JP2008001784A - High reflectance film and its manufacturing method - Google Patents

High reflectance film and its manufacturing method Download PDF

Info

Publication number
JP2008001784A
JP2008001784A JP2006171870A JP2006171870A JP2008001784A JP 2008001784 A JP2008001784 A JP 2008001784A JP 2006171870 A JP2006171870 A JP 2006171870A JP 2006171870 A JP2006171870 A JP 2006171870A JP 2008001784 A JP2008001784 A JP 2008001784A
Authority
JP
Japan
Prior art keywords
film
metal
printing
particles
base film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006171870A
Other languages
Japanese (ja)
Inventor
Susumu Takagishi
進 高岸
Miyako Takagishi
美也子 高岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKATOMO SANGYO KK
Original Assignee
TAKATOMO SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKATOMO SANGYO KK filed Critical TAKATOMO SANGYO KK
Priority to JP2006171870A priority Critical patent/JP2008001784A/en
Publication of JP2008001784A publication Critical patent/JP2008001784A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high reflectance film which can be manufactured without metal deposition to raise the production cost and can be imparted the regular reflectance of a level equivalent to that of a metal deposition film. <P>SOLUTION: The high reflectance film has a base film made of a synthetic resin and a printing layer laminated on either of the front or rear surface of this base film, wherein the above printing layer is formed of a printing ink containing a plurality of metal pigment particles. The metal pigment particles are made flat into an average particle size of 4-10 μm and a specific surface area of 1.2-3.0 m<SP>2</SP>/g so as for the regular reflectance of the visible light at the wavelength 450 nm that permeates the base film to be ≥85%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気電子、自動車、医療、包装、衣類・服飾、建材、OA機器等、特に液晶モニタに用いられる高反射率フィルムに関するものである。   The present invention relates to a high reflectivity film used for liquid crystal monitors, such as electrical and electronic equipment, automobiles, medical care, packaging, clothing and clothing, building materials, office automation equipment, and the like.

一般に、金属光沢フィルムとしてはアルミニウムなどの金属元素をフィルムに蒸着してなる金属蒸着フィルムが知られている。この金属蒸着フィルムは、例えばOA機器、カーフィルム、包装、アクセサリー、玩具等の用途に用いられ、オフラインでPETフィルムやナイロンフィルムに前記金属元素を蒸着して製造されている。
前記金属蒸着フィルムは、蒸着工程の不良率が高く、また蒸着には加熱や真空引きに時間とコストとが必要とされ、フィルム価格を高騰させる原因となっていた。
そこで、特許文献1に示すように、金属蒸着膜を剥離粉砕してなる金属顔料粒子を配合したメタリックタイプの印刷インキをポリエステルフィルムに印刷した金属光沢フィルムも提案されている。この金属光沢フィルムは、金属蒸着膜の表面平滑性が高く金属顔料粒子の粒子表面で鏡面反射が可能なため、印刷タイプでありながら高い正反射率を有している。
特開2004−99642号公報
Generally, a metal vapor deposition film formed by vapor-depositing a metal element such as aluminum on a film is known as a metallic gloss film. This metal vapor-deposited film is used for applications such as OA equipment, car films, packaging, accessories, toys, etc., and is manufactured by vapor-depositing the metal elements on a PET film or nylon film offline.
The metal vapor deposition film has a high defect rate in the vapor deposition process, and vapor deposition requires time and cost for heating and evacuation, which causes the film price to rise.
Therefore, as shown in Patent Document 1, a metallic glossy film is also proposed in which a metallic printing ink containing metal pigment particles obtained by peeling and crushing a metal vapor-deposited film is printed on a polyester film. This metallic gloss film has a high regular reflectance even though it is a printing type because the metal smoothness of the metal vapor deposition film is high and mirror reflection is possible on the surface of the metal pigment particles.
JP 2004-99642 A

しかしながら、前記特許文献1の金属顔料粒子は、ランニングコストの高い蒸着工程で形成された金属蒸着膜を剥離粉砕してなるため、化学還元法やアトマイズ法により製造される金属顔料粒子に比べて顔料製造コストがかかり、価格面で金属蒸着フィルムに取って替われるものではない。
また、前記金属顔料粒子は薄い金属蒸着膜を剥離粉砕して成り、非常に軽い顔料粒子であるからバインダ中でも浮動しやすい。よって、印刷層中の全ての金属顔料粒子がその平滑な粒子表面を鏡面反射側に配向させているわけではないので、拡散反射率が比較的高く正反射率を一定レベル以上に高くすることが困難であった。
However, since the metal pigment particles of Patent Document 1 are formed by peeling and crushing a metal vapor deposition film formed in a vapor deposition process with a high running cost, the pigment is more pigmented than metal pigment particles produced by a chemical reduction method or an atomization method. Manufacturing cost is high, and the metal vapor deposition film is not replaced in terms of price.
The metal pigment particles are formed by peeling and crushing a thin metal vapor-deposited film, and are very light pigment particles, so that they easily float even in a binder. Therefore, not all the metal pigment particles in the printed layer have their smooth particle surfaces oriented to the specular reflection side, so that the diffuse reflectance is relatively high and the regular reflectance can be made higher than a certain level. It was difficult.

本発明は、上記問題に鑑みて為されたものであって、顔料製造コストの高い金属蒸着膜を用いる代わりに、通常の金属粉体製造方法により微粒子化された金属原料粒子を所定の偏平状態まで偏平化して用いることにより、従来の印刷タイプの金属光沢フィルムに比べて高い正反射率を付与することができる高反射率フィルムを提供することを目的とする。
また、本発明は金属蒸着に代えて印刷を行うことで従来からのフィルム製造ラインに組み込むことができ、また金属顔料粒子の顔料製造コストを下げることのできる高反射率フィルムの製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and instead of using a metal vapor deposition film with a high pigment production cost, the metal raw material particles finely divided by a normal metal powder production method are in a predetermined flat state. An object of the present invention is to provide a high reflectivity film that can give a higher regular reflectivity than that of a conventional print-type metallic glossy film.
In addition, the present invention provides a method for producing a high reflectance film that can be incorporated into a conventional film production line by printing instead of metal vapor deposition, and can reduce the pigment production cost of metal pigment particles. For the purpose.

前記目的を達成するため、本発明の高反射率フィルムは次の手段を講じている。
即ち、合成樹脂製の基材フィルムと、この基材フィルムの表裏面のいずれかに積層される印刷層とを備え、前記印刷層が複数の金属顔料粒子を含む印刷インキにより形成される高反射率フィルムであって、前記金属顔料粒子は、基材フィルムを透過する波長450nmにおける可視光線の正反射率を85%以上にすべく、平均粒径が4〜10μmであって比表面積が1.2〜3.0m2/gに偏平化されていることを特徴とする。
前記金属顔料粒子は、銀粒子であるのが好ましく、前記金属顔料粒子は、アトマイズ法により得られる平均粒径1.0〜2.0μmの金属原料粒子を偏平化手段により偏平に塑性変形して形成されているのがより好ましい。また、前記基材フィルムは光透過度が85%以上であるのが良い。
In order to achieve the above object, the high reflectance film of the present invention takes the following measures.
That is, a high-reflection film comprising a base film made of synthetic resin and a printing layer laminated on either of the front and back surfaces of the base film, wherein the printing layer is formed by printing ink containing a plurality of metal pigment particles. The metal pigment particles have an average particle diameter of 4 to 10 μm and a specific surface area of 1. to achieve a regular reflectance of visible light at a wavelength of 450 nm that passes through the base film of 85% or more. It is flattened to 2 to 3.0 m 2 / g.
The metal pigment particles are preferably silver particles, and the metal pigment particles are obtained by subjecting metal raw material particles having an average particle diameter of 1.0 to 2.0 μm obtained by an atomizing method to flat plastic deformation by flattening means. More preferably it is formed. The substrate film may have a light transmittance of 85% or more.

