JP2007510855A - Control method for regeneration of particle filter - Google Patents

Control method for regeneration of particle filter Download PDF

Info

Publication number
JP2007510855A
JP2007510855A JP2006538905A JP2006538905A JP2007510855A JP 2007510855 A JP2007510855 A JP 2007510855A JP 2006538905 A JP2006538905 A JP 2006538905A JP 2006538905 A JP2006538905 A JP 2006538905A JP 2007510855 A JP2007510855 A JP 2007510855A
Authority
JP
Japan
Prior art keywords
fuel
dissolution rate
fuel injection
variation
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006538905A
Other languages
Japanese (ja)
Other versions
JP4764826B2 (en
Inventor
ヴァンサーン ブロション
ヤン シャザル
エルヴェイ メルロド
スィールヴェール ロンドレ
Original Assignee
ルノー・エス・アー・エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルノー・エス・アー・エス filed Critical ルノー・エス・アー・エス
Publication of JP2007510855A publication Critical patent/JP2007510855A/en
Application granted granted Critical
Publication of JP4764826B2 publication Critical patent/JP4764826B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/18Indicating or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • F01M2001/165Controlling lubricant pressure or quantity according to fuel dilution in oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/11Oil dilution, i.e. prevention thereof or special controls according thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Filtration Of Liquid (AREA)
  • Networks Using Active Elements (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

The method involves estimating variation of dilution rate of fuel based on a number of fuel injection phases in combustion chambers, quantity of the injected fuel, the position of pistons in the chambers during the fuel injection and supply pressure of the fuel. The variation of the dilution rate is calculated on a delayed injection phase and a rapid injection phase. An independent claim is also included for a method of controlling a motorization system having an engine and a particles filter.

Description

本発明は、車両の動力装置に装備された粒子フィルタの再生のための制御方法に関する。   The present invention relates to a control method for regenerating a particle filter installed in a vehicle power unit.

過薄混合気で作動するエンジン、特にディーゼルエンジンにおける燃焼過程の不均一性によって、エンジンの中で有効に燃焼されることのない炭素粒子の生成がもたらされる。このことは、例えば、排気ラインの出口における、黒い煙の出現によって表わされる。この現象は、減少することが求められる環境汚染源である。   The heterogeneity of the combustion process in engines operating with lean mixtures, especially diesel engines, results in the production of carbon particles that are not effectively burned in the engine. This is represented, for example, by the appearance of black smoke at the outlet of the exhaust line. This phenomenon is an environmental pollution source that needs to be reduced.

エンジンの排気ラインにおける粒子フィルタの存在は、大気中へ放出される塵埃及びその他の煤の粒子の量を著しく減少させ、環境汚染防止規則を満たすことを可能にする。   The presence of a particulate filter in the engine exhaust line significantly reduces the amount of dust and other soot particles released into the atmosphere, making it possible to meet environmental pollution control regulations.

粒子フィルタの再生装置は、粒子フィルタの中に捕捉された粒子を定期的に燃焼させて、粒子フィルタが詰まることを回避することを可能にする。煤の粒子は、本質的に炭素を含有した成分であり、その燃焼は、酸素を消費して炭酸ガスを形成する。   The regenerator of the particle filter allows the particles trapped in the particle filter to be burned periodically to avoid clogging the particle filter. Soot particles are essentially carbon-containing components whose combustion consumes oxygen to form carbon dioxide.

このことは、粒子フィルタの中の温度を約550〜650℃の温度まで高めて実行される。この温度から、粒子フィルタの中に捕捉されていた粒子は、自発的に燃焼し始める。   This is done by raising the temperature in the particle filter to a temperature of about 550-650 ° C. From this temperature, particles trapped in the particle filter begin to spontaneously burn.

粒子フィルタの再生の始動は、コンピュータによって制御される。コンピュータは、粒子フィルタの再生が行われるべきであるかどうかを決め、また粒子フィルタが再生中の場合には、粒子フィルタの再生を継続することができるかどうかを決める。このため、コンピュータは、車両の作動状態に関する情報を受ける。この情報には、例えば、エンジン冷却液の温度、粒子フィルタの上流及び下流における排気ガスの温度、車両の速度、粒子フィルタの中に蓄積された煤の質量、及び最後の粒子フィルタの再生からの経過時間が含まれる。   The start of regeneration of the particle filter is controlled by a computer. The computer determines whether the regeneration of the particle filter is to be performed and, if the particle filter is being regenerated, determines whether the regeneration of the particle filter can be continued. For this reason, the computer receives information on the operating state of the vehicle. This information includes, for example, engine coolant temperature, exhaust gas temperature upstream and downstream of the particle filter, vehicle speed, soot mass accumulated in the particle filter, and the last particle filter regeneration. Elapsed time is included.

コンピュータは、これらの情報に基づいて条件を確認し、全ての条件が満たされた時にのみ粒子フィルタの再生を始動する。粒子フィルタの再生は、いくつかの条件が、約2分間の所定の閾値よりも短い持続時間中に満たされなくなっても持続される。少なくとも1つの条件が、上記の閾値よりも長い持続時間中に満たされなくなったら、粒子フィルタの再生過程は中断される。   The computer confirms the conditions based on these pieces of information, and starts regeneration of the particle filter only when all the conditions are satisfied. The regeneration of the particle filter is sustained even if some conditions are not met for a duration shorter than a predetermined threshold of about 2 minutes. If at least one condition is not met for a duration longer than the above threshold, the regeneration process of the particle filter is interrupted.

