JP2007515785A - Two-stage wafer coating underfill - Google Patents

Two-stage wafer coating underfill Download PDF

Info

Publication number
JP2007515785A
JP2007515785A JP2006541112A JP2006541112A JP2007515785A JP 2007515785 A JP2007515785 A JP 2007515785A JP 2006541112 A JP2006541112 A JP 2006541112A JP 2006541112 A JP2006541112 A JP 2006541112A JP 2007515785 A JP2007515785 A JP 2007515785A
Authority
JP
Japan
Prior art keywords
underfill
acrylate
wafer
underfill composition
photoinitiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006541112A
Other languages
Japanese (ja)
Inventor
エイ キャネルス、ドリアン
ゴーシュ、カイラン
キレス、アマンダダブリュ
イー コール、エドワード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LORDCORPORATION
Original Assignee
LORDCORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LORDCORPORATION filed Critical LORDCORPORATION
Publication of JP2007515785A publication Critical patent/JP2007515785A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/10Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers containing more than one epoxy radical per molecule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01038Strontium [Sr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01054Xenon [Xe]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor

Abstract

【課題】超小型電子チップ・アセンブリ、特に集積回路にアンダフィルを塗布する方法及び材料の提供。
【解決手段】大きなウェーハ又は集積回路チップの活性面の塗布される100%非揮発性、一液型液体アンダフィル封入剤が開示される。塗布時に、その封入剤は放射線、特にUV、可視及び赤外線に暴露することによって液化可能、不粘着性固体に転化される。アンダフィルを被覆したウェ−ハは硬化の進行なしに顕著な保存寿命を示す。大きなウェーハは小さいウェーハ切片に単数化されて数ヶ月貯蔵され、その後、半田リフロー中にウェーハ連結アセンブリは固定され、アンダフィルは液化し、すみ肉に流出し、そして熱活性化架橋時に熱硬化へ転化する。
【選択図】図1
A method and material for applying underfill to a microelectronic chip assembly, particularly an integrated circuit.
A 100% non-volatile, one-part liquid underfill encapsulant applied to the active surface of a large wafer or integrated circuit chip is disclosed. Upon application, the encapsulant is converted to a liquefiable, non-sticky solid by exposure to radiation, particularly UV, visible and infrared. Underfill coated wafers show significant shelf life without progress of curing. Large wafers are singulated into small wafer sections and stored for several months, after which the wafer connection assembly is fixed during solder reflow, the underfill liquefies, drains into fillet, and heat cures during heat activated crosslinking Convert.
[Selection] Figure 1

Description

本発明は超小型電子チップ・アセンブリに関し、特にアンダフィルを集積回路のウェーハに塗布する方法及び材料に関する。   The present invention relates to microelectronic chip assemblies and more particularly to methods and materials for applying underfill to integrated circuit wafers.

電子構成要素の表面取付けは、自動化パッケージアセンブリ装置においてよく発展している。集積回路は、トランジスタ及びダイオードのようなデバイス及び1つ以上の機能回路を形成するために導電性結線よって一緒に結合された抵抗器及びキャパシタのような素子から作られている。それらのデバイスはシリコンのウェ−ハ又はシート上に形成される、そのデバイスの表面は一連の製造工程を経て、ダイス、チップ又はダイ間の境界として作用するウェーハの表面にけがき線又はソーストリートの矩形パターンを反復されることによって相互に分離された同一集積回路のパターンを形成する。製造工程の最終段階においてウェーハから単数化されたダイスは基板に接着されてICパッケージを形成する。   Surface mounting of electronic components is well developed in automated package assembly equipment. Integrated circuits are made up of devices such as transistors and diodes and elements such as resistors and capacitors that are coupled together by conductive connections to form one or more functional circuits. These devices are formed on a silicon wafer or sheet, and the surface of the device goes through a series of manufacturing steps to create a score line or saw street on the surface of the wafer that acts as a boundary between dies, chips or dies. By repeating the rectangular pattern, patterns of the same integrated circuit separated from each other are formed. The dice singulated from the wafer in the final stage of the manufacturing process are bonded to the substrate to form an IC package.

従来のフリップチップ技術は一般に、集積回路の活性(活動)面がパッケージ基板又はプリント回路板(集約的にPCBと呼ぶ)に取付けられるアセンブリを意味する。フリップチップ・アセンブリはアンダフィルの実装あり又はなしで設計できる。フリップチップの使用に関して、チップは回路基板の表面の凹部に対応するように設計された活性面上の場所に配置される半田の小バンプ又はボールを備える。そのチップは、はんだバンプが基板上のパッドとチップ上の対応するパッドとの間に挟まれるようにバンプを基板と合わせるように取付けられる。融剤の塗布後にそのアセンブリの半田がリフローする点に熱を加える。冷却の際に、はんだが硬化して、それによってフリップチップを基板の表面に取り付ける。従来のアンダフィルは、2,3の異なる方法で使用され、取り付けたチップに塗布して化学的攻撃、湿気、空気中の汚染物質、等に対して、並びに輸送並びに使用において遭遇する機械的衝撃、振動および温度サイクルに対してチップを保護する。従来の毛管フリップチプアンダフィル法は、チップ及び回路板の整列、融剤の分配、はんだリフロー、融剤の清浄、アンダフィルの塗布、アンダフィルのフロー及び硬化を要する。   Conventional flip-chip technology generally refers to an assembly in which the active surface of an integrated circuit is attached to a package substrate or printed circuit board (collectively referred to as a PCB). The flip chip assembly can be designed with or without underfill mounting. For flip chip use, the chip comprises small bumps or balls of solder that are placed at locations on the active surface that are designed to correspond to recesses in the surface of the circuit board. The chip is mounted to align the bump with the substrate so that the solder bump is sandwiched between the pad on the substrate and the corresponding pad on the chip. Heat is applied to the point where the solder of the assembly reflows after the flux is applied. Upon cooling, the solder hardens, thereby attaching the flip chip to the surface of the substrate. Conventional underfill is used in a few different ways, applied to the attached chip and applied to chemical attacks, moisture, airborne contaminants, etc., and mechanical shocks encountered in transportation and use Protect the chip against vibration and temperature cycling. Conventional capillary flip chip underfill methods require chip and circuit board alignment, flux distribution, solder reflow, flux cleaning, underfill application, underfill flow and cure.

チップパッケージに使用されるアンダフィルは、チップ及びパッケージ又は基板を相互結合させて湿気及び汚染物質のような環境要素からはんだの継目を保護し、機械的応力を再分配してデバイスの寿命を延ばす機能を果たす。湿気のような汚染物質による金属の相互結合部の腐食に対してチップを保護する。しかしながら、接着剤の不適当な選択は、収縮、離層、加水分解の不安定性、腐食及びアンダフィルによる汚染のようないくつかのモードでフリップチップ・パッケージの破損をもたらす。   Underfill used in chip packages interconnects the chip and package or substrate to protect solder seams from environmental elements such as moisture and contaminants, and redistribute mechanical stress to extend device life Fulfills the function. Protects the chip against corrosion of metal interconnects by contaminants such as moisture. However, inadequate selection of adhesives results in flip chip package breakage in several modes such as shrinkage, delamination, hydrolysis instability, corrosion and underfill contamination.

チップアンダフィルは、チップ、相互結合部、アンダフィル及び基板間の熱膨張係数の差の結果として被着体間にストレスを与えるのを回避するように設計される。ストレスによる破損モードは、基板が有機質であってデバイスのサイズが増すとますます広がる。チップアンダフィルは、はんだマスクで被覆又は無被覆のセラミック又は有機PCB(例えば、FR4エポキシ);金属合金又は有機相互結合部;及び集積回路ダイ(チップ)(典型的にシリコン又は他の無機物質から成り、不動態化薄層を被覆又は被覆しない)のような基板に接着する機能を提供しなければならない。   The chip underfill is designed to avoid stressing the adherend as a result of the difference in coefficient of thermal expansion between the chip, interconnect, underfill and substrate. The failure mode due to stress becomes more widespread as the substrate is organic and the device size increases. Chip underfills are ceramic or organic PCBs (eg, FR4 epoxy) coated or uncoated with a solder mask; metal alloys or organic interconnects; and integrated circuit dies (chips) (typically from silicon or other inorganic materials). It must provide the ability to adhere to the substrate (such as, with or without the passivating thin layer).

パッケージ電子構成要素に対する2つの主方法の一つは、取り付けられる際に基板の同一面(側)にはんだ付けされる。これらのデバイスは「表面取付け」と言われる。2種類の従来のアンダフィルが表面取付けデバイスに実際に使用される:毛管フロー及び「無フロー」タイプである。これらの技術の詳細な説明は文献に見ることができる。例えば、John H.Lau’s book Low Cost Flip Chip Technologies for DCA,WLCSP and PBGA Assemblies,McGraw−Hill,2000.これらの技術の両方とも熱が典型的に使用されて、液体熱硬化配合物を硬化又は固体膜をアセンブリに積層する。システムから空孔を除去するために真空を使用する。アンダフィルは典型的にチップインパッケージ又はチップオンボード用の表面取付け(SMT)アセンブラインリ上に塗布される。伝統的なフロー及びノーフロー・アンダフィルの使用はSTMライン上で数工程を要する、そしてこの方法は一般にこれらの超小型電子アセンブリラインの障害である。   One of the two main methods for packaged electronic components is soldered to the same side (side) of the board when attached. These devices are referred to as “surface mount”. Two conventional underfills are actually used in surface mount devices: capillary flow and “no flow” types. Detailed descriptions of these techniques can be found in the literature. For example, John H. et al. Lau's book Low Cost Chip Chip Technologies for DCA, WLCSP and PBGA Assemblies, McGraw-Hill, 2000. Both of these techniques typically use heat to cure the liquid thermoset formulation or laminate the solid film to the assembly. A vacuum is used to remove voids from the system. Underfill is typically applied over a surface mount (SMT) assembly for chip-in-package or chip-on-board. The use of traditional flow and no-flow underfill requires several steps on the STM line, and this method is generally an obstacle to these microelectronic assembly lines.

代表的な従来のノーフロー・アンダフィルは米国特許第6,180,696号に開示されている。そのアンダフィル材料は最初に基板又は半導体チップ上に分配され、はんだバンプリフロー及びアンダフィル封入剤硬化が同時に続く。米国特許第6,180,696号に教示されているアンダフィルは、エポキシ樹脂及び/又はエポキシ樹脂の混合体、有機カルボン酸無水物硬化剤、硬化促進剤、自溶剤、粘度調節剤、カップリング剤、及び界面活性剤から成る。そのアンダフィル配合物は180〜240℃の範囲内に硬化ピーク温度を示す。これらのアンダフィルは零下の温度(℃)で貯蔵して硬化の進行を防止しなければならない。   A typical conventional no-flow underfill is disclosed in US Pat. No. 6,180,696. The underfill material is first dispensed onto the substrate or semiconductor chip, followed by solder bump reflow and underfill encapsulant curing simultaneously. Underfills taught in US Pat. No. 6,180,696 include epoxy resins and / or mixtures of epoxy resins, organic carboxylic anhydride curing agents, curing accelerators, autosolvents, viscosity modifiers, couplings. And a surfactant. The underfill formulation exhibits a cure peak temperature in the range of 180-240 ° C. These underfills must be stored at subzero temperatures (° C.) to prevent the cure from proceeding.

アンダフィルはPC基板上に塗布される特許構成として想像できるフォロレジスト材料と異なるが、若干の類似性が偏在するエポキシ樹脂の使用にある。フォトレジスト塗布用塗料は、活性線のマスクを通して暴露される領域において硬化するための光開始剤、及び非照射又は影領域において重合をさせる二次的熱活性化遊離基硬化成分を使用することが知られている。一般に利用される一つの二次的硬化機構は配合物に熱活性化過酸化物の添加にたよる;しかしながら過酸化物誘導重合を開始させるには100℃以上の温度が必要であり、従って、例えば、感熱性電子構成要素が含まれる使用を排除する。   Underfill is different from the photoresist material that can be imagined as a patented composition applied on a PC substrate, but there is a slight similarity in the use of an epoxy resin. Photoresist coatings may use a photoinitiator to cure in areas exposed through a mask of actinic radiation and a secondary heat-activated free radical curing component that causes polymerization in unirradiated or shadowed areas. Are known. One commonly used secondary cure mechanism depends on the addition of heat-activated peroxide to the formulation; however, temperatures above 100 ° C. are required to initiate peroxide-induced polymerization, and therefore For example, the use of heat sensitive electronic components is excluded.

米国特許第5,077,376号は潜熱硬化成分を含有するエポキシ接着剤を開示している。米国特許第5,077,376号は、ジシャンアミン、二塩基酸ジヒドロジド、ホウ素トリフロライド−アミン付加物、グアナミン、メラミン、等のような潜硬化剤を含有するエポキシ樹脂組成物の広範囲の使用をもたらす液体エポキシの既知貯蔵安定性を教示している、そしてグアナミンは硬化するために150℃以上の高温を必要とすることにおいて欠陥がある。   U.S. Pat. No. 5,077,376 discloses an epoxy adhesive containing a latent heat curing component. US Pat. No. 5,077,376 results in widespread use of epoxy resin compositions containing latent curing agents such as dishan amine, dibasic acid dihydrozide, boron trifluoride-amine adduct, guanamine, melamine, and the like. Teaches the known storage stability of liquid epoxies, and guanamine is deficient in requiring high temperatures above 150 ° C. to cure.

米国特許第5,523,443号は、紫外線硬化性重合性システム及び水分硬化機構を含む二重硬化適応塗料を開示している。その重合性塗料系は一成分系であって、少なくとも一つのアルコキシ−ウレタン−アクリレート又はメタクリレート、アクリレート又はメタクリレート又はビニルエーテル希釈剤、カチオン又は遊離基開始剤タイプの重合開始剤、及び金属触媒から成る。   U.S. Pat. No. 5,523,443 discloses a dual cure adaptive coating that includes an ultraviolet curable polymerizable system and a moisture cure mechanism. The polymerizable coating system is a one-component system and comprises at least one alkoxy-urethane-acrylate or methacrylate, an acrylate or methacrylate or vinyl ether diluent, a cationic or free radical initiator type polymerization initiator, and a metal catalyst.

米国特許第5,249,101号(IBM,1993)は、約69MPa以上の弾性率を有するチップキャリヤーの回路化表面上の回路素子用の保護エポキシ被膜の脆性は割れ及び離層をもたらすことを開示している。この特許は、アクリレートウレタンオリゴマー、アクリレート単量体及び光開始剤から成り、約10,000psi以下の弾性率を有し、10ppm以下の塩化物イオン濃度を有する被膜を提供することを提案した。アンダフィルを塗布したアクリレートウレタンウェーハは十分な耐熱性に欠けるので、半田リフローに耐えられない。   US Pat. No. 5,249,101 (IBM, 1993) states that the brittleness of protective epoxy coatings for circuit elements on the circuitized surface of a chip carrier having an elastic modulus of about 69 MPa or more results in cracking and delamination. Disclosure. This patent proposed to provide a coating consisting of an acrylate urethane oligomer, an acrylate monomer and a photoinitiator, having a modulus of elasticity of about 10,000 psi or less and a chloride ion concentration of 10 ppm or less. An acrylate urethane wafer coated with underfill lacks sufficient heat resistance and cannot withstand solder reflow.