これによって、顔料製造コストの高い金属蒸着膜を用いる代わりに、通常の金属粉体製造方法により微粒子化された金属原料粒子を所定の偏平状態まで偏平化して用いることにより、従来の印刷タイプの金属光沢フィルムに比べて高い正反射率を付与することができる。即ち、製造コストを高騰させる金属蒸着を行わずに製造された金属粒子(金属原料粒子)を用いてこれを偏平化しているので金属顔料粒子の製造コストを低減することが可能であり、また金属蒸着箔を粉砕した場合ほど薄膜状の粒子にはならないので金属顔料粒子の拡散反射を抑えることができて金属蒸着フィルムと同等レベルの正反射率を付与することができる。加えて、基材フィルムを透過して光を反射させているので、凹凸の生じ易い印刷層の表面で光が散乱することがない。   As a result, instead of using a metal vapor deposition film with a high pigment production cost, the metal raw material particles finely divided by a normal metal powder production method are used after being flattened to a predetermined flat state. High regular reflectance can be imparted compared to a glossy film. That is, since the metal particles (metal raw material particles) produced without performing metal vapor deposition, which increases the production cost, are flattened, it is possible to reduce the production cost of the metal pigment particles. Since it does not become as thin-film particles as when the vapor deposition foil is pulverized, the diffuse reflection of the metal pigment particles can be suppressed, and a regular reflectance equivalent to that of the metal vapor deposition film can be imparted. In addition, since the light is transmitted through the base film and reflected, the light is not scattered on the surface of the printed layer where unevenness easily occurs.

また、前記金属顔料粒子に金属元素の中でも可視光線の全波長領域に亘って安定して高い反射率を有する銀粒子を用いることで、反射光に特定の波長に対する偏り(色つき)がなく可視光線の全領域に亘って正反射率が高いフィルムが得られて、液晶モニタのバックライト等のように鏡面反射が要求される用途に用いることができるようになる。
前記金属顔料粒子は、アトマイズ法により得られる平均粒径0.8〜2.0μmの金属原料粒子を偏平化手段により偏平に塑性変形して形成するのが好ましい。前記アトマイズ法は電解法、還元法等の金属粒子製造方法に比べて形状や粒度の揃った微細な金属原料粒子を得ることができるので、このアトマイズ法により得られる金属原料粒子を偏平に塑性変形(偏平化)することで金属顔料粒子の形状や粒度も揃えることが可能となり、この金属顔料粒子を用いることで印刷層の表面平滑性を上げて正反射率を良好にすることが可能となるからである。
In addition, among the metal pigment particles, among the metal elements, silver particles having a stable and high reflectance over the entire wavelength region of visible light are used, so that the reflected light is visible with no bias (colored) with respect to a specific wavelength. A film having a high regular reflectance over the entire region of the light beam can be obtained, and can be used for applications requiring specular reflection such as a backlight of a liquid crystal monitor.
The metal pigment particles are preferably formed by flat plastic deformation of metal raw material particles having an average particle diameter of 0.8 to 2.0 μm obtained by an atomizing method using a flattening means. Since the atomization method can obtain fine metal raw material particles having a uniform shape and particle size as compared with metal particle production methods such as an electrolytic method and a reduction method, the metal raw material particles obtained by the atomization method are plastically deformed flatly. By flattening, the shape and particle size of the metal pigment particles can be made uniform. By using the metal pigment particles, it is possible to improve the surface smoothness of the printing layer and improve the regular reflectance. Because.

また、前記基材フィルムには光透過度が85%以上の高透明性フィルムを用いるのが好ましく、これにより基材フィルムに吸収または反射される可視光線の割合を下げて、基材フィルムにより印刷層の高い反射率が損なわれない。
また、前記目的を達成するため、本発明の高反射率フィルムの製造方法は次の手段を講じている。
即ち、合成樹脂製の基材フィルムのいずれかに、金属顔料粒子を含む印刷インキで印刷層を形成する印刷工程を備える高反射率フィルムの製造方法であって、
前記印刷工程の前に、平均粒径が4〜10μmであって比表面積が1.2〜3.0m2/gになるまで金属原料粒子を偏平状に塑性変形する顔料調製工程を設けることを特徴とする。
In addition, it is preferable to use a highly transparent film having a light transmittance of 85% or more as the base film, thereby reducing the proportion of visible light absorbed or reflected by the base film and printing with the base film. The high reflectivity of the layer is not impaired.
Moreover, in order to achieve the said objective, the manufacturing method of the high reflectance film of this invention has taken the following means.
That is, a method for producing a high reflectivity film comprising a printing step of forming a printing layer with a printing ink containing metal pigment particles on any of the base films made of synthetic resin,
Before the printing step, there is provided a pigment preparation step in which the metal raw material particles are plastically deformed into a flat shape until the average particle size is 4 to 10 μm and the specific surface area is 1.2 to 3.0 m 2 / g. Features.

前記顔料調製工程は、アトマイズ法により得られる平均粒径0.8〜2.0μmの金属原料粒子を用いるのが好ましく、前記印刷層を塗布量2g/m2以上に形成するのがよい。
これによって、金属蒸着に代えて印刷を行うことで従来からのフィルム製造ラインに組み込むことができ、また金属顔料粒子の顔料製造コストを下げることのできる。
また、前記顔料調製工程にアトマイズ法により得られる平均粒径0.8〜2.0μmの金属原料粒子を用いると、形状と粒度とが揃った金属顔料粒子を得ることができ、分級選別に必要とされる手間が省けて、顔料調製工程にかかるコストを下げることができる。
In the pigment preparation step, metal raw material particles having an average particle diameter of 0.8 to 2.0 μm obtained by an atomizing method are preferably used, and the printing layer is preferably formed at a coating amount of 2 g / m 2 or more.
Thus, printing can be performed in place of metal vapor deposition so that it can be incorporated into a conventional film production line, and the pigment production cost of metal pigment particles can be reduced.
In addition, if metal raw material particles having an average particle size of 0.8 to 2.0 μm obtained by the atomization method are used in the pigment preparation step, metal pigment particles having a uniform shape and particle size can be obtained, which is necessary for classification and selection. Therefore, the cost for the pigment preparation process can be reduced.

さらに、前記印刷層を塗布量2g/m2以上に形成することで、ヌケやムラのない印刷層が得られ、印刷層により可視領域の光を確実に反射することができて、正反射率が面内で安定して高い高反射率フィルムを得ることができる。 Furthermore, by forming the printed layer at a coating amount of 2 g / m 2 or more, a printed layer free from any spots or unevenness can be obtained, and the visible light can be reliably reflected by the printed layer. However, it is possible to stably obtain a high reflectance film in the plane.

本発明により、顔料製造コストの高い金属蒸着膜を用いる代わりに、通常の金属粉体製造方法により微粒子化された金属原料粒子を所定の偏平状態まで偏平化して用いることにより、従来の印刷タイプの金属光沢フィルムに比べて高い正反射率を付与することができる。
また、金属蒸着に代えて印刷を行うことで従来からのフィルム製造ラインに組み込むことができ、また金属顔料粒子の顔料製造コストを下げることができる。
According to the present invention, instead of using a metal vapor deposition film with a high pigment production cost, the metal raw material particles finely divided by a normal metal powder production method are used after being flattened to a predetermined flat state. High regular reflectance can be provided compared with a metallic luster film.
In addition, by performing printing instead of metal vapor deposition, it can be incorporated into a conventional film production line, and the pigment production cost of metal pigment particles can be reduced.

本発明の高反射率フィルム及びその製造方法を以下の実施例を用いて説明するが、本発明は以下の実施例に限定されるものではない。
前記高反射率フィルムは、合成樹脂製の基材フィルムと、前記基材フィルムの表裏面のいずれかに積層される印刷層とを備えている。前記高反射率フィルムは、基材フィルムに直接印刷層を積層するのが好ましいが、前記基材フィルムと印刷層との間に1層以上の透明または光透過性に優れる中間層を設けることもできる。
前記中間層は、接着剤層、粘着剤層、プライマ層、樹脂や顔料の塗工層、あるいは各種の機能フィルム(紫外線吸収フィルム、ガスバリヤフィルム等)の少なくとも1つ以上から構成することができる。
Although the high reflectance film and its manufacturing method of this invention are demonstrated using a following example, this invention is not limited to a following example.
The high reflectivity film includes a base film made of synthetic resin and a printed layer laminated on either the front or back surface of the base film. The high reflectivity film preferably has a printing layer directly laminated on the base film, but one or more intermediate layers having excellent transparency or light transmission may be provided between the base film and the printing layer. it can.
The intermediate layer can be composed of at least one of an adhesive layer, a pressure-sensitive adhesive layer, a primer layer, a resin or pigment coating layer, or various functional films (such as an ultraviolet absorbing film and a gas barrier film).

前記高反射率フィルムは、基材フィルム側または印刷層側の少なくともいずれかの表面に印刷層、空気遮断層(ガスバリヤ層)、接着層、ホットメルト層、光遮断層、紫外線吸収剤層またはこれらを塗布等した紙、フィルム、金属箔などをラミネート等して使用でき、これによって例えばOA機器、電子機器、電気製品、包装材、建材、自動車用ガラスフィルム、アクセサリー、装飾等の様々な用途に用いることができる。
前記基材フィルムは、ポリエチレンテレフタレートなどのポリエステル系樹脂、ポリエチレン、ポリプロピレン、アイオノマーなどのポリオレフィン系樹脂、ナイロン、アラミドなどのポリアミド系樹脂、ポリイミド系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリビニルアルコール系樹脂のいずれか1種を少なくとも含む合成樹脂で形成され、これらの樹脂でも好ましくはポリエチレンテレフタレート系樹脂、ナイロン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、特に好ましくはポリエチレンテレフタレート系樹脂を用いるのがよい。前記基材フィルムにポリエチレンテレフタレート系樹脂を用いることで従来の金属蒸着PETフィルムが用いられてきた用途にそのまま本発明の高反射率フィルムを用いることができるようになる。また、前記基材フィルムにナイロン系樹脂、ポリエチレン系樹脂を用いると強度や耐伸縮疲労性に優れる高反射率フィルムを得ることができ、また蒸着時の耐熱性や価格面から金属蒸着フィルムが普及し難かったこれらのフィルム(分野)についても高い反射率を有するフィルムを安価に提供することができる。
The high reflectivity film is a printed layer, an air blocking layer (gas barrier layer), an adhesive layer, a hot melt layer, a light blocking layer, an ultraviolet absorber layer or the like on at least one surface of the base film side or the printed layer side. Can be used by laminating paper, film, metal foil, etc. coated with, for example, for various applications such as OA equipment, electronic equipment, electrical products, packaging materials, building materials, automotive glass films, accessories, decorations, etc. Can be used.
The base film includes polyester resins such as polyethylene terephthalate, polyolefin resins such as polyethylene, polypropylene, and ionomer, polyamide resins such as nylon and aramid, polyimide resins, polyvinyl chloride resins, polyvinylidene chloride resins, It is formed of a synthetic resin containing at least one of polyvinyl alcohol resins, and these resins are preferably polyethylene terephthalate resins, nylon resins, polyethylene resins, polypropylene resins, and particularly preferably polyethylene terephthalate resins. It is good. By using a polyethylene terephthalate-based resin for the base film, the high reflectance film of the present invention can be used as it is for applications in which a conventional metal-deposited PET film has been used. In addition, if a nylon resin or polyethylene resin is used for the base film, a high reflectivity film excellent in strength and stretch fatigue resistance can be obtained, and metal vapor deposited films are widespread from the viewpoint of heat resistance during deposition and price. For these films (fields) that were difficult to do, a film having a high reflectance can be provided at low cost.

前記基材フィルムは、厚み25〜350μm、好ましくは厚み50〜250μmとするのが良い。前記基材フィルムの厚みを25〜350μmとすることで従来の金属蒸着フィルムの厚みに合わせることが可能となり、金属蒸着フィルムを用いた既存の各種製品の製造工程にそのまま本発明の高反射率フィルムを転用可能となるからである。また、前記基材フィルムの厚みを50〜250μmすることで特に液晶テレビの反射シートに本発明の高反射率フィルムを利用可能となり、液晶モニタの反射シートを従来の金属蒸着フィルムに比べて安価にかつ安定して供給することができる。   The base film has a thickness of 25 to 350 μm, preferably a thickness of 50 to 250 μm. By setting the thickness of the base film to 25 to 350 μm, it becomes possible to match the thickness of the conventional metal deposited film, and the high reflectivity film of the present invention is used as it is in the manufacturing process of various existing products using the metal deposited film. This is because can be diverted. In addition, by making the thickness of the base film 50 to 250 μm, the high reflectance film of the present invention can be used particularly for the reflective sheet of the liquid crystal television, and the reflective sheet of the liquid crystal monitor can be made cheaper than the conventional metal vapor deposition film. And can be supplied stably.

前記基材フィルムには、前記合成樹脂で形成されたものであれば、透明性、帯電防止、耐熱性(耐ヒートシール性、耐ボイル性、耐レトルト性)、熱収縮性、耐衝撃性、耐ブロッキング性、易引き裂き性等の特性をそれぞれ満足させられるように、原料樹脂、延伸方法、添加物、表面処理等が異なる各種グレードのフィルムを用いることができる。前記基材フィルムは印刷層との密着性を考慮して表裏面のいずれかにコロナ処理かプライマー塗工が行われているのが好ましい。
前記基材フィルムは、光透過率が波長450nmの可視光線について85%以上、好ましくは90%以上とするのが良い。これにより、基材フィルムを通して反射する反射光が基材フィルムに吸収あるいは反射されるのを防止して、基材フィルムを通して反射する高反射率フィルムの波長450nmにおける可視光線の正反射率を85%以上に維持することができる。
If the base film is formed of the synthetic resin, transparency, antistatic, heat resistance (heat seal resistance, boil resistance, retort resistance), heat shrinkage, impact resistance, Various grades of film with different raw material resins, stretching methods, additives, surface treatments, etc. can be used so that properties such as blocking resistance and easy tearability can be satisfied. The base film is preferably subjected to corona treatment or primer coating on either the front or back surface in consideration of adhesion to the printed layer.
The base film has a light transmittance of 85% or more, preferably 90% or more for visible light having a wavelength of 450 nm. As a result, the reflected light reflected through the base film is prevented from being absorbed or reflected by the base film, and the regular reflectance of visible light at a wavelength of 450 nm of the high reflectivity film reflected through the base film is 85%. It can be maintained above.

なお、前記可視光線の波長450nmはあくまでも可視領域にある波長の代表値であり、可視光線の全波長領域において光透過率が85%以上、好ましくは90%とされた基材フィルムを用いる方が良いのは当然である。
前記基材フィルムは、透明性、防湿性、耐熱性、寸法安定性、透明性、機械適性などを用途に合わせて種々変更できるように顔料、染料、安定剤、滑剤、酸化防止剤、紫外線吸収剤、可塑剤、または潤滑剤等が含添されていても良い。また、前記基材フィルムは2軸延伸フィルムであっても1軸延伸フィルムであっても良い。
The wavelength of visible light of 450 nm is merely a representative value in the visible region, and it is better to use a base film having a light transmittance of 85% or more, preferably 90% in the entire visible light wavelength region. Of course it is good.
The base film is made of pigments, dyes, stabilizers, lubricants, antioxidants, and UV absorbers so that the transparency, moisture resistance, heat resistance, dimensional stability, transparency, mechanical suitability, etc. can be changed according to the application. An agent, a plasticizer, a lubricant, or the like may be included. The base film may be a biaxially stretched film or a uniaxially stretched film.

前記印刷層は、複数の金属顔料粒子とこれらの金属顔料粒子を基材フィルムに定着(結着)させるバインダとを含む印刷インキより成り、基材フィルムの表面に印刷手段やコーティング手段を用いて形成される。
前記印刷手段にはフレキソ印刷、シルク(スクリーン)印刷、グラビア印刷、オフセット印刷、凸版印刷等が選択でき、前記コーティング手段にはロールコート、グラビアコート、ブレードコート等が選択できるが、これらの中でも好ましくはフレキソ印刷、シルク(スクリーン)印刷、グラビア印刷、オフセット印刷を用いるのが良い。これによって、塗布量が揃った印刷層を再現良く形成することができ、既存のフィルム印刷設備をそのまま用いるため新たな設備投資等に掛かる費用を低減することができる。また、前記印刷手段の中でもより好ましくはフレキソ印刷を用いるのが良い。フレキソ印刷は他の印刷方法に比べて塗布量を大きくでき前記印刷層を厚くできるので、可視光線が印刷層を透過し難くなって、入射された可視光線を確実に反射させられるからである。
The printing layer is composed of a printing ink containing a plurality of metal pigment particles and a binder for fixing (binding) these metal pigment particles to a base film, and using printing means or coating means on the surface of the base film. It is formed.
The printing means can be selected from flexographic printing, silk (screen) printing, gravure printing, offset printing, letterpress printing, etc., and the coating means can be selected from roll coating, gravure coating, blade coating, etc. It is preferable to use flexographic printing, silk (screen) printing, gravure printing, and offset printing. As a result, a printing layer with a uniform coating amount can be formed with good reproducibility, and the existing film printing equipment can be used as it is, thereby reducing costs for new equipment investment and the like. Of the printing means, flexographic printing is more preferably used. This is because flexographic printing can increase the coating amount and increase the thickness of the printed layer as compared with other printing methods, so that visible light is difficult to pass through the printed layer and incident visible light can be reliably reflected.

前記印刷層は、塗布量を2g/m2以上、好ましくは3〜8g/m2とするのが良い。塗布量を2g/m2以上、好ましくは3g/m2以上とすることでヌケやムラのない印刷層が得られ、印刷層により可視領域の光を確実に反射することができて、正反射率が面内で安定して高い高反射率フィルムを得ることができる。また、塗布量を8g/m2以下とすることで過分なインキの消費を抑えることができ、厚塗りしすぎて印刷層が剥離しやすくなるのを防止できる。
前記印刷層の上にはオーバーコート層のような印刷保護層を設けても良く、この印刷保護層にはラッカー、ニスのようなクリヤータイプ(透明な)樹脂を用いるのが良い。印刷保護層を設けることで、印刷層が剥がれ難くなり、長期間に亘って使用しても金属光沢が損なわれにくくなる。
The printing layer, the coating amount 2 g / m 2 or more, preferably to a 3 to 8 g / m 2. By setting the coating amount to 2 g / m 2 or more, preferably 3 g / m 2 or more, a printed layer free from blurring or unevenness can be obtained, and the visible light in the visible region can be reliably reflected by the printed layer. It is possible to obtain a high reflectance film having a high rate of stability in the plane. In addition, by setting the coating amount to 8 g / m 2 or less, it is possible to suppress excessive ink consumption, and it is possible to prevent the printing layer from being easily peeled off due to excessive coating.
A print protective layer such as an overcoat layer may be provided on the print layer, and a clear type (transparent) resin such as lacquer or varnish is preferably used for this print protective layer. By providing the printing protective layer, the printing layer is hardly peeled off, and the metallic luster is not easily impaired even when used for a long period of time.

前記金属顔料粒子は、可視領域(波長380〜780nm)の反射率が全領域に亘って85%を超える銀またはアルミニウムの少なくともいずれかを用いるのが好ましく、特に反射率が最も高い銀で形成されるのが良い。前記金属顔料粒子に銀またはアルミニウムを用いた場合は、波長380〜780nmの可視領域において金属元素固有の反射率が大きく変化しないので、波長450nmの正反射率のみを85%以上とすることで波長380〜780nmの可視領域の全域に亘って安定して高い反射率を得ることができ、反射光に波長による偏り(反射光の色つき)がない金属光沢を得ることができる。   The metallic pigment particles preferably use at least one of silver and aluminum having a reflectance in the visible region (wavelength of 380 to 780 nm) exceeding 85% over the entire region, and are particularly formed of silver having the highest reflectance. It is good. When silver or aluminum is used for the metal pigment particles, the reflectance inherent to the metal element does not change significantly in the visible region of wavelength 380 to 780 nm. Therefore, the wavelength can be adjusted by setting only the regular reflectance of wavelength 450 nm to 85% or more. A high reflectance can be stably obtained over the entire visible range of 380 to 780 nm, and a metallic luster in which the reflected light is not biased by the wavelength (coloring of the reflected light) can be obtained.

前記金属顔料粒子は、金属原料粒子をさらに偏平化手段により偏平状に塑性変形(偏平化)して得られる。一般的に通常の金属粉体製造方法(アトマイズ法、電解法、還元法等の金属粒子製造方法)で得られる球状や鱗片状の金属粒子は、光学式(レーザー式)の粒度計による平均粒径4〜10μmの粒子について、比表面積が0.6〜1.0m2/gとされている。これに対して、前記金属顔料粒子は比表面積が1.2〜3.0m2/g、好ましくは1.4〜2.4m2/gと非常に大きな比表面積を有している。
前記金属顔料粒子の比表面積を1.2m2/g以上、好ましくは1.4m2/g以上とすることで、十分に偏平化された金属顔料粒子を得ることができ、この偏平化された金属顔料粒子の偏平面(平滑面)が可視光線を高い反射率で反射するので、高反射率フィルムの正反射率を85%以上とすることが可能となる。前記比表面積を3.0m2/g以下とすることで、金属顔料粒子を薄くし過ぎて印刷層中で粒子表面(反射面)がばらつくのを防止でき、高反射率フィルムの拡散反射率を抑えつつ正反射率を85%以上とすることが可能となる。また、比表面積を2.4m2/g以下とすることで、余計な偏平化処理を行うことがなくなり金属顔料粒子の製造コストを抑えることが可能となる。
The metal pigment particles are obtained by further plastically deforming (flattening) the metal raw material particles into a flat shape by flattening means. In general, spherical or scaly metal particles obtained by ordinary metal powder production methods (metal particle production methods such as atomization, electrolysis, and reduction) are average particles by an optical (laser) particle size meter. The specific surface area of the particles having a diameter of 4 to 10 μm is 0.6 to 1.0 m 2 / g. On the other hand, the metal pigment particles have a very large specific surface area of 1.2 to 3.0 m 2 / g, preferably 1.4 to 2.4 m 2 / g.
By setting the specific surface area of the metal pigment particles to 1.2 m 2 / g or more, preferably 1.4 m 2 / g or more, sufficiently flattened metal pigment particles can be obtained, and this flattened Since the flat surface (smooth surface) of the metal pigment particles reflects visible light with a high reflectance, the regular reflectance of the high reflectance film can be 85% or more. By setting the specific surface area to 3.0 m 2 / g or less, it is possible to prevent the metal pigment particles from becoming too thin and to prevent the particle surface (reflecting surface) from varying in the printed layer, and to increase the diffuse reflectance of the high reflectance film. It becomes possible to make regular reflectance 85% or more, suppressing it. Further, when the specific surface area is 2.4 m 2 / g or less, unnecessary flattening treatment is not performed, and the production cost of the metal pigment particles can be suppressed.

前記金属顔料粒子は、光学式(レーザー式)の粒度計による平均粒径が4〜10μm、好ましくは4〜8μmとされるのが良く、これによって金属顔料原料を印刷インキ中に分散させやすくなると共に、印刷層で反射されずに金属顔料粒子の粒子間を透過する可視光線の割合を下げることが可能となる。
前記金属原料粒子は、電解法、アトマイズ法、熱処理法、化学還元法などの金属粒子製造方法により微粒子化された、光学式(レーザー式)の粒度計による平均粒径が0.8〜1.5μmの金属粒子である。前記金属粒子は金属粒子製造方法によって略球状粒子、魚鱗状粒子(板状またはフレーク状粒子ともいわれる)、針状、その他の不定形状に形成されるが、これらの形状に依らずいずれの粒子も単独であるいは組み合わして用いることができる。
The metal pigment particles may have an average particle size of 4 to 10 μm, preferably 4 to 8 μm, as measured by an optical (laser type) particle size meter, which facilitates dispersion of the metal pigment raw material in the printing ink. At the same time, it is possible to reduce the proportion of visible light that passes between the metal pigment particles without being reflected by the printing layer.
The metal raw material particles are formed into fine particles by a metal particle production method such as an electrolytic method, an atomizing method, a heat treatment method, and a chemical reduction method, and have an average particle size of 0.8 to 1. 5 μm metal particles. The metal particles are formed into substantially spherical particles, fish scale-like particles (also called plate-like or flake-like particles), needle-like shapes, and other irregular shapes by the metal particle production method. They can be used alone or in combination.

前記金属原料粒子は、金属粒子製造方法の中でもアトマイズ法で得られる金属粒子であって、形状が略球状(塊状)の金属粒子が最も好ましい。アトマイズ法は他の金属粒子製造方法より形状や粒度の揃った粒子を得られやすく、この金属原料粒子を偏平化処理することで金属原料粒子の粒子形状や粒度を揃えて、比表面積を1.2〜3.0m2/g、好ましくは1.4〜2.4m2/gに金属顔料粒子を調製することができる。
前記偏平化手段には、ボールミル、ロール圧延等の微粒子化手段(粉砕手段)を用いることができるが、好ましくはボールミルを用いるのが良い。
The metal raw material particles are metal particles obtained by an atomizing method among the metal particle production methods, and metal particles having a substantially spherical shape (lumped shape) are most preferable. The atomization method makes it easier to obtain particles having a uniform shape and particle size than other metal particle production methods. By flattening the metal raw material particles, the metal raw material particles have the same particle shape and particle size, and a specific surface area of 1. Metal pigment particles can be prepared at 2 to 3.0 m 2 / g, preferably 1.4 to 2.4 m 2 / g.
As the flattening means, fine particle means (pulverizing means) such as a ball mill and roll rolling can be used, but a ball mill is preferably used.

前記バインダ(結着樹脂)は、スクリーンインキ、グラビアインキ、またはオフセットインキ等に通常用いられている樹脂であって、モノマー、オリゴノマー、プレポリマー等の反応性化合物に属する樹脂である。具体的には、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、メラミン樹脂、エポキシ樹脂、ポリスチレン樹脂、スチレンマレイン酸共重合樹脂、石油系樹脂、アルキッド樹脂などであり、これらの中でも基材フィルムとの接着性と前記金属粒子との相溶性とに優れるアクリル樹脂またはポリエステル樹脂を用いるのが好ましい。これによって、印刷層の基材フィルムに対する接着強度を高めて、印刷層の剥離を防止できるからである。   The binder (binder resin) is a resin usually used for screen ink, gravure ink, offset ink, or the like, and belongs to a reactive compound such as a monomer, an oligomer, or a prepolymer. Specifically, acrylic resin, polyester resin, polyamide resin, polyurethane resin, melamine resin, epoxy resin, polystyrene resin, styrene maleic acid copolymer resin, petroleum resin, alkyd resin, etc. It is preferable to use an acrylic resin or a polyester resin which is excellent in the adhesiveness of the resin and the compatibility with the metal particles. This is because the adhesive strength of the printed layer to the base film can be increased, and peeling of the printed layer can be prevented.

前記印刷層は金属顔料粒子が前記バインダで結着されて層状に基材フィルムの表面に積層され、金属顔料粒子の偏平(平坦な)な粒子表面が基材フィルムの表面に揃って(平行に)積層するので、それぞれの金属顔料粒子が印刷層中で入射光を基材フィルムの表面とは垂直な方向に反射し、高反射率フィルムに金属蒸着フィルムと同等レベルの正反射率を付与することができる。
また、前記印刷層を反射光を利用する側から見て基材フィルムの裏面側に設けられるのが好ましく、印刷層を基材フィルムに直接塗布等することで、基材フィルムの平滑な表面に沿って印刷層が形成されるので、印刷層の表面で光が散乱されるのを防ぐことができ、印刷層の正反射率を向上させることが可能となる。
In the printing layer, metal pigment particles are bonded with the binder and laminated on the surface of the base film in a layered manner, and the flat (flat) surface of the metal pigment particles is aligned with the surface of the base film (in parallel). ) Since they are laminated, each metal pigment particle reflects incident light in the printing layer in a direction perpendicular to the surface of the substrate film, and gives a high reflectance film with a regular reflectance equivalent to that of a metal vapor deposition film. be able to.
Moreover, it is preferable that the printed layer is provided on the back surface side of the base film when viewed from the side using the reflected light. By directly applying the printed layer to the base film, the smooth surface of the base film is obtained. Since the printing layer is formed along the surface, it is possible to prevent light from being scattered on the surface of the printing layer, and to improve the regular reflectance of the printing layer.

本発明の高反射率フィルムの製造方法は、基材フィルムの表裏面のいずれかに印刷インキで印刷層を形成する印刷工程の前に、予備的に印刷インキ及びこの印刷インキに含まれる前記金属顔料粒子を調整する顔料調製工程を設けている。
前記印刷工程は、前記基材フィルムの表裏面のいずれかに前記金属顔料粒子を含む印刷インキで印刷層を形成するものである。前記印刷は基材フィルムの表裏面のいずれかに行われていれば良く、コロナ面の方が好ましいが非コロナ面に行われても良い。前記印刷工程は、既存のフィルム印刷設備に前記印刷インキを用いればよく、これにより過分な設備投資を避けながら高反射率フィルムを製造できる。
The method for producing a high reflectance film of the present invention includes a printing ink and the metal contained in the printing ink preliminarily before the printing step of forming a printing layer with a printing ink on either of the front and back surfaces of the base film. A pigment preparation step for adjusting pigment particles is provided.
In the printing step, a printing layer is formed with printing ink containing the metal pigment particles on either of the front and back surfaces of the base film. The printing only needs to be performed on either the front or back surface of the base film, and the corona surface is preferable, but it may be performed on the non-corona surface. The said printing process should just use the said printing ink for the existing film printing equipment, and can manufacture a high reflectance film, avoiding excessive capital investment by this.

前記顔料調製工程は、前記金属原料粒子を前記偏平化手段により偏平状に塑性変形して金属顔料粒子を得るものであり、金属原料粒子をバインダに配合して印刷インキを調整するものである。前記印刷インキは、金属原料粒子のバインダに対する配合量(配合率)をフレキソ印刷、オフセット印刷等の印刷手段またはコーティング方法に合わせて適宜変更することができる。また、前記印刷インキにはバインダ以外に光沢剤、乳化剤、酸化防止剤等の添加剤を加えることもできる。
前記偏平化手段は、例えばボールミル、ロール圧延式粉砕機、スタンプミル、サンドミルのような粉体を偏平状に塑性加工する設備を用いて、前記金属原料粒子を偏平状に塑性加工するものである。この偏平化手段には特にボールミルを用いるのが好ましく、これによって金属原料粒子を高収率で偏平化することができ、顔料調製工程にかかるコストを下げることができる。
In the pigment preparation step, the metal raw material particles are plastically deformed in a flat shape by the flattening means to obtain metal pigment particles, and the metal raw material particles are blended in a binder to adjust the printing ink. The said printing ink can change suitably the compounding quantity (mixing rate) with respect to the binder of metal raw material particle | grains according to printing means or coating methods, such as flexographic printing and offset printing. In addition to the binder, additives such as a brightener, an emulsifier, and an antioxidant can be added to the printing ink.
The flattening means plastically processes the metal raw material particles into a flat shape using equipment for plastically processing powder into a flat shape, such as a ball mill, a roll rolling mill, a stamp mill, and a sand mill. . As this flattening means, it is particularly preferable to use a ball mill, whereby the metal raw material particles can be flattened in a high yield, and the cost for the pigment preparation step can be reduced.

以下に、本発明の実施例を説明するが、本発明は以下の実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

アトマイズ法(超高圧旋回水アトマイズ法)により得られた銀の原料粉体粒子(福田金属箔粉社製、「Ag−HWQ」、略球状、粒径1.5μm)を、ボールミル粉砕機を用いて平均粒径4.0μm、比表面積1.2m2/gに偏平化した。偏平化後の銀粒子をアクリル酸メチル系接着剤や溶剤よりなるバインダに混合して印刷インキを調整し、この印刷インキを基材フィルム(ポリエステルフィルム、片面コロナ処理、25μmt)のコロナ処理面側に塗布量3g/m2となるようフィルム印刷機を用いて印刷して高反射率フィルムのサンプルを得た。 Using a ball mill grinder, the raw material powder particles of silver obtained by the atomization method (ultra-high pressure swirling water atomization method) (Fukuda Metal Foil Powder Co., Ltd., “Ag-HWQ”, approximately spherical, particle size 1.5 μm) And flattened to an average particle size of 4.0 μm and a specific surface area of 1.2 m 2 / g. The flattened silver particles are mixed with a binder made of a methyl acrylate adhesive or solvent to adjust the printing ink, and this printing ink is used on the corona-treated surface side of the base film (polyester film, single-sided corona treatment, 25 μmt). The film was printed using a film printer so that the coating amount was 3 g / m 2 to obtain a sample of a high reflectance film.

得られたサンプルは、紫外可視分光光度計(日本分光株式会社製、JASCO V−550)を用いて450nmにおける可視光線の正反射率を基材フィルム側から測定し、表1に示される結果を得た。
なお、正反射率の測定結果は、正反射率85%未満を×、85%以上88%未満を△、88%以上を○とした。また、製造コストの評価は、金属蒸着フィルムの製造コストと比較してコスト高になる場合を×、同等レベルの製造コストの場合を△、コスト安になる場合を○と評価した。
The obtained sample was obtained by measuring the regular reflectance of visible light at 450 nm from the substrate film side using an ultraviolet-visible spectrophotometer (JASCO VJ550, JASCO V-550), and the results shown in Table 1 were obtained. Obtained.
In addition, as for the measurement result of regular reflectance, less than 85% of regular reflectance was set to x, 85% or more and less than 88% was set to (triangle | delta), and 88% or more was made into (circle). In addition, the evaluation of the manufacturing cost was evaluated as x when the cost was high compared to the manufacturing cost of the metal vapor deposited film, Δ when the manufacturing cost was equivalent, and ○ when the cost was low.

また、表1における総合評価は正反射率の評価と製造コストの評価とを総合的に判断したものであり、正反射率と製造コストとの双方で○の評価である場合を◎(非常に優れる)の総合評価とし、◎の総合評価以外であって正反射率と製造コストとのいずれにも×の評価がない場合を○(優れる)の総合評価とし、いずれかに×の評価があれば×(劣る)の総合評価とした。   In addition, the comprehensive evaluation in Table 1 is a comprehensive judgment of the evaluation of the regular reflectance and the evaluation of the manufacturing cost, and the case where both the regular reflectance and the manufacturing cost are evaluated as ◎ (very Except for the overall evaluation of ◎, and when there is no evaluation of × for both regular reflectance and manufacturing cost, the evaluation is ○ (excellent), and there is an evaluation of × for either X (inferior) overall evaluation.

粒径1.0μmの銀の金属原料粒子を実施例1同様な方法で偏平化して、平均粒径4.0μm、比表面積1.4m2/gの金属顔料粒子を調製し、この金属顔料粒子を用いた印刷インキを基材フィルムに印刷して金属光沢フィルムのサンプルを得た。測定結果を表1に示す。 Silver metal raw material particles having a particle diameter of 1.0 μm were flattened in the same manner as in Example 1 to prepare metal pigment particles having an average particle diameter of 4.0 μm and a specific surface area of 1.4 m 2 / g. The printing ink using was printed on a base film to obtain a sample of a metallic gloss film. The measurement results are shown in Table 1.

粒径1.5μmの銀の金属原料粒子を実施例1同様な方法で偏平化して、平均粒径8.0μm、比表面積2.4m2/gの金属顔料粒子を調製し、この金属顔料粒子を用いた印刷インキを基材フィルムに印刷して金属光沢フィルムのサンプルを得た。測定結果を表1に示す。 Silver metal raw material particles having a particle size of 1.5 μm were flattened in the same manner as in Example 1 to prepare metal pigment particles having an average particle size of 8.0 μm and a specific surface area of 2.4 m 2 / g. The printing ink using was printed on a base film to obtain a sample of a metallic gloss film. The measurement results are shown in Table 1.

粒径2.0μmの銀の金属原料粒子を実施例1同様な方法で偏平化して、平均粒径10.0μm、比表面積3.0m2/gの金属顔料粒子を調製し、この金属顔料粒子を用いた印刷インキを基材フィルムに印刷して金属光沢フィルムのサンプルを得た。測定結果を表1に示す。 Silver metal raw material particles having a particle diameter of 2.0 μm were flattened in the same manner as in Example 1 to prepare metal pigment particles having an average particle diameter of 10.0 μm and a specific surface area of 3.0 m 2 / g. The printing ink using was printed on a base film to obtain a sample of a metallic gloss film. The measurement results are shown in Table 1.

粒径1.0μmの銀の金属原料粒子を実施例1同様な方法で偏平化して、平均粒径4.0μm、比表面積1.4m2/gの金属顔料粒子を調製し、この金属顔料粒子を用いた印刷インキを塗布量を3.0g/m2で基材フィルムに印刷して金属光沢フィルムのサンプルを得た。測定結果を表1に示す。 Silver metal raw material particles having a particle diameter of 1.0 μm were flattened in the same manner as in Example 1 to prepare metal pigment particles having an average particle diameter of 4.0 μm and a specific surface area of 1.4 m 2 / g. A sample of metallic glossy film was obtained by printing on the base film with a printing ink with a coating amount of 3.0 g / m 2 . The measurement results are shown in Table 1.

粒径1.0μmの銀の金属原料粒子を実施例1同様な方法で偏平化して、平均粒径4.0μm、比表面積1.4m2/gの金属顔料粒子を調製し、この金属顔料粒子を用いた印刷インキを塗布量を8.0g/m2で基材フィルムに印刷して金属光沢フィルムのサンプルを得た。測定結果を表1に示す。 Silver metal raw material particles having a particle diameter of 1.0 μm were flattened in the same manner as in Example 1 to prepare metal pigment particles having an average particle diameter of 4.0 μm and a specific surface area of 1.4 m 2 / g. A sample of metallic glossy film was obtained by printing on the base film with a printing ink with a coating amount of 8.0 g / m 2 . The measurement results are shown in Table 1.

粒径1.0μmの銀の金属原料粒子を実施例1同様な方法で偏平化して、平均粒径4.0μm、比表面積1.4m2/gの金属顔料粒子を調製し、この金属顔料粒子を用いた印刷インキを塗布量を2.0g/m2で基材フィルムに印刷して金属光沢フィルムのサンプルを得た。測定結果を表1に示す。 Silver metal raw material particles having a particle diameter of 1.0 μm were flattened in the same manner as in Example 1 to prepare metal pigment particles having an average particle diameter of 4.0 μm and a specific surface area of 1.4 m 2 / g. The printing ink using was printed on the base film at a coating amount of 2.0 g / m 2 to obtain a sample of a metallic gloss film. The measurement results are shown in Table 1.

粒径1.0μmの銀の金属原料粒子を実施例1同様な方法で偏平化して、平均粒径4.0μm、比表面積1.4m2/gの金属顔料粒子を調製し、この金属顔料粒子を用いた印刷インキを塗布量を10.0g/m2で基材フィルムに印刷して金属光沢フィルムのサンプルを得た。測定結果を表1に示す。 Silver metal raw material particles having a particle diameter of 1.0 μm were flattened in the same manner as in Example 1 to prepare metal pigment particles having an average particle diameter of 4.0 μm and a specific surface area of 1.4 m 2 / g. A sample of metallic glossy film was obtained by printing on the base film with an application amount of 10.0 g / m 2 . The measurement results are shown in Table 1.

粒径1.0μmのアルミニウムの金属原料粒子を実施例1同様な方法で偏平化して、平均粒径4.0μm、比表面積1.4m2/gのアルミニウムの金属顔料粒子を調製し、この金属顔料粒子を用いた印刷インキを基材フィルムに印刷して金属光沢フィルムのサンプルを得た。測定結果を表1に示す。
「比較例1」
金属顔料粒子にアトマイズ法により得られた銀粒子(略球状、粒径4.0μm)を、偏平化処理なしに用いたものである。
「比較例2」
銀の蒸着箔を粉砕して粒度調整し、これを金属顔料粒子に用いたものである。
「比較例3」
金属原料粒子に粒径2.6μmの大きめの銀粒子(アトマイズ法)を用いて、これに実施例4同様の偏平化処理を行って、比表面積及び平均粒径が実施例4より大きな金属顔料粒子を調整し、これを印刷インキに配合してサンプルを得たものである。
「比較例4」
実施例2の金属顔料粒子を用いた印刷インキを塗布量1.0g/m2で塗工したものである。
The aluminum metal raw material particles having a particle diameter of 1.0 μm were flattened in the same manner as in Example 1 to prepare aluminum metal pigment particles having an average particle diameter of 4.0 μm and a specific surface area of 1.4 m 2 / g. A printing ink using pigment particles was printed on a base film to obtain a sample of a metallic gloss film. The measurement results are shown in Table 1.
"Comparative Example 1"
Silver particles (substantially spherical, particle size of 4.0 μm) obtained by an atomizing method are used as metal pigment particles without flattening treatment.
"Comparative Example 2"
A silver vapor-deposited foil is pulverized to adjust the particle size, and this is used as metal pigment particles.
“Comparative Example 3”
A metal pigment having a specific surface area and an average particle size larger than that of Example 4 is obtained by using a large silver particle (atomizing method) having a particle size of 2.6 μm as the metal raw material particles, and subjecting this to the same flattening treatment as in Example 4. The particles are prepared and blended with printing ink to obtain a sample.
“Comparative Example 4”
The printing ink using the metal pigment particles of Example 2 is applied at a coating amount of 1.0 g / m 2 .

Figure 2008001784
Figure 2008001784

Claims (7)

合成樹脂製の基材フィルムと、この基材フィルムの表裏面のいずれかに積層される印刷層とを備え、前記印刷層が複数の金属顔料粒子を含む印刷インキにより形成される高反射率フィルムであって、
前記金属顔料粒子は、基材フィルムを透過する波長450nmにおける可視光線の正反射率を85%以上にすべく、平均粒径が4〜10μmであって比表面積が1.2〜3.0m2/gに偏平化されていることを特徴とする高反射率フィルム。
A high-reflectance film comprising a base film made of synthetic resin and a printed layer laminated on either of the front and back surfaces of the base film, wherein the printed layer is formed of printing ink containing a plurality of metal pigment particles Because
The metal pigment particles have an average particle diameter of 4 to 10 μm and a specific surface area of 1.2 to 3.0 m 2 so that the regular reflectance of visible light at a wavelength of 450 nm that transmits through the base film is 85% or more. A high reflectance film characterized by being flattened to / g.
前記金属顔料粒子は、銀より形成されていることを特徴とする請求項1に記載の高反射率フィルム。 The high reflectance film according to claim 1, wherein the metal pigment particles are made of silver. 前記金属顔料粒子は、アトマイズ法により得られる平均粒径0.8〜2.0μmの金属原料粒子を偏平化手段により偏平に塑性変形して形成されていることを特徴とする請求項1または2に記載の高反射率フィルム。 3. The metal pigment particles are formed by flatly plastically deforming metal raw material particles having an average particle diameter of 0.8 to 2.0 [mu] m obtained by an atomizing method using a flattening means. High reflectance film as described in 1. 前記基材フィルムは、光透過度が85%以上であることを特徴とする請求項1〜3のいずれか1項に記載の高反射率フィルム。 The high reflectivity film according to claim 1, wherein the base film has a light transmittance of 85% or more. 合成樹脂製の基材フィルムの表裏面のいずれかに、金属顔料粒子を含む印刷インキで印刷層を形成する印刷工程を備える高反射率フィルムの製造方法であって、
前記印刷工程の前に、平均粒径が4〜10μmであって比表面積が1.2〜3.0m2/gになるまで金属原料粒子を偏平状に塑性変形する顔料調製工程を設けることを特徴とする高反射率フィルムの製造方法。
A method for producing a high reflectivity film comprising a printing step of forming a printing layer with a printing ink containing metal pigment particles on either the front or back surface of a base film made of synthetic resin,
Before the printing step, there is provided a pigment preparation step in which the metal raw material particles are plastically deformed into a flat shape until the average particle size is 4 to 10 μm and the specific surface area is 1.2 to 3.0 m 2 / g. A method for producing a high reflectivity film, which is characterized.
前記金属原料粒子が、アトマイズ法により得られる平均粒径0.8〜2.0μmの銀粒子であることを特徴とする請求項5に記載の高反射率フィルムの製造方法。 6. The method for producing a high reflectance film according to claim 5, wherein the metal raw material particles are silver particles having an average particle diameter of 0.8 to 2.0 [mu] m obtained by an atomizing method. 前記印刷層を塗布量2g/m2以上に形成することを特徴とする請求項5または6に記載の高反射率フィルムの製造方法。 The method for producing a high reflectivity film according to claim 5 or 6, wherein the printed layer is formed at a coating amount of 2 g / m 2 or more.
JP2006171870A 2006-06-21 2006-06-21 High reflectance film and its manufacturing method Pending JP2008001784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006171870A JP2008001784A (en) 2006-06-21 2006-06-21 High reflectance film and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006171870A JP2008001784A (en) 2006-06-21 2006-06-21 High reflectance film and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008001784A true JP2008001784A (en) 2008-01-10

Family

ID=39006432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006171870A Pending JP2008001784A (en) 2006-06-21 2006-06-21 High reflectance film and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008001784A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024740A1 (en) * 2009-08-27 2011-03-03 独立行政法人産業技術総合研究所 Light reflector comprising heat-resistant silver alloy light-reflecting material
JP2012077198A (en) * 2010-10-01 2012-04-19 Okitsumo Kk Coating composition, coated object using the same, and method for forming coated film
JP2013064776A (en) * 2011-09-15 2013-04-11 Yupo Corp Light reflection body and surface light source device using the same
JP2016511776A (en) * 2013-01-17 2016-04-21 サン ケミカル コーポレイション EC primer coating for paper and paperboard
JP2016088096A (en) * 2014-10-30 2016-05-23 大日本印刷株式会社 Printed matter, container using the printed matter, manufacturing method of printed matter and selection method of printed matter
JP2016088097A (en) * 2014-10-30 2016-05-23 大日本印刷株式会社 Printed matter, container using the printed matter, manufacturing method of printed matter and selection method of printed matter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024740A1 (en) * 2009-08-27 2011-03-03 独立行政法人産業技術総合研究所 Light reflector comprising heat-resistant silver alloy light-reflecting material
JPWO2011024740A1 (en) * 2009-08-27 2013-01-31 独立行政法人産業技術総合研究所 Light reflector comprising heat-resistant silver alloy light reflector
JP2012077198A (en) * 2010-10-01 2012-04-19 Okitsumo Kk Coating composition, coated object using the same, and method for forming coated film
JP2013064776A (en) * 2011-09-15 2013-04-11 Yupo Corp Light reflection body and surface light source device using the same
JP2016511776A (en) * 2013-01-17 2016-04-21 サン ケミカル コーポレイション EC primer coating for paper and paperboard
JP2016088096A (en) * 2014-10-30 2016-05-23 大日本印刷株式会社 Printed matter, container using the printed matter, manufacturing method of printed matter and selection method of printed matter
JP2016088097A (en) * 2014-10-30 2016-05-23 大日本印刷株式会社 Printed matter, container using the printed matter, manufacturing method of printed matter and selection method of printed matter

Similar Documents

Publication Publication Date Title
EP1742090B1 (en) Hue variable retroreflective sheet
JP2008001784A (en) High reflectance film and its manufacturing method
CN101522767A (en) Hard-coating film, process for producing the same, and antireflection film
WO2012016241A1 (en) High opacity laser printable facestock
JP4804193B2 (en) Biaxially stretched multilayer laminated film
JP4962768B2 (en) Light diffusion sheet
EP1186638B1 (en) Use of a printing ink, printing method and printed packaging material
JP4517538B2 (en) Printing ink, printing method and printing package
JP3209532U (en) Glitter decorative sheet
TW579439B (en) Semi-transmitting reflection film
JP2009199002A (en) Laminated film for diffusion sheet, diffusion sheet and display device
KR20190125996A (en) Laminated White Film and Recording Material
JP2546336B2 (en) Polyester film and method for producing the same
JP2016088096A (en) Printed matter, container using the printed matter, manufacturing method of printed matter and selection method of printed matter
JP6880621B2 (en) Thermoplastic resin film
JP2021138105A (en) Release film
US20240010849A1 (en) Decorative laminate including metallic layer and method for producing the same, and metallic coating composition
JP3732644B2 (en) Special glitter foil powder and its manufacturing method
EP4024095A1 (en) Hot stamping foil and printed article with optically variable device
WO2014091987A1 (en) Laminated film and touch panel
WO2022196347A1 (en) Transparent conductive film
JP7119594B2 (en) Metallic decorative member and metallic decorative molding using the same
JP2010264665A (en) Laminated sheet with carbon cloth-textured design, and laminated sheet coated metal sheet
JP2000280403A (en) High brightness printed pet film laminated steel panel
JP2022178048A (en) hot stamping foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20101019