粒子フィルタの再生を始動し、持続するため、エンジンの動作状態は、粒子フィルタを通過する前の排気ガスの温度を高めるように変更される。この変更は、通常燃料噴射に関し、燃料噴射は少なくとも1つの気筒について遅延される。また、ある場合には、膨張行程の最後に、後燃料噴射(post−injection)が行われる。この後燃料噴射は、エンジンの機械出力の追加はもたらさないが、排気ガスの温度を上昇させる。このようなエンジンの動作状態の変更は、燃料消費と、シリンダとピストンの間の間隙を通過して、エンジンのオイルの中へ溶解する燃料の量を増加させる。   In order to initiate and sustain the regeneration of the particle filter, the operating state of the engine is changed to increase the temperature of the exhaust gas before passing through the particle filter. This change relates to normal fuel injection, where fuel injection is delayed for at least one cylinder. In some cases, post-injection is performed at the end of the expansion stroke. This subsequent fuel injection does not add to the mechanical output of the engine, but increases the temperature of the exhaust gas. Such changes in engine operating conditions increase fuel consumption and the amount of fuel that passes through the gap between the cylinder and piston and dissolves into the engine oil.

触媒ポットと粒子フィルタの機能が統合された新世代の粒子フィルタについては、粒子フィルタの再生の全持続時間中、フィルタの中に捕捉された煤の燃焼を可能にする条件を維持するように操作する必要がある。従って、上述の問題は、粒子フィルタの再生の全持続時間中継続される。さらに、上述の問題は、エンジンの幾つかの動作条件においては悪化され、この場合、排気ガスへ熱はほとんどもたらされない。   For the new generation of particle filters with integrated catalyst pot and particle filter functions, operate to maintain conditions that allow combustion of the soot trapped in the filter for the entire duration of regeneration of the particle filter There is a need to. Thus, the above problem continues for the entire duration of regeneration of the particle filter. Furthermore, the above problems are exacerbated in some operating conditions of the engine, in which case little heat is brought into the exhaust gas.

エンジンのオイルの中へ溶解される燃料の量は、場合によってはエンジンが壊れるまで、オイルの特性を変化させるという結果をもたらす。   The amount of fuel dissolved in the engine oil can result in changing the characteristics of the oil, possibly until the engine breaks.

本発明の目的は、エンジンのオイルの中への燃料溶解率が許容限度を越えたときに粒子フィルタの再生を禁止するために、オイルの中への燃料溶解率を最適に知ることを可能にする方法を提供することにある。   It is an object of the present invention to make it possible to optimally know the fuel dissolution rate in oil in order to prohibit regeneration of the particle filter when the fuel dissolution rate in engine oil exceeds an acceptable limit. It is to provide a way to do.

上記目的を達成するため、本発明は、動作中のディーゼルエンジンのオイルの中における燃料溶解率の変分の推定方法を対象とする。本発明によれば、上記燃料溶解率の変分は、各燃焼室の中への燃料噴射条件の関数である。   In order to achieve the above object, the present invention is directed to a method for estimating a variation of a fuel dissolution rate in oil of an operating diesel engine. According to the present invention, the fuel dissolution rate variation is a function of the fuel injection conditions into each combustion chamber.

本発明者は、オイルの中における燃料溶解率に最も影響を及ぼすパラメータは燃料噴射条件であることを実際に確認した。これらの条件を考慮に入れることによって、エンジンのオイルの中への燃料溶解率を最適に知ることができる。   The inventor has actually confirmed that the parameter that has the most influence on the fuel dissolution rate in oil is the fuel injection condition. By taking these conditions into consideration, it is possible to optimally know the fuel dissolution rate in the engine oil.

特に、上記燃料溶解率の変分は、以下のパラメータ:
−1サイクル間の上記燃焼室への燃料噴射の回数;
−各上記燃料噴射について、噴射燃料量と、燃料噴射の際における上記燃焼室内におけるピストンの位置;
−燃料供給圧力;
の関数である。このようにして、全ての燃料噴射と、それらの個々のパラメータが考慮に入れられる。
In particular, the variation of the fuel dissolution rate is the following parameters:
The number of fuel injections into the combustion chamber during -1 cycle;
-For each fuel injection, the amount of fuel injected and the position of the piston in the combustion chamber during fuel injection;
-Fuel supply pressure;
Is a function of In this way, all fuel injections and their individual parameters are taken into account.

特に、上記燃料溶解率の変分は、通常の燃料噴射に対して効率が低下する遅延燃料噴射と、上記エンジンの出力の供給に貢献しない後燃料噴射について計算される。この種の操作は、粒子フィルタの再生を制御するためにしばしば使用される。例えば、吸入空気の流量または圧力によって評価されるエンジンの負荷にのみ基づく従来の幾つかの評価方法と反対に、後燃料噴射が充分考慮に入れられる。   In particular, the variation in fuel dissolution rate is calculated for delayed fuel injection, which is less efficient than normal fuel injection, and post fuel injection, which does not contribute to the supply of engine output. This type of operation is often used to control the regeneration of the particle filter. For example, after fuel injection is fully taken into account, as opposed to some conventional evaluation methods based solely on engine load, which is evaluated by intake air flow or pressure.

実施の1形態によれば、各上記燃料噴射について係数を計算し、上記係数は、上記燃料噴射の間に噴射される燃料量と上記燃料噴射の開始時におけるクランクシャフトの角度位置との積に等しい乗算項と、上記燃料供給圧力に等しい除算項を含み、上記燃料溶解率の変分は、上記燃料噴射の全てに亘る上記係数の合計の関数である。本発明者は、このような係数が、オイルの中における燃料溶解率の変分に対する各燃料噴射の貢献度を有効に表すことができることを確認した。   According to one embodiment, a coefficient is calculated for each fuel injection, and the coefficient is the product of the amount of fuel injected during the fuel injection and the angular position of the crankshaft at the start of the fuel injection. The variation of the fuel dissolution rate is a function of the sum of the coefficients over all of the fuel injections, including an equal multiplication term and a division term equal to the fuel supply pressure. The present inventor has confirmed that such a coefficient can effectively represent the contribution of each fuel injection to the variation of the fuel dissolution rate in oil.

特に、遅延燃料噴射の上記係数は、更に、遅延燃料噴射の燃料噴射流量と通常の燃料噴射の燃料噴射流量との間の燃料噴射流量の変化率に等しい乗算項を含み、後燃料噴射の上記係数は、更に、後燃料噴射の燃料噴射流量と遅延燃料噴射の燃料噴射流量との間の燃料噴射流量の変化率に等しい乗算項を含む。   In particular, the coefficient of delayed fuel injection further includes a multiplication term equal to the rate of change of the fuel injection flow rate between the fuel injection flow rate of delayed fuel injection and the fuel injection flow rate of normal fuel injection, The coefficient further includes a multiplication term equal to the rate of change of the fuel injection flow rate between the fuel injection flow rate of the post fuel injection and the fuel injection flow rate of the delayed fuel injection.

特に、上記燃料溶解率の変分は、上記燃料噴射のすべてに亘る上記係数の合計が、影響閾値よりも小さいときにはゼロであり、上記影響閾値以上であるときにはアフィンな連続関数である。本発明者は、一連の測定値との比較によって、このような関数が、燃料溶解率の変分を有効に表すことを確認した。   In particular, the variation of the fuel dissolution rate is zero when the sum of the coefficients over all of the fuel injections is less than the influence threshold, and is an affine continuous function when the sum is greater than or equal to the influence threshold. The inventor has confirmed by comparison with a series of measurements that such a function effectively represents a variation in fuel dissolution rate.

また本発明は、動作中のディーゼルエンジンのオイルの中における燃料溶解率の推定方法も対象とし、上記燃料溶解率は、先に示したように推定された燃料溶解率の変分の時間に関する積分値である。   The present invention is also directed to a method for estimating a fuel dissolution rate in an oil of an operating diesel engine, and the fuel dissolution rate is an integral with respect to a variation time of the estimated fuel dissolution rate as described above. Value.

また本発明は、エンジンと、上記エンジンの排気ガスを受けて排気ガスの粒子を捕捉する粒子フィルタを有する動力装置の制御方法も対象とし、上記制御方法は、情報を処理して、必要なときに上記粒子フィルタを再生するように上記エンジンを制御する動力装置の制御方法において、動作中のディーゼルエンジンのオイルの中における燃料溶解率の上記の推定方法によってオイルの中の燃料溶解率の推定値を明らかにし、上記燃料溶解率の推定値が、所定の閾値燃料溶解率よりも小であれば上記粒子フィルタの再生を許可する。   The present invention is also directed to a control method for a power unit having an engine and a particle filter that receives exhaust gas of the engine and captures exhaust gas particles, and the control method processes information when necessary. In the method for controlling the power unit for controlling the engine so as to regenerate the particle filter, the estimated value of the fuel dissolution rate in the oil according to the estimation method of the fuel dissolution rate in the oil of the diesel engine in operation. If the estimated value of the fuel dissolution rate is smaller than a predetermined threshold fuel dissolution rate, the regeneration of the particle filter is permitted.

本発明は、添付図面を参照して行う以下の説明を読むことによってよりよく理解され、本発明のその他の特徴及び利点が明らかになるであろう。添付図面において:
−図1は、本発明に適合する動力装置の略図であり;
−図2は、様々な燃料噴射モードの時系列グラフであり;
−図3は、粒子フィルタの再生制御の流れ図であり;
−図4は、係数の合計の関数として燃料溶解率の変化を表すグラフである。
The invention will be better understood and the other features and advantages of the invention will become apparent upon reading the following description given with reference to the accompanying drawings. In the attached drawing:
FIG. 1 is a schematic diagram of a power plant compatible with the present invention;
-Figure 2 is a time series graph of various fuel injection modes;
-Fig. 3 is a flow chart of the regeneration control of the particle filter;
FIG. 4 is a graph representing the change in fuel dissolution rate as a function of the sum of the coefficients.

本発明を適用する、図1に示された動力装置は、ターボコンプレッサ2によって過給され、排気ガスが触媒付きの粒子フィルタ3によって処理される、ディーゼル型のエンジン1からなる。エンジン1は、空気取入口11と、ターボコンプレッサ2のコンプレッサ12と、圧送配管13と、エンジン1の複数の燃焼室へ通じる吸気マニホールド14からなる空気回路から空気を供給される。図には、1つの燃焼室15のみが示されている。   The power plant shown in FIG. 1 to which the present invention is applied consists of a diesel engine 1 which is supercharged by a turbo compressor 2 and whose exhaust gas is processed by a particle filter 3 with catalyst. The engine 1 is supplied with air from an air circuit including an air intake port 11, a compressor 12 of the turbo compressor 2, a pressure feed pipe 13, and an intake manifold 14 that leads to a plurality of combustion chambers of the engine 1. Only one combustion chamber 15 is shown in the figure.

燃焼によって生じた排気ガスは、燃焼室15から、排気マニホールド16を通って排出され、ターボコンプレッサ17を通り抜け、次いで触媒付きの粒子フィルタ3を通り抜ける。排気ガス再循環回路は、排気マニホールドに設けられた分岐管18と、セレクションバルブ19を有する。セレクションバルブ19は、冷却器20を通して、または直接導管21を通して、排気ガスを圧送配管へ導く。   Exhaust gas generated by the combustion is discharged from the combustion chamber 15 through the exhaust manifold 16, passes through the turbo compressor 17, and then passes through the particle filter 3 with catalyst. The exhaust gas recirculation circuit includes a branch pipe 18 provided in the exhaust manifold and a selection valve 19. The selection valve 19 guides the exhaust gas through the cooler 20 or directly through the conduit 21 to the pumping pipe.

コンピュータ24は、動力装置の動作に関する情報を受け、エンジン1を制御する。コンピュータ24は、特にエンジンの中において燃料噴射が実行される条件を決定する。図2を参照すると、3つの異なる条件における燃料噴射の時系列グラフが示されている。このグラフの横軸は、クランクシャフトの角度位置ψを表わし、角度位置のゼロは、考慮対象の燃焼室についての、ピストンの上死点(PMH)を表す。   The computer 24 receives information related to the operation of the power plant and controls the engine 1. The computer 24 determines the conditions under which fuel injection is performed, particularly in the engine. Referring to FIG. 2, a time series graph of fuel injection under three different conditions is shown. The horizontal axis of this graph represents the angular position ψ of the crankshaft, and the zero angular position represents the top dead center (PMH) of the piston for the combustion chamber under consideration.

粒子フィルタの再生が指令されないときの通常の燃料噴射の際には、燃料噴射は2回実行される。すなわち前燃料噴射25と、前燃料噴射25に引き続く主燃料噴射26が実行される。主燃料噴射26は、一般にピストンが上死点に達する前のクランクシャフトの角度位置ψinにおいて開始する。   During normal fuel injection when regeneration of the particle filter is not commanded, fuel injection is performed twice. That is, the front fuel injection 25 and the main fuel injection 26 subsequent to the front fuel injection 25 are executed. The main fuel injection 26 generally starts at the crankshaft angular position ψin before the piston reaches top dead center.

再生が指令されたときの燃料噴射の際には、燃料噴射は遅らされるが、この場合も燃料噴射は2回実行される。すなわち前燃料噴射27と、前燃料噴射27に引き続く主燃料噴射28が実行される。主燃料噴射28は、一般にピストンが上死点に達した後のクランクシャフトの角度位置において開始する。排気ガスの温度をさらに上昇させる必要があるときには、後燃料噴射29が実行される。後燃料噴射29は、クランクシャフトの角度位置ψipにおいて開始する。   In the fuel injection when the regeneration is commanded, the fuel injection is delayed. In this case, the fuel injection is executed twice. That is, the front fuel injection 27 and the main fuel injection 28 subsequent to the front fuel injection 27 are executed. Main fuel injection 28 generally begins at the crankshaft angular position after the piston has reached top dead center. When it is necessary to further raise the temperature of the exhaust gas, the post fuel injection 29 is executed. The post fuel injection 29 starts at the crankshaft angular position ψip.

コンピュータ24は、再生が実行されるべきであるか否かを決定する。このため、コンピュータ24は、幾つかの評価基準が満たされているか否かを確認する。全ての評価基準が満たされているときには、再生指令が発生される。コンピュータは、所定の持続時間の間、再生指令信号を維持する。所定の持続時間とは、その後に少なくとも1つの評価基準が満たされなくなると再生を中止する時間である。これらの評価基準の中で、コンピュータは、エンジンのオイルの中における燃料溶解率Pdilに関する評価基準を考慮に入れる。この燃料溶解率は、コンピュータによって推定され、推定燃料溶解率Pdilが、所定の閾値燃料溶解率Sdilを超えたら、評価基準は満たされなくなる。燃料溶解率の推定については、後に説明する。   The computer 24 determines whether playback should be performed. For this reason, the computer 24 checks whether or not several evaluation criteria are satisfied. When all the evaluation criteria are satisfied, a regeneration command is generated. The computer maintains the playback command signal for a predetermined duration. The predetermined duration is a time during which playback is stopped when at least one evaluation criterion is not satisfied. Among these evaluation criteria, the computer takes into account the evaluation criteria relating to the fuel dissolution rate Pdir in the engine oil. This fuel dissolution rate is estimated by a computer, and if the estimated fuel dissolution rate Pdir exceeds a predetermined threshold fuel dissolution rate Sdir, the evaluation criterion is not satisfied. The estimation of the fuel dissolution rate will be described later.

この評価基準を検討するための、図3の流れ図を参照する。初期段階30において、推定燃料溶解率Pdilは、オイルが新しいときにはゼロの値に、オイルが新しくないときには、前に推定され、メモリされた値に、初期化される。テスト段階31において、再生が実行中でなければ段階32へ進み、再生が実行中であれば段階33へ進む。   Reference is made to the flowchart of FIG. 3 for examining this evaluation criterion. In the initial stage 30, the estimated fuel dissolution rate Pdir is initialized to a zero value when the oil is new, and initialized to a previously stored value when the oil is not new. In the test step 31, if the reproduction is not being executed, the process proceeds to step 32, and if the reproduction is being executed, the process proceeds to step 33.

段階32においては、項dPdilが、オイルの中に含まれる燃料の蒸発の関数Fevapと、時間間隔dtの積の符号を変えたものとして計算される。関数Fevapは、回転速度Nと燃料流量Qcの関数としてメモリされたマッピングから計算される。   In step 32, the term dPdil is calculated as the sign of the product of the evaporation function Favap of the fuel contained in the oil and the time interval dt. The function Fevap is calculated from the stored mapping as a function of the rotational speed N and the fuel flow rate Qc.

段階33においては、項dPdilが、燃料溶解率の変分DQcと、時間間隔dtの積によって計算される。燃料溶解率の変分DQcは、後に説明する本発明に適合する方法に従って、燃料の噴射特性から計算される。   In step 33, the term dPdir is calculated by the product of the fuel dissolution rate variation DQc and the time interval dt. The variation DQc of the fuel dissolution rate is calculated from the fuel injection characteristics according to a method adapted to the present invention described later.