米国特許第5,494,981号は、環状脂肪族エポキシ樹脂、シャネートエステル樹脂、任意にポリオール、及び開始剤としてBronsted酸の硬化性組成物を開示している。硬化時に、その組成物は浸透する重合体網(IPN)を提供する。そのIPNは高温安定振動減衰材料、接着剤及び保護塗料用結合剤として有用である。
米国特許第5,672,393号は、紫外及び可視範囲の波長を含む放射線に暴露したとき最初は比較的厚い表皮を与え、最終的には良好な物理的及び表面性質を有する比較的低ストレス付着層に硬化する高速度で反応するアクリレート封入組成物を開示している。その方法は、光重合及び熱重合を開始させるために目的物上の組成物を放射線に当てる必要がある、そしてその装置は近接して並置された化学線および熱エネルギー源を含む。
U.S. Pat. No. 5,494,981 discloses a curable composition of cycloaliphatic epoxy resin, shannate ester resin, optionally polyol, and Bronsted acid as initiator. Upon curing, the composition provides a penetrating polymer network (IPN). The IPN is useful as a binder for high temperature stable vibration damping materials, adhesives and protective coatings.
U.S. Pat. No. 5,672,393 initially provides a relatively thick skin when exposed to radiation containing wavelengths in the ultraviolet and visible range, and eventually has a relatively low stress with good physical and surface properties. An acrylate encapsulating composition is disclosed that reacts at a high rate to cure the adhesion layer. The method requires the composition on the object to be exposed to radiation to initiate photopolymerization and thermal polymerization, and the apparatus includes an actinic radiation and a thermal energy source in close proximity.

米国特許第5,706,579号は、金属のふたに予め塗布し、熱伝導性充てん剤材料を含有するβ−ステージ可能樹脂を使用してダイ、プリント配線板及び金属のふたから製造した集積回路パッケージを組立てる方法を開示している。ダイ及び基板上の適所のふたで、そのパッケージは加熱して樹脂を流しダイとの接触をさせる。さらに加熱して樹脂の硬化及びダイとふた間の永久熱ブリッジをさせる。   U.S. Pat. No. 5,706,579 discloses an integration fabricated from a die, printed wiring board and metal lid using a β-stageable resin pre-applied to a metal lid and containing a thermally conductive filler material. A method for assembling a circuit package is disclosed. With the lid in place on the die and substrate, the package is heated to flow the resin into contact with the die. Further heating causes the resin to cure and a permanent thermal bridge between the die and lid.

米国特許第6,194,788号は、フリップチップ用の集積熱可塑性、自溶二液型アンダフィルを開示している。そのアンダフィルは溶融タイプの酸性エポキシ硬化剤と共にエポキシ樹脂及びアセテート希釈剤から成る。   U.S. Patent No. 6,194,788 discloses an integrated thermoplastic, self-fluxing two-component underfill for flip chips. The underfill consists of an epoxy resin and an acetate diluent together with a melt type acidic epoxy curing agent.

米国特許第6,323,062号は、溶媒をベースにしたアンダフィルをフリップチップに塗布する方法を開示している。その方法は、バンプトウェーハを拡張可能キャリヤー基板に接着し、最初にウェーハをカットして個々のチップを形成し、そのキャリヤー基板を二方向に延伸してそれぞれのチップ間にチャンネルを形成し、チップの表面及びチップの縁の周りにアンダフィル材料を塗布する工程を含む。そのアンダフィル材料は開示されていないが、アンダフィルは塗布後に乾燥され、続いてチップ間のチャンネルにおけるアンダフィル材料を切断して、個々のアンダフィル被覆チップをキャリヤーから除去することが教示されている。   US Pat. No. 6,323,062 discloses a method of applying a solvent-based underfill to a flip chip. The method involves bonding a bumped wafer to an expandable carrier substrate, first cutting the wafer to form individual chips, and stretching the carrier substrate in two directions to form channels between each chip, Applying underfill material around the surface of the chip and the edge of the chip. Although the underfill material is not disclosed, the underfill is taught to dry after application and subsequently cut the underfill material in the channels between the chips to remove individual underfill coated chips from the carrier. Yes.

米国特許第6,383,659号は、5,000〜200,000のMWを有する熱可塑性重合体を含有する低Tgエポキシを主成分としたアンダフィルのb−段階膜を開示している。米国特許第6,383,659号は、塊状重合型のエポキシ樹脂組成物であって、典型的にイミダゾール又はフェノール硬化型を含有し、硬化組成物の限定された貯蔵安定性、水分耐性及び高温性能を示し、B段階反応の進行を制御することが困難であることを教示している。
米国特許第5,077,376号公報 米国特許第5,523,443号公報 米国特許第5,249,101号公報 米国特許第5,494,981号公報 米国特許第5,672,393号公報 米国特許第5,672,393号公報 米国特許第5,706,579号公報 米国特許第6,194,788号公報 米国特許第6,323,062号公報 米国特許第6,383,659号公報
U.S. Pat. No. 6,383,659 discloses an underfill b-stage membrane based on a low Tg epoxy containing a thermoplastic polymer having a MW of 5,000 to 200,000. U.S. Pat. No. 6,383,659 is a block polymerization type epoxy resin composition, typically containing an imidazole or phenolic curing type, with limited storage stability, moisture resistance and high temperature of the cured composition. It shows performance and teaches that it is difficult to control the progress of the B-stage reaction.
US Pat. No. 5,077,376 US Pat. No. 5,523,443 US Pat. No. 5,249,101 US Pat. No. 5,494,981 US Pat. No. 5,672,393 US Pat. No. 5,672,393 US Pat. No. 5,706,579 US Pat. No. 6,194,788 US Pat. No. 6,323,062 US Pat. No. 6,383,659

上記の従来技術は被膜を形成する二重硬化法を例示しているが、シリコンウェーハのような脆い基板についての第2の硬化化学を含むb−段階被膜の貯蔵に関するものではない。ウェーハのゆがみ、破断及び約50℃に容易に達する温度での長期の周囲貯蔵は、制御された環境を除いて輸送又は貯蔵において起こりうる。   The above prior art illustrates a double cure method of forming a coating, but does not relate to storage of a b-stage coating that includes a second curing chemistry for a brittle substrate such as a silicon wafer. Wafer distortion, breakage, and long-term ambient storage at temperatures easily reaching about 50 ° C. can occur in transport or storage except in a controlled environment.

アンダフィルが塗布されて二重工程硬化アンダフィルのはんだリフロー工程が必要となるまで数ヶ月の遅延を伴って硬化されるときにウェーハに塗布されたアンダフィルに起こる問題点は:液体塗料の最初の湿潤及び付着性;周囲温度においてウェーハからの離層なしに被膜の固化;硬化又はゲルの進行からリフロー能力の損失なしに被覆ウェーハの長期の周囲温度貯蔵;単数化又はダイシング中にウェーハからの離層の回避;ウェーハのカッターストリート内にスクリーン印刷される能力;はんだリフローから最初の加熱中の増粘の緩慢な開始;周囲カラーが使用されない場合、アンダフィルのチップの周囲への流出をして、すみ肉を形成する能力;はんだリフロー工程後にアンダフィルにおける空孔の存在しないこと;及びデバイスの有用な貯蔵寿命中のデバイスにおける長期の信頼性(無欠陥)である。   A problem that occurs with underfill applied to a wafer when it is cured with a delay of several months until underfill is applied and a double-step cure underfill solder reflow process is required: First of liquid paint Wetting and adhesion of the coating; solidification of the coating without delamination from the wafer at ambient temperature; long-term ambient temperature storage of the coated wafer without loss of reflow capability from curing or gel progression; from singularization or dicing from the wafer Avoidance of delamination; ability to be screen printed into the cutter street of the wafer; slow start of thickening during the first heating from solder reflow; The ability to form fillet; the absence of voids in the underfill after the solder reflow process; and the presence of the device Is a long-term reliability (defect-free) in the device in Do shelf life.

組立て前に長期貯蔵に対してウェーハに塗布したアンダフィルで確認されているこれらの技術的問題点の全てが従来技術の材料によって取り扱われていない。従って、目的は、アンダフィルの付加及びフリップチップ・アセンブリをデカップリングする材料及び方法を提供することであって、それによって液体アンダフィルは従来の被覆法によって大きなウェーハ、例えば、100−500mmの表面積を有するウェーハの活性面に直接塗布され、塗布されたウェーハ又はダイスト切片の固化及び長期、例えば、数ヶ月の貯蔵が続く。 All of these technical problems identified with underfill applied to the wafer for long-term storage prior to assembly are not addressed by prior art materials. Accordingly, the objective is to provide materials and methods for adding underfill and decoupling flip chip assemblies so that liquid underfill can be produced on large wafers, eg, 100-500 mm 2 by conventional coating techniques. It is applied directly to the active surface of a wafer having a surface area, followed by solidification of the applied wafer or die slice and long term storage, for example several months.

本発明は、ウェーハ−アンダフィル・アセンブリおよび一液型、無溶媒、非自溶アンダフィルをウェーハの活性面に典型的に約0.076−1.77mm被覆厚さに塗布する方法に関する。そのアンダフィルは、最初はウェーハのはんだバンプを部分的又は完全に被覆する液体塗料である。そのアンダフィルは、充てん、100%固体(非揮発性)液体塗料である。そのアンダフィルはウェーハ上で約50〜2400mJ/cmの化学線の露光によって固体、熱液化可能性状態に固化する。アンダフィルは、ウェーハのカッターストリート外で格子模様に塗布される、又はウェーハのダイシングを受けて単一化切片又はダイにされる連続被膜が形成される。被覆ウェーハ又は被覆単一化切片はアセンブリと半田の相互接続前に数ヶ月の桁で不確実な遅延期間の間環境貯蔵ができる。ウェーハ−塗布アンダフィルの周囲に塗布された周囲封入剤の塗布を用いる組み立てチップにおいて、固体、熱液化可能アンダフィルの熱硬化開始は150℃以上にできる。加熱液化及びウェーハの縁への流出、及び若干量の上方へのフローによるすみ肉の形成をするアンダフィルの実施態様において、アンダフィルの熱硬化活性化温度は170℃以上でなければならない。はんだをリフローさせるために付加する熱は熱硬化系を活性化する前にアンダフィルのメルトフロー活性化をするために十分であって、それはアンダフィルのゲル化をもたらして固体熱硬化状態にする。 The present invention relates to a wafer-underfill assembly and a method of applying a one-part, solventless, non-self-dissolving underfill to a wafer active surface, typically to a coating thickness of about 0.076-1.77 mm. The underfill is initially a liquid paint that partially or completely covers the solder bumps of the wafer. The underfill is a filled, 100% solid (non-volatile) liquid paint. The underfill is solidified into a solid, heat-liquefiable state by exposure to about 50-2400 mJ / cm 2 of actinic radiation on the wafer. Underfill is applied to the grid pattern outside the cutter street of the wafer, or a continuous coating is formed that is subjected to wafer dicing into a single piece or die. Coated wafers or coated singulated sections can be stored in the environment for an uncertain delay period on the order of months before the assembly and solder interconnect. In an assembled chip that uses a coating of ambient encapsulant applied around the wafer-coated underfill, the thermal cure initiation of the solid, thermally liquefiable underfill can be 150 ° C. or higher. In the underfill embodiment, where the fillet is formed by heat liquefaction and flow to the edge of the wafer, and some amount of upward flow, the underfill thermoset activation temperature must be 170 ° C. or higher. The heat applied to reflow the solder is sufficient to activate underfill melt flow before activating the thermoset system, which results in gelling of the underfill to a solid thermoset state .

一液型の液体アンダフィルは、光硬化性成分として一つ以上のエチレン不飽和単量体、一つ以上のエポキシ硬化性材料、一つ以上の光開始剤、潜熱硬化剤、熱伝導性、及び電気絶縁性充てん剤の混合体から成る、そしてアンダフィル全重量の5%〜30%の光硬化性成分、及びアンダフィル全重量の10%〜45%のエポキシ樹脂成分を特徴とする。好適な光硬化性成分は100%の一官能性エチレン不飽和アクリレート又はメタクリレート単量体から成る。好適な光重合性成分は一官能性環状エーテル及び/又はアクリル酸の環状アセタールである。   One-part liquid underfill is composed of one or more ethylenically unsaturated monomers, one or more epoxy curable materials, one or more photoinitiators, a latent heat curing agent, thermal conductivity, And a mixture of electrically insulating fillers and is characterized by a photocurable component of 5% to 30% of the total weight of underfill and an epoxy resin component of 10% to 45% of the total weight of underfill. The preferred photocurable component consists of 100% monofunctional ethylenically unsaturated acrylate or methacrylate monomer. Suitable photopolymerizable components are monofunctional cyclic ethers and / or cyclic acetals of acrylic acid.

方法の観点において、本発明によるアンダフィルはウェーハの活性面に流延、ステンシル印刷、プリント、等のような従来の被覆技術に適応する。液体アンダフィル材料のレオロジーは、選択される被覆法に容易に適応できる。液体アンダフィルは、基板上に支持された大きなウェーハの活性面又はバンプに塗布されて、光誘導ラジカル重合を受け、そして迅速にウェーハに付着して残る固体、自立層を形成する。光硬化固化は、ウェーハの変形なしに不粘着固体アンダフィルを与える。周囲温度固体状態のアンダフィル被膜は、長期間の環境貯蔵期間の間50℃で数ヶ月の暴露に耐え、またウェーハに応力を与えることなく熱液化可能状態のままである。   In terms of method, the underfill according to the present invention is adapted to conventional coating techniques such as casting, stencil printing, printing, etc. on the active surface of the wafer. The rheology of the liquid underfill material can be easily adapted to the chosen coating method. The liquid underfill is applied to the active surface or bumps of a large wafer supported on the substrate, undergoes light-induced radical polymerization, and forms a solid, free-standing layer that remains rapidly attached to the wafer. Photocuring solidification provides a tack free solid underfill without wafer deformation. The ambient temperature solid state underfill coating withstands months of exposure at 50 ° C. for extended environmental storage periods and remains heat liquefiable without stressing the wafer.

光硬化、熱液化可能固体アンダフィル−被覆ウェーハ又は特異化部分が、はんだによる相互接続前に貯蔵される遅延期間は不確かであって、数週間、数ヶ月、1年までの桁である。その遅延中の貯蔵条件は冷蔵なしに周囲温度にアンダフィルの暴露を含む。アンダフィルを付加したウェーハは、熱、及び/又は真空を使用して処理された溶媒又はメルトから流延された従来の熱可塑性、又は熱硬化材料とは異なる。一方、本発明によるアンダフィルは、ウェーハ活性面上の付加重合を介して光誘導固化を受けて、第2の熱開始硬化が生じるまで著しい遅延時間に渡って周囲温度で硬化の進行がない熱可塑性状態にとどまる100%固体材料であり、その熱可塑性アンダフィルは離層がなく、空孔の形成がなく、はんだリフロー条件下で十分なリフロー、並びにデバイスの破損又は破断がなく熱硬化状態における反復熱サイクリング条件下で長期の接着性を含むいくつかの臨界性質を有する。その熱硬化アンダフィルは25℃で1000〜5000MPの曲げ弾性率、及び15〜60ppm/℃の範囲内、さらに典型的には約25(+/−10)ppm/℃のガラス転移温度以下の熱膨張係数を示す。   The delay period in which photocured, heat liquefiable solid underfill-coated wafers or specific parts are stored prior to solder interconnection is uncertain, on the order of weeks, months or years. Storage conditions during the delay include underfill exposure to ambient temperature without refrigeration. Underfilled wafers are different from conventional thermoplastic or thermoset materials cast from solvents and melts processed using heat and / or vacuum. On the other hand, the underfill according to the present invention undergoes light-induced solidification via addition polymerization on the wafer active surface and does not progress at ambient temperature over a significant delay time until a second thermally initiated cure occurs. 100% solid material that remains in a plastic state, its thermoplastic underfill has no delamination, no void formation, sufficient reflow under solder reflow conditions, and no device breakage or breakage in a thermoset state It has several critical properties including long term adhesion under repetitive thermal cycling conditions. The thermoset underfill has a flexural modulus of 1000-5000 MP at 25 ° C. and a heat below the glass transition temperature in the range of 15-60 ppm / ° C., more typically about 25 (+/− 10) ppm / ° C. Indicates the expansion coefficient.

ウェ−ハレベルのアンダフィルは100%固体混合体から成る。長期の周囲貯蔵中に重量損失に寄与する溶媒のような揮発性成分は存在しない。揮発性成分の不在は溶媒除去工程を回避し、ウェーハの活性側の表面から光誘導固化被膜の収縮制御及び離層を改善する。揮発性有機成分の排除は、有害な収縮及び応力、半田リフロー工程中の排ガスを防止し、ウェーハ又は切片とPCBの間に形成される空孔を防止する。アンダフィルは非自溶性である。換言すると、使用される成分は溶融機能を与えなくて、非酸性である。   Wafer level underfill consists of a 100% solids mixture. There are no volatile components such as solvents that contribute to weight loss during long-term ambient storage. The absence of volatile components avoids the solvent removal step and improves the shrinkage control and delamination of the light induced solidified coating from the surface on the active side of the wafer. The elimination of volatile organic components prevents harmful shrinkage and stress, exhaust gases during the solder reflow process, and prevents voids formed between the wafer or section and the PCB. Underfill is non-self-soluble. In other words, the components used do not provide a melting function and are non-acidic.

一般的な方法の観点において、本発明は液体アンダフィル接着剤を集積回路のウェーハに塗布、光エネルギー(紫外線、可視、赤外線、等)制御された線量の投与、アンダフィルの熱−液化可能又はメルト流動性状態に固化、任意にダイシング又はのこ引きによるウェーハのウェーハ単数化、及び被覆ウェーハ又はダイスの遅延期間中の貯蔵を含む。遅延期間後、電気接続をし、光硬化固体アンダフィルを加熱液化して半田リフロー中にデバイスの縁に流し、加熱液体から熱硬化固体状態に硬化転化させる。貯蔵の介在遅延時間中に、本発明の被膜は液化可能固体状態のままであって、ゲルに進行しない。従って、一面において、重量ベースで
光硬化性アクリル成分、
多官能性エポキシ樹脂、
少なくとも一つの光開始剤、
非導電性充てん剤、及び
非溶融性熱活性化エポキシ樹脂から成り、
熱硬化状態のアンダフィル組成物は25℃において1000〜5000MPaの曲げ弾性率、及び前記アンダフィル組成物のガラス転移温度以下の15〜50ppm/℃の熱膨張係数を示す光硬化、一液型組成物から成るアンダフィル組成物に接着された活性面を有する周囲温度安定集積回路ウェーハが提供される。
In general method aspects, the present invention applies liquid underfill adhesive to an integrated circuit wafer, administration of a controlled dose of light energy (ultraviolet, visible, infrared, etc.), heat-liquefaction of underfill or Includes solidification to a melt flowable state, optionally wafer singularization by dicing or sawing, and storage of coated wafers or dies during a lag period. After the delay period, electrical connection is made, the photocured solid underfill is heated to liquid and flowed to the edge of the device during solder reflow, and is cured and converted from the heated liquid to the thermoset solid state. During the intervening lag time of storage, the coating of the present invention remains in a liquefiable solid state and does not progress into the gel. Thus, in one aspect, on a weight basis, a photocurable acrylic component,
Polyfunctional epoxy resin,
At least one photoinitiator,
Consisting of a non-conductive filler and a non-melting heat-activated epoxy resin,
The thermoset underfill composition has a flexural modulus of 1000 to 5000 MPa at 25 ° C. and a photocuring, one-part composition showing a thermal expansion coefficient of 15 to 50 ppm / ° C. below the glass transition temperature of the underfill composition. An ambient temperature stable integrated circuit wafer is provided having an active surface bonded to an underfill composition of matter.

別の観点において、本発明はウェ−ハに塗布したアンダフィル組成物を硬化する2段式方法に関するものである。その方法は、アンダフィル組成物を液状で半導体ウェーハの活性面に塗布することから成る。塗布方法は液体のスピン流延、プリント又はスクリーン印刷、チップの活性面上へ直接非揮発性(100%固体分)塗布を含む。その塗布されたウェーハは固体の被膜を形成するために選択された線量でUV照射を介して固化される。固体を塗布したウェ−ハは任意に切片にダイシングすることができる。そのウェーハ又は切片は周囲温度貯蔵ができる、続いてはんだリフロー工程においてPCBにはんだバンプの電気接続をするセカンドステージ、続いて熱効果状態への固体アンダフィルの熱硬化が続く。   In another aspect, the present invention relates to a two-stage method for curing an underfill composition applied to a wafer. The method comprises applying an underfill composition in liquid form to an active surface of a semiconductor wafer. Coating methods include liquid spin casting, printing or screen printing, and non-volatile (100% solids) coating directly on the active surface of the chip. The coated wafer is solidified via UV irradiation at a dose selected to form a solid film. A wafer coated with a solid can be arbitrarily diced into sections. The wafer or slice can be stored at ambient temperature, followed by a second stage in which the solder bumps are electrically connected to the PCB in a solder reflow process, followed by thermal curing of the solid underfill to a thermal effect state.

100%固体のアンダフィル組成物は、一官能性エチレン不飽和単量体及び/又はオリゴマーからなる光硬化性アクリレート、多官能性エポキシ樹脂、光開始剤、潜エポキシ熱開始剤、及び無機CTE−還元剤を含む。そのアンダフィルは固体状態でアルカリ溶解性でなく、液体光硬化性不飽和単量体、オリゴマー及び/又は重合体に遊離カルボン酸、リン酸塩、又はスルホネート基のような酸根を含まない。そのウェーハ組成物に利用される成分の重量%は混合して合計100重量%であって、次のとおりである:   The 100% solids underfill composition comprises a photocurable acrylate comprising a monofunctional ethylenically unsaturated monomer and / or oligomer, a multifunctional epoxy resin, a photoinitiator, a latent epoxy thermal initiator, and an inorganic CTE- Contains a reducing agent. The underfill is not alkali-soluble in the solid state and does not contain acid radicals such as free carboxylic acid, phosphate, or sulfonate groups in the liquid photocurable unsaturated monomer, oligomer and / or polymer. The weight percent of the components utilized in the wafer composition is a total of 100 weight percent mixed and is as follows:

成 分 重量%
光硬化性アクリレート成分 5〜30%
液体多官能性エポキシ樹脂 10〜45%
光開始剤 0.3〜3%
低CTE充てん剤 40〜70%
潜硬化促進剤 1〜3%
Component weight%
Photocurable acrylate component 5-30%
Liquid multifunctional epoxy resin 10-45%
Photoinitiator 0.3-3%
Low CTE filler 40-70%
Latent cure accelerator 1-3%

固体、熱液化可能状態におけるアンダフィル組成物は、熱硬化状態に転化する前は自立性で、貯蔵安定性であって、周囲温度において長い遅延期間に渡ってウェーハ又は切片の活性面への接着を維持して、アンダフィル塗布及び半田リフローチップ設置工程減結合を可能にする。本発明はPCB上への後での取付けのために周囲温度でウェーハの貯蔵を可能にする。   Underfill compositions in a solid, heat-liquefiable state are self-supporting, storage-stable prior to conversion to a thermoset state, and adhere to the active surface of a wafer or slice over a long delay period at ambient temperature The underfill coating and the solder reflow chip installation process can be decoupled. The present invention allows storage of wafers at ambient temperature for later mounting on a PCB.

アンダフィル組成物の光硬化性成分は、構造に少なくとも6炭素原子を有するエチレン不飽和単量体または単量体の混合体から成る。6個以下の炭素原子の単量体の取り込みは、許容されない揮発性から固体状態への光硬化において問題をもたらし、光硬化熱液化可能固体状態への転化において収縮をもたらし、それはそれに接着されるチップに応力を加える傾向にある。10重量%以上の液体多官能性エチレン不飽和コモノマーを含有するアンダフィルは、チップ取り付け中の半田リフロー工程中に熱液化可能アンダフィルの不十分なメルト−フローをもたらす。従って、多不飽和単量体はアンダフィルに存在しない、又はアンダフィル光硬化性成分の10重量%以下に限定することが望ましい。   The photocurable component of the underfill composition consists of an ethylenically unsaturated monomer or mixture of monomers having at least 6 carbon atoms in the structure. Incorporation of monomers of 6 carbon atoms or less poses a problem in unacceptable volatility to solid state photocuring and causes shrinkage in conversion to photocured heat liquefiable solid state, which is adhered to it There is a tendency to apply stress to the chip. Underfill containing 10% by weight or more of the liquid polyfunctional ethylenically unsaturated comonomer results in poor melt-flow of thermoliquefiable underfill during the solder reflow process during chip attachment. Therefore, it is desirable that the polyunsaturated monomer is not present in the underfill or is limited to 10% by weight or less of the underfill photocurable component.

用語「光硬化性成分」」は、集約的にエチレン不飽和単量体及び/又はオリゴマーを意味する。エチレン不飽和材料はビニルエステル、ビニルエーテル、及び/又はα,β−不飽和アクリレートエステルを含むことがさらに望ましい。好適な光硬化性成分は、単量体としてエチレン不飽和アクリレート、不飽和オリゴマー、又はペンダント不飽和オリゴマー、及びそれらの組合せである。用語オリゴマーは、25℃で液体状態、又は光硬化性液体キャリヤーに溶解できる不飽和化合物を意味する。もし希釈剤の軟化温度が半田リフロー温度において熱液化可能アンダフィルのメルトフローを著しく抑制しないならば、非官能性又は不飽和熱可塑性重合体希釈剤、例えば、ポリアクリレート、ポリビニルエーテル、ポリビニルエステル、ポリエステル、ポリアミド、ポリオレフィン、及び官能化誘導体を使用できる。かかる希釈剤は種々の特徴、例えば、精密な制御、又はメルトフローの性質及び/又は凝集強さを高めるために使用できる。   The term “photocurable component” collectively refers to ethylenically unsaturated monomers and / or oligomers. More desirably, the ethylenically unsaturated material comprises vinyl esters, vinyl ethers, and / or α, β-unsaturated acrylate esters. Suitable photocurable components are ethylenically unsaturated acrylates, unsaturated oligomers, or pendant unsaturated oligomers as monomers, and combinations thereof. The term oligomer means an unsaturated compound that can be dissolved in a liquid state at 25 ° C. or in a photocurable liquid carrier. If the diluent softening temperature does not significantly inhibit the melt flow of the heat-liquefiable underfill at the solder reflow temperature, a non-functional or unsaturated thermoplastic polymer diluent such as polyacrylate, polyvinyl ether, polyvinyl ester, Polyesters, polyamides, polyolefins, and functionalized derivatives can be used. Such diluents can be used to enhance various characteristics such as fine control, or melt flow properties and / or cohesive strength.

光硬化性アクリレートを含有するアンダフィルがUV照射の影響下で重合するとき、アンダフィルは周囲温度で液体から固体状態に転化される。その固体は熱硬化されるまで熱液化可能状態にとどまることを意味する熱可塑性としてとどまる。特定量の光硬化性成分は全アンダフィル重量の5〜30重量%である。多官能性エポキシ材料の量は、光硬化時に適当な固化を提供して、はんだリフロー工程中にメルトの流動性を保持するために光硬化性成分の重量に対して重要である。10〜45重量%の範囲以上の多官能性エポキシ材料は、光硬化後にウェーハを損なうアンダフィルの増加傾向もある。活性面上のアンダフィル被膜の断面厚さは半田バンプの一部が露出する寸法が最適である。   When underfill containing a photocurable acrylate polymerizes under the influence of UV radiation, the underfill is converted from a liquid to a solid state at ambient temperature. The solid remains as a thermoplastic, meaning that it remains in a heat-liquefiable state until it is thermoset. The specific amount of photocurable component is 5-30% by weight of the total underfill weight. The amount of multifunctional epoxy material is important with respect to the weight of the photocurable component in order to provide proper solidification during photocuring and to maintain melt flow during the solder reflow process. Polyfunctional epoxy materials in the range of 10 to 45% by weight or more also tend to increase underfill which damages the wafer after photocuring. The cross-sectional thickness of the underfill film on the active surface is optimally such that a part of the solder bump is exposed.

この露出の意味は、金属が空気にさらされる、又は半田バンプの最外突出部の上に約0.01μm以下のアンダフィルの薄い残留部があることである。好適実施態様における光硬化後のアンダフィル被膜の厚さは半田バンプの断面形状の50〜90%である。その断面はウェーハ活性側の表面を越えて延在する半田バンプ部分の深さである。 The implication of this exposure is that the metal is exposed to air or that there is a thin underfill of about 0.01 μm or less on the outermost protrusion of the solder bump. In the preferred embodiment, the thickness of the underfill film after photocuring is 50 to 90% of the cross-sectional shape of the solder bump. The cross section is the depth of the solder bump portion extending beyond the surface on the wafer active side.

ここで任意に使用する光硬化性オリゴマーは、周囲温度で液体である、又は液体エチレン不飽和アクリレート単量体に溶解できる。オリゴマーはペンダント基又は末端エチレン不飽和基を含む。典型的なオリゴマーは2つの末端不飽和基を含む。500〜3000のMWを有するオリゴマー光硬化性アクリレート成分における不飽和基の平均数は1〜2にできる。光硬化性アクリレート成分は、ジ−、又はトリ−、又はテトラ−及びより高いエチレン不飽和単量、二量体または三量体だけを排除する。   The photocurable oligomer optionally used here is liquid at ambient temperature or can be dissolved in a liquid ethylenically unsaturated acrylate monomer. The oligomer contains pendant groups or terminal ethylenically unsaturated groups. A typical oligomer contains two terminal unsaturated groups. The average number of unsaturated groups in the oligomer photocurable acrylate component having a MW of 500-3000 can be 1-2. The photocurable acrylate component excludes only di-, tri-, or tetra- and higher ethylenically unsaturated monomers, dimers or trimers.

本発明のアンダフィル実施態様はチップ縁方向外側に流れて、チップ下側とPCB間の間隙を完全に満たすのに十分な半田リフロー条件下のメルトフローを示す。ある場合に、フローアウトはダイ縁に沿ってフローアップしてすみ肉を形成することを含むことができる。光硬化固体アンダフィルはウェーハによく付着し、長期の貯蔵遅延期間及び/又はウェーハをそる(ゆがむ)又は破壊しないダイシングに必要な十分な凝集強さを有する。その貯蔵遅延期間後、熱液化可能はんだは、光硬化性アクリレート成分:エポキシ官能性成分の重量比が1:10〜1:2の範囲にあるとき半田リフロー工程において遭遇する熱下で十分に流動する、そして光硬化成分は特定の割合の一官能性と多官能性単量体及び/又はオリゴマーを含有する。光硬化性成分:エポキシ官能性成分の比が1:10以下において、アンダフィルは典型的に十分な凝集強さを欠き、許容できない表面付着性を示す。1:2以上の比において、ウェーハはゆがみ、破壊を示し、及び/又はアンダフィルは離層傾向にあり、又はすみ肉を形成する不十分な流れを受ける。   The underfill embodiment of the present invention exhibits a melt flow under solder reflow conditions sufficient to flow outward in the chip edge direction and fully fill the gap between the chip underside and the PCB. In some cases, the flow-out can include flowing up along the die edge to form a fillet. The photocured solid underfill adheres well to the wafer and has sufficient cohesive strength necessary for long storage delay periods and / or dicing that does not distort or distort the wafer. After its storage delay period, the heat liquefiable solder flows sufficiently under the heat encountered in the solder reflow process when the weight ratio of photocurable acrylate component: epoxy functional component is in the range of 1:10 to 1: 2. And the photocuring component contains a certain proportion of monofunctional and polyfunctional monomers and / or oligomers. Under a photocurable component: epoxy functional component ratio of 1:10 or less, underfill typically lacks sufficient cohesive strength and exhibits unacceptable surface adhesion. At a ratio of 1: 2 or higher, the wafers are distorted, exhibit fracture, and / or the underfill tends to delaminate or undergo insufficient flow to form fillet.

