JP2008001806A - Flame-retardant synthetic resin composition containing delaminated layered double hydroxide - Google Patents

Flame-retardant synthetic resin composition containing delaminated layered double hydroxide Download PDF

Info

Publication number
JP2008001806A
JP2008001806A JP2006172827A JP2006172827A JP2008001806A JP 2008001806 A JP2008001806 A JP 2008001806A JP 2006172827 A JP2006172827 A JP 2006172827A JP 2006172827 A JP2006172827 A JP 2006172827A JP 2008001806 A JP2008001806 A JP 2008001806A
Authority
JP
Japan
Prior art keywords
synthetic resin
flame
double hydroxide
ldh
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006172827A
Other languages
Japanese (ja)
Other versions
JP4796445B2 (en
Inventor
Daisaku Ikematsu
大作 池松
Takeshi Okumiya
毅 奥宮
Eiichi Narita
榮一 成田
Hidetoshi Hirahara
英俊 平原
Sumio Aizawa
純雄 會澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP2006172827A priority Critical patent/JP4796445B2/en
Publication of JP2008001806A publication Critical patent/JP2008001806A/en
Application granted granted Critical
Publication of JP4796445B2 publication Critical patent/JP4796445B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flame-retardant synthetic resin composition containing flame-retarding layered double hydroxide dispersed in a matrix resin in a delaminated state. <P>SOLUTION: The flame-retardant synthetic resin composition contains a flame-retarding effective amount of a layered double hydroxide comprising a basic layer composed of a metal double hydroxide expressed by formula (I): M(II)<SB>1-x</SB>M(III)<SB>x</SB>(OH)<SB>2</SB>(M(II) is Mg, Zn or their mixture; M(III) is Al; and x is 0.2-0.33), an acetic acid salt of Mg, Zn or Ce intercalated in the intermediate layer of the basic layer and interlaminar water and is reversibly delaminated in water. The synthetic resin is a polycondensation resin containing a raw material releasing the layered double hydroxide in the production process of the resin, and the layered double hydroxide is uniformly dispersed in the synthetic resin in delaminated state by adding the double hydroxide to the raw material during the production process of the synthetic resin. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ハロゲンやリンを含まない無機化合物を難燃化のために配合した難燃化合成樹脂組成物に関する。   The present invention relates to a flame retardant synthetic resin composition containing an inorganic compound containing no halogen or phosphorus for flame retardancy.

可燃性プラスチックの難燃化は難燃剤の添加によって行われる。近年焼却時に発生する環境有害物質への懸念から、層状複水酸化物(LDH)を難燃化のために配合することが試みられている。この時問題となるのはLDHがプラスチックマトリックス中に均一に分散していなければならないことである。   The flame retardant of the combustible plastic is made by adding a flame retardant. In recent years, attempts have been made to add layered double hydroxide (LDH) for flame retardance due to concerns about environmentally hazardous substances generated during incineration. The problem at this time is that the LDH must be uniformly dispersed in the plastic matrix.

層状複水酸化物(LDH)は、一般式〔M2+ 1−x3+ (OH)x+〔An− x/n・yHO〕で表される陰イオン交換能をもつ層状化合物である。その結晶構造は、2価金属イオンの一部を3価金属イオンが置換した正八面体の水酸化物層(基本層)と、陰イオンと層間水からなる中間層からできている。LDHの特徴は、基本層の金属イオンの種類とその比ならびに中間陰イオンの種類の組み合わせが多様なことである。これまで多くの種類のLDHが合成され、また無機および有機陰イオンインターカレーションによる取り込みについて多くの研究が行われている。 Layered double hydroxides (LDH) of the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + layered with anion exchange ability represented by [A n- x / n · yH 2 O ] A compound. The crystal structure is composed of a regular octahedral hydroxide layer (basic layer) in which a part of divalent metal ions is replaced by trivalent metal ions, and an intermediate layer composed of anions and interlayer water. The feature of LDH is that there are various combinations of types and ratios of metal ions in the basic layer and types of intermediate anions. Many types of LDH have been synthesized so far, and much research has been conducted on uptake by inorganic and organic anion intercalation.

一般にLDHでは基本層の電荷密度が大きく、基本層と中間層との間の静電引力が強いため、多くの粘土鉱物に見られるような層間の剥離現象は起こりにくいとされている。従って水中で容易に剥離するLDHに関する報告は少ないが、その一つとして特開2004−189671号公報がある。ここでは中間層の陰イオンとして芳香族アミノカルボン酸、特にp−アミノ安息香酸をインターカレートすることにより、水またはエタノール等の低級アルコール中で剥離した状態で分散している分散液が得られることを報告している。これは芳香族アミノカルボン酸イオンをインターカレートすることにより、CO 2−イオンをインターカレートしたLDHに比べて基本層の距離が拡大された結果であると説明されている。しかしながらこのLDHの剥離現象は、p−アミノ安息香酸のような芳香族アミノカルボン酸の良溶媒であるエタノール中では完全であるが、溶解度が小さい水中では不完全である。 In general, in LDH, the charge density of the base layer is large, and the electrostatic attraction between the base layer and the intermediate layer is strong. Therefore, the delamination phenomenon as seen in many clay minerals is unlikely to occur. Therefore, although there are few reports on LDH that easily peels in water, there is JP-A-2004-189671. Here, an aromatic aminocarboxylic acid, particularly p-aminobenzoic acid, is intercalated as an anion in the intermediate layer, whereby a dispersion liquid dispersed in a lower alcohol such as water or ethanol is obtained. It is reported that. This is explained as a result of expanding the distance of the base layer by intercalating aromatic aminocarboxylic acid ions as compared with LDH intercalating CO 3 2- ions. However, this LDH peeling phenomenon is complete in ethanol, which is a good solvent for aromatic aminocarboxylic acids such as p-aminobenzoic acid, but is incomplete in water with low solubility.