段階32または33の1つの計算の後で、新しい燃料溶解率Pdil(n)が、前の時間間隔における燃料溶解率Pdil(n−1)に、項dPdilを加えて計算される。このようにして、燃料溶解率の変分DQcの数値積分を実行する。   After one calculation in step 32 or 33, a new fuel dissolution rate Pdil (n) is calculated by adding the term dPdil to the fuel dissolution rate Pdil (n-1) in the previous time interval. In this manner, the numerical integration of the variation DQc of the fuel dissolution rate is executed.

段階35と36においては、燃料溶解率はゼロにならないように維持される。次いで段階37において、燃料溶解率Pdilを所定の閾値燃料溶解率Sdilと比較し、燃料溶解率Pdilが閾値燃料溶解率Sdilを超えたら、評価基準は満たされず、再生は中止される(段階38)。燃料溶解率Pdilが閾値燃料溶解率Sdilを超えなければ、再生は許可される(段階39)。   In steps 35 and 36, the fuel dissolution rate is maintained so as not to become zero. Next, in step 37, the fuel dissolution rate Pdir is compared with a predetermined threshold fuel dissolution rate Sdir, and if the fuel dissolution rate Pdir exceeds the threshold fuel dissolution rate Sdir, the evaluation criteria are not satisfied and regeneration is stopped (step 38). . If the fuel dissolution rate Pdir does not exceed the threshold fuel dissolution rate Sdir, regeneration is permitted (step 39).

段階40においては、新しい計算サイクルへ進む前に時間間隔dtの経過を待って段階31へ戻る。   In step 40, the process returns to step 31 after waiting for the elapse of time interval dt before proceeding to a new calculation cycle.

燃料溶解率の変分DQcは、次式:   The variation DQc of the fuel dissolution rate is given by

Figure 2007510855
によって計算される。ここに:
Cir:遅延燃料噴射係数;
Cip:後燃料噴射係数;
Sc:所定の影響閾値;
a:比例係数;
である。
Figure 2007510855
Is calculated by here:
Cir: delayed fuel injection coefficient;
Cip: post fuel injection coefficient;
Sc: a predetermined influence threshold;
a: proportionality factor;
It is.

図4のグラフは、C=Cir+Cipに対する変分DQcの関数を表す。遅延燃料噴射係数は、次式:   The graph of FIG. 4 represents a function of the variation DQc with respect to C = Cir + Cip. The delayed fuel injection coefficient is:

Figure 2007510855
によって定義される。ここに:
Dir−in:遅延燃料噴射と通常燃料噴射の間における燃料噴射流量の変化率;
ψir:考慮対象燃焼室のピストンの上死点に対する、遅延燃料噴射開始時におけるクランクシャフトの角度位置;
Qir:遅延燃料噴射フェーズ間における噴射燃料量;
Pc:燃料噴射器に燃料を供給するコモンランプの圧力;
である。
Figure 2007510855
Defined by here:
Dir-in: change rate of fuel injection flow rate between delayed fuel injection and normal fuel injection;
ψir: angular position of the crankshaft at the start of delayed fuel injection relative to the top dead center of the piston of the combustion chamber to be considered;
Qir: the amount of fuel injected during the delayed fuel injection phase;
Pc: pressure of the common lamp that supplies fuel to the fuel injector;
It is.

後燃料噴射係数は、次式:   The post fuel injection coefficient is:

Figure 2007510855
によって定義される。ここに:
Dip−ir:遅延燃料噴射の燃料流量に対する後燃料噴射の噴射流量の比;
Qip:後燃料噴射フェーズ間における噴射燃料量;
ψip:後燃料噴射開始時におけるクランクシャフトの角度位置;
である。
Figure 2007510855
Defined by here:
Dip-ir: ratio of the fuel flow rate of the post fuel injection to the fuel flow rate of the delayed fuel injection;
Qip: the amount of fuel injected during the post fuel injection phase;
ψip: angular position of the crankshaft at the start of post fuel injection;
It is.

これらの数式は、数式による計算結果と、運転の実験結果との比較によって有効性が確認された。エンジンのオイルの中における燃料に溶解率を、1時間の持続時間の間、一定の条件でエンジンを運転した後で測定した。燃料溶解率の測定は、例えば、クロマトグラフィーによって測定される。比例係数と影響閾値を決定した後で、シミュレーションは、測定結果に対して86%の相関を示した。   The effectiveness of these mathematical formulas was confirmed by comparing the calculation results of the mathematical formulas with the experimental results of driving. The rate of dissolution in fuel in the engine oil was measured after operating the engine at constant conditions for a duration of 1 hour. The fuel dissolution rate is measured by, for example, chromatography. After determining the proportionality factor and the influence threshold, the simulation showed 86% correlation to the measurement results.

本発明による方法は、複数の燃焼室が同じ方法で制御されるなら、複数の燃焼室の全体に適用することができ、あるいは、燃料噴射に特有の条件が幾つかの燃焼室にのみ適用されるなら、個々の燃焼室に対して個別に適用される。   The method according to the invention can be applied to the whole of the plurality of combustion chambers if the plurality of combustion chambers are controlled in the same way, or the conditions specific to fuel injection only apply to some combustion chambers. If applicable, it applies individually to each combustion chamber.

本発明に適合する動力装置の略図である。1 is a schematic diagram of a power plant compatible with the present invention. 様々な燃料噴射モードの時系列グラフである。It is a time series graph of various fuel injection modes. 粒子フィルタの再生制御の流れ図である。It is a flowchart of regeneration control of a particle filter. 係数の合計の関数として燃料溶解率の変化を表すグラフである。4 is a graph showing the change in fuel dissolution rate as a function of the sum of coefficients.

Claims (8)

動作中のディーゼルエンジン(1)のオイルの中における燃料溶解率の変分の推定方法であって、上記燃料溶解率の変分(DQc)は、各燃焼室(15)内において、以下のパラメータ:
−1サイクル間の上記燃焼室(15)への燃料噴射の回数;
−各上記燃料噴射について、噴射燃料量(Qin、Qir、Qip)と、燃料噴射の際における上記燃焼室(15)内におけるピストンの位置(ψin、ψir、ψip);
の関数である、動作中のディーゼルエンジンのオイルの中における燃料溶解率の変分の推定方法において、上記燃料溶解率の変分は、更に、燃料供給圧力(Pc)の関数であることを特徴とする、動作中のディーゼルエンジンのオイルの中における燃料溶解率の変分の推定方法。
A method for estimating the variation of the fuel dissolution rate in the oil of the diesel engine (1) in operation, wherein the variation (DQc) of the fuel dissolution rate is the following parameter in each combustion chamber (15): :
Number of fuel injections into the combustion chamber (15) during -1 cycle;
For each fuel injection, the amount of fuel injected (Qin, Qir, Qip) and the position of the piston (ψin, ψir, ψip) in the combustion chamber (15) during fuel injection;
In the method for estimating the variation of the fuel dissolution rate in the oil of the diesel engine during operation, the variation of the fuel dissolution rate is further a function of the fuel supply pressure (Pc). A method for estimating the variation of the fuel dissolution rate in the oil of an operating diesel engine.
上記燃料溶解率の変分(DQc)は、通常の燃料噴射(25、26)に対して効率が低下する遅延燃料噴射(27、28)と、上記エンジンの出力の供給に貢献しない後燃料噴射(29)について計算されることを特徴とする、請求項1に記載の動作中のディーゼルエンジンのオイルの中における燃料溶解率の変分の推定方法。   The variation (DQc) of the fuel dissolution rate includes delayed fuel injection (27, 28) whose efficiency is lower than that of normal fuel injection (25, 26), and post-fuel injection that does not contribute to supply of the engine output. The method for estimating the variation of the fuel dissolution rate in the oil of an operating diesel engine according to claim 1, characterized in that it is calculated for (29). 各上記燃料噴射について係数を計算し、上記係数(Cir、Cip)は、上記燃料噴射の間に噴射される燃料量(Qir、Qip)と上記燃料噴射の開始時におけるクランクシャフトの角度位置(ψir、ψip)との積に等しい乗算項と、上記燃料供給圧力(Pc)に等しい除算項を含み、上記燃料溶解率の変分(DQc)は、上記燃料噴射の全てに亘る上記係数(Cir、Cip)の合計(C)の関数であることを特徴とする、請求項1または2に記載の動作中のディーゼルエンジンのオイルの中における燃料溶解率の変分の推定方法。   A coefficient is calculated for each of the fuel injections, and the coefficients (Cir, Cip) are calculated based on the fuel amount (Qir, Qip) injected during the fuel injection and the angular position (ψir) of the crankshaft at the start of the fuel injection. , Ψip) and a division term equal to the fuel supply pressure (Pc), the variation of the fuel dissolution rate (DQc) is the coefficient (Cir, Method for estimating the variation of the fuel dissolution rate in the oil of an operating diesel engine according to claim 1 or 2, characterized in that it is a function of the sum (Cip) of Cip). 遅延燃料噴射の上記係数(Cir)は、更に、遅延燃料噴射の燃料噴射流量(Qir)と通常の燃料噴射の燃料噴射流量(Qin)との間の燃料噴射流量の変化率に等しい乗算項(Dir−in)を含むことを特徴とする、請求項3に記載の動作中のディーゼルエンジンのオイルの中における燃料溶解率の変分の推定方法。   The coefficient (Cir) of the delayed fuel injection is further a multiplication term (equal to the rate of change of the fuel injection flow rate between the fuel injection flow rate (Qir) of the delayed fuel injection and the fuel injection flow rate (Qin) of the normal fuel injection ( The method of estimating variation in fuel dissolution rate in oil of an operating diesel engine according to claim 3, characterized in that it includes Dir-in). 後燃料噴射の上記係数(Cip)は、更に、後燃料噴射の燃料噴射流量(Qip)と遅延燃料噴射の燃料噴射流量(Qir)との間の燃料噴射流量の変化率に等しい乗算項(Dip−ir)を含むことを特徴とする、請求項3に記載の動作中のディーゼルエンジンのオイルの中における燃料溶解率の変分の推定方法。   The coefficient (Cip) of the post fuel injection is further a multiplication term (Dip) equal to the rate of change of the fuel injection flow rate between the fuel injection flow rate (Qip) of the post fuel injection and the fuel injection flow rate (Qir) of the delayed fuel injection. The method of estimating variation in fuel dissolution rate in oil of an operating diesel engine according to claim 3, characterized in that -ir). 上記燃料溶解率の変分は、上記係数(Cir、Cip)の、上記燃料噴射の全てに亘る合計(C)が影響閾値(Sc)よりも小さいときにはゼロであり、上記影響閾値(Sc)以上であるときにはアフィンな連続関数であることを特徴とする、請求項3に記載の動作中のディーゼルエンジンのオイルの中における燃料溶解率の変分の推定方法。   The variation of the fuel dissolution rate is zero when the sum (C) of all the fuel injections of the coefficients (Cir, Cip) is smaller than the influence threshold (Sc), and is greater than or equal to the influence threshold (Sc). 4. The method for estimating the variation of the fuel dissolution rate in the oil of an operating diesel engine according to claim 3, characterized in that it is an affine continuous function. 動作中のディーゼルエンジンのオイルの中における燃料溶解率(Pdil)の推定方法において、上記燃料溶解率は、請求項1〜6のいずれか1つに記載の燃料溶解率の変分の推定方法よって推定された上記燃料溶解率の変分(DQc)の時間に関する積分値であることを特徴とする、動作中のディーゼルエンジンのオイルの中における燃料溶解率の推定方法。   In the estimation method of the fuel dissolution rate (Pdir) in the oil of the diesel engine in operation | movement, the said fuel dissolution rate is based on the estimation method of the variation of the fuel dissolution rate as described in any one of Claims 1-6. A method for estimating a fuel dissolution rate in an oil of an operating diesel engine, characterized by being an integral value with respect to the estimated variation (DQc) of the fuel dissolution rate. エンジン(1)と、上記エンジンの排気ガスを受けて排気ガスの粒子を捕捉する粒子フィルタ(3)を有する動力装置の制御方法であって、上記制御方法は、情報を処理して、必要なときに上記粒子フィルタ(3)を再生するようにエンジン(1)を制御する動力装置の制御方法において、請求項7に記載の動作中のディーゼルエンジンのオイルの中における燃料溶解率の推定方法によってオイルの中の燃料溶解率(Pdil)の推定値を明らかにし、上記燃料溶解率(Pdil)の推定値が、所定の閾値燃料溶解率(Sdil)よりも小であれば上記粒子フィルタの再生を許可することを特徴とする、エンジンと、上記エンジンの排気ガスを受けて排気ガスの粒子を捕捉する粒子フィルタを有する動力装置の制御方法。   A control method for a power plant having an engine (1) and a particle filter (3) that receives exhaust gas from the engine and captures exhaust gas particles. A method for controlling a power plant that controls an engine (1) to regenerate the particle filter (3) sometimes, according to the method for estimating a fuel dissolution rate in oil of an operating diesel engine according to claim 7. Clarify the estimated value of the fuel dissolution rate (Pdir) in the oil, and regenerate the particle filter if the estimated value of the fuel dissolution rate (Pdir) is smaller than the predetermined threshold fuel dissolution rate (Sdir). A control method for a power unit having an engine and a particle filter that receives exhaust gas from the engine and captures exhaust gas particles.
JP2006538905A 2003-11-10 2004-10-29 Method for estimating change in fuel dissolution rate in oil of diesel engine during operation, method for estimating fuel dissolution rate, and method for controlling power unit Expired - Fee Related JP4764826B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0313166 2003-11-10
FR0313166A FR2862087B1 (en) 2003-11-10 2003-11-10 CONTROL METHOD FOR REGENERATING A PARTICLE FILTER
PCT/FR2004/050553 WO2005047680A1 (en) 2003-11-10 2004-10-29 Method for controlling the regeneration of a particulate filter

Publications (2)

Publication Number Publication Date
JP2007510855A true JP2007510855A (en) 2007-04-26
JP4764826B2 JP4764826B2 (en) 2011-09-07

Family

ID=34508367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006538905A Expired - Fee Related JP4764826B2 (en) 2003-11-10 2004-10-29 Method for estimating change in fuel dissolution rate in oil of diesel engine during operation, method for estimating fuel dissolution rate, and method for controlling power unit

Country Status (7)

Country Link
EP (1) EP1694953B1 (en)
JP (1) JP4764826B2 (en)
KR (1) KR20060117947A (en)
AT (1) ATE424504T1 (en)
DE (1) DE602004019808D1 (en)
FR (1) FR2862087B1 (en)
WO (1) WO2005047680A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101451987A (en) * 2007-12-05 2009-06-10 依维柯发动机研究公司 Method and system for detecting the dilution of the lubricant by the fuel

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004033413A1 (en) * 2004-07-10 2006-02-02 Robert Bosch Gmbh Method for operating an internal combustion engine and device for carrying out the method
JP3933172B2 (en) * 2005-07-15 2007-06-20 いすゞ自動車株式会社 Exhaust gas purification system control method and exhaust gas purification system
DE102005051924A1 (en) * 2005-10-29 2007-05-03 Ford Global Technologies, LLC, Dearborn Vehicle combustion engine oil thinning determination procedure for use with after injection particle filter cleaning measures additional fuel in sump after each after injection
JP2007162569A (en) * 2005-12-14 2007-06-28 Nissan Motor Co Ltd Diluted oil regeneration device and diluted oil regeneration method
JP4905303B2 (en) * 2006-10-02 2012-03-28 日産自動車株式会社 Method and apparatus for controlling exhaust gas temperature of internal combustion engine and internal combustion engine system
DE102006059675A1 (en) * 2006-12-18 2008-06-19 Robert Bosch Gmbh Method and device for detecting a continuous fuel input into the lubricating oil of an internal combustion engine during a cold start
FR2914945A3 (en) * 2007-04-13 2008-10-17 Renault Sas Fuel dilution ratio estimating method for diesel type internal combustion engine, involves reducing dilution ratio having threshold value, which is fraction of dilution ratio estimated at end of regeneration phase
US7433776B1 (en) * 2007-04-18 2008-10-07 International Engine Intellecutal Property Company, Llc System and method for quantizing fuel dilution of engine motor due to post-injection fueling to regenerate an exhaust aftertreatment device
FR2926323B1 (en) * 2008-01-11 2010-01-08 Renault Sas PROCESS FOR MANAGING A NITROGEN OXIDE TRAP TO ENSURE A MINIMUM DRAIN INTERVAL
EP2123868A1 (en) * 2008-05-22 2009-11-25 Ford Global Technologies, LLC Method for determining oil dilution
FR2933735B1 (en) * 2008-07-08 2011-04-29 Peugeot Citroen Automobiles Sa METHOD AND DEVICE FOR CONTROLLING THE REGENERATIONS OF AN EXHAUST GAS POST-PROCESSING SYSTEM OF A COMBUSTION ENGINE
FR2999231B1 (en) * 2012-12-06 2018-08-17 Psa Automobiles Sa. PARTICLE FILTER REGENERATION CONTROL CONTROLLER WITH REDUCED DILUTION EFFECT
FR3011577B1 (en) * 2013-10-03 2015-12-04 Peugeot Citroen Automobiles Sa DRIVER ALERT METHOD IN THE EVENT OF DETECTING HIGH DILUTION OF A LUBRICANT FOR A FLEX FLEX-TYPE MOTOR AND CORRESPONDING MOTOR COMPUTER
DE102015207287B4 (en) * 2015-04-22 2017-03-09 Ford Global Technologies, Llc Oil system for a diesel engine and method for operating a diesel engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849584A (en) * 1994-08-04 1996-02-20 Nippondenso Co Ltd Control device for internal combustion engine
JP2001323835A (en) * 2000-05-15 2001-11-22 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2002013428A (en) * 2000-06-30 2002-01-18 Mitsubishi Motors Corp Cylinder injection internal combustion engine
US20030200952A1 (en) * 2002-04-26 2003-10-30 Yukikazu Ito Fuel injection timing control apparatus and control method thereof for in-cylinder injection gasoline engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199212A (en) * 1989-01-27 1990-08-07 Suzuki Motor Co Ltd Oil deterioration detector for internal combustion engine
US5750887A (en) * 1996-11-18 1998-05-12 Caterpillar Inc. Method for determining a remaining life of engine oil
JP2003138952A (en) * 2001-11-05 2003-05-14 Mitsubishi Motors Corp Diesel engine
DE10159479A1 (en) * 2001-12-04 2003-06-18 Daimler Chrysler Ag Method for operating an internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849584A (en) * 1994-08-04 1996-02-20 Nippondenso Co Ltd Control device for internal combustion engine
JP2001323835A (en) * 2000-05-15 2001-11-22 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2002013428A (en) * 2000-06-30 2002-01-18 Mitsubishi Motors Corp Cylinder injection internal combustion engine
US20030200952A1 (en) * 2002-04-26 2003-10-30 Yukikazu Ito Fuel injection timing control apparatus and control method thereof for in-cylinder injection gasoline engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6009047216, Koji Korematsu, "Effects of Fuel Absorbed in Oil Film on Unburnt Hydrocarbon Emissions from Spark Ignition Engines (N", JSME International Journal, 1990, SeriesII/ Vol.33/ No.3/ 1990, 606−614, JP, 社団法人日本機械学会 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101451987A (en) * 2007-12-05 2009-06-10 依维柯发动机研究公司 Method and system for detecting the dilution of the lubricant by the fuel

Also Published As

Publication number Publication date
FR2862087B1 (en) 2008-05-16
KR20060117947A (en) 2006-11-17
FR2862087A1 (en) 2005-05-13
WO2005047680A1 (en) 2005-05-26
EP1694953A1 (en) 2006-08-30
JP4764826B2 (en) 2011-09-07
DE602004019808D1 (en) 2009-04-16
EP1694953B1 (en) 2009-03-04
ATE424504T1 (en) 2009-03-15

Similar Documents

Publication Publication Date Title
RU2435043C2 (en) Renovation control method for cleaning system, and device for its implementation
JP4764826B2 (en) Method for estimating change in fuel dissolution rate in oil of diesel engine during operation, method for estimating fuel dissolution rate, and method for controlling power unit
CN101326349B (en) Exhaust gas purification system for internal combustion engine
US7197867B2 (en) Method for the simultaneous desulfation of a lean NOx trap and regeneration of a Diesel particulate filter
US8261535B2 (en) Enhanced post injection control system for diesel particulate filters
US8893474B2 (en) Exhaust emission control device of diesel engine
US6990802B2 (en) Apparatus and method for regenerating particulate filter that removes particulates out of exhaust gas for internal combustion engine
US8984869B2 (en) Exhaust gas emission control system for diesel engine
JP2003222041A (en) Exhaust purifier
JP2008025565A (en) Regeneration management of diesel particulate filter
JP2007016611A (en) Controller of diesel engine
JP2009092072A (en) Late post-injection fuel supply method of multi-cylinder diesel engine during regeneration of exhaust gas after-treatment device
JP6036533B2 (en) PM accumulation amount estimation device and exhaust purification system for internal combustion engine
JP2006144658A (en) Exhaust emission control device for internal combustion engine
JP2010138748A (en) Exhaust emission control device for internal combustion engine
JP4447510B2 (en) Exhaust gas purification device for internal combustion engine
JP5869421B2 (en) Particulate accumulation amount estimation device and exhaust gas purification device for internal combustion engine
JP5370252B2 (en) Exhaust gas purification device for internal combustion engine
JP2006274907A (en) Exhaust emission control device
JP2006242072A (en) Exhaust emission control device for internal combustion engine
EP1512849A2 (en) Exhaust purifying apparatus and method for purifying exhaust
JP4551895B2 (en) Particle filter regeneration management method, regeneration management apparatus, and internal combustion engine
JP2006214312A (en) Exhaust emission control device of internal combustion engine
JP2005256666A (en) Variable cylinder internal combustion engine
JP2004286026A (en) Engine exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100914

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101006

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees