもよい。   Further, the flame retardant polyester fiber of the present invention may be added with a color pigment, various additives and the like to the extent that the original performance is not impaired.

本発明の難燃性ポリエステル繊維の製造は、常用の溶融紡糸、延伸装置を用いて行うことができる。その場合、一旦未延伸糸で巻き取り、その後延伸を行うこともできるが、未延伸糸を巻き取らずに連続して延伸と弛緩熱処理を行って巻き取るスピンドロー法が生産性やコスト面で好ましい。   The flame-retardant polyester fiber of the present invention can be produced using a conventional melt spinning and stretching apparatus. In that case, the undrawn yarn can be wound once and then drawn, but the spin draw method in which the undrawn yarn is taken up by continuously drawing and relaxing heat treatment without taking up the undrawn yarn in terms of productivity and cost. preferable.

スピンドロー法での巻き取り速度は2000〜4000m/分程度が好ましく、巻き取り速度が2000m/分より遅いと生産性が低下し、4000m/分より速いと延伸性が低下したり、高強度のものが得られ難くなる。   The winding speed in the spin draw method is preferably about 2000 to 4000 m / min. If the winding speed is slower than 2000 m / min, the productivity is lowered, and if it is faster than 4000 m / min, the stretchability is lowered or the strength is increased. Things are hard to get.

次に、本発明を実施例によって具体的に説明する。なお、実施例における各物性値は、次の方法で測定した。
(a)PETの極限粘度
フェノールと四塩化エタンとの等質量混合物を溶媒とし、濃度0.5g/dl、温度20℃で測定した。
(b)切断強度、切断伸度
JIS L−1013に従い、島津製作所製オートグラフDSS−500を用い、試料長25cm、引っ張り速度30cm/分で測定した。
(c)延伸性(毛羽数の測定)
10kg巻きチーズを各々5本採取し、光電管方式の毛羽検知部を有するAN式4型全自動整経機を用いて、500m/分の速度で各チーズ8万mの毛羽測定を行い、チーズ5本の合計40万mにおける毛羽数の合計を毛羽数とし、この数値で延伸性を評価した。
(d)難燃性
JIS L−1091 8.4D法(接炎試験)に従ってn=5で測定し、その平均値とした。なお、接炎回数の数値が大きいほど難燃性が高いことを示す。
Next, the present invention will be specifically described with reference to examples. In addition, each physical-property value in an Example was measured with the following method.
(A) Intrinsic viscosity of PET Measurement was performed at a concentration of 0.5 g / dl and a temperature of 20 ° C. using an equal mass mixture of phenol and ethane tetrachloride as a solvent.
(B) Cutting strength and cutting elongation Using an autograph DSS-500 manufactured by Shimadzu Corporation according to JIS L-1013, the sample length was 25 cm and the tensile speed was 30 cm / min.
(C) Stretchability (measurement of the number of fluff)
Five pieces of 10 kg cheese are sampled, and each cheese 80,000 m of fluff is measured at a speed of 500 m / min using an AN type 4 type fully automatic warping machine having a photoelectric tube type fluff detector. The total number of fluffs in a total of 400,000 m of the book was defined as the number of fluffs, and this value was used to evaluate stretchability.
(D) Flame retardancy Measured according to JIS L-1091 8.4D method (flame contact test) at n = 5, and the average value was obtained. In addition, it shows that flame retardance is so high that the numerical value of flame contact number is large.

実施例1
テレフタル酸とエチレングルコールとのモル部を100:170とし、圧力0.3MPaG、温度250℃で4時間エステル化反応を行って得た低分子量のオリゴマーを、重縮合反応槽に送液し、リン化合物(製品名:『Oxa−Phospholan glycolester』:クラリアントジャパン社製、3−メチルホスフィニコプロピオン酸とエチレングリコールのエステル化物)を添加し、触媒として三酸化アンチモンを添加し、温度280℃、減圧度1.3hPa以下で3時間の重縮合反応を行った。そして、極限粘度〔η〕0.7、リン原子の含有量が7000ppmのPETを得、次にこのPETを温度220℃、減圧下で攪拌しながら17時間の固相重合を行い、極限粘度〔η〕1.02のPETを得、これをA成分として用いた。
また、B成分としては、極限粘度〔η〕が1.02のPETを用いた。
そして、計量混合機を使用してA成分とB成分の質量比が3:2となるように計量混合を行いながら溶融紡糸した。すなわち、常用の溶融紡糸装置に孔径が0.6mm、孔数192個の溶融紡糸口金を装着し、温度300℃で紡出した後、長さ30cm、温度450℃の加熱筒を通過させ、次いで長さ150cmの横型冷却装置により温度20℃、速度0.7m/秒の冷却風で冷却し、油剤を付与して非加熱の第1ローラに引き取った。連続して非加熱の第2ローラで1.01倍の引き揃えを行った後、温度400℃、圧力0.7MPaのスチームを繊維に吹き付けながら温度220℃の第3ローラで5.6倍の延伸を行った。その後、温度190℃の第4ローラで弛緩率3%の弛緩処理を行い、速度3000m/分のワインダーに巻き取って、ポリエステル繊維(1111dtex/192フィラメント、リン原子の含有量が4200ppm、丸断面形状)を得た。
Example 1
The molar part of terephthalic acid and ethylene glycol was 100: 170, the low molecular weight oligomer obtained by performing esterification reaction at a pressure of 0.3 MPaG and a temperature of 250 ° C. for 4 hours was sent to a polycondensation reaction tank, Phosphorus compound (product name: “Oxa-Phosphoran glycolester”: manufactured by Clariant Japan, esterified product of 3-methylphosphinicopropionic acid and ethylene glycol) was added, antimony trioxide was added as a catalyst, temperature was 280 ° C., A polycondensation reaction was performed for 3 hours at a reduced pressure of 1.3 hPa or less. Then, a PET having an intrinsic viscosity [η] 0.7 and a phosphorus atom content of 7000 ppm was obtained, and then this PET was subjected to solid phase polymerization for 17 hours while stirring at a temperature of 220 ° C. under reduced pressure. η] PET of 1.02 was obtained and used as the A component.
As the component B, PET having an intrinsic viscosity [η] of 1.02 was used.
Then, melt spinning was performed using a metering mixer while metering and mixing such that the mass ratio of the A component and the B component was 3: 2. That is, a melt spinning nozzle having a hole diameter of 0.6 mm and 192 holes is attached to a conventional melt spinning apparatus, spinning at a temperature of 300 ° C., and then passing through a heating cylinder having a length of 30 cm and a temperature of 450 ° C. The product was cooled with a cooling air having a temperature of 20 ° C. and a speed of 0.7 m / sec by a horizontal cooling device having a length of 150 cm, applied with an oil agent, and taken up by an unheated first roller. After the 1.01 times alignment with the second non-heated second roller continuously, 5.6 times with the third roller at a temperature of 220 ° C. while spraying steam at a temperature of 400 ° C. and a pressure of 0.7 MPa on the fiber. Stretching was performed. After that, a relaxation treatment with a relaxation rate of 3% was performed with a fourth roller at a temperature of 190 ° C., wound around a winder with a speed of 3000 m / min, polyester fiber (1111 dtex / 192 filament, phosphorus atom content 4200 ppm, round cross-sectional shape) )

実施例2
A成分とB成分の質量比を4:1に変更した以外は実施例1と同様に行い、リン原子の含有量が5600ppmのポリエステル繊維を得た。
Example 2
Except having changed the mass ratio of A component and B component into 4: 1, it carried out like Example 1 and obtained the polyester fiber whose content of a phosphorus atom is 5600 ppm.

実施例3
A成分を得る際のリン化合物の添加量を変更し、極限粘度〔η〕1.02、リン含有量が8000ppmのPETを得、これをA成分として用いた以外は実施例1と同様に行い、リン原子の含有量が4800ppmの難燃性ポリエステル繊維を得た。
Example 3
The amount of the phosphorus compound added when obtaining the component A was changed to obtain a PET having an intrinsic viscosity [η] of 1.02 and a phosphorus content of 8000 ppm, except that this was used as the component A. A flame-retardant polyester fiber having a phosphorus atom content of 4800 ppm was obtained.

比較例1
B成分を用いず、A成分である極限粘度〔η〕が1.02、リン原子の含有量が7000ppmのPETのみを用いた以外は実施例1と同様に行い、難燃性ポリエステル繊維を得た。
Comparative Example 1
A flame retardant polyester fiber was obtained in the same manner as in Example 1 except that only the PET having an intrinsic viscosity [η] of 1.02 and a phosphorus atom content of 7000 ppm was used without using the B component. It was.

比較例2
A成分を得る際のリン化合物の添加量を変更し、極限粘度〔η〕1.02、リン含有量が4900ppmのPETを得、これをA成分として用い、B成分との質量比を6:1とした以外は実施例1と同様に行い、リン原子の含有量が4200ppmの難燃性ポリエステル繊維を得た。
Comparative Example 2
The addition amount of the phosphorus compound in obtaining the A component was changed to obtain PET having an intrinsic viscosity [η] of 1.02 and a phosphorus content of 4900 ppm, which was used as the A component, and the mass ratio with the B component was 6: Except that it was set to 1, it carried out similarly to Example 1, and obtained the flame-retardant polyester fiber whose phosphorus atom content is 4200 ppm.

比較例3
A成分を得る際のリン化合物の添加量を変更し、固相重合時間を変更し、極限粘度〔η〕0.9、リン含有量が11000ppmのPETを得、これをA成分として用い、B成分との質量比を2:3とした以外は実施例1と同様に行い、リン原子の含有量が4400ppmの難燃性ポリエステル繊維を得た。
Comparative Example 3
The amount of the phosphorus compound added when obtaining the A component was changed, the solid phase polymerization time was changed, and an intrinsic viscosity [η] 0.9 and a phosphorus content of 11000 ppm were obtained. Using this as the A component, B A flame retardant polyester fiber having a phosphorus atom content of 4400 ppm was obtained in the same manner as in Example 1 except that the mass ratio with respect to the component was 2: 3.

実施例1〜3及び比較例1〜3で得られた繊維の特性値と難燃性及び延伸性の評価結果を併せて表1に示す。   Table 1 shows the characteristic values of the fibers obtained in Examples 1 to 3 and Comparative Examples 1 to 3, and the evaluation results of flame retardancy and stretchability.

表1から明らかなように、実施例1〜3で得られたポリエステル繊維は、切断強度、切断伸度共に建築資材用として満足する性能を有しており、また難燃性に優れ、さらに延伸性が良好で延伸毛羽が少なかったため、製編織などの加工性に優れたものであった。
一方、比較例1のポリエステル繊維はB成分を含有せず、比較例2のポリエステル繊維はB成分が少ないため、いずれも延伸性が悪く、延伸毛羽が多いものとなった。このため、製編織などの加工性に劣るものであった。また、比較例3のポリエステル繊維はB成分が多すぎたため、リン化合物が均一に分散されなくなり、難燃性にばらつきが生じ、難燃性に劣るものとなった。
As is clear from Table 1, the polyester fibers obtained in Examples 1 to 3 have satisfactory performance for building materials in terms of both cutting strength and cutting elongation, are excellent in flame retardancy, and are further stretched. Since the properties were good and there was little stretched fluff, it was excellent in workability such as knitting and weaving.
On the other hand, the polyester fiber of Comparative Example 1 did not contain a B component, and the polyester fiber of Comparative Example 2 had a small amount of the B component. For this reason, it was inferior to workability, such as weaving and weaving. Moreover, since the polyester fiber of the comparative example 3 had too much B component, a phosphorus compound was not disperse | distributed uniformly, the dispersion | variation in a flame retardance produced, and it became inferior to a flame retardance.

Claims (1)

リン化合物が共重合されたポリエチレンテレフタレート(A成分)とポリエチレンテレフタレート(B成分)の混合物からなるポリエステル繊維であって、A成分とB成分の質量比が4:1〜1:1、リン原子の含有量が3000〜7000ppmであることを特徴とする難燃性ポリエステル繊維。
A polyester fiber comprising a mixture of polyethylene terephthalate (component A) and polyethylene terephthalate (component B) copolymerized with a phosphorus compound, the mass ratio of component A and component B being 4: 1 to 1: 1, A flame-retardant polyester fiber having a content of 3000 to 7000 ppm.
JP2006170113A 2006-06-20 2006-06-20 Flame-retardant polyester fiber Pending JP2008001999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006170113A JP2008001999A (en) 2006-06-20 2006-06-20 Flame-retardant polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006170113A JP2008001999A (en) 2006-06-20 2006-06-20 Flame-retardant polyester fiber

Publications (1)

Publication Number Publication Date
JP2008001999A true JP2008001999A (en) 2008-01-10

Family

ID=39006616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006170113A Pending JP2008001999A (en) 2006-06-20 2006-06-20 Flame-retardant polyester fiber

Country Status (1)

Country Link
JP (1) JP2008001999A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199807A (en) * 2011-03-29 2011-09-28 浙江古纤道新材料股份有限公司 Method for producing phosphorus copolymerized flame-retarding terylene high-strength industrial yarns
JP2017043865A (en) * 2015-08-28 2017-03-02 東レ株式会社 Flame retardant polyester fiber and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199807A (en) * 2011-03-29 2011-09-28 浙江古纤道新材料股份有限公司 Method for producing phosphorus copolymerized flame-retarding terylene high-strength industrial yarns
JP2017043865A (en) * 2015-08-28 2017-03-02 東レ株式会社 Flame retardant polyester fiber and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP4313312B2 (en) Poly (trimethylene terephthalate) composite fiber
KR101912216B1 (en) Composite fiber, false twisted yarn formed from same, method for producing said false twisted yarn, and fabric
KR20080048080A (en) High crimp bicomponent fibers
JP2007186830A (en) Polyester fiber
JP2007308830A (en) Dyeable polypropylene fiber
CN106133216A (en) Polyester binder fiber
US7501463B2 (en) Flame-retardant polyester fiber for artificial hair
KR100780581B1 (en) Bulky polyester multifilament composite yarn and process for producing the same
JP2008001999A (en) Flame-retardant polyester fiber
JP5301806B2 (en) Fiber products
KR101969558B1 (en) Melt anisotropic aromatic polyester fiber and method for producing same
JP2006022436A (en) Fiber product
JP2007204888A (en) Molten liquid crystal-forming polyester conjugate fiber
JP2005264418A (en) Flame-retardant reclaimed polyester fiber
CN105463614B (en) Method for producing moisture-absorbing and releasing polyester fiber
JP6870822B2 (en) Multifilament yarn made of high specific gravity fiber
CA2850492A1 (en) Fabric comprising poly(trimethylene arylate) filaments
JP2006022435A (en) Fiber product
CA2849238A1 (en) Poly(trimethylene arylate) fibers, process for preparing, and fabric prepared therefrom
JP2008223172A (en) Stainproof spun-dyed fiber
JP2005060886A (en) Flame-retardant polyester conjugate fiber
JP2018035285A (en) Method for producing flame-retardant polyester resin composition
JP4672136B2 (en) Filament with excellent weather resistance
JP2004131862A (en) Recycled polyester conjugated fiber
JP2006045746A (en) Spun-dyed flame-retardant regenerated polyester fiber