特開2005−89269号公報および同2005−238194号公報では中間層にアミノ酸イオンまたはアミノ酸イオンとカルボン酸イオンをインターカレーションさせた水または或種の極性有機溶媒中で基本層に剥離するLDHを開示している。これらのLDHをプラスチック中に均一に分散させるためには、それらが基本層に剥離する溶媒中でLDHとプラスチックを湿式混合し、その後溶媒を留去することを要する。   In JP-A-2005-89269 and JP-A-2005-238194, an LDH that peels off to a basic layer in water or some kind of polar organic solvent in which an amino acid ion or an amino acid ion and a carboxylate ion are intercalated in an intermediate layer. Disclosure. In order to uniformly disperse these LDHs in the plastic, it is necessary to wet mix the LDH and the plastic in a solvent in which they are peeled off to the basic layer, and then distill off the solvent.

特開2001−261927号公報は、フェノール樹脂の製造段階で炭酸型LDHと、酸触媒を兼ねたp−ヒドロキシ安息香酸をフェノール樹脂原料と混合し、この混合物から初期縮合物を製造することによりLDHが剥離した状態で分散している難燃性樹脂組成物が得られるとしている。この方法は当然ながらレゾール型には適用できない。
特開2004−189671号公報 特開2005−89269号公報 特開2005−238194号公報 特開2001−261927号公報
Japanese Patent Laid-Open No. 2001-261927 discloses that LDH is produced by mixing carbonated LDH and p-hydroxybenzoic acid that also serves as an acid catalyst with a phenol resin raw material in the production stage of a phenol resin, and producing an initial condensate from this mixture. It is said that a flame retardant resin composition dispersed in a state in which the is peeled is obtained. This method is naturally not applicable to the resol type.
JP 2004-189671 A JP 2005-89269 A JP 2005-238194 A JP 2001-261927 A

これら先行技術において難燃化のために配合するLDHはすべて遊離カルボキシル基を有する化合物を中間層に含んでいる。最近本発明者らは、中間層に遊離酸としてではなく、Mg,ZnまたはCe塩の形で酢酸をインターカレートさせたLDHが水中、または低分子量アルカノールもしくはアルキレングリコール中で殆ど完全にナノサイズの基本層に剥離することを見出した。このためこのLDHは水系樹脂組成物、例えばポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、メチルセルロース、CMC、ヒドロキシプロピルセルロース、デンプンのような水溶性高分子の水溶液や、エマルジョンまたはディスパージョンの形の水溶性高分子組成物に剥離して分散し、塗布して紙、不織布などの難燃化に使用することができる。しかしながらこの方法は水やアルコール類などの上記LDHが剥離可能な液体に不溶な高分子自体を難燃化するために剥離状態で高分子に分散させることはできないであろう。
また、PVAなどに上記LDHを添加することにより金属板などへの密着性が向上することが確認されている。
In these prior arts, all LDHs blended for flame retardance contain a compound having a free carboxyl group in the intermediate layer. Recently, the present inventors have found that LDH in which acetic acid is intercalated in the form of Mg, Zn or Ce salt in the intermediate layer is almost completely nanosized in water or in low molecular weight alkanols or alkylene glycols. It was found that it peeled off to the base layer. Therefore, this LDH is an aqueous resin composition, for example, an aqueous solution of a water-soluble polymer such as polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl pyrrolidone, methyl cellulose, CMC, hydroxypropyl cellulose, starch, or an emulsion or dispersion. It can be peeled and dispersed in the water-soluble polymer composition, coated and used for flame retarding of paper, nonwoven fabric and the like. However, this method would not be able to disperse the polymer in the peeled state in order to make the polymer insoluble in the liquid from which the LDH can be peeled off, such as water and alcohols, flame retardant.
Further, it has been confirmed that the adhesion to a metal plate or the like is improved by adding the LDH to PVA or the like.

本発明の課題は、これまで困難であったまたは複雑なステップが必要であった、剥離した状態で均一に分散させたLDHを含む難燃性合成樹脂組成物を提供することである。   The object of the present invention is to provide a flame retardant synthetic resin composition comprising LDH uniformly dispersed in a peeled state, which has been difficult or requires complicated steps.

上記課題を解決するため、本発明は、
式(I):
M(II)1−xM(III)(OH) (I)
(式中、M(II)はMg,Znまたはその混合物、M(III)はAl,xは0.2ないし0.33である。)の金属複水酸化物よりなる基本層と、該基本層の中間層にインターカレートされたMg,ZnまたはCeの酢酸塩および層間水より構成され、水中において可逆的に剥離する層状複水酸化物の難燃化有効量を含んでいる難燃合成樹脂組成物を提供する。
In order to solve the above problems, the present invention provides:
Formula (I):
M (II) 1-x M (III) x (OH) 2 (I)
(Wherein M (II) is Mg, Zn or a mixture thereof, M (III) is Al, and x is 0.2 to 0.33), Flame retardant synthesis comprising a flame retardant effective amount of layered double hydroxide composed of Mg, Zn or Ce acetate intercalated in the interlayer of the layer and interlayer water and reversibly exfoliating in water A resin composition is provided.

本発明によれば、前記合成樹脂はその製造において前記層状複水酸化物が剥離する原料が含まれる重縮合型樹脂であり、前記層状複水酸化物は前記合成樹脂の製造過程において前記原料に添加されることにより剥離した状態で前記合成樹脂に均一に分散していることを特徴とする。   According to the present invention, the synthetic resin is a polycondensation type resin including a raw material from which the layered double hydroxide is peeled in the production thereof, and the layered double hydroxide is added to the raw material in the process of manufacturing the synthetic resin. It is characterized by being uniformly dispersed in the synthetic resin in a peeled state by being added.

一具体例において、前記合成樹脂はホルムアルデヒドまたはその重合体(パラホルムアルデヒド)が原料であるフェノール樹脂またはアミノ樹脂である。   In one embodiment, the synthetic resin is a phenol resin or amino resin whose raw material is formaldehyde or a polymer thereof (paraformaldehyde).

他の具体例においては、前記合成樹脂は原料がエチレングリコールであるポリエチレンテレフタレート(PET)である。   In another embodiment, the synthetic resin is polyethylene terephthalate (PET) whose raw material is ethylene glycol.

さらなる具体例においては、前記層状複水酸化物は合成樹脂固形分に対して1〜50重量%配合される。   In a further specific example, the layered double hydroxide is blended in an amount of 1 to 50% by weight based on the synthetic resin solid content.

水中で剥離するLDH
本発明の水中で剥離するLDHは、炭酸型LDHとインターカレートすべき酢酸の多価金属塩から出発し、アニオンをインターカレートしたLDHの製造のための再構築法に類似した方法に従って製造することができる。
LDH peeling in water
The LDH exfoliating in water of the present invention is produced according to a method similar to a reconstruction method for the production of anion-intercalated LDH starting from carbonated LDH and a polyvalent metal salt of acetic acid to be intercalated can do.

再構築法とは、炭酸型LDHを予め400℃〜800℃の温度で焼成して炭酸イオンの大部分を除去した熱分解物を水中で他のアニオンと反応させ、再構築されたLDHを生成させる方法である。本発明においては、炭酸型LDHの熱分解物と、Mg,ZnまたはCeより選ばれた多価金属酢酸塩を水中において反応させる。   Reconstruction method is a method in which carbonated LDH is calcined in advance at a temperature of 400 ° C to 800 ° C and the pyrolysis product from which most of carbonate ions have been removed is reacted with other anions in water to produce reconstructed LDH. It is a method to make it. In the present invention, a thermal decomposition product of carbonate type LDH and a polyvalent metal acetate selected from Mg, Zn or Ce are reacted in water.

出発原料の炭酸型LDHは式(II):
〔M(II)2+ 1−xM(III)3+ (OH)〕〔(COx/2・yHO〕
を有し、M(II)はMg,Znまたはその混合物であり、M(III)はAlであり、xは0.2ないし0.33の数である。これらはハイドロタルサイト類として天然に存在し、公知の方法に従って合成することもできる。また合成ハイドロタルサイト類のいくつかは、例えば協和化学工業株式会社(日本東京)から市販されている。
The starting carbonate type LDH has the formula (II):
[M (II) 2+ 1-x M (III) 3+ x (OH) 2 ] [(CO 3) x / 2 · yH 2 O ]
M (II) is Mg, Zn or a mixture thereof, M (III) is Al, and x is a number from 0.2 to 0.33. These naturally exist as hydrotalcites and can be synthesized according to a known method. Some of the synthetic hydrotalcites are commercially available from, for example, Kyowa Chemical Industry Co., Ltd. (Tokyo, Japan).

反応は、多価金属酢酸塩の水溶液へ炭酸型LDHの熱分解物を加え、攪拌下室温で行うことができる。炭酸型LDHの熱分解物に対する多価金属酢酸塩の比は、Alに換算した熱分解物中のAl含量と少なくとも等モルである。一般に反応生成物はゲル状である。このゲルを反応混合物から濾過、遠心等によって分離し、60℃以上の温度で乾燥し、粉砕することによって本発明LDHが得られる。このもののX線回折パターンは原料の炭酸型LDHおよび多価金属酢酸塩の代りにナトリウム塩を再構築に使用したLDHのX線回折パターンと比較すると、ピークが低角度側にシフトしており、基本層間の距離が大きくなったことを示唆する。また、本発明のLDHの赤外線吸収スペクトルは、再構築において酢酸ナトリウムを使用したLDHのIRスペクトルのカルボキシル基に由来する1360〜1390cm−1付近の吸収が見られず、1390〜1430cm−1に特徴的なピークが見られる。このことから、再構築によって取り込まれた多価金属塩は酢酸ナトリウムを使用して再構築したLDHとは異なる態様で基本層に化学結合していることが示唆される。しかしながらこの結合様式は未だ解明されていない。 The reaction can be carried out at room temperature with stirring by adding a thermal decomposition product of carbonate-type LDH to an aqueous solution of polyvalent metal acetate. The ratio of the polyvalent metal acetate to the pyrolyzate of carbonate type LDH is at least equimolar to the Al content in the pyrolyzate in terms of Al 2 O 3 . In general, the reaction product is in the form of a gel. This gel is separated from the reaction mixture by filtration, centrifugation, etc., dried at a temperature of 60 ° C. or higher, and pulverized to obtain the LDH of the present invention. Compared to the X-ray diffraction pattern of the LDH in which the sodium carbonate was used for reconstruction instead of the carbonate type LDH and polyvalent metal acetate, the peak was shifted to the lower angle side. This suggests that the distance between the basic layers has increased. In addition, the infrared absorption spectrum of LDH of the present invention is characterized by no absorption near 1360 to 1390 cm −1 derived from the carboxyl group of the IR spectrum of LDH using sodium acetate in the reconstruction, and is characterized by 1390 to 1430 cm −1 . A typical peak is seen. This suggests that the polyvalent metal salt incorporated by reconstruction is chemically bonded to the base layer in a manner different from LDH reconstructed using sodium acetate. However, this binding mode has not yet been elucidated.

本発明のLDHは、公知の芳香族アミノカルボン酸をインターカレートしたLDHと違って水中で実質上完全に剥離(デラミネーション)し、粘稠なコロイド溶液またはゾルを形成する。このことは本発明のLDH(乾燥品)を異なる量の水で水和(湿潤)し、その状態でX線回折分析を行うと、水の量が増大するにつれピークが次第に低角度側に移動し、最終的にはこのピークが消失することによって証明される。このピークの低角度側への移動は、中間層へ水分子が侵入し、基本層間の層間距離を次第に拡大し、ついには結晶構造が破壊されることを示している。しかしながら水和および剥離により結晶構造を失ったLDHを完全に乾燥すると、元の乾燥LDHと同じX線回折パターンを取り戻し、剥離は可逆的であることを示す。   The LDH of the present invention, unlike LDH intercalated with known aromatic amino carboxylic acids, is substantially completely delaminated in water to form a viscous colloidal solution or sol. This means that when the LDH (dried product) of the present invention is hydrated (wet) with different amounts of water and X-ray diffraction analysis is performed in this state, the peak gradually moves to the lower angle side as the amount of water increases. This is proved by the disappearance of this peak. The movement of this peak to the lower angle side indicates that water molecules enter the intermediate layer, gradually increasing the interlayer distance between the basic layers, and finally destroying the crystal structure. However, when LDH that has lost its crystal structure due to hydration and exfoliation is completely dried, it regains the same X-ray diffraction pattern as the original dry LDH, indicating that exfoliation is reversible.

本発明のLDHの水分散液は、同じ濃度の炭酸型LDHの水分散液と比較して、可視光に対して遥かに高い透過率を示す。これは剥離の結果LDHがより小さいナノサイズの粒子として分散しているからである。   The aqueous dispersion of LDH of the present invention shows a much higher transmittance for visible light than the aqueous dispersion of carbonated LDH of the same concentration. This is because LDH is dispersed as smaller nano-sized particles as a result of peeling.

マトリックス合成樹脂
本発明に使用されるマトリックス合成樹脂の第1の典型例はフェノール樹脂である。周知のようにフェノール樹脂(フェノール−ホルムアルデヒド樹脂)は、フェノール、クレゾールのようなフェノール化合物とホルムアルデヒドとの付加重縮合反応生成物である。フェノール樹脂の歴史は古く1907年に溯り、その製造法は確立されている。フェノール化合物、ホルムアルデヒドまたはその重合体および触媒(ノボラックの場合は酸、レゾールの場合は塩基)の混合物へ加熱前に本発明のLDHを加えることを除いて周知の製造法が採用される。生成したオリゴマー(初期縮合物)はこの時剥離状態で分散したLDHを含んでおり、これをプリント配線基板製造のためのプリプレグの含浸に使用したり、圧縮成形用のコンパウンドの製造に使用することができる。
Matrix Synthetic Resin A first typical example of the matrix synthetic resin used in the present invention is a phenol resin. As is well known, a phenol resin (phenol-formaldehyde resin) is an addition polycondensation reaction product of a phenol compound such as phenol or cresol and formaldehyde. The history of phenolic resin has been around since 1907, and its manufacturing method has been established. A well-known manufacturing method is employed except that the LDH of the present invention is added to a mixture of a phenolic compound, formaldehyde or a polymer thereof and a catalyst (acid in the case of novolak, base in the case of resole) before heating. The generated oligomer (initial condensate) contains LDH dispersed in a peeled state at this time, and this is used for impregnation of a prepreg for manufacturing a printed wiring board, or for manufacturing a compound for compression molding. Can do.

マトリックス樹脂の第2の典型例は、アミノ樹脂と総称される尿素、メラミン、ジシアンジアミド等のアミノ化合物と、ホルムアルデヒドとの付加重縮合物である。アミノ樹脂の場合もフェノール樹脂と同様に、加熱反応前に原料混合物へ本発明のLDHを混合することにより、剥離した状態でLDHが分散した樹脂組成物を製造することができる。   A second typical example of the matrix resin is an addition polycondensation product of amino compounds such as urea, melamine, dicyandiamide and the like, which are collectively called amino resins, and formaldehyde. In the case of an amino resin as well as a phenol resin, a resin composition in which LDH is dispersed in a peeled state can be produced by mixing the LDH of the present invention into the raw material mixture before the heating reaction.

マトリックス樹脂のさらなる典型例はポリエチレンテレフタレート(PET)樹脂である。PETは、テレフタル酸またはテレフタル酸ジメチルと過剰のエチレングリコールからテレフタル酸ジ(ヒドロキシエチル)エステルを合成し、これを溶融状態で触媒の存在下でエステル交換を行い、生成するエチレングリコールを真空下で留去することにより、高分子量のポリマーとして製造される。エチレングリコールに本発明のLDHをあらかじめ添加混合して使用することにより、剥離状態で分散したLDHを含んでいる組成物が得られる。   A further typical example of a matrix resin is polyethylene terephthalate (PET) resin. PET synthesizes terephthalic acid di (hydroxyethyl) ester from terephthalic acid or dimethyl terephthalate and excess ethylene glycol, which is transesterified in the presence of a catalyst in the molten state, and the resulting ethylene glycol is produced under vacuum. By distilling off, it is produced as a high molecular weight polymer. A composition containing LDH dispersed in a peeled state can be obtained by previously adding and mixing the LDH of the present invention with ethylene glycol.

樹脂組成物
本発明のLDHの配合量は、マトリックス樹脂の種類、樹脂組成物の用途および求められる難燃度によって大幅に変動し得るが、一般に樹脂固形分に対して1〜50重量%の範囲内である。しかしながら最適量は、特定の樹脂、組成物の用途および求められる他の物性を考慮して決定すべきである。
Resin Composition The blending amount of LDH of the present invention can vary greatly depending on the type of matrix resin, the use of the resin composition, and the required flame retardancy, but generally ranges from 1 to 50% by weight with respect to the resin solids Is within. However, the optimum amount should be determined taking into account the particular resin, the application of the composition and the other physical properties required.

プラスチック用の無機難燃剤としては三酸化アンチモン、水和酸化アルミニウムなどが一般に使用されている。これらはその配合量に反比例して樹脂の本来の物性、特に機械的強度を低下させる。本発明のLDHは適当に配合した場合、樹脂の強度、特に曲げ強度をむしろ向上させる補強効果が認められる。またこの時組成物のフィルムはガスバリアー効果を保持している。従って単に難燃性のみではなく、補強効果および/またはガスバリアー性を同時に望む場合には、最適配合量は樹脂固形分に対して20重量%以下、特に5〜10重量%の範囲内にあるであろう。   As inorganic flame retardants for plastics, antimony trioxide, hydrated aluminum oxide and the like are generally used. These decrease the original physical properties of the resin, particularly the mechanical strength, in inverse proportion to the blending amount. When the LDH of the present invention is appropriately blended, a reinforcing effect that rather improves the strength of the resin, particularly the bending strength, is recognized. At this time, the film of the composition retains the gas barrier effect. Accordingly, when not only flame retardancy but also a reinforcing effect and / or gas barrier properties are desired at the same time, the optimum blending amount is 20% by weight or less, particularly 5 to 10% by weight with respect to the resin solid content. Will.

以下の実施例は、本発明を例証する目的で提供され、限定を意図しない。実施例中「部」および「%」は特記しない限り重量基準による。   The following examples are provided for the purpose of illustrating the invention and are not intended to be limiting. In the examples, “parts” and “%” are based on weight unless otherwise specified.

第I部 水中で剥離するLDHの製造
実施例I−1
Mg−Al系炭酸型LDH(協和化学工業(株)製DHT−6)を700℃において20時間加熱して熱分解物を得た。この熱分解物96.3gを酢酸マグネシウム・4水塩0.28mol/L(60g/L)水溶液1Lへ加え、室温で15時間攪拌した後、生成した固体(ゲル)を濾過して分離し、90℃で10時間乾燥し、粉砕して再構築したLDHを得た。このものをLDH I−1と呼ぶ。
Part I Production of LDH exfoliating in water Example I-1
Mg-Al carbonate type LDH (DHT-6 manufactured by Kyowa Chemical Industry Co., Ltd.) was heated at 700 ° C. for 20 hours to obtain a thermal decomposition product. After adding 96.3 g of this pyrolyzate to 1 L of magnesium acetate tetrahydrate 0.28 mol / L (60 g / L) aqueous solution and stirring at room temperature for 15 hours, the produced solid (gel) was separated by filtration, It was dried at 90 ° C. for 10 hours, and pulverized to obtain a reconstructed LDH. This is called LDH I-1.

実施例I−2
酢酸マグネシウム水溶液を酢酸セリウム・1水塩0.28mol/L(94g/L)水溶液に変更したことを除き、実施例I−1の操作を繰り返し、LDH I−2を得た。
Example I-2
The operation of Example I-1 was repeated to obtain LDH I-2 except that the magnesium acetate aqueous solution was changed to a cerium acetate monohydrate 0.28 mol / L (94 g / L) aqueous solution.

実施例I−3
酢酸マグネシウム水溶液を酢酸亜鉛・2水塩0.28mol/L(61.5g/L)水溶液に変更したことを除き、実施例I−1の操作を繰り返し、LDH I−3を得た。
Example I-3
The operation of Example I-1 was repeated except that the magnesium acetate aqueous solution was changed to a zinc acetate dihydrate 0.28 mol / L (61.5 g / L) aqueous solution to obtain LDH I-3.

実施例I−4
NaCOの1mol/L水溶液2Lに、ZnClの1mol/L水溶液2.6Lと、AlClの1mol/L水溶液1.4Lを、反応液のpHを7に保ちながら滴下した。40℃で1時間熟成した。デカンテーションにより反応混合物から塩化イオンを除去した後、NaCO1mol/L水溶液2Lを加え、5時間加熱還流した。固体生成物を濾過分離し、水洗後60℃で24時間減圧乾燥・粉砕し,Zn−Al系炭酸型LDHとした。
次にこのZn−Al系炭酸型LDHを450℃において20時間加熱して熱分解物を得た。この熱分解物115.1gを酢酸亜鉛0.28mol/L(61.5g/L)水溶液1Lへ加え、室温で15時間攪拌した後、固体を含む反応混合物を100℃で蒸発乾固し、粉砕した。得られた生成物をLDH I−4と呼ぶ。
Example I-4
To 2 L of 1 mol / L aqueous solution of Na 2 CO 3 , 2.6 L of 1 mol / L aqueous solution of ZnCl 2 and 1.4 L of 1 mol / L aqueous solution of AlCl 3 were dropped while maintaining the pH of the reaction solution at 7. Aging was performed at 40 ° C. for 1 hour. After removing chloride ions from the reaction mixture by decantation, 2 L of Na 2 CO 3 1 mol / L aqueous solution was added and heated to reflux for 5 hours. The solid product was separated by filtration, washed with water, dried under reduced pressure at 60 ° C. for 24 hours, and pulverized to obtain a Zn—Al carbonate type LDH.
Next, this Zn—Al carbonate type LDH was heated at 450 ° C. for 20 hours to obtain a thermal decomposition product. After adding 115.1 g of this thermal decomposition product to 1 L of zinc acetate 0.28 mol / L (61.5 g / L) aqueous solution and stirring at room temperature for 15 hours, the reaction mixture containing the solid was evaporated to dryness at 100 ° C. and pulverized. did. The resulting product is called LDH I-4.

実施例I−5
Mg−Zn−Al系炭酸型LDH(協和化学工業(株)製アルカマイザー)を700℃において20時間加熱して熱分解物を得た。この熱分解物65.3gを酢酸マグネシウム・4水塩0.14mol/L(30.0g/L)水溶液1Lへ加え、室温で48時間攪拌した後、生成した固体(ゲル)を濾過して分離し、 90℃で10時間乾燥した後粉砕し、LDH I−5を製造した。
Example I-5
Mg-Zn-Al carbonate type LDH (Alkamizer manufactured by Kyowa Chemical Industry Co., Ltd.) was heated at 700 ° C. for 20 hours to obtain a thermal decomposition product. 65.3 g of this pyrolyzate was added to 1 L of an aqueous solution of magnesium acetate tetrahydrate 0.14 mol / L (30.0 g / L) and stirred at room temperature for 48 hours, and then the resulting solid (gel) was separated by filtration. And dried at 90 ° C. for 10 hours and pulverized to produce LDH I-5.

以下の第II部、第III部においてはすべて実施例I−1で製造したLDH−1を使用した。   In all of the following parts II and III, LDH-1 produced in Example I-1 was used.

第II部 剥離したLDHを分散したフェノール樹脂
実験例1 ブランク
フェノール100gと37%ホルムアルデヒド157gを混合し、これに10%水酸化ナトリウムを5.0g入れ、70℃で2時間撹拌混合した後、常圧脱水及び真空脱水し、フェノール樹脂Aを得た。
Part II Phenol resin in which exfoliated LDH was dispersed Experimental Example 1 Blank 100 g of phenol and 157 g of 37% formaldehyde were mixed, 5.0 g of 10% sodium hydroxide was added thereto, and the mixture was stirred and mixed at 70 ° C. for 2 hours. Thereafter, atmospheric pressure dehydration and vacuum dehydration were performed to obtain phenol resin A.

実験例2 比較例
フェノール100gと37%ホルムアルデヒド157gを混合し、これにさらに協和化学工業社製DHT−6:6.94g及び10%水酸化ナトリウム5.0gを入れ、70℃で2時間撹拌混合した後、常圧脱水及び真空脱水し、フェノール樹脂Bを得た。
Experimental Example 2 Comparative Example 100 g of phenol and 157 g of 37% formaldehyde were mixed, and DHT-6 (6.94 g) manufactured by Kyowa Chemical Industry Co., Ltd. and 5.0 g of 10% sodium hydroxide were further added thereto, followed by stirring and mixing at 70 ° C. for 2 hours. Thereafter, atmospheric pressure dehydration and vacuum dehydration were performed to obtain phenol resin B.