ここで有用なモノエチレン不飽和単量体の例は、少なくとも6つの炭素原子を有するものであり、アクリル又はC−Cアルキル置換アクリル酸のアルキルC−C12アルキルエステル、集約的に(アルキル)アクリレートを含む。適当な一官能性単量体の特定例は、ブチルアクリレート、エチルメタクリレート、ブチルメタクリレート、t−ブチルメタクリレート、シクロヘキシルメタクリレート、トリメチルシクロヘキシルメタクリレート、環状エーテルアクリレート、及び単環アセタールアクリレートを含む。 Here Examples of useful monoethylenically unsaturated monomers are those having at least 6 carbon atoms, alkyl C 3 -C 12 alkyl esters of acrylic or C 1 -C 4 alkyl-substituted acrylic acid, collectively (Alkyl) acrylate is included. Specific examples of suitable monofunctional monomers include butyl acrylate, ethyl methacrylate, butyl methacrylate, t-butyl methacrylate, cyclohexyl methacrylate, trimethyl cyclohexyl methacrylate, cyclic ether acrylate, and monocyclic acetal acrylate.

単環アセタールアクリレートは既知であって米国特許第4,076,727号に開示されている。アセタールアクリレートは、トリメチロールプロパン、トリメチロールエタン、グリセリン、1,2,4−ブタントリオール、1,2,5−ペンタエリトリトール、及び1,2,6−ヘキサントリオールのようなポリオールからアルデヒドとの反応、及びアクリル酸、又はエステルのようなα,β−不飽和カルボキシレートとのエステル交換反応において誘導される。光硬化性成分の例は、テトラヒドロフルフリルアクリレート(THFA)のような環状エーテル含有アクリレート、及び環状アクリロールホルマルアクリレートの組合せである。好適な一官能性アクリレートはテトラヒドロフルフリルアクリレート、テトラヒドロフルフリルメタアクリレート、ペンタエリトリトールモノメタクリレート、ペンタエリトリトールモノアクリレート、トリメチロールプロパンモノメタクリレート、トリメチロールプロパンモノアクリレート、及び環状アルキロールホルマルアクリレート、及びケタールアクリレートである。アセタール及びケタールアクリレートは異性体の混合体を含む。環状アルキロールホルマル及びケタールアクリレートは、アクリレート又はメタクリレートをトリメチロールプロパン及びトリエチロールプロパンのような、トリオールから誘導されるモノヒドロキシアセタールとのエステル化によって容易に調製される。アルデヒド又はケトンと反応し、メタクリレートのアクリレートを使用してアシル化できる適当なトリオール出発材料の構造は次のものを含む。 Monocyclic acetal acrylates are known and disclosed in US Pat. No. 4,076,727. Acetal acrylate reacts with aldehydes from polyols such as trimethylolpropane, trimethylolethane, glycerin, 1,2,4-butanetriol, 1,2,5-pentaerythritol, and 1,2,6-hexanetriol. And transesterification with [alpha], [beta] -unsaturated carboxylates such as acrylic acid or esters. An example of a photocurable component is a combination of a cyclic ether-containing acrylate such as tetrahydrofurfuryl acrylate (THFA) and a cyclic acrylol formal acrylate. Suitable monofunctional acrylates are tetrahydrofurfuryl acrylate, tetrahydrofurfuryl methacrylate, pentaerythritol monomethacrylate, pentaerythritol monoacrylate, trimethylolpropane monomethacrylate, trimethylolpropane monoacrylate, and cyclic alkylol formal acrylate, and ketal acrylate It is. Acetals and ketal acrylates include mixtures of isomers. Cyclic alkylol formals and ketal acrylates are readily prepared by esterification of acrylates or methacrylates with monohydroxyacetals derived from triols, such as trimethylolpropane and triethylolpropane. Suitable triol starting material structures that can be reacted with aldehydes or ketones and acylated using methacrylate acrylates include:

調製される環状アクリロールホルマルアクリレートは次の構造(A−C)を有する:   The prepared cyclic acrylol formal acrylate has the following structure (AC):

Figure 2007515785
式中のRはC−Cアルキレン基、例えば、−CH−,−CHCH−、等、及びR,R,及びRアルキル基、例えば、−CH,−CHCH等である。最適の環状アルキロールホルマルアクリレートはトリメチロールプロパンホルマルアクリレート(構造B’)である。
Figure 2007515785
R 1 in the formula is a C 1 -C 4 alkylene group, such as —CH 2 —, —CH 2 CH 2 —, and the like, and R 2 , R 3 , and R 4 alkyl groups, such as —CH 3 , — CH 2 CH 3 and the like. The optimum cyclic alkylol formal acrylate is trimethylol propane formal acrylate (structure B ′).

単独又は前記単量体のいずれかとの組合せで使用される他の光硬化性単量体は、アセトアセトキシエチルメタクリレート、2−アセトアセトキシエチルアクリレート、2−アセトアセトキシプロピルメタクリレート、2−アセトアセトキシプロピルアクリレート、2−シアノアセトキシエチルメタクリレート、2−シアノアセトキシエチルアクリレート、N−(2−シアノアセトキシエチル)アクリルアミド、2−プロピオニルアセトキシエチルアクリレート、N−(2−プロピオニルアセトキシエチル)メタクリルアミド、N−4−(アセトアセトキシベンジル)フェニルアクリルアミド、エチルアクリロールアセテート、アクリロールメチルアセテート、N−エタクリロイルメチルアセトアセトアミド、エチルメタクリロイルアセトアセテート、N−アリルシャノアセトアミド、メチルアクリロイルアセトアセテート、N−(2−メタクリロイルオキシメチル)シアノアセトアミド、エチル−α−アセトアセトキシメタクリレート、N−ブチル−N−アクリロイルオキシエチルアセトアセトアミド、モノアクリレートポリオール、及びモノメタクリロイルオキシエチルフタレートのようなヒドロキシル基含有アクリレートと無水物との反応性生物を含む。(アルク)アクリレート単量体と共重合性の共重合性単量体、但し重合速度ガアクリレート単量体と比較して余り遅くないもの。   Other photocurable monomers used alone or in combination with any of the above monomers are acetoacetoxyethyl methacrylate, 2-acetoacetoxyethyl acrylate, 2-acetoacetoxypropyl methacrylate, 2-acetoacetoxypropyl acrylate 2-cyanoacetoxyethyl methacrylate, 2-cyanoacetoxyethyl acrylate, N- (2-cyanoacetoxyethyl) acrylamide, 2-propionylacetoxyethyl acrylate, N- (2-propionylacetoxyethyl) methacrylamide, N-4- ( Acetoacetoxybenzyl) phenylacrylamide, ethyl acrylol acetate, acrylol methyl acetate, N-ethacryloylmethyl acetoacetamide, ethyl methacryloyl acetoacetate N-allylshanoaacetamide, methylacryloyl acetoacetate, N- (2-methacryloyloxymethyl) cyanoacetamide, ethyl-α-acetoacetoxymethacrylate, N-butyl-N-acryloyloxyethylacetoacetamide, monoacrylate polyol, And reactive organisms of hydroxyl group-containing acrylates such as monomethacryloyloxyethyl phthalate with anhydrides. (Alk) A copolymerizable monomer copolymerizable with an acrylate monomer, but not too slow as compared with a polymerization rate galacrylate monomer.

アクリル単量体の迅速光硬化は望ましい特徴である。アクリレート及びアルクアクリレート以外の光硬化性エチレン不飽和単量体は、約6個以上に限定される、その例は、限定ではないが、ブチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテルp−(2−アセトアセチル)エチルスチレン、及び4−アセトアセチル−1−メタクリロイルピペラジンを含む。エポキシ−反応性基、例えば、活性水素含有基を含有するエチレン不飽和単量体は光硬化性成分に使用されない。   Rapid photocuring of acrylic monomers is a desirable feature. The photocurable ethylenically unsaturated monomer other than acrylate and alkacrylate is limited to about 6 or more. Examples thereof include, but are not limited to, butyl vinyl ether, isobutyl vinyl ether, cyclohexyl vinyl ether p- (2-acetoacetyl). ) Ethyl styrene, and 4-acetoacetyl-1-methacryloylpiperazine. Epoxy-reactive groups such as ethylenically unsaturated monomers containing active hydrogen-containing groups are not used for the photocurable component.

代表的な既知多官能性エチレン不飽和化合物は、エチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、エチレングリコールジメタクリレート、ヘキサンジオールジアクリレート、及びトリエチレングリコールジアクリレートのようなエチレンジ−不飽和単量体である。代表的なトリ−不飽和単量体は、トリメチロールプロパントリアクリレート(TMPTA),トリメチロールプロパントリメタクリレート、グリセロールトリアクリレート、ペンタエリトリトールトリアクリレート、及びペンタエリトリトールトリメタクリレートを含む。代表的なアクリル不飽和光硬化性材料はSartomer社のSR205,SR306,CD401,SR508,SR603,SR9036である。   Typical known polyfunctional ethylenically unsaturated compounds are ethylene di-unsaturated monomers such as ethylene glycol diacrylate, polyethylene glycol diacrylate, ethylene glycol dimethacrylate, hexanediol diacrylate, and triethylene glycol diacrylate. is there. Exemplary tri-unsaturated monomers include trimethylolpropane triacrylate (TMPTA), trimethylolpropane trimethacrylate, glycerol triacrylate, pentaerythritol triacrylate, and pentaerythritol trimethacrylate. Typical acrylic unsaturated photocurable materials are Sartomer SR205, SR306, CD401, SR508, SR603, SR9036.

他の適当な光重合性オリゴマー材料は、光硬化性成分に含まれる、例えば、ビス−フェノールをベースにしたポリエーテルアクリレート、ビニルエーテルキャップドオリゴマー、ヒドロキシ官能性アクリレートとメタクリレートの反応性生物、及びエポキシド、アクリルかポリエーテル、エチレン不飽和ポリアルキルエーテル、前記環状エーテルアクリレート及び環状エーテルアセテートアクリレートである。   Other suitable photopolymerizable oligomeric materials include, for example, bis-phenol based polyether acrylates, vinyl ether capped oligomers, hydroxy functional acrylate and methacrylate reactive organisms, and epoxides included in the photocurable component. Acrylic or polyether, ethylenically unsaturated polyalkyl ether, the cyclic ether acrylate and the cyclic ether acetate acrylate.

光重合性成分は、数平均分子量が500〜5,000、好適には1,000〜4,000のモノ不飽和アクリレート単量体及びエチレン不飽和オリゴマーの混合体である。光硬化性液体オリゴマーは、活性イソシアネート基を有さないウレタンアクリレートオリゴオマーから成る。ウレタンアクリレートオリゴオマーはエチレン不飽和アクリレート単量体と混合できる。アクリレートウレタンは脂肪族又は芳香族にできる。市販のアクリレートウレタンは、ヘンケル社の商表示PHOTOMER(例えば、PHOTOMER6010);UCBR Radcure社のEBECRYL220(分子量が1000の6官能性芳香族ウレタンアクリレート)、EBECRYL284(1,6−ヘキサンジオールジアクリレートで希釈した分子量が1200の脂肪族ウレタンジアクリレート)、EBECRYL4827(分子量が1600の芳香族ウレタンジアクリレート)、EBECRYL4827(テトラエチレングリコールジアクリレートで希釈した分子量が1200の脂肪族ウレタンジアクリレート)、EBECRYL6602(トリメチロールプロパンエトキリトリアクリレートで希釈した分子量が1300の3官能性芳香族ウレタンアクリレート)及びEBECRYL840(分子量が1000の脂肪族ウレタンジアクリレート);SARTMER社のSARTOMER(例えば、SARTOMER9635,9645,9655,963−B80,966−A80,等):及びMorton International社のUVITHANE(例えば、UVITHANE782)として既知のものを含む。   The photopolymerizable component is a mixture of a monounsaturated acrylate monomer and an ethylenically unsaturated oligomer having a number average molecular weight of 500 to 5,000, preferably 1,000 to 4,000. The photocurable liquid oligomer consists of a urethane acrylate oligomer that does not have an active isocyanate group. Urethane acrylate oligomers can be mixed with ethylenically unsaturated acrylate monomers. Acrylate urethanes can be aliphatic or aromatic. Commercially available acrylate urethanes are Henkel's trade designation PHOTOMER (eg, PHOTOMER 6010); UCBR Radcure EBECRYL 220 (hexafunctional aromatic urethane acrylate having a molecular weight of 1000), EBECRYL 284 (1,6-hexanediol diacrylate diluted) Aliphatic urethane diacrylate having a molecular weight of 1200), EBECRYL4827 (aromatic urethane diacrylate having a molecular weight of 1600), EBECRYL4827 (aliphatic urethane diacrylate having a molecular weight of 1200 diluted with tetraethylene glycol diacrylate), EBECRYL6602 (trimethylolpropane) Trifunctional aromatic urethane acrylate having a molecular weight of 1,300 diluted with ethoxytriacrylate) and EB CRYL840 (aliphatic urethane diacrylate having a molecular weight of 1000); SARTOMER from SARTMER (for example, SARTOMER 9635, 9645, 9655, 963-B80, 966-A80, etc.): and UVITHANE from Morton International (for example, UVITHANE 782) Including

光硬化性アクリレート成分にビスフェノールAのジアクリレートエステルのような1つ以上の光硬化性不飽和アクリレート基を有するアクリレート改質エポキシ材料を含ませることができるが、かかる混合体は望ましくない。代表的なアクリレート改質エポキシはオキシラン基とアクリレート上のヒドロキシ基との反応によって得られる。未反応エポキシ硬化性機能は残らない。市販ノアクリレートエポキシはRadicure Specialtie社の商標CMDのものを含む。他の適当なアクリル不飽和エポキシオリゴマー又はウレタンアクリレートオリゴマーはSartomer社の市販のCN929,CN136,CN970,CN104,CN120C60、等である。所有権のアクリレート改質エポキシ液体は追加の一官能性又は多官能性アクリレートと配合される。追加の一官能性又は多官能性アクリレートの量は光硬化成分における全組成範囲に含まれる。   Although the photocurable acrylate component can include an acrylate modified epoxy material having one or more photocurable unsaturated acrylate groups, such as a diacrylate ester of bisphenol A, such a mixture is undesirable. Typical acrylate modified epoxies are obtained by reaction of oxirane groups with hydroxy groups on the acrylate. No unreacted epoxy curable function remains. Commercially available noacrylate epoxies include those of the trade mark CMD of Radicure Specialties. Other suitable acrylic unsaturated epoxy or urethane acrylate oligomers are CN929, CN136, CN970, CN104, CN120C60, etc. from Sartomer. The proprietary acrylate modified epoxy liquid is blended with additional monofunctional or polyfunctional acrylates. The amount of additional monofunctional or multifunctional acrylate is included in the entire composition range in the photocuring component.

代表的なジアクリレート官能性光硬化性材料は、SR205,SR306,CD401,SR508,SR9036を含む。代表的な三官能性材料はSR350,SR444,CD501,SR9021を含む。四官能性アクリレートはSR295,SR355,SR399、SR9041を含む。   Exemplary diacrylate functional photocurable materials include SR205, SR306, CD401, SR508, SR9036. Exemplary trifunctional materials include SR350, SR444, CD501, SR9021. Tetrafunctional acrylates include SR295, SR355, SR399, SR9041.

アンダフィルの熱硬化性多官能性エポキシ樹脂は、少なくとも2つのエポキシ基、25℃で約1000ポアズ以下の粘度、約100〜1000の範囲内のエポキシド当りの平均重量(WPE)、及び約500〜3500の範囲内の平均分子量を有する少なくとも一つの液体樹脂を含有する。容易に使用できるエポキシは既知であって、ビスフェノールAのジグリシダルエーテル、2,2−ビス−4−(2,3−エポキシプロポキシ)−フェニルプロパンを含む。市販の適当なエポキシド化合物は、Shell Chemical社の商品名EPON828,EPON1004およびEPON1001F、およびDow Chemical社のDER−331,DER−332およびDER−334である。他の適当なエポキシ樹脂は環状脂肪族エポキシド、フェノールホルムアルデヒドノボラックのグリシジルエーテル(例えば、Dow Chemical社のDEN−431およびDNE−428)を含む。遊離基硬化性樹脂とエポキシ樹脂とのブレンドは、さらに米国特許第4,751,138号(Tumeyら)および米国特許第5,256,170号(Harmerら)に記載されている。好適な実施態様において、3つのエポキシ樹脂の組合せが採用される、それは、約192g/当量のWPEを有するビフェニルエポキシ樹脂、約172g/当量のWPEを有するビスフェノールFのジグリシジルエーテル、および約101g/当量のWPEを有するp−アミノフェニルのトリグリシジルエーテルの混合体である。これら3つのエポキシ樹脂はRSS,EPICLONおよびARALDITEなる商品名で入手できる。   Underfill's thermosetting multifunctional epoxy resin has at least two epoxy groups, a viscosity of about 1000 poise or less at 25 ° C., an average weight per epoxide (WPE) in the range of about 100-1000, and about 500- Containing at least one liquid resin having an average molecular weight in the range of 3,500. Easily usable epoxies are known and include the diglycidal ether of bisphenol A, 2,2-bis-4- (2,3-epoxypropoxy) -phenylpropane. Suitable commercially available epoxide compounds are Shell Chemical's trade names EPON 828, EPON 1004 and EPON 1001F, and Dow Chemical's DER-331, DER-332 and DER-334. Other suitable epoxy resins include cycloaliphatic epoxides, glycidyl ethers of phenol formaldehyde novolac (eg, DEN-431 and DNE-428 from Dow Chemical). Blends of free radical curable resins and epoxy resins are further described in US Pat. No. 4,751,138 (Tumey et al.) And US Pat. No. 5,256,170 (Harmer et al.). In a preferred embodiment, a combination of three epoxy resins is employed, which is a biphenyl epoxy resin having a WPE of about 192 g / equivalent, a diglycidyl ether of bisphenol F having a WPE of about 172 g / equivalent, and about 101 g / A mixture of triglycidyl ethers of p-aminophenyl with an equivalent WPE. These three epoxy resins are available under the trade names RSS, EPICLON and ARALDITE.

液体ウェーハ塗料は、通常レベルの化学線への暴露に際して液体アンダフィルを固化して不粘着性表面にするのに有効な少なくとも1つの光開始剤を約1〜3重量%含有する。選択される光開始剤のタイプは、必要な硬化の深さ、使用するコントラスト剤のタイプ、および使用する化学線の波長に依存する。ここで使用するのに適する市販の遊離基発生光開始剤は、限定ではないが、Ciba Specialty Chemicals社からの商品名IRGACUREおよびDAROCURで販売されているようなベンゾフェノン、ベンゾインエーテルおよびアシルホスフィンオキシド−タイプの光開始剤である   The liquid wafer paint contains about 1-3% by weight of at least one photoinitiator effective to solidify the liquid underfill to a tack-free surface upon exposure to normal levels of actinic radiation. The type of photoinitiator selected will depend on the required cure depth, the type of contrast agent used, and the wavelength of the actinic radiation used. Commercially available free radical generating photoinitiators suitable for use herein include, but are not limited to, benzophenone, benzoin ether and acylphosphine oxide-types such as those sold under the trade names IRGACURE and DAROCUR from Ciba Specialty Chemicals. Is a photoinitiator

好適な光開始剤は、25〜50%のケトン官能性光開始剤と50〜75%のモノアシルホスフィン、ビスアシルホスフィンオキシド、又はホスフィネート含有光開始剤の混合体である。ケトン光開始剤の例は、1−ヒドロオキシシクロヘキシルフェニルケトン、ヒドロオキシメチルフェニルプロパノン、ジメチルオキシフェニルアセトフェノン、2−メチル−rゥ−[4−(メチルチオ)−フェニル]−2−モルホリノプロパノン−1、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、1−(4−ドデシル−フェニル)−2−ヒドロキシ−2−メチルプロバン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−2(2−ヒドロキシ−プロピル)−ケトン、ジエトキシフェニルアセトフェノン、2,4,6トリメチルベンゾイルジフェニルホスホン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチルプロパン−1−オン、および2−ヒドロキシチオキサンテン−9−オンを含む。代表的なアシルホスフィンオキシド光開始剤は、エチル2,4,6−トリエチルベンゾイルジフェニルホスフィンオキシド、および2,4,6−トリフェニルベンゾイルジフェニルホスフィンオキシドを含む。ウェーハに塗布される液体アンダフィルの深硬化用の特定例の光開始剤成分は、アンダフィルの全重量を基準にして0.2〜0.5重量%の1−ヒドロキシシクロヘキシルフェニルケトン、およびフェニルビス(2,4,6−トリメチルベンゾイル)ホスフィンオキシドを含有する混合体である。   A suitable photoinitiator is a mixture of 25-50% ketone functional photoinitiator and 50-75% monoacylphosphine, bisacylphosphine oxide, or phosphinate containing photoinitiator. Examples of ketone photoinitiators are 1-hydroxycyclohexyl phenyl ketone, hydroxymethylphenylpropanone, dimethyloxyphenylacetophenone, 2-methyl-ru- [4- (methylthio) -phenyl] -2-morpholinopropanone -1,1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4-dodecyl-phenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl-2 (2-hydroxy-propyl) -ketone, diethoxyphenylacetophenone, 2,4,6 trimethylbenzoyldiphenylphosphone, 2-hydroxy-2-methyl-1-phenylpropan-1-one , 1- [4- (2-hydroxyethoxy) phenyl] -2-hydro Shi-2-methylpropan-1-one, and 2-hydroxy-thioxanthone-9-one. Exemplary acyl phosphine oxide photoinitiators include ethyl 2,4,6-triethylbenzoyl diphenylphosphine oxide and 2,4,6-triphenylbenzoyl diphenylphosphine oxide. A specific example photoinitiator component for deep cure of liquid underfill applied to a wafer is 0.2-0.5 wt% 1-hydroxycyclohexyl phenyl ketone, and phenyl based on the total weight of underfill It is a mixture containing bis (2,4,6-trimethylbenzoyl) phosphine oxide.

120℃以上の被覆温度を上昇させない化学線源は、アンダフィルの固体液化可能ゲル状態への光硬化の実施に使用できる。紫外線、並びに他の形態、例えば、RS型太陽灯、炭素アークランプ、キセノンアークランプ、水銀蒸気ランプ、ハロゲン化タングステンランプ、等は最も容易に使用される。放射線エネルギーは点源から又は平行線の形態で放射される。しかしながら、発散ビームも化学線として操作可能である。100〜2400mJ/cmの範囲内のUV線量が約1.2−1.8mmのアンダフィル硬化に深さを提供し、そして100℃以下のアンダフィル温度でラジカル重合を完了するのに有効である。アンダフィル組成物不粘着性表面に光硬化する。硬化時間を調節して紫外線源、アンダフィル光硬化成分濃度、およびコントラスト剤の適当な選択をする。 Sources of actinic radiation that do not raise the coating temperature above 120 ° C. can be used to perform photocuring to underfill solid liquefiable gels. Ultraviolet light, as well as other forms, such as RS solar lamps, carbon arc lamps, xenon arc lamps, mercury vapor lamps, tungsten halide lamps, etc. are most easily used. Radiation energy is emitted from a point source or in the form of parallel lines. However, divergent beams can also be manipulated as actinic radiation. A UV dose in the range of 100-2400 mJ / cm 2 provides depth for underfill cure of about 1.2-1.8 mm and is effective to complete radical polymerization at underfill temperatures of 100 ° C. and below. is there. The underfill composition is photocured on the tack-free surface. The curing time is adjusted to make an appropriate choice of UV source, underfill photocuring component concentration, and contrast agent.

製品のパッケージアセンブル、自動目視検査において、ボード、アンダフィルおよびチップ間のコントラストを提供するために顔料の使用が必要である。カーボンブラック、およびClariannt AG社の商品名Sandorinで入手できるような顔料のようなコントラスト剤が適当である。一実施態様において、エポキシ樹脂にカーボンブラック15重量%分散液系を使用してアンダフィルに0.1−0.2重量%のカーボンブラックを配合して自動化目視検査に有効なコントラストを提供する。   In product package assembly, automated visual inspection, the use of pigments is necessary to provide contrast between board, underfill and chip. Contrast agents such as carbon black and pigments such as those available under the trade name Sandorin of the company Clariant AG are suitable. In one embodiment, a 15% by weight carbon black dispersion system is used for the epoxy resin and 0.1-0.2% by weight carbon black is blended with underfill to provide effective contrast for automated visual inspection.

熱硬化系
本発明に利用されるエポキシ樹脂系は、150℃以上、好適には160℃±5℃以上、最適には170℃±5℃以上およびそれ以上の硬化開始温度を有する潜熱促進剤から成る非溶融型である。固化、経時アンダフィルは、半田リフローが発生した直後に遭遇する温度でエポキシ樹脂に潜熱硬化剤を使用して硬化を開始させて硬化段階にするのに適応する。熱硬化剤としてジシアンジアミドは単独で使用できないが、潜熱促進剤と共に少量で使用できる(しかし無い方が望ましい)。好適な潜熱硬化剤は、アミン、およびアミン−付加物を含む;これらはイミダゾールおよび尿素誘導体、例えば、2,4,6−トリメチル−1,3−ビス(3,3−ジメチルウレイド)ベンゼンおよび1,5−ビス(3,3−ジメチルウレイド)ナフタレンを含む。その熱硬化剤は非ハロゲン化でなければならない。硬化剤の例は、米国特許第5,543,486号に教示されているように、エポキシ化合物又はイソシアネート化合物およびアミン化合物を混合する、又はエポキシ化合物又はイソシアネート化合物、アミン化合物および活性水素化合物を混合する既知の方法で得られる。種々のブロックトアミンが適当である。好適な熱硬化剤は第三級アミンおよび尿素部分でブロックされたアミンである。熱硬化成分に適当なイミダゾールの例は、2−メチルイミダゾール;2−エチルイミダゾール;2−エチル−4−メチルイミダゾール;2−フェニルイミダゾール;2−フェニル−4−メチルイミダゾール;2−ウンデセニルイミダゾール;1−ビニル−2−メチルイミダゾール;2−n−ヘプタデシルイミダゾール;2−エチル−4−メチルイミダゾール;1−ベンジル−2−メチルイミダゾール;1−プロピル−2−メチルイミダゾール;1−シアノエチル−2−メチルイミダゾール;1−シアノエチル−2−エチル−4−メチルイミダゾール;1−シアノエチル−2−ウンデシルイミダゾール;1−シアノエチル−2−フェニルイミダゾール;1−グアナミノエチル−2−メチルイミダゾール;2−(p−ジメチウラミノフェニル)−4,5−ジフェニルイミダゾール;2−(2−ヒドロキシフェニル)−4,5−ジフェニルイミダゾール;2−フェニル−4−ヒドロキシメチルイミダゾール;2−フェニル4,5−ジ(ヒドロキシメチル)−イミダゾール;ジ(4,5−ジフェニルー2−イミダゾール)−ベンゼン−1,4,2−ナフチルー4,5−ジフェニルイミダゾール;イミダゾールおよびトリメリット酸の付加生成物;イミダゾールおよび2−n−ヘプタデシル−4−メチルイミダゾールの付加生成物;フェニルイミダゾール;ベンジルイミダゾール;1−(ドデシルベンジル)−2−メチルイミダゾール;2−(2−ヒドロキシ−4−t−ブチルフェニル)−4,5−ジフェニルイミダゾール;2−(2−メトキシフェニル)−4,5−ジフェニルイミダゾール;2−メチル−4,5−ジフェニルイミダゾール;2,3,5−トリフェニルイミダゾール;2−スチルイミダゾール;2−(3−ヒドロキシフェニル)−4,5−ジフェニルイミダゾール;1−ベンジル−2−メチルイミダゾール;および2−p−メトキシスチルイミダゾールを含む。好適な熱硬化剤はAir Products and Chemicals社から商品名Curezol 2−PHZ−Sで入手できる。
Thermosetting system The epoxy resin system utilized in the present invention is from a latent heat accelerator having a curing onset temperature of 150 ° C or higher, preferably 160 ° C ± 5 ° C or higher, optimally 170 ° C ± 5 ° C or higher and higher. It is a non-melting type. Solidification, aging underfill is adapted to initiate curing using a latent heat curing agent on the epoxy resin at the temperature encountered immediately after the solder reflow occurs to enter the curing stage. Although dicyandiamide cannot be used alone as a thermosetting agent, it can be used in small amounts with a latent heat accelerator (but preferably not). Suitable latent heat curing agents include amines and amine-adducts; these are imidazole and urea derivatives such as 2,4,6-trimethyl-1,3-bis (3,3-dimethylureido) benzene and 1 , 5-bis (3,3-dimethylureido) naphthalene. The thermosetting agent must be non-halogenated. Examples of curing agents are mixed epoxy compounds or isocyanate compounds and amine compounds, or mixed epoxy compounds or isocyanate compounds, amine compounds and active hydrogen compounds, as taught in US Pat. No. 5,543,486. Is obtained by a known method. Various blocked amines are suitable. Preferred thermosetting agents are tertiary amines and amines blocked with urea moieties. Examples of imidazoles suitable for thermosetting components are: 2-methylimidazole; 2-ethylimidazole; 2-ethyl-4-methylimidazole; 2-phenylimidazole; 2-phenyl-4-methylimidazole; 2-undecenylimidazole 1-vinyl-2-methylimidazole; 2-n-heptadecylimidazole; 2-ethyl-4-methylimidazole; 1-benzyl-2-methylimidazole; 1-propyl-2-methylimidazole; 1-cyanoethyl-2 1-cyanoethyl-2-ethyl-4-methylimidazole; 1-cyanoethyl-2-undecylimidazole; 1-cyanoethyl-2-phenylimidazole; 1-guanaminoethyl-2-methylimidazole; 2- (p- Dimethuraminophenyl)- 2- (2-hydroxyphenyl) -4,5-diphenylimidazole; 2-phenyl-4-hydroxymethylimidazole; 2-phenyl-4,5-di (hydroxymethyl) -imidazole; , 5-diphenyl-2-imidazole) -benzene-1,4,2-naphthyl-4,5-diphenylimidazole; addition product of imidazole and trimellitic acid; addition formation of imidazole and 2-n-heptadecyl-4-methylimidazole Product; phenylimidazole; benzylimidazole; 1- (dodecylbenzyl) -2-methylimidazole; 2- (2-hydroxy-4-t-butylphenyl) -4,5-diphenylimidazole; 2- (2-methoxyphenyl) -4,5-diphenylimidazole; Til-4,5-diphenylimidazole; 2,3,5-triphenylimidazole; 2-stilimidazole; 2- (3-hydroxyphenyl) -4,5-diphenylimidazole; 1-benzyl-2-methylimidazole; Contains 2-p-methoxystilimidazole. A suitable thermosetting agent is available from Air Products and Chemicals under the trade name Curezol 2-PHZ-S.

別の熱硬化剤はブロックトルイス酸から成り、例えば、アルミニウムキレート化合物のような潜金属アセトアセテート−官能性硬化剤は、エチルアセトアセテート金属ジイソプロピレート、金属トリス(エチルアセトアセテート)、アルキルアセトアセテート金属ジイソプロピレート、アルミニウムモノセシルアセトネートビス(エチルアセトアセトネート)、アルミニウムトリス(アセチルアセトネート)を含む;そして環状アルミニウムオリゴマーの例は環状アルミニウムオキシドイソプロピレートを含む。   Another thermal curing agent comprises a blocked Lewis acid, for example, latent metal acetoacetate-functional curing agents such as aluminum chelates include ethyl acetoacetate metal diisopropylate, metal tris (ethyl acetoacetate), alkyl acetoacetate. Acetate metal diisopropylate, including aluminum monocesylacetonate bis (ethyl acetoacetonate), aluminum tris (acetylacetonate); and examples of cyclic aluminum oligomers include cyclic aluminum oxide isopropylate.

光硬化液化可能固体の適当なリフローを提供するために、ウェーハ又はダイス上の光硬化固体被膜における熱硬化系の進行は貯蔵遅延期間中には生じない。熱硬化開始最低温度は、使用する熱硬化剤の選択によって予め決まる、そして150℃以上の温度で半田リフローの開始後に生じる。好適には、最低のアンダフィル熱硬化の開始は150℃〜225℃の範囲内である。熱硬化開始温度およびピークの硬化速度は、示差走査測熱法によって容易に決定される。熱硬化開始温度は促進剤の選択およびピーク硬化速度に依存し、約280℃以上にすべきでない。熱硬化の開始は、典型的に共融半田の250℃および無鉛半田の300℃において又はその近傍であるピーク温度の余り近くにすべきでない。典型的な半田のリフロー時間は3〜4分であって、アンダフィルは典型的にそのピーク温度に30秒以下にさらされる。150℃以下の温度で開始される熱硬化は不適当なアンダフィルの液化およびフローをもたらす。   In order to provide adequate reflow of the photocured liquefiable solid, no thermal cure system progression occurs in the photocured solid coating on the wafer or die during the storage delay period. The minimum temperature for initiating thermosetting is predetermined by the choice of the thermosetting agent used and occurs after the start of solder reflow at a temperature of 150 ° C. or higher. Preferably, the lowest underfill onset of heat cure is in the range of 150 ° C to 225 ° C. The thermosetting onset temperature and peak curing rate are easily determined by differential scanning calorimetry. The thermal cure initiation temperature depends on the choice of accelerator and peak cure rate and should not be above about 280 ° C. The onset of thermosetting should not be too close to the peak temperature, typically at or near 250 ° C. for eutectic solder and 300 ° C. for lead-free solder. Typical solder reflow times are 3-4 minutes, and underfill is typically exposed to its peak temperature for 30 seconds or less. Thermal curing initiated at temperatures below 150 ° C. results in inadequate underfill liquefaction and flow.

非伝導性充てん剤を使用してアンダフィルのCTEを限定する。これらの充てん剤は既知であって種々のタイプが適する。ミクロ電子グレードの溶融シリカ、結晶シリカ、ホウ素、アルミニウム及びケイ素の窒化物、マグネシウム、ケイ酸マグネシウム及びシリカ被覆アルミニウムを入手できる。液体アンダフィルに形成される粘度は選択の基準である。溶媒または非活性希釈剤が存在しないために、本発明によるアンダフィルの実施態様は、既知のスピンコーティングのような比較的低い粘度の塗料を利用する方法に容易に適用できる。本発明によるスピン−キャスタブルアンダフィルの実施態様は、スクリーン印刷又はプリントによって塗布されるアンダフィルに用いられる粘度より比較的低い通常の粘度を示す。   Non-conductive fillers are used to limit the underfill CTE. These fillers are known and various types are suitable. Microelectronic grade fused silica, crystalline silica, boron, aluminum and silicon nitride, magnesium, magnesium silicate and silica coated aluminum are available. The viscosity formed in the liquid underfill is a criterion for selection. Due to the absence of solvent or inactive diluent, the underfill embodiment according to the present invention is readily applicable to methods utilizing relatively low viscosity paints such as known spin coatings. Embodiments of the spin-castable underfill according to the present invention exhibit a normal viscosity that is relatively lower than the viscosity used for underfill applied by screen printing or printing.

好適な実施態様において、アンダフィルはソー・ストリート間の各ウェーハ領域の少なくとも70%をカバーする模様にスクリーン印刷によって塗布される。熱硬化状態におけるアンダフィルのCTEは、15〜50ppm/℃の範囲内であり、40〜70重量%、好適には45〜60重量%の範囲量内で使用される非伝導性充てん剤レベル、好適には球状溶融シリカ粒子を必要とする。さらに望ましくは、無機低CTE充てん剤が45〜55重量%の量で使用される。好適な低CTE無機充てん剤は少なくとも10μmの平均粒度及び約75μm以下の平均粒度を有する。用いる充てん剤直径の上限は上記アンダフィル被膜の厚さ以下にすべきである。   In a preferred embodiment, underfill is applied by screen printing to a pattern that covers at least 70% of each wafer area between saw streets. The CTE of underfill in the thermoset state is in the range of 15-50 ppm / ° C., and the non-conductive filler level used in the range of 40-70% by weight, preferably 45-60% by weight, Preferably spherical fused silica particles are required. More desirably, an inorganic low CTE filler is used in an amount of 45-55% by weight. Suitable low CTE inorganic fillers have an average particle size of at least 10 μm and an average particle size of about 75 μm or less. The upper limit of the filler diameter used should be less than or equal to the thickness of the underfill coating.

任意に、アンダフィルは接着向上剤を含有できる。接着向上剤は既知であって、オルガノシラン、オルガノポリシロキサン、オルガノハイドロジェンポリシロキサン、予水素化オルガノシラン、シロキサン及びシルセスキオキサンを含む。オルガノシロキサンの例は、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、及びβ−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランのようなモノ(エポキシヒドロカルビル)トリアルコキシシランのようなエポキシ官能基を含む;又はエチレン不飽和基が望ましい。エチレン不飽和有機ケイ素化合物は、モノ−又は多−アルケニル官能性オルガノシラン、例えば3−(メト)アクリルオキシプロピルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン並びに多−アルケニル官能性シロキサン、例えば、1,1,3,3−テトラメチルジシロキサン及び1,2,4−トリビニルシクロヘキサン及び/又は1,3,5−トリビニルシクロヘキサンを含む。   Optionally, the underfill can contain an adhesion improver. Adhesion improvers are known and include organosilanes, organopolysiloxanes, organohydrogenpolysiloxanes, prehydrogenated organosilanes, siloxanes and silsesquioxanes. Examples of organosiloxanes are mono (epoxy hydrocarbyl) such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. It contains an epoxy functional group such as trialkoxysilane; or an ethylenically unsaturated group is desirable. Ethylenically unsaturated organosilicon compounds are mono- or multi-alkenyl functional organosilanes such as 3- (meth) acryloxypropyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane and multi-alkenyl functional siloxanes such as 1,1,3,3-tetramethyldisiloxane and 1,2,4-trivinylcyclohexane and / or 1,3,5-trivinylcyclohexane.

ウェーハにアンダフィルを塗布する一つの方法は既知のスクリーン印刷技術を必要とする。本発明によるウェーハアンダフィルは、ソー・ストリートの外側のウェーハ表面の部分を一緒にカバーするために位置合わせした模様にウェーハ上に印刷できることが有利である。印刷方法によって塗布されるアンダフィルは任意のレオロジー調節剤を含有することが望ましい。適当な既知タイプは、例えば、Cabot社から入手でできる無定形のヒュームドシリカ又はシリル化無定形ヒュームドシリカである。   One method of applying underfill to a wafer requires known screen printing techniques. Advantageously, the wafer underfill according to the present invention can be printed on the wafer in a registered pattern to cover together portions of the wafer surface outside of the saw street. The underfill applied by the printing method desirably contains an optional rheology modifier. Suitable known types are, for example, amorphous fumed silica or silylated amorphous fumed silica available from Cabot.

既知である流れ調節剤は任意に使用できる。熱可塑性流れ調節剤は、熱液化可能アンダフィルの半田リフロー中に流出する傾向を増す。代表的な流れ向上剤は、商品名がElvaciteで入手できるようなI.V.が約0.2〜0.6のポリメタクリレート共重合体を含む。例はICI Acrylics社からの商品名がElvacite−2013であって、0.2のI.V.を有する64%ブチルメタクリレート/36%メチルメタクリレート共重合体であると考えられる。他の既知の流れ調節剤は米国Lubrizol社からの商品名Lanco Flow P10,およびSolutia社から入手できるMODAFLOW Powderを含む。流れ向上剤はSAN又はα−オレフィン重合体、等に基くことができる。好適な流れ向上剤は熱可塑性PMMA共重合体であって、INEOS Acrylics社からの商品名Elvaciteのような分子量が60,000を有する。光硬化性成分の重量%として示唆される任意の熱可塑性樹脂の流れ向上剤は1.0〜10.0重量%である。光硬化、熱液化可能状態におけるアンダフィルの流動性の改良として、カルボキシエステルのような可塑剤、又はエチレンビス−ステアアミドのような潤滑剤の10重量%以下の少量の使用が意図される。   Any known flow control agent can be used. Thermoplastic flow control agents increase the tendency to escape during hot liquid liquefiable underfill solder reflow. A typical flow improver is an I.D., such as that available under the trade name Elvacite. V. Contains about 0.2 to 0.6 polymethacrylate copolymer. An example is considered to be a 64% butyl methacrylate / 36% methyl methacrylate copolymer with the trade name Elvacite-2013 from ICI Acrylics and having an IV of 0.2. Other known flow control agents include the trade name Lanco Flow P10 from Lubrizol, USA, and MODAFLOW Powder available from Solutia. The flow improver can be based on SAN or alpha-olefin polymers, and the like. A preferred flow improver is a thermoplastic PMMA copolymer having a molecular weight of 60,000, such as the trade name Elvacite from INEOS Acrylics. The optional thermoplastic flow improver suggested as weight percent of the photocurable component is 1.0 to 10.0 weight percent. As an improvement in underfill flowability in the photocured, heat liquefiable state, the use of small amounts of up to 10% by weight of plasticizers such as carboxy esters or lubricants such as ethylenebis-stearamide is contemplated.

試験方法
1.ガラス転移温度(Tg)
b−段階又は熱硬化材料の試料を使用して、ガラス転移温度は5℃/分の加熱速度で熱機械分析装置、5℃/分の加熱速度で動的機械分析装置、又は5℃/分の加熱速度で示差走査熱量計によって測定した。
2.熱膨張係数
Tg以上又は以下の熱膨張係数の測定において、通常の熱機械分析装置を使用して測定した。
3.粘度
ブルックフィ−ルド VDIIIコーン及びプレートが適当であるが、Haake RheoStress I(商品名)を使用した。
4.ダイ保持力はASTM D1002に従って試験した。
5.熱及び酸化安定性は熱重量分析法によって測定する。アンダフィルは空気中300℃で5重量%以下を示す。
Test method
1. Glass transition temperature (Tg)
Using a sample of b-stage or thermoset material, the glass transition temperature is 5 ° C./min heating rate thermomechanical analyzer, 5 ° C./min heating rate dynamic mechanical analyzer, or 5 ° C./min Was measured with a differential scanning calorimeter at a heating rate of.
2. Thermal expansion coefficient In the measurement of the thermal expansion coefficient equal to or higher than Tg, the thermal expansion coefficient was measured using a normal thermomechanical analyzer.
3. Viscosity Brookfield VDIII cones and plates are suitable, but Haake RheoStress I (trade name) was used.
4). Die retention was tested according to ASTM D1002.
5). Thermal and oxidative stability is measured by thermogravimetric analysis. Underfill is 5% by weight or less at 300 ° C. in air.

光重合条件
AETEK UV 加工装置を使用する次の条件は、液体アンダフィルを被膜の深さ全体を適切に固化させる。
ランプ1(W) ランプ2(W) ベルト速度 硬化エネルギー
(fpm) (mJ/cm
400 400 34 1170
200 200 30 761
200 200 45 515
200 200 60 384
200 200 65 349
200 200 70 327
125 125 30 712
125 125 70 297
200 0 45 274
200 0 60 205
200 0 70 176
125 0 70 149
125 0 90 116
Photopolymerization conditions The following conditions using the AETEK UV processing equipment properly solidify the liquid underfill to the entire depth of the coating.
Lamp 1 (W) Lamp 2 (W) Belt speed Curing energy
(Fpm) (mJ / cm 2 )
400 400 34 1170
200 200 30 761
200 200 45 515
200 200 60 384
200 200 65 349
200 200 70 327
125 125 30 712
125 125 70 297
200 0 45 274
200 0 60 205
200 0 70 176
125 0 70 149
125 0 90 116

加工実施態様
アンダフィルの実施例1−4は、成分をHauschild(商品名)カップに添加して、3000rpmで30秒間混合することによって調製した。配合物は、10.1cm直径x400±厚さの半導体ウェーハ(商品名Umicore)上にスピンコーティングした。その被覆ウェ−ハ、Aetec UV炉で30fpm、N雰囲気下、200W/200Wの設定、そしてワンパスで光硬化させた。光硬化したアンダフィルの8ヶ月貯蔵はDSCによる確認でさらなる硬化活性をもたらさなかった。その熱硬化開始温度は150℃±2℃(166℃でピーク発熱量)であった。
Processing Embodiments Underfill Examples 1-4 were prepared by adding the ingredients to a Hauschild (trade name) cup and mixing at 3000 rpm for 30 seconds. The formulation was spin coated onto a 10.1 cm diameter x 400 ± thick semiconductor wafer (trade name Umicore). The coated wafer was photocured in an Aetec UV furnace at 30 fpm, N 2 atmosphere, 200 W / 200 W setting and one pass. Storage of the photocured underfill for 8 months did not provide further curing activity as confirmed by DSC. The thermosetting start temperature was 150 ° C. ± 2 ° C. (peak heating value at 166 ° C.).

成 分 重量部
1.ビスフェノールA−エピクロヒドリン− 19.03
エポキシ樹脂(残留エピクロヒドリン<1ppm)
Shell Resins社からのRSL−1462)
2.ポリ(アクリル)不飽和ウレタンアクリレートオリゴマー
(Sartomer社からのCN120C60)
3.エポキシアクリレートオリゴマー 18.5
(Sartomer社からのCN136)
4.エポキシ硬化剤1 1.14
(Air Products &Chemから
のAncamine2441)
5.エポキシ硬化剤2 1.33
(SKWCem社からのDyhard 100s)
6.三官能性アクリレート 7.00
(Sartomer社からのSR351)
7.光開始剤
Irgacure 184 2.00
Irgacure 819 1.00
8.溶融シリカ 50.00
(Dennka社からのF5BLDX)
合計 100.00
Component Weight part
1. Bisphenol A-epichlorohydrin 19.03
Epoxy resin (residual epichlorohydrin <1ppm)
RSL-1462 from Shell Resins)
2. Poly (acrylic) unsaturated urethane acrylate oligomer (CN120C60 from Sartomer)
3. Epoxy acrylate oligomer 18.5
(CN136 from Sartomer)
4). Epoxy curing agent 1 1.14
(Ancamine 2441 from Air Products & Chem)
5). Epoxy curing agent 2 1.33
(Dyhard 100s from SKWCem)
6). Trifunctional acrylate 7.00
(SR351 from Sartomer)
7). Photoinitiator Irgacure 184 2.00
Irgacure 819 1.00
8). Fused silica 50.00
(F5BLDX from Dennka)
Total 100.00

成 分 重量部

1.ビスフェノールA−エピクロヒドリン− 36.28
エポキシ樹脂(残留エピクロヒドリン<1ppm)
Shell Resins社からのRSL−1462)
2.エポキシ硬化剤1 2.18
(Air Products &Chemから
のAncamine2441)
3.エポキシ硬化剤2 2.54
(SKWCem社からのDyhard 100s)
4.三官能性アクリレート 6.00
(Sartomer社からのSR351)
5.光開始剤
Irgacure 184 1.50
Irgacure 819 1.50
6.溶融シリカ 50.00
(Dennka社からのF5BLDX)
合計 100.00
Component Weight part

1. Bisphenol A-epichlorohydrin 36.28
Epoxy resin (residual epichlorohydrin <1ppm)
RSL-1462 from Shell Resins)
2. Epoxy curing agent 1 2.18
(Ancamine 2441 from Air Products & Chem)
3. Epoxy curing agent 2 2.54
(Dyhard 100s from SKWCem)
4). Trifunctional acrylate 6.00
(SR351 from Sartomer)
5). Photoinitiator Irgacure 184 1.50
Irgacure 819 1.50
6). Fused silica 50.00
(F5BLDX from Dennka)
Total 100.00

成 分 重量部

1.ビスフェノールA−エピクロヒドリン− 36.29
エポキシ樹脂(残留エピクロヒドリン<1ppm)
Shell Resins社からのRSL−1462)
2.潜アミン促進剤 2.18
(Air Products &Chemから
のAncamine2441)
3.ジシアンジアミド 2.54
(SKWCem社からのDyhard 100s)
4.三官能性アクリレート 6.00
(Sartomer社からのSR351)
5.光開始剤
Irgacure 184 2.00
Irgacure 819 1.00
6.溶融シリカ 50.00
(Dennka社からのF5BLDX)
合計 100.00
Component Weight part

1. Bisphenol A-epichlorohydrin 36.29
Epoxy resin (residual epichlorohydrin <1ppm)
RSL-1462 from Shell Resins)
2. Latent amine accelerator 2.18
(Ancamine 2441 from Air Products & Chem)
3. Dicyandiamide 2.54
(Dyhard 100s from SKWCem)
4). Trifunctional acrylate 6.00
(SR351 from Sartomer)
5). Photoinitiator Irgacure 184 2.00
Irgacure 819 1.00
6). Fused silica 50.00
(F5BLDX from Dennka)
Total 100.00

1.ビスフェノールA−エピクロヒドリン− 18.15
エポキシ樹脂(残留エピクロヒドリン<1ppm)
Shell Resins社からのRSL−1462)
2.アクリレート改質エポキシオリゴマー 19.50
(Sartomer社からのCN136)
3.潜アミン促進剤 2.18
(Air Products &Chemから
のAncamine2441)
4.ジシアンジアミド 2.54
(SKWCem社からのDyhard 100s)
5.三官能性アクリレート 6.00
(Sartomer社からのSR351)
6.光開始剤
Irgacure 184 1.50
Irgacure 819 1.50
7.溶融シリカ 50.00
(Dennka社からのF5BLDX)
合計 101.37
1. Bisphenol A-epichlorohydrin 18.15
Epoxy resin (residual epichlorohydrin <1ppm)
RSL-1462 from Shell Resins)
2. Acrylate-modified epoxy oligomer 19.50
(CN136 from Sartomer)
3. Latent amine accelerator 2.18
(Ancamine 2441 from Air Products & Chem)
4). Dicyandiamide 2.54
(Dyhard 100s from SKWCem)
5). Trifunctional acrylate 6.00
(SR351 from Sartomer)
6). Photoinitiator Irgacure 184 1.50
Irgacure 819 1.50
7). Fused silica 50.00
(F5BLDX from Dennka)
Total 101.37

実施例5−7は調製して、10.1cm直径x400±厚さの半導体ウェーハ(商品名Umicore)上にスピンコーティングした。その被覆ウェ−ハ、Aetec UV炉で30fpm、N雰囲気下、200W/200Wの設定、そしてワンパスで光硬化させた。固体熱液化可能状態における実施例5−7の光硬化膜は不粘着性であった。 Examples 5-7 were prepared and spin coated onto a 10.1 cm diameter x 400 ± thick semiconductor wafer (trade name Umicore). The coated wafer was photocured in an Aetec UV furnace at 30 fpm, N 2 atmosphere, 200 W / 200 W setting and one pass. The photocured film of Example 5-7 in a solid heat-liquefiable state was non-tacky.

実施例5の調製において、成分1−4は40グラムのHauschild(商品名)カップ中で一緒に混合し、光開始剤が完全に溶解するまで60℃に加熱した。試料は次にHauschildミキサで300rpmx30秒間混合した。残りの成分はそれぞれの添加の間混合しながらそれぞれ添加した。   In the preparation of Example 5, ingredients 1-4 were mixed together in a 40 gram Hauschild (trade name) cup and heated to 60 ° C. until the photoinitiator was completely dissolved. The sample was then mixed in a Hauschild mixer at 300 rpm x 30 seconds. The remaining ingredients were each added with mixing during each addition.

成 分 説 明 重量部
1.CN136 アミン改質、アクリレートエポキシ 6.70
2.SR203 THFMA 12.40
3.Irgacure184 光開始剤 0.30
4.Irgacure819 光開始剤 0.50
5.RSL−1462 ビスAエポキシのジグリシジルエーテル 14.35
6.RSS−1407 ビスフェノールエポキシ樹脂 14.35
7.Curezol 2PHHZ−S 1.43
イミダゾール潜硬化剤
8.充てん剤 溶融シリカ 49.99
合計 100.0
Component Description Weight part
1. CN136 amine modified, acrylate epoxy 6.70
2. SR203 THFMA 12.40
3. Irgacure 184 photoinitiator 0.30
4). Irgacure 819 photoinitiator 0.50
5). RSL-1462 Diglycidyl ether of bis A epoxy 14.35
6). RSS-1407 Bisphenol epoxy resin 14.35
7). Curezol 2PHHZ-S 1.43
Imidazole latent curing agent8. Filler Fused silica 49.99
Total 100.0 2

実施例5の熱硬化開始温度は167℃であった。
実施例 5
Tg−UV−Bステージ 23.56℃
Tg−熱硬化 106.25℃
CTE−Tg以下 40.37ppm/℃
CTE−Tg以上 107.7ppm/℃
貯蔵モジュラス(@25℃) 2,761Mp
貯蔵モジュラス(@175℃) 0.025Gpa
The thermosetting start temperature of Example 5 was 167 ° C.
Example 5
Tg-UV-B stage 23.56 ° C
Tg-thermosetting 106.25 ° C
CTE-Tg or less 40.37ppm / ° C
CTE-Tg or more 107.7ppm / ° C
Storage modulus (@ 25 ° C) 2,761Mp
Storage modulus (@ 175 ° C) 0.025 Gpa

実施例6は、50%の溶融シリカを除いて配合成分を40グラムのHauschild(商品名)カップに添加して、300rpmx30秒間混合することによって調製した。その混合体を炉内で45℃において30分間加熱して光開始剤を溶解させた。その溶液混合体を再び300rpmで30秒間混合した。   Example 6 was prepared by adding the ingredients to a 40 gram Hauschild (trade name) cup except 50% fused silica and mixing at 300 rpm for 30 seconds. The mixture was heated in an oven at 45 ° C. for 30 minutes to dissolve the photoinitiator. The solution mixture was again mixed for 30 seconds at 300 rpm.

原 料 説 明 重量部
SR203 THFMA 19.10
Irgacure184 光開始剤 0.30
Irgacure819 光開始剤 0.50
RSS−1407 ビスフェノールエポキシ樹脂 14.35
Curezol 2PHHZ−S 1.43
イミダゾール潜硬化剤
充てん剤 溶融シリカ 50.01
合計 100.00
Raw material explanation Weight part
SR203 THFMA 19.10
Irgacure 184 photoinitiator 0.30
Irgacure 819 photoinitiator 0.50
RSS-1407 Bisphenol epoxy resin 14.35
Curezol 2PHHZ-S 1.43
Imidazole latent curing agent filler Fused silica 50.01
Total 100.00

図1を参照すると、図1は実施例6のDSC走査曲線を示す。示差走査測熱法の条件は:Perkin−Elmer社からのDSC DSC7型を使用し、加熱ランプの条件は5℃/分の加熱速度で20℃−300℃の範囲であった。全ての試料は光硬化状態で試験した。走査は、95.23℃での固体エポキシ樹脂の融点、191.65℃の硬化開始温度、及び193.71℃の熱硬化のピーク反応温度を示す。   Referring to FIG. 1, FIG. 1 shows the DSC scanning curve of Example 6. The differential scanning calorimetry conditions were: DSC DSC7 model from Perkin-Elmer, and the heating lamp conditions were in the range of 20 ° C-300 ° C with a heating rate of 5 ° C / min. All samples were tested in the photocured state. The scan shows the melting point of the solid epoxy resin at 95.23 ° C., the onset temperature of 191.65 ° C., and the peak reaction temperature of heat cure at 193.71 ° C.

実施例7は50%の溶融シリカを除いて配合成分を40グラムのHauschild(商品名)カップ添加して、300rpmx30秒間混合することによって調製した。その溶融シリカの残りの部分は次に300rpmで30秒間混合しながら添加した。その混合体は炉内で45℃において30分間加熱して光開始剤を溶解させた。その溶液混合体を再び300rpmで30秒間混合した。   Example 7 was prepared by adding 40 grams of Hauschild (trade name) cup except 50% fused silica and mixing at 300 rpm for 30 seconds. The remaining portion of the fused silica was then added with mixing at 300 rpm for 30 seconds. The mixture was heated in an oven at 45 ° C. for 30 minutes to dissolve the photoinitiator. The solution mixture was again mixed for 30 seconds at 300 rpm.

原 料 説 明 重量部
SR285 THFM 19.05
Irgacure184 光開始剤 0.30
Irgacure819 光開始剤 0.50
RSS−1407 ビスフェノールエポキシ樹脂 28.71
Curezol 2PHHZ−S 1.44
イミダゾール潜硬化剤
充てん剤 溶融シリカ 50.01
合計 100.00
Raw material explanation Weight part
SR285 THFM 19.05
Irgacure 184 photoinitiator 0.30
Irgacure 819 photoinitiator 0.50
RSS-1407 Bisphenol epoxy resin 28.71
Curezol 2PHHZ-S 1.44
Imidazole latent curing agent filler Fused silica 50.01
Total 100.00

図2は実施例7のDSC走査曲線を示す。示差走査測熱法の条件は:Perkin−Elmer社からのDSC、DSC7型を使用した。加熱ランプの条件は5℃/分の加熱速度で20℃−300℃の範囲であった。全ての試料は光硬化状態で試験した。その走査は、99.5℃での固体エポキシ樹脂の融点、189.62℃の硬化開始温度、及び192.6℃の熱硬化のピーク反応温度を示す。   FIG. 2 shows the DSC scan curve of Example 7. The differential scanning calorimetry conditions were: DSC, DSC7 from Perkin-Elmer. The heating lamp conditions were in the range of 20 ° C-300 ° C with a heating rate of 5 ° C / min. All samples were tested in the photocured state. The scan shows the melting point of the solid epoxy resin at 99.5 ° C., the onset temperature of 189.62 ° C., and the peak reaction temperature of heat curing at 192.6 ° C.

実施例8は50%の溶融シリカを除いて配合成分を40グラムのHauschild(商品名)カップに添加して、300rpmx30秒間混合することによって調製した。その溶融シリカの残りの部分は次に300rpmで30秒間混合しながら添加した。その混合体は炉内で45℃において30分間加熱して光開始剤を溶解させた。その溶液混合体を再び300rpmで30秒間混合した。   Example 8 was prepared by adding the ingredients to a 40 gram Hauschild (trade name) cup except 50% fused silica and mixing at 300 rpm for 30 seconds. The remaining portion of the fused silica was then added with mixing at 300 rpm for 30 seconds. The mixture was heated in an oven at 45 ° C. for 30 minutes to dissolve the photoinitiator. The solution mixture was again mixed at 300 rpm for 30 seconds.

成 分 説 明 重量部
CN136 アミン改質、アクリレートエポキシ 6.70
SR203 THFMA 12.40
Irgacure184 光開始剤 0.30
Irgacure819 光開始剤 0.50
RSL−1462 ビスAエポキシのジグリシジルエーテル 14.35
RSS−1407 ビスフェノールエポキシ樹脂 20.09
Curezol イミダゾール 1.43
充てん剤 FB5LDX(溶融シリカ) 49.99
合計 100.02
Component Description Weight part
CN136 amine modified, acrylate epoxy 6.70
SR203 THFMA 12.40
Irgacure 184 photoinitiator 0.30
Irgacure 819 photoinitiator 0.50
RSL-1462 Diglycidyl ether of bis A epoxy 14.35
RSS-1407 Bisphenol epoxy resin 20.09
Curezol imidazole 1.43
Filler FB5LDX (fused silica) 49.99
Total 100.02

実施例 8
Tg−光BステージWAU 41.47℃
Tg−熱硬化 116.44℃
CTE−Tg以下 40.56ppm/℃
CTE−Tg以上 120.5ppm/℃
貯蔵モジュラス(25℃) 3,313Mpa
貯蔵モジュラス(175℃) 0.0268Gpa
Example 8
Tg-light B stage WAU 41.47 ° C
Tg-thermosetting 116.44 ° C
CTE-Tg or less 40.56ppm / ° C
CTE-Tg or more 120.5ppm / ° C
Storage modulus (25 ° C) 3,313 Mpa
Storage modulus (175 ° C) 0.0268 Gpa

比較実施例A(77−5)
成 分 重量部
1.トリ(アクリル)官能性単量体と
アクリレート改質エポキシオリゴマーとの混合体 43.00
(Sartomer社のCN120C60)
2.トリ(アクリル)官能性単量体 4.00
(Sartomer社のSR351)
3.ジシアンジアミド 1.33
(SKWCem社のDyhard 100s)
4.光開始剤
Irgacure 184 2.00
Irgacure 819 1.00
5.溶融シリカ 50.00
(Dennka社のF5BLDX)
合計 100.00
比較実施例Aは、光硬化後、24時間の周囲貯蔵後ウェーハから剥離した、そしてこれは光硬化によって誘導された過剰な収縮のためのと考えられた。
Comparative Example A (77-5)
Component Weight part
1. Mixture of tri (acrylic) functional monomer and acrylate modified epoxy oligomer 43.00
(Sartomer CN120C60)
2. Tri (acrylic) functional monomer 4.00
(Sartomer SR351)
3. Dicyandiamide 1.33
(SKWCem Dyhard 100s)
4). Photoinitiator Irgacure 184 2.00
Irgacure 819 1.00
5). Fused silica 50.00
(F5BLDX from Dennka)
Total 100.00
Comparative Example A peeled off the wafer after 24 hours of ambient storage after photocuring and this was believed to be due to excessive shrinkage induced by photocuring.

比較実施例B
成 分 重量部
1.ビスフェノールA−エピクロヒドリン− 18.15
エポキシ樹脂(残留エピクロヒドリン<1ppm)
Shell Resins社のRSL−1462)
2.アクリレート改質エポキシオリゴマー 20.5
(Sartomer社からのCN136)
3.潜アミン促進剤 1.09
(Air Products &Chem
のAncamine2441)
4.ジシアンジアミド 1.27
(SKWCem社のDyhard 100s)
5.光開始剤
Irgacure 184 1.50
Irgacure 819 1.00
7.溶融シリカ 50.00
(Dennka社からのF5BLDX)
合計 100.00
比較実施例Bも24時間の周囲貯蔵後に剥離した。
Comparative Example B
Component Weight part
1. Bisphenol A-epichlorohydrin 18.15
Epoxy resin (residual epichlorohydrin <1ppm)
Shell Resins RSL-1462)
2. Acrylate modified epoxy oligomer 20.5
(CN136 from Sartomer)
3. Latent amine accelerator 1.09
(Air Products & Chem
Ancamine 2441)
4). Dicyandiamide 1.27
(SKWCem Dyhard 100s)
5). Photoinitiator Irgacure 184 1.50
Irgacure 819 1.00
7). Fused silica 50.00
(F5BLDX from Dennka)
Total 100.00
Comparative Example B was also peeled after 24 hours ambient storage.

本発明は、ウェーハに塗布したアンダフィル及びそれらの調製法として特別な産業上の利用可能性を有する、本発明の組成物は、グローブトップ、チップ直接取付け、及び熱硬化組成物用の他の用途のようなアンダフィルを超えた超小型電子適用にも使用される。以上、好適ないくつかの実施態様を説明してきたが、上記の教示を考慮して多くの改良及び変化が可能である。従って、本発明は請求項の範囲を逸脱することなく特に記載したもの以外で実施できることが理解される。   The present invention has special industrial applicability as underfills applied to wafers and methods for their preparation. Compositions of the present invention can be used for glove tops, chip direct attachment and other thermosetting compositions. It is also used for microelectronic applications beyond underfill such as applications. While several preferred embodiments have been described above, many modifications and variations are possible in view of the above teachings. Therefore, it will be appreciated that the invention may be practiced otherwise than as specifically described without departing from the scope of the claims.

実施例6のDSC曲線であって、融点、熱硬化開始、及び反応のピーク温度を示す。It is a DSC curve of Example 6, Comprising: Melting | fusing point, the thermosetting start, and the peak temperature of reaction are shown. 実施例7のDSC曲線であって、融点、熱硬化開始、及び反応のピーク温度を示す。It is a DSC curve of Example 7, Comprising: Melting | fusing point, the thermosetting start, and the peak temperature of reaction are shown.

Claims (6)

アンダフィル組成物に接着された活性面を有する周囲温度安定な集積回路用ウェーハであって、該アンダフィル組成物が下記の一液型混合体から成ることを特徴とする周囲温度安定な集積回路用ウェーハ:
液体光硬化性アクリル成分、
多官能性エポキシ樹脂、
少なくとも一つの光開始剤、
非導電性充てん剤、及び
非溶融性熱活性化エポキシ硬化剤、
固体状態の前記アンダフィル組成物は25℃において1000〜5000MPaの曲げ弾性率、及び前記アンダフィル組成物のガラス転移温度以下の15〜50ppm/℃の熱膨張係数を示す。
An ambient temperature stable integrated circuit wafer having an active surface bonded to an underfill composition, wherein the underfill composition comprises the following one-part mixture: Wafer:
Liquid photo-curable acrylic component,
Polyfunctional epoxy resin,
At least one photoinitiator,
A non-conductive filler, and a non-melting heat-activated epoxy curing agent,
The underfill composition in a solid state exhibits a flexural modulus of 1000 to 5000 MPa at 25 ° C. and a thermal expansion coefficient of 15 to 50 ppm / ° C. below the glass transition temperature of the underfill composition.
5%〜30%の一官能性不飽和光硬化性成分、
10%〜45%の多官能性エポキシ樹脂、
0.3%〜3%の少なくとも一つの光開始剤、及び
40%〜70%の非導電性充てん剤、
から成り、硬化状態のアンダフィルが25℃において1000〜5000MPaの曲げ弾性率、及びガラス転移温度以下の15〜50ppm/℃の熱膨張係数を示すことを特徴とする液体、100%固体、非自溶、一液型アンダフィル組成物。
5% to 30% monofunctional unsaturated photocurable component,
10% to 45% polyfunctional epoxy resin,
0.3% to 3% of at least one photoinitiator, and 40% to 70% non-conductive filler,
A liquid, 100% solid, non-self, wherein the cured underfill exhibits a flexural modulus of 1000 to 5000 MPa at 25 ° C. and a thermal expansion coefficient of 15 to 50 ppm / ° C. below the glass transition temperature. A one-pack type underfill composition.
前記光硬化性成分が、C−C12アクリル酸のアルキルエステル及びアクリル酸のアルキル置換C−C12エステルから成る群からの少なくとも一つの化合物を含むことを特徴とする請求項2記載のアンダフィル組成物。 The photocurable component, C 3 -C 12 according to claim 2, characterized in that it comprises at least one compound from the group consisting of alkyl-substituted C 3 -C 12 esters of alkyl esters and acrylic acid Acrylic acid Underfill composition. 前記光硬化性成分は、テトラヒドロフルフリルアクリレート、テトラヒドロフルフリルメタクリレート、ペンタエリトリトールモノメタクリレート、トリメチロールプロパンモノアクリレート、アクリルアルキロールホルマルアクリレート、及びケタールアクリレートから成る群の少なくとも一つから選択されることを特徴とする請求項2記載のアンダフィル組成物。   The photocurable component is selected from at least one of the group consisting of tetrahydrofurfuryl acrylate, tetrahydrofurfuryl methacrylate, pentaerythritol monomethacrylate, trimethylolpropane monoacrylate, acrylic alkylol formal acrylate, and ketal acrylate. The underfill composition according to claim 2. 前記光硬化性成分は、ビス−フェノールポリエーテルアクリレート、ビニルエーテル面冠オリゴマー、アクリル化エポキシ樹脂、エチレン性不飽和ポリアルキルエーテル、ポリ(環状)エーテルアクリレート、及びポリ環状(エーテル)アセテートアクリレートから成る群から選択される不飽和オリゴマーである請求項2記載のアンダフィル組成物。   The photocurable component is a group consisting of bis-phenol polyether acrylate, vinyl ether crown oligomer, acrylated epoxy resin, ethylenically unsaturated polyalkyl ether, poly (cyclic) ether acrylate, and polycyclic (ether) acetate acrylate. The underfill composition according to claim 2, which is an unsaturated oligomer selected from the group consisting of: さらに、モノ不飽和アクリレート単量体から成り、前記オリゴマーが500〜5,000の数平均分子量を有する請求項4記載のアンダフィル組成物。   The underfill composition according to claim 4, further comprising a monounsaturated acrylate monomer, wherein the oligomer has a number average molecular weight of 500 to 5,000.
JP2006541112A 2003-11-21 2004-06-02 Two-stage wafer coating underfill Pending JP2007515785A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US52400703P 2003-11-21 2003-11-21
PCT/US2004/017749 WO2005056675A1 (en) 2003-11-21 2004-06-02 Dual-stage wafer applied underfills

Publications (1)

Publication Number Publication Date
JP2007515785A true JP2007515785A (en) 2007-06-14

Family

ID=34676586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006541112A Pending JP2007515785A (en) 2003-11-21 2004-06-02 Two-stage wafer coating underfill

Country Status (5)

Country Link
EP (1) EP1694769A4 (en)
JP (1) JP2007515785A (en)
KR (1) KR100975088B1 (en)
CN (1) CN1946795B (en)
WO (1) WO2005056675A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509961A (en) * 2008-11-21 2012-04-26 ヘンケル コーポレイション Phase separation curable composition
JP2016506978A (en) * 2013-01-23 2016-03-07 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Underfill composition and packaging process using the same
JP2016117853A (en) * 2014-12-22 2016-06-30 日立化成株式会社 Underfill material, production method of electronic component device, and electronic component device
JP2018021163A (en) * 2016-08-05 2018-02-08 スリーエム イノベイティブ プロパティズ カンパニー Resin composition for heat radiation, and cured product thereof, and method for using the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326369B2 (en) 2005-03-07 2008-02-05 National Starch And Chemical Investment Holding Corporation Low stress conductive adhesive
JP4699189B2 (en) * 2005-12-01 2011-06-08 日東電工株式会社 Semiconductor device manufacturing method and electronic component
JP4846406B2 (en) * 2006-03-28 2011-12-28 リンテック株式会社 Chip protection film forming sheet
DE102006042032A1 (en) * 2006-09-07 2008-03-27 Infineon Technologies Ag Semiconductor component
WO2009079122A1 (en) * 2007-12-18 2009-06-25 3M Innovative Properties Company Method of coating fine wires and curable composition therefor
CN101768316B (en) * 2010-03-04 2011-09-14 陕西科技大学 Preparation method of polyaniline/P (MMA-BA-HEA) conductive composite material
WO2011114935A1 (en) * 2010-03-18 2011-09-22 新日鐵化学株式会社 Epoxy resin composition and cured substance
CN102408679B (en) * 2011-08-29 2012-12-26 天威新能源控股有限公司 Epoxy resin composite material
JP6092200B2 (en) * 2012-05-25 2017-03-08 綜研化学株式会社 Photo-curable resin composition for imprint, production method and structure
CN106995584B (en) * 2016-10-27 2019-08-23 武汉市三选科技有限公司 The preparation and packaging method of capactive film constituent and capactive film and the capactive film
JP2020105253A (en) * 2018-12-26 2020-07-09 スリーエム イノベイティブ プロパティズ カンパニー Composition for forming sealing material, sealing material, thermosetting material of sealing material, and method for manufacturing adhesive structure
CN111635493B (en) * 2019-06-26 2022-09-20 苏州太湖电工新材料股份有限公司 Preparation method of high-thermal-conductivity modified epoxy resin
IT202000023443A1 (en) * 2020-10-05 2022-04-05 Prolab Mat S R L SEQUENTIAL COMPENETRATING OR SEMI-COMPENETRANT POLYMER NETWORK AND PROCESS TO OBTAIN IT

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228610A (en) * 1998-02-18 1999-08-24 Jsr Corp Photo-setting resin composition
WO2003052813A2 (en) * 2001-12-14 2003-06-26 National Starch And Chemical Investment Holding Corporation Dual cure b-stageable underfill for wafer level
JP2003204148A (en) * 2001-10-29 2003-07-18 Fujitsu Ltd Connecting structure body between electrodes and forming method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0938026B1 (en) * 1998-02-18 2009-05-27 DSM IP Assets B.V. Photocurable liquid resin composition
US20050256219A1 (en) * 2002-03-11 2005-11-17 Hideaki Takase Photocurable resin composition and optical component
JP4213043B2 (en) * 2002-03-15 2009-01-21 太陽インキ製造株式会社 Curable resin and curable resin composition containing the same
US7176044B2 (en) * 2002-11-25 2007-02-13 Henkel Corporation B-stageable die attach adhesives

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228610A (en) * 1998-02-18 1999-08-24 Jsr Corp Photo-setting resin composition
JP2003204148A (en) * 2001-10-29 2003-07-18 Fujitsu Ltd Connecting structure body between electrodes and forming method thereof
WO2003052813A2 (en) * 2001-12-14 2003-06-26 National Starch And Chemical Investment Holding Corporation Dual cure b-stageable underfill for wafer level

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509961A (en) * 2008-11-21 2012-04-26 ヘンケル コーポレイション Phase separation curable composition
JP2016506978A (en) * 2013-01-23 2016-03-07 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Underfill composition and packaging process using the same
JP2016117853A (en) * 2014-12-22 2016-06-30 日立化成株式会社 Underfill material, production method of electronic component device, and electronic component device
JP2018021163A (en) * 2016-08-05 2018-02-08 スリーエム イノベイティブ プロパティズ カンパニー Resin composition for heat radiation, and cured product thereof, and method for using the same

Also Published As

Publication number Publication date
KR100975088B1 (en) 2010-08-11
EP1694769A1 (en) 2006-08-30
CN1946795A (en) 2007-04-11
EP1694769A4 (en) 2007-08-29
CN1946795B (en) 2010-06-23
WO2005056675A1 (en) 2005-06-23
KR20070000399A (en) 2007-01-02

Similar Documents

Publication Publication Date Title
JP2007515785A (en) Two-stage wafer coating underfill
TWI433906B (en) Adhesive compositions for use in die attach applications
KR101492629B1 (en) Adhesive composition, adhesive sheet and production process for semiconductor device
JP7056775B2 (en) Cushioning sheet composition and cushioning sheet
KR20060136369A (en) Dual-Stage Wafer Applied Underfills
KR101641608B1 (en) Methods for protecting a die surface with photocurable materials
KR20080088487A (en) Adhesive composition, adhesive sheet and production process for semiconductor device
KR101847526B1 (en) Adhensive composition for semiconductor, Adhensive sheet for semiconductor and Manufacturing method of Semiconductor Device
KR20070113126A (en) Adhesive composition, adhesive sheet and production process for semiconductor device
US7560519B2 (en) Dual-stage wafer applied underfills
KR101483308B1 (en) Adhesive composition, adhesive sheet and production process for semiconductor device
KR20080047990A (en) Adhesive composition, adhesive sheet and production process for semiconductor device
US11674032B2 (en) Encapsulation resin composition, laminated sheet, cured product, semiconductor device, and method for fabricating semiconductor device
JP5499516B2 (en) Adhesive composition, circuit member connecting adhesive sheet, and method for manufacturing semiconductor device
JP5754072B2 (en) Adhesive composition, adhesive member sheet for connecting circuit members, and method for manufacturing semiconductor device
JP2019129179A (en) Method for manufacturing semiconductor device
JP5557158B2 (en) Flip chip connecting underfill agent and method of manufacturing semiconductor device using the same
JP5414256B2 (en) Adhesive composition, adhesive sheet, and method for manufacturing semiconductor device
JP2015032637A (en) Manufacturing method of electronic component device, and electronic component device
JP4835229B2 (en) Resin composition and semiconductor device produced using resin composition
TWI825080B (en) Method for manufacturing semiconductor chip
JP4625342B2 (en) Electronic component device and method of manufacturing electronic component device
TW200935529A (en) Method of coating fine wires and curable composition therefor
JP2009215456A (en) Pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet, and manufacturing method for semiconductor device
JP2023030494A (en) Epoxy resin composition, film, semiconductor device and method for producing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110113

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110405

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110915

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111209

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120704