実験例3 本発明
37%ホルムアルデヒド157gに、6.94gの剥離型複水酸化物を混合撹拌し層剥離後、フェノール100gを加え70℃で2時間撹拌混合した後、常圧脱水及び真空脱水し、フェノール樹脂Cを得た。
Experimental Example 3 The present invention 157 g of 37% formaldehyde and 6.94 g of peelable double hydroxide were mixed and stirred, and after layer peeling, 100 g of phenol was added and stirred and mixed at 70 ° C for 2 hours, followed by atmospheric pressure dehydration and vacuum dehydration. The phenol resin C was obtained.

フェノール樹脂の強度試験サンプルの作成
実験例1〜3で作成したフェノール樹脂A〜Cを、それぞれ強度試験サンプル作成用金型に入れ、190℃−20分間プレスすることにより、6.4×13.4×108.8mmの試験片A〜Cを得た。
Preparation of strength test sample of phenol resin The phenol resins A to C prepared in Experimental Examples 1 to 3 are respectively placed in a mold for preparing a strength test sample and pressed at 190 ° C. for 20 minutes to obtain 6.4 × 13. 4 * 108.8 mm test pieces A to C were obtained.

ガス透過性試験サンプルの作成
実験例1および3で作成したフェノール樹脂AおよびCを、それぞれガス透過性試験サンプル作成用金型に入れ、190℃−20分間プレスすることにより、厚み0.3mm、直径100mm試験片DおよびEを得た。
フェノール樹脂B(比較例)については歪みが生じ、測定可能な試験片を作成することは出来なかった。
試験片A、D:樹脂のみ
試験片B:比較例
試験片C、E:本発明
Preparation of gas permeability test sample Phenol resins A and C prepared in Experimental Examples 1 and 3 were each placed in a gas permeability test sample preparation mold and pressed at 190 ° C. for 20 minutes to obtain a thickness of 0.3 mm, Test pieces D and E having a diameter of 100 mm were obtained.
The phenol resin B (comparative example) was distorted, and a measurable test piece could not be prepared.
Test piece A, D: Resin only Test piece B: Comparative test piece C, E: The present invention

曲げ強度試験
試験片A〜Cを用いて、曲げ強度試験を行った。試験には、島津製作所製オートグラフAG−ISを使用した。結果は以下表−1参照。
The bending strength test was performed using the bending strength test specimens A to C. For the test, an autograph AG-IS manufactured by Shimadzu Corporation was used. See Table 1 below for results.

Figure 2008001806
Figure 2008001806

荷重たわみ温度の測定
試験片A〜Cを用いて、荷重たわみ温度測定を行った。試験には、安田精機社製HEAT DISTORTION TESTER HD−500を使用した。結果は以下表−2参照。
Measurement of deflection temperature under load The deflection temperature under load was measured using test pieces A to C. For the test, HEAT DISTORTION TESTER HD-500 manufactured by Yasuda Seiki Co., Ltd. was used. See Table 2 for results below.

Figure 2008001806
Figure 2008001806

酸素指数の測定
試験片A〜Cを用いて、酸素指数の測定を行った。試験には、スガ試験器株式会社製 燃焼性試験器 ONI METER (ON−1M型)を使用した。結果は以下表−3参照。
Measurement of oxygen index Using the test pieces A to C, the oxygen index was measured. For the test, a flammability tester ON METER (ON-1M type) manufactured by Suga Test Instruments Co., Ltd. was used. See Table 3 for the results below.

Figure 2008001806
Figure 2008001806

ガス透過性試験
試験片D、Eを用いて、ガス透過性試験(JIS K7126 B法準拠)を行った。
試験には、MOCON社製OXTRAN10/50Aを使用した。結果は以下表−4参照。
A gas permeability test (based on JIS K7126 B method) was performed using the gas permeability test specimens D and E.
In the test, OXTRAN 10 / 50A manufactured by MOCON was used. See Table 4 below for results.

Figure 2008001806
Figure 2008001806

第III部 剥離したLDHを分散したPET樹脂
実験例4 ブランク
テレフタル酸ジメチル450.0g(2.3モル)とエチレングリコール320.3g(5.16モル)を、1L容量の3つ口フラスコに入れ、そこに酸化アンチモン0.2g及び酢酸カルシウムを入れて液温を220℃まで上昇させ、反応により生成したメタノールを留出させた後、50%リン酸を0.5g添加後再び加熱を行い、液温が260℃に到達後槽内を真空状態にし、重合反応により形成されたエチレングリコールを除き、ポリエチレンテレフタレート樹脂Aを得た。
Part III PET resin in which peeled LDH was dispersed. Experimental Example 4 Blank 45 mL (2.3 mol) of dimethyl terephthalate and 320.3 g (5.16 mol) of ethylene glycol were used in three 1 L capacities. Place in a neck flask, add 0.2 g of antimony oxide and calcium acetate, raise the liquid temperature to 220 ° C., distill off the methanol produced by the reaction, and then add 0.5 g of 50% phosphoric acid again. After heating, the temperature of the liquid reached 260 ° C., the inside of the tank was evacuated, and the ethylene glycol formed by the polymerization reaction was removed to obtain polyethylene terephthalate resin A.

実験例5 比較例
テレフタル酸ジメチル450.0gと、予め炭酸型複水酸化物(協和化学工業社製DHT−6)6.5gを添加混合したエチレングリコール326.8gとを、1L容量の3つ口フラスコに入れ、そこに酸化アンチモン0.2g及び酢酸カルシウムを入れ液温を220℃まで上昇させ、反応により生成したメタノールを留出させた後、50%リン酸を0.5g添加後再び加熱を行い、液温が260℃に到達後槽内を真空状態にして重合反応により形成された不要なエチレングリコールを除き、ポリエチレンテレフタレート樹脂Bを得た。
Experimental Example 5 Comparative Example 45 mL of dimethyl terephthalate and 326.8 g of ethylene glycol mixed with 6.5 g of carbonate-type double hydroxide (DHT-6 manufactured by Kyowa Chemical Industry Co., Ltd.) Put in a neck flask, add 0.2 g of antimony oxide and calcium acetate, raise the liquid temperature to 220 ° C., distill off the methanol produced by the reaction, then add 0.5 g of 50% phosphoric acid and heat again. After the liquid temperature reached 260 ° C., the inside of the tank was evacuated to remove unnecessary ethylene glycol formed by a polymerization reaction, to obtain a polyethylene terephthalate resin B.

実験例6 本発明
テレフタル酸ジメチル450.0gと、予め剥離型複水酸化物6.5gを添加混合したエチレングリコール326.8gとを、1L容量の3つ口フラスコに入れ、そこに酸化アンチモン0.2g及び酢酸カルシウムを入れ液温を220℃まで上昇させ、反応により生成したメタノールを留出させた後、50%リン酸を0.5g添加後再び加熱を行い、液温が260℃に到達後槽内を真空状態にして重合反応により形成された不要なエチレングリコールを除き、ポリエチレンテレフタレート樹脂Cを得た。
Experimental Example 6 The present invention 450.0 g of dimethyl terephthalate and 326.8 g of ethylene glycol to which 6.5 g of peelable double hydroxide was added and mixed in advance were placed in a 1 L three-necked flask, and antimony oxide 0 was added thereto. .2g and calcium acetate were added, the liquid temperature was raised to 220 ° C, methanol produced by the reaction was distilled, 0.5g of 50% phosphoric acid was added, and then heated again, and the liquid temperature reached 260 ° C. A polyethylene terephthalate resin C was obtained by removing the unnecessary ethylene glycol formed by the polymerization reaction in a vacuum state in the rear tank.

ポリエチレンテレフタレート樹脂の強度試験サンプルの作成
実験例4〜6で作成したポリエチレンテレフタレート樹脂A〜Cを、それぞれ300ml容量の3つ口フラスコにいれ、260℃まで温度を上げた後、フェノール樹脂に使用したものと同じ強度試験サンプル作成用金型に流し込み、室温にて冷却後試験片F、G、Hを得た。
試験片F:ブランク
試験片G:比較例
試験片H:本発明
Preparation of polyethylene terephthalate resin strength test sample Polyethylene terephthalate resins A to C prepared in Experimental Examples 4 to 6 were put in three-necked flasks each having a capacity of 300 ml, heated to 260 ° C., and then used for phenol resin. The test piece F, G, and H was obtained after pouring into the same strength test sample preparation metal mold | die and cooling at room temperature.
Test piece F: Blank test piece G: Comparative example test piece H: The present invention

酸素指数の測定
試験片F、G、Hをそれぞれ用いて、酸素指数の測定を行った。試験には、スガ試験器株式会社製 燃焼性試験器 ONI METER(ON−1M型)を使用した。結果は下表参照。
Measurement of oxygen index The oxygen index was measured using test pieces F, G, and H, respectively. For the test, a flammability tester ON METER (ON-1M type) manufactured by Suga Test Instruments Co., Ltd. was used. See the table below for results.

Figure 2008001806
Figure 2008001806

曲げ強度試験
試験片F、G、Hを用いて、曲げ強度試験を行った。試験には、島津製作所製オートグラフAGS500Bを使用した。結果は以下表−6参照。
The bending strength test was performed using the bending strength test specimens F, G, and H. For the test, an autograph AGS500B manufactured by Shimadzu Corporation was used. See Table 6 below for results.

Figure 2008001806
Figure 2008001806

Claims (4)

式(I):
M(II)1−xM(III)(OH) (I)
(式中、M(II)はMg,Znまたはその混合物、M(III)はAl,xは0.2ないし0.33である。)の金属複水酸化物よりなる基本層と、該基本層の中間層にインターカレートされたMg,ZnまたはCeの酢酸塩および層間水より構成され、水中において可逆的に剥離する層状複水酸化物の難燃化有効量を含んでいる難燃性合成樹脂組成物であって、該合成樹脂はその製造において前記層状複水酸化物が剥離する原料が含まれる重縮合型樹脂であり、前記層状複水酸化物は前記合成樹脂の製造過程において前記原料に添加されることにより剥離した状態で前記合成樹脂に均一に分散していることを特徴とする難燃性合成樹脂組成物。
Formula (I):
M (II) 1-x M (III) x (OH) 2 (I)
(Wherein M (II) is Mg, Zn or a mixture thereof, M (III) is Al, and x is 0.2 to 0.33), Flame retardancy comprising an intercalated Mg, Zn or Ce acetate and interlayer water in the middle layer of the layer and containing a flame retardant effective amount of layered double hydroxide that reversibly peels off in water A synthetic resin composition, wherein the synthetic resin is a polycondensation-type resin containing a raw material from which the layered double hydroxide is peeled off during the production thereof, and the layered double hydroxide is produced in the process of producing the synthetic resin. A flame-retardant synthetic resin composition, which is uniformly dispersed in the synthetic resin in a peeled state by being added to a raw material.
前記合成樹脂は原料がホルムアルデヒドまたはその重合体であるフェノール樹脂またはアミノ樹脂である請求項1の難燃性合成樹脂組成物。   The flame retardant synthetic resin composition according to claim 1, wherein the synthetic resin is a phenol resin or an amino resin which is formaldehyde or a polymer thereof. 前記合成樹脂は原料がエチレングリコールであるポリエチレンテレフタレートである請求項1の難燃性合成樹脂組成物。   The flame-retardant synthetic resin composition according to claim 1, wherein the synthetic resin is polyethylene terephthalate whose raw material is ethylene glycol. 前記層状複合水酸化物は、合成樹脂固形分に対し1〜50重量%配合される請求項1ないし3のいずれかの難燃性合成樹脂組成物。   The flame retardant synthetic resin composition according to any one of claims 1 to 3, wherein the layered composite hydroxide is blended in an amount of 1 to 50% by weight based on the solid content of the synthetic resin.
JP2006172827A 2006-06-22 2006-06-22 Flame retardant synthetic resin composition containing exfoliated layered double hydroxide Expired - Fee Related JP4796445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006172827A JP4796445B2 (en) 2006-06-22 2006-06-22 Flame retardant synthetic resin composition containing exfoliated layered double hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006172827A JP4796445B2 (en) 2006-06-22 2006-06-22 Flame retardant synthetic resin composition containing exfoliated layered double hydroxide

Publications (2)

Publication Number Publication Date
JP2008001806A true JP2008001806A (en) 2008-01-10
JP4796445B2 JP4796445B2 (en) 2011-10-19

Family

ID=39006453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006172827A Expired - Fee Related JP4796445B2 (en) 2006-06-22 2006-06-22 Flame retardant synthetic resin composition containing exfoliated layered double hydroxide

Country Status (1)

Country Link
JP (1) JP4796445B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185340A (en) * 2008-02-07 2009-08-20 Tayca Corp Metallic powder having insulation film formed thereon by using peelable double hydroxide and production method therefor
WO2012102150A1 (en) 2011-01-27 2012-08-02 独立行政法人物質・材料研究機構 Water-swelling layered double hydroxide, method for producing same, gel or sol substance, double hydroxide nanosheet, and method for producing same
CN108586796A (en) * 2018-04-10 2018-09-28 李光俊 A kind of preparation method of the A2 grade fireproof heated boards of two-dimensional material enhancing EPS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107129597B (en) * 2017-03-21 2019-01-29 北京化工大学 A kind of uvioresistant composite material of hydrotalcite confinement synthesis Schiff base molecule, preparation method and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164131A (en) * 1999-12-06 2001-06-19 Sumitomo Bakelite Co Ltd Flame-retarded resin composition
JP2004149792A (en) * 2002-10-11 2004-05-27 Sumitomo Chem Co Ltd Thermoplastic polymer composition containing flame retardant
JP2004182861A (en) * 2002-12-03 2004-07-02 Mizusawa Ind Chem Ltd Antiblocking agent and resin composition blended with the same
JP2005029580A (en) * 2002-06-07 2005-02-03 Toyobo Co Ltd Polyester resin composition and method for producing the same
JP2006052114A (en) * 2004-08-13 2006-02-23 National Institute Of Advanced Industrial & Technology Highly dispersive hydroxide-base compounding agent for resin and resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164131A (en) * 1999-12-06 2001-06-19 Sumitomo Bakelite Co Ltd Flame-retarded resin composition
JP2005029580A (en) * 2002-06-07 2005-02-03 Toyobo Co Ltd Polyester resin composition and method for producing the same
JP2004149792A (en) * 2002-10-11 2004-05-27 Sumitomo Chem Co Ltd Thermoplastic polymer composition containing flame retardant
JP2004182861A (en) * 2002-12-03 2004-07-02 Mizusawa Ind Chem Ltd Antiblocking agent and resin composition blended with the same
JP2006052114A (en) * 2004-08-13 2006-02-23 National Institute Of Advanced Industrial & Technology Highly dispersive hydroxide-base compounding agent for resin and resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185340A (en) * 2008-02-07 2009-08-20 Tayca Corp Metallic powder having insulation film formed thereon by using peelable double hydroxide and production method therefor
WO2012102150A1 (en) 2011-01-27 2012-08-02 独立行政法人物質・材料研究機構 Water-swelling layered double hydroxide, method for producing same, gel or sol substance, double hydroxide nanosheet, and method for producing same
US9545615B2 (en) 2011-01-27 2017-01-17 National Institute For Materials Science Water-swelling layered double hydroxide, method for producing same, gel or sol substance, double hydroxide nanosheet, and method for producing same
CN108586796A (en) * 2018-04-10 2018-09-28 李光俊 A kind of preparation method of the A2 grade fireproof heated boards of two-dimensional material enhancing EPS
CN108586796B (en) * 2018-04-10 2021-05-11 李光俊 Preparation method of A2-grade fireproof insulation board of two-dimensional material reinforced EPS

Also Published As

Publication number Publication date
JP4796445B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP5735835B2 (en) Vacuum insulation
Du et al. Flammability characteristics and synergistic effect of hydrotalcite with microencapsulated red phosphorus in halogen-free flame retardant EVA composite
Du et al. Thermal properties and combustion characterization of nylon 6/MgAl-LDH nanocomposites via organic modification and melt intercalation
CN106349504B (en) High-aspect-ratio magnesium hydroxide
US7786202B2 (en) Process for preparing organically modified layered double hydroxide
TWI307352B (en)
TWI381991B (en) Clay comprising charge-balancing organic ions and nanocomposite materials comprising the same
JP5418720B2 (en) Inorganic filler composite, thermally conductive resin composition, and molded body
Cai et al. A facile method for the preparation of novel fire-retardant layered double hydroxide and its application as nanofiller in UP
TW200940444A (en) A process to make a clay comprising charge-balancing organic ions, clays thus obtained, and nanocomposite materials comprising the same
JP4796445B2 (en) Flame retardant synthetic resin composition containing exfoliated layered double hydroxide
JP2009062214A (en) Magnesium hydroxide particulate, and method for producing the same
TWI583779B (en) Heat transfer modifier
RU2163564C2 (en) Complex metal hydroxide, method of preparing complex metal hydroxides, and flame-retardation substance for high-molecular compounds prepared by this method involving that hydroxide
Jiang et al. Synergistic effects of boron-doped silicone resin and a layered double hydroxide modified with sodium dodecyl benzenesulfonate for enhancing the flame retardancy of polycarbonate
US3931095A (en) Fire retardant thermosetting resin composition
TWI359836B (en)
EP3187483B1 (en) Novel magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same
WO2008050927A1 (en) Method of manufacturing hydrotalcite
KR100886415B1 (en) Nanoparticles having Flame Retardancy and Method for Preparation Thereof
CN108384185A (en) One kind includes nano-perovskite oxide M TiO3Fire retardant man-made stone preparation method
Wang et al. CO2 induced synthesis of Zn-Al layered double hydroxide nanostructures towards efficiently reducing fire hazards of polymeric materials
KR100853441B1 (en) Clay modified with silane compound, polymer/clay nanocomposite containing the clay compound, and methods for preparing them
JP2004018650A (en) Gas barrier composition, coating agent and film
JPH02293317A (en) Magnesium hydroxide particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110729

R150 Certificate of patent or registration of utility model

Ref document number: 4796445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees