JP2007502899A - A method for improving the quality of kerosene and gas oil from naphthenic and aromatic crudes. - Google Patents

A method for improving the quality of kerosene and gas oil from naphthenic and aromatic crudes. Download PDF

Info

Publication number
JP2007502899A
JP2007502899A JP2006530200A JP2006530200A JP2007502899A JP 2007502899 A JP2007502899 A JP 2007502899A JP 2006530200 A JP2006530200 A JP 2006530200A JP 2006530200 A JP2006530200 A JP 2006530200A JP 2007502899 A JP2007502899 A JP 2007502899A
Authority
JP
Japan
Prior art keywords
kerosene
gas oil
fraction
less
derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006530200A
Other languages
Japanese (ja)
Other versions
JP5478806B2 (en
Inventor
ウィレム・ボッシュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of JP2007502899A publication Critical patent/JP2007502899A/en
Application granted granted Critical
Publication of JP5478806B2 publication Critical patent/JP5478806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Fats And Perfumes (AREA)

Abstract

ワトソン特性係数K値が12.0以下の原油から石油誘導ケロシンフラクション及び石油誘導ガス油フラクションを単離し(但し、ケロシンフラクション中のナフタレン含有量が3容量%未満で、かつガス油フラクションのセタン価が50未満又は密度が845kg/mを超える場合、ケロシンフラクションの煙点は25又は19mm未満)、該ケロシンフラクションに、得られる混合物中のナフタレン含有量が3容量%未満の場合、混合物の煙点が25又は19mmを超えるような量のフィッシャー・トロプシュ誘導ケロシンフラクションを添加し、次いで該石油誘導ガス油フラクションに、混合物のセタン価が51を超えるような量のフィッシャー・トロプシュ誘導ガス油フラクションを添加する前記製造法。
【選択図】なし
Oil-derived kerosene fraction and petroleum-derived gas oil fraction are isolated from crude oil having Watson characteristic coefficient K value of 12.0 or less (however, the naphthalene content in kerosene fraction is less than 3% by volume and the cetane number of gas oil fraction Is less than 50 or the density is greater than 845 kg / m 3 , the smoke point of the kerosene fraction is less than 25 or 19 mm), and if the kerosene fraction contains less than 3% by volume of naphthalene in the resulting mixture, the smoke of the mixture Add an Fischer-Tropsch derived kerosene fraction in an amount such that the point is greater than 25 or 19 mm, and then add to the petroleum derived gas oil fraction an Fischer-Tropsch derived gas oil fraction in an amount such that the cetane number of the mixture exceeds 51. The said manufacturing method to add.
[Selection figure] None

Description

発明の分野
ワトソン(Watson)特性係数K値が12以下を特徴とするナフテン系及び芳香族系原油からの低品質のケロシン及びガス油の品質向上法。
FIELD OF THE INVENTION A method for improving the quality of low quality kerosene and gas oil from naphthenic and aromatic crudes characterized by a Watson characteristic coefficient K value of 12 or less.

発明の背景
ワトソン特性係数K値が11〜12を特徴とする原油は、“ナフテン系”粗原料とも言われている。K値が11未満の粗原料は、“芳香族系”粗原料とも言われている。炭化水素についてのワトソン特性係数Kは、API技術データブック(セクション2 特徴化)に定義されている。
BACKGROUND OF THE INVENTION Crude oil characterized by a Watson characteristic coefficient K value of 11-12 is also referred to as a “naphthenic” crude feed. A crude material having a K value of less than 11 is also referred to as an “aromatic” crude material. The Watson characteristic factor K for hydrocarbons is defined in the API technical data book (section 2 characterization).

ナフテン系又は芳香族系粗原料から蒸留した生ナフサフラクションは、接触改質により容易に高オクタン価改質物に転化できるので、高オクタン自動車ガソリン成分を製造するのに極めて好適である。しかし、ナフテン系及び/又は芳香族系粗原料から製造した生ケロシン及び生ガス油は、種々の地域及び市場において、ますます増加する多数の立法府により要求される特定の環境保護に関する駆動燃料規格に適合するには不適当な特定の品質特性を特徴としている。   The raw naphtha fraction distilled from a naphthenic or aromatic raw material can be easily converted to a high octane number reformed product by catalytic reforming, and thus is extremely suitable for producing a high octane automobile gasoline component. However, raw kerosene and raw gas oils made from naphthenic and / or aromatic raw materials are driving fuel standards for specific environmental protection required by an increasing number of legislatures in various regions and markets. It is characterized by specific quality characteristics that are inappropriate for conformance.

蒸留及び処理によりナフテン系及び/又は芳香族系粗原料から製造した航空機用ケロシンは、通常、共同操作システム(Jointly Operated System)用航空機燃料品質要件(AFQRJOS)の照合表No.19の航空機タービン燃料(Avtur)に設定された所要国際規格(最小25mm)よりも遥かに煙点が低いか、或いはケロシン中のナフテン含有量が3容量%未満の場合の代替規格である最大煙点(最小19mm)に適合しない。これら粗原料から製造したケロシンでは、ケロシンの最終沸点が高い場合、時にはナフタレン水準が高すぎることがある。最小合計酸価0.015mgKOH/g、最大特定芳香族水準25容量%及び熱安定性要件(JFTOT)のような、航空機用ケロシンに設定されたその他の規格もナフテン系及び/又は芳香族系粗原料から直接蒸留したケロシンでは適合困難である。   Aircraft kerosene produced from naphthenic and / or aromatic raw materials by distillation and processing is usually referred to in the reference table No. of Aircraft Fuel Quality Requirements (AFQRJOS) for Jointly Operated Systems. Maximum smoke, which is an alternative standard when the smoke point is much lower than the required international standard (minimum 25 mm) set for 19 aircraft turbine fuels (Avtur) or when the naphthene content in kerosene is less than 3% by volume Does not fit point (minimum 19mm). In kerosene produced from these raw materials, the naphthalene level is sometimes too high when the final boiling point of kerosene is high. Other standards set for aircraft kerosene, such as a minimum total acid number of 0.015 mg KOH / g, a maximum specified aromatic level of 25% by volume and a thermal stability requirement (JFTOT) are also naphthenic and / or aromatic crude It is difficult to adapt with kerosene distilled directly from the raw material.

このようなナフテン系又は芳香族系粗原料から製造したディーゼル品質のガス油は、通常、低セタン価(CN)を特徴とする。通常、このセタン価は、ディーゼル等級に設定された所要の国際セタン価規格より低い35〜50の範囲である。国際的には、ディーゼル燃料のセタン価を上げて、自動車排出物を減少させる、きれいな駆動燃料(a drive)がある。例えばヨーロッパディーゼル規格(EN 590)の最小セタン価要件は、Euro III燃料用のEU燃料指針98/70に設定されたヨーロッパディーゼル燃料・排出物要件に適合させるため、2000年以降、51の最小値に上げられた。地球規模の自動車メーカーは、2002年のWorld Wide Fuel Charterで発表したように、ディーゼル燃料セタン価要件を更に最小55までも上げることを要望している。   Diesel quality gas oils made from such naphthenic or aromatic raw materials are usually characterized by low cetane number (CN). Typically, this cetane number is in the range of 35-50, which is lower than the required international cetane number standard set for diesel grade. Internationally, there is a clean drive fuel that increases the cetane number of diesel fuel and reduces automobile emissions. For example, the minimum cetane number requirement of the European Diesel Standard (EN 590) is a minimum value of 51 since 2000 to meet the European diesel fuel and emissions requirements set in the EU Fuel Guidelines 98/70 for Euro III fuel Was raised. Global automakers want to raise diesel fuel cetane number requirements to a minimum of 55, as announced at the 2002 World Wide Fuel Charter.

ナフテン系又は芳香族系粗原料から製造したガス油は、高密度も特徴としている。国際的ディーゼル品質の最大密度限界は、現在、ディーゼル自動車排出物要件に適合させるため低下しつつある。またEUでは、EU 590のディーゼル燃料用の最大規格は、2000年にはEU燃料指針98/70に設定されるように、845kg/mの最大値に低下した。 Gas oils produced from naphthenic or aromatic raw materials are also characterized by high density. The maximum density limit for international diesel quality is currently falling to meet diesel vehicle emissions requirements. Also in the EU, the maximum standard for diesel fuel of EU 590 has been reduced to a maximum value of 845 kg / m 3 in 2000, as set in EU fuel guidelines 98/70.

これら排出物駆動燃料要件の結果から、ナフテン系又は芳香族系粗原料から製造した中間蒸留物燃料は、Avtur及びディーゼルに設定された厳しい環境保護上の駆動燃料規格要件に適合するには不適当かも知れない。その結果、これら粗原料がいわゆる水素化スキミング(hydroskimming)製油所で処理されていれば、“規格外”のディーゼル品質又はケロシン品質となる。水素化スキミング製油所は、粗原料の蒸留及び水素化処理工程からなる比較的簡単な製油所である。   As a result of these emissions-driven fuel requirements, middle distillate fuels produced from naphthenic or aromatic raw materials are not suitable to meet the stringent environmental drive fuel standard requirements set for Avtur and diesel. May. As a result, if these raw materials are processed at a so-called hydroskimming refinery, “non-standard” diesel quality or kerosene quality results. The hydroskimming refinery is a relatively simple refinery consisting of crude raw material distillation and hydroprocessing steps.

これら粗原料から製造した蒸留物の品質を向上して、特定の製品品質に適合させるには、前記製油所は下記2つの選択肢を有する。
1)第一の選択肢として、低蒸留物品質の更なる向上は、更に厳しい水素化処理又は水素化分解を施すことにより達成できる。しかし、このような選択肢はこれらの処理ユニットを備えていない製油所に高価な投資を必要とする可能性がある。
In order to improve the quality of distillates produced from these raw materials and to meet specific product quality, the refinery has the following two options.
1) As a first option, further improvement in low distillate quality can be achieved by applying more severe hydrotreating or hydrocracking. However, such options may require expensive investments in refineries that do not have these processing units.

US−A−3607729に記載されるようなケロシンフラクション中のナフテン系成分の接触開環による方法では、ケロシンフラクションの煙点を改良できる。またガス油のセタン価もこれら方法の水素化反応及び開環反応により向上できる。   The method by catalytic ring opening of naphthenic components in the kerosene fraction as described in US-A-3607729 can improve the smoke point of the kerosene fraction. Moreover, the cetane number of gas oil can also be improved by the hydrogenation reaction and ring-opening reaction of these methods.

US−A−3775297には、ナフテン系粗原料から単離したガス油を潤滑基油及び自動車ガソリンに転化する方法が記載されている。
更にUS−A−5107056に記載の最近の発展は、望ましくないナフテン系化合物を膜分離により油から除去する方法である。
US-A-3775297 describes a method for converting gas oil isolated from naphthenic raw materials into lubricating base oil and automobile gasoline.
Furthermore, a recent development described in US-A-51007056 is a method for removing undesirable naphthenic compounds from oil by membrane separation.

2)ケロシン及びガス油の特性を向上する第二の選択肢は、これら低品質種のナフテン系及び芳香族系粗原料を多種のパラフィン系粗原料とブレンドし、共同処理することである。この粗原料ブレンドの最終蒸留物の収率は、各粗原料から得られる蒸留物の収率を掛けた粗原料ブレンド比から計算できる。   2) A second option to improve the properties of kerosene and gas oil is to blend these low quality species of naphthenic and aromatic raw materials with various paraffinic raw materials and co-process them. The yield of the final distillate of this raw material blend can be calculated from the raw material blend ratio multiplied by the yield of the distillate obtained from each raw material.

パラフィン系粗原料とのブレンドによる欠点は、これらの粗原料が必ずしも製油所の地域で入手できないか、或いは非常に高価なことである。他の欠点は、ケロシン及びガス油の特性と蒸留物の需要量との両者をそれぞれ規定量で品質に適合するようにブレンドするパラフィン系粗原料が必ずしも見い出せないことである。   The disadvantage of blending with paraffinic raw materials is that these raw materials are not always available in the refinery area or are very expensive. Another drawback is that it is not always possible to find a paraffinic raw material that blends both the characteristics of kerosene and gas oil and the demand for distillate in a specified amount to match the quality.

普通、粗原料のブレンドは、品質の不合格(give−away)を生じ、例えばこれら粗原料をブレンド後、煙点、それぞれセタン価規格に適合するケロシンブレンド又はガス油ブレンドのいずれかである。その他のブレンドは、規格値を超える特性値を有するが、この特性値は、規格に更に近い特性を有するブレンドと同じか近い。このようないわゆる品質の不合格は、自明の理由から好ましくは避けるべきである。けれども、前述のように、製油所のブレンド環境において、ケロシン及びガス油の両製品を最適化する際、このような品質の不合格は、必ずしも避けられない。またパラフィン系粗原料の共同処理は、多量の粗原料の貯蔵、取り扱い、ブレンド、粗原料の蒸留及び処理を必要とすることにもなる。   Usually, the blend of raw materials results in a quality-away, for example, after blending these raw materials, the smoke point, either a kerosene blend or a gas oil blend, each meeting cetane number specifications. Other blends have a characteristic value that exceeds the specification value, but this characteristic value is the same as or close to a blend that has characteristics closer to the specification. Such so-called quality failures should preferably be avoided for obvious reasons. However, as mentioned above, such quality failures are not necessarily avoided when optimizing both kerosene and gas oil products in a refinery blending environment. The joint processing of paraffinic raw materials also requires storage, handling, blending, distillation and processing of the raw materials in large quantities.

Cookson David J等、“Obsreved and predicted properties of jet and diesel fuel formulated from coal liquefaction and Fischer−Tropsch feedstock”,Energy Fuels 1992,6,p581−585には、非粗原料、即ち、コール液化法で得られたケロシン及びガス油フラクションをそれぞれフィッシャー・トロプシュ誘導ケロシン及びガス油とブレンドする方法が記載されている。
US−A−3607729 US−A−3775297 US−A−5107056 EP−A−583836 WO−A−9714768 WO−A−9714769 WO−A−011116 WO−A−011117 WO−A−0183406 WO−A−0183647 WO−A−0183641 WO−A−0020535 WO−A−0020534 EP−A−1101813 US−A−5766274 US−A−5378348 US−A−5888376 US−A−6204426 WO−A−0206905 Cookson David J等“Obsreved and predicted properties of jet and diesel fuel formulated from coal liquefaction and Fischer−Tropsch feedstock”,Energy Fuels 1992,6,p581−585
Cookson David J et al., “Obsreved and predicted properties of jet and diessel fuel formed, coal liquation and fischer 92”. A method of blending the kerosene and gas oil fractions with Fischer-Tropsch derived kerosene and gas oil, respectively, is described.
US-A-3607729 US-A-3775297 US-A-51007056 EP-A-58383 WO-A-9714768 WO-A-9714769 WO-A-011116 WO-A-011117 WO-A-0183406 WO-A-0183647 WO-A-01833641 WO-A-0020535 WO-A-0020534 EP-A-1101813 US-A-5766274 US-A-5378348 US-A-5888376 US-A-6204426 WO-A-0206905 Cookson David J et al. “Obsreved and predicted properties of jet and diesel fuel formed, coal liquation and Fischer 58, Efsterstock 92”.

本発明の目的は、製品品質の不合格が低減されると共に、ナフテン系又は芳香族系炭化水素含有量を減少させる特別な処置を必要としない、ナフテン系又は芳香族系粗原料からのケロシン及びガス油の製造方法を得ることである。   The object of the present invention is to provide kerosene from naphthenic or aromatic raw materials, which reduces product quality rejection and does not require special treatment to reduce naphthenic or aromatic hydrocarbon content. It is to obtain a method for producing gas oil.

発明の概要
この目的は、以下の方法により達成される。(a)ワトソン特性係数K値が12.0以下の原油から石油誘導ケロシンフラクション及び石油誘導ガス油フラクションを単離する工程であって、該ケロシンフラクション中のナフタレン含有量が3容量%未満であり、かつ該ガス油フラクションのセタン価が50未満か又は該ガス油フラクションの密度が845kg/mを超える場合、石油誘導ケロシンフラクションの煙点は25mm未満又は19mm未満である該工程、(b)該石油誘導ケロシンフラクションに、得られる混合物中のナフタレン含有量が3容量%未満である場合、該混合物の煙点値が25mmを超えるか又は19mmを超えるような量のフィッシャー・トロプシュ誘導ケロシンフラクションを添加する工程、及び(c)該石油誘導ガス油フラクションに、得られる混合物のセタン価が51を超えるような量のフィッシャー・トロプシュ誘導ガス油フラクションを添加する工程、による前記原油からのケロシン及びガス油製品の製造法。
SUMMARY OF THE INVENTION This object is achieved by the following method. (A) a step of isolating a petroleum-derived kerosene fraction and a petroleum-derived gas oil fraction from crude oil having a Watson characteristic coefficient K value of 12.0 or less, wherein the naphthalene content in the kerosene fraction is less than 3% by volume And when the gas oil fraction has a cetane number of less than 50 or the density of the gas oil fraction is greater than 845 kg / m 3 , the smoke point of the petroleum-derived kerosene fraction is less than 25 mm or less than 19 mm, (b) If the petroleum-derived kerosene fraction has a naphthalene content in the resulting mixture of less than 3% by volume, an amount of Fischer-Tropsch derived kerosene fraction such that the smoke point value of the mixture is greater than 25 mm or greater than 19 mm. The step of adding, and (c) the resulting mixture to the petroleum-derived gas oil fraction Adding a Fischer-Tropsch derived gas oil fraction in an amount such that the cetane number of the product exceeds 51, to produce kerosene and gas oil products from said crude oil.

本発明方法は、パラフィン系粗原料の共同処理の必要性を回避しながら、所望の特性を有するケロシン及びガス油製品を得る簡単な方法を提供する。フレンド成分としてフィッシャー・トロプシュ生成物を使用することにより、ナフテン系及び芳香族系種の粗原料から蒸留した生(virgin)ケロシン及び生ガス油も容易に使用できる。こうして、通常、これらフラクション中のナフテン又は芳香族含有量の低下に利用される水素化処理工程の必要性を低減するか、更には該工程を回避できる。   The method of the present invention provides a simple way to obtain kerosene and gas oil products having the desired properties while avoiding the need for joint processing of paraffinic raw materials. By using the Fischer-Tropsch product as a friend component, raw kerosene and raw gas oil distilled from crude raw materials of naphthenic and aromatic species can also be easily used. In this way, the need for a hydrotreatment step, usually used to lower the naphthene or aromatic content in these fractions, can be reduced or even avoided.

更なる利点は、ケロシンの他の製品特性が向上することである。例えば該ケロシンの高い熱量のため、水素含有量が増大する。また熱安定性も向上する。   A further advantage is that other product properties of kerosene are improved. For example, the high heat content of the kerosene increases the hydrogen content. Thermal stability is also improved.

また生ナフテン系ガス油をフィッシャー・トロプシュ誘導ガス油とブレンド後、セタン価以外の他のガス油特性も同様に向上する。例えば熱安定性が向上し、密度が低下し、また硫黄及び芳香族含有量は、カテゴリー4のディーゼル等級用の自動車メーカーによるWorld Wide Fuel Charter(2002年改訂版)の要求どおりに低下する。   Also, after blending raw naphthenic gas oil with Fischer-Tropsch derived gas oil, other gas oil properties other than cetane number are improved as well. For example, thermal stability is improved, density is reduced, and sulfur and aromatic content is reduced as required by World Wide Fuel Charter (revised 2002) by Category 4 diesel grade automakers.

原油は、12.0以下のワトソン特性係数K値を特徴とする。このK値はAPI技術データブック(セクション2 特徴化)に記載の式及びノモグラムに従って計算される。このような低K値を有する原油の例は、西アフリカ粗原料、例えばForcados及びNigerian Light,Far East粗原料、例えばChampion Export,Labuan and Miri Light,北海粗原料、例えばデンマーク(DUC),Troll,Gryphon及びAlba粗原料、南米粗原料、例えばTia Juana Pesado,Nachequero及びMayaである。本発明方法で得られるガス油及びケロシン製品は、K値が12.0以下の粗原料に対し、好ましくは50重量%を超え、更に好ましくは70重量%を超え、最も好ましくは90重量%である。   Crude oil is characterized by a Watson characteristic coefficient K value of 12.0 or less. This K value is calculated according to the formula and nomogram described in the API technical data book (section 2 characterization). Examples of crude oils having such low K values include West African crudes such as Forcados and Nigerian Light, Far East crudes such as Champion Export, Labuan and Miri Light, North Sea crudes such as Denmark (DUC), Troll, Gryphon. And Alba crude materials, South American crude materials such as Tia Juana Pesado, Naquequero and Maya. The gas oil and kerosene product obtained by the method of the present invention is preferably more than 50% by weight, more preferably more than 70% by weight, and most preferably 90% by weight with respect to the crude material having a K value of 12.0 or less. is there.

原油からは、好ましくは蒸留により、石油誘導ケロシン及びガス油が単離される。この種の蒸留は、製油所操作に精通する当業者に周知の方法により常圧蒸留塔で行うことが好ましい。蒸留により単離され、他の転化処理を行っていないフラクションは、生蒸留物フラクションと言う。   Petroleum-derived kerosene and gas oil are isolated from the crude oil, preferably by distillation. This type of distillation is preferably carried out in an atmospheric distillation column by methods well known to those skilled in the art of refinery operations. The fraction isolated by distillation and not subjected to other conversion treatments is called the raw distillate fraction.

この石油誘導ケロシンフラクションのASTM D86のIBPは好ましくは、140〜200℃の範囲で、最終沸点は200〜最大300℃の範囲である。
石油誘導ガス油フラクションのASTM D86のIBPは好ましくは、250〜300℃の範囲で、FBPは340〜380℃の範囲である。
The petroleum-derived kerosene fraction ASTM D86 IBP is preferably in the range of 140-200 ° C and the final boiling point is in the range of 200-up to 300 ° C.
The IBP of the petroleum-derived gas oil fraction ASTM D86 is preferably in the range of 250-300 ° C and the FBP is in the range of 340-380 ° C.

フィッシャー・トロプシュ誘導ケロシン及びガス油フラクションは、好適には(水素化分解した)フィッシャー・トロプシュ合成生成物から得られる。フィッシャー・トロプシュ誘導ケロシン及びガス油については、EP−A−583836、WO−A−9714768、WO−A−9714769、WO−A−011116、WO−A−011117、WO−A−0183406、WO−A−0183648、WO−A−0183647、WO−A−0183641、WO−A−0020535、WO−A−0020534、EP−A−1101813、US−A−5378348及びUS−A−6204426に記載されている。   Fischer-Tropsch derived kerosene and gas oil fractions are preferably obtained from (hydrocracked) Fischer-Tropsch synthesis products. For Fischer-Tropsch derived kerosene and gas oil, see EP-A-58383, WO-A-9714768, WO-A-9714769, WO-A-011116, WO-A-011117, WO-A-0183406, WO-A. -0183648, WO-A-0183647, WO-A-01833641, WO-A-0020535, WO-A-0020534, EP-A-1101813, US-A-5378348 and US-A-6204426.

フィッシャー・トロプシュ誘導ケロシンは、好適には90重量%以上、更に好ましくは95重量%以上のイソ及び線状パラフィンからなる。イソパラフィンとノーマルパラフィンとの重量比は、好適には0.3を超える。この比は12以下である。この比は好適には2〜6の範囲である。この比の実際の値は、フィッシャー・トロプシュ合成生成物からフィッシャー・トロプシュ誘導ケロシン又はガス油を製造するために用いた水素化転化法により部分的に測定される。若干の環式パラフィンが存在してもよい。   Fischer-Tropsch derived kerosene is preferably composed of 90 wt% or more, more preferably 95 wt% or more of iso and linear paraffin. The weight ratio of isoparaffin to normal paraffin is preferably above 0.3. This ratio is 12 or less. This ratio is preferably in the range of 2-6. The actual value of this ratio is measured in part by the hydroconversion process used to produce Fischer-Tropsch derived kerosene or gas oil from the Fischer-Tropsch synthesis product. Some cyclic paraffin may be present.

フィッシャー・トロプシュ誘導ケロシンの煙点は25mmを超え、好ましくは50mmを超え、ASTM D86蒸留曲線は、大部分が通常のケロシン沸点範囲である約150〜200℃の範囲にあり、密度は15℃で約740kg/mであり、また硫黄及び芳香族の水準はゼロ(検出限界未満)である。 Fischer-Tropsch derived kerosene has a smoke point of greater than 25 mm, preferably greater than 50 mm, and the ASTM D86 distillation curve is in the range of about 150-200 ° C., mostly the normal kerosene boiling range, and the density is 15 ° C. It is about 740 kg / m 3 and the sulfur and aromatic levels are zero (below the detection limit).

フィッシャー・トロプシュ誘導ガス油は、好適には90重量%以上、更に好ましくは95重量%以上のイソ及び線状パラフィンからなる。イソパラフィンとノーマルパラフィンとの重量比は、好適には0.3を超える。この比は12以下である。この比は好適には2〜6の範囲である。この比の実際の値は、フィッシャー・トロプシュ合成生成物からフィッシャー・トロプシュ誘導ケロシン又はガス油を製造するために用いた水素化転化法により部分的に測定される。若干の環式パラフィンが存在してもよい。   The Fischer-Tropsch derived gas oil is preferably composed of 90% by weight or more, more preferably 95% by weight or more of iso and linear paraffin. The weight ratio of isoparaffin to normal paraffin is preferably above 0.3. This ratio is 12 or less. This ratio is preferably in the range of 2-6. The actual value of this ratio is measured in part by the hydroconversion process used to produce Fischer-Tropsch derived kerosene or gas oil from the Fischer-Tropsch synthesis product. Some cyclic paraffin may be present.

フィッシャー・トロプシュ誘導ガス油のセタン価は60を超え、好ましくは70を超え、ASTM D86蒸留曲線は、大部分が通常のガス油沸点範囲である約200〜400℃の範囲にある。フィッシャー・トロプシュ誘導ガス油のT90容量%は300〜400℃の範囲であり、密度は15℃で約0.76〜0.79g/cmの範囲にあり、また粘度は40℃で約2.5〜4.0cStの範囲である。 The cetane number of Fischer-Tropsch derived gas oil is greater than 60, preferably greater than 70, and the ASTM D86 distillation curve is in the range of about 200-400 ° C., which is mostly the normal gas oil boiling range. Fischer-Tropsch derived gas oil has a T90 volume% in the range of 300-400 ° C., a density in the range of about 0.76-0.79 g / cm 3 at 15 ° C., and a viscosity of about 2. It is in the range of 5 to 4.0 cSt.

ブレンドは、いわゆるインラインブレンド、オンラインブレンド又はバッチ式ブレンドのいずれかで実施できる。これは自動化の水準に依存する。バッチ式ブレンドでは、石油誘導フラクションとフィッシャー・トロプシュ誘導フラクションとのブレンドは、まず混合し、次いで貯蔵容器に供給してから、この最終ブレンドを船、鉄道、自動車、その他の輸送手段に供給する。貯蔵容器への供給物の所望の製品品質、即ち、煙点又はセタン価を測定し、品質の不合格を最小化するため、この特性値が所定範囲内に維持されるように、これらブレンド成分を調節する。   The blending can be done either in so-called in-line blending, online blending or batch blending. This depends on the level of automation. In a batch blend, a blend of petroleum derived fractions and Fischer-Tropsch derived fractions are first mixed and then fed to a storage vessel before the final blend is fed to a ship, rail, car, or other vehicle. In order to measure the desired product quality of the feed to the storage container, i.e. smoke point or cetane number, and minimize the quality failure, these blend components are maintained so that this property value is maintained within a predetermined range. Adjust.

インラインブレンドを適用する場合、中間の貯蔵容器は利用するが、ブレンド比/容量は品質測定器(QMI)により自動的にインラインで調節され、ブレンドは直接、船、鉄道又は自動車に放出する。ブレンドの品質又は性能の測定及び管理は周知技術、例えば近赤外線(NIR)により実施できる。好適な方法はWO−A−0206905に記載されている。
本発明を以下の非限定的実施例により説明する。これらの実施例は公知のブレンド公式を用いた計算に基づく。
When applying an in-line blend, an intermediate storage vessel is utilized, but the blend ratio / capacity is automatically adjusted in-line by a quality meter (QMI) and the blend is released directly to the ship, rail or car. Measurement and control of blend quality or performance can be performed by well-known techniques such as near infrared (NIR). A suitable method is described in WO-A-0206905.
The invention is illustrated by the following non-limiting examples. These examples are based on calculations using known blend formulas.

例1
UOPK値11.5のナフテン系粗原料を蒸留し、ナフサフラクション、ケロシンフラクション及びガス油フラクションを得た。これら異なるフラクションの特性を第1表に示す。
Example 1
A naphthenic crude material having a UOPK value of 11.5 was distilled to obtain a naphtha fraction, a kerosene fraction, and a gas oil fraction. The characteristics of these different fractions are shown in Table 1.

例2
例1を繰り返した。更に、ワトソンK特性係数値が12.3のパラフィン系粗原料を蒸留して、第1表に示すケロシン及びガス油の特性を改良するブレンド成分を得た。使用したパラフィン系粗原料の量は、第1表の各フラクションを所望の規格に適合させて、ケロシンとガス油との混合物を得るのに十分な量とした。これらブレンドの特性を第2表に示す。
Example 2
Example 1 was repeated. Further, the paraffinic raw material having a Watson K characteristic coefficient value of 12.3 was distilled to obtain a blend component for improving the characteristics of kerosene and gas oil shown in Table 1. The amount of the crude paraffinic raw material used was an amount sufficient to obtain a mixture of kerosene and gas oil by adapting each fraction in Table 1 to a desired standard. The properties of these blends are shown in Table 2.


第2表から判るように、品質の不合格は、ブレンドから製造したケロシンの煙点や、セタン価及び密度のような若干のガス油品質で観察された。

As can be seen from Table 2, quality failures were observed with some gas oil qualities such as the smoke point and cetane number and density of kerosene made from the blend.

例3
例1を繰り返した。第1表のケロシン及びガス油フラクションにフィッシャー・トロプシュケロシン及びガス油をそれぞれ、煙点及びセタン価規格に適合するのに十分な量で添加した。得られた特性を第4表に示す。
Example 3
Example 1 was repeated. Fischer-Tropsch kerosene and gas oil were added to the kerosene and gas oil fractions in Table 1 in amounts sufficient to meet smoke point and cetane number specifications, respectively. The obtained characteristics are shown in Table 4.


Claims (6)

(a)ワトソン特性係数K値が12.0以下の原油から石油誘導ケロシンフラクション及び石油誘導ガス油フラクションを単離する工程であって、該ケロシンフラクション中のナフタレン含有量が3容量%未満であり、かつ該ガス油フラクションのセタン価が50未満か又は該ガス油フラクションの密度が845kg/mを超える場合、石油誘導ケロシンフラクションの煙点は25mm未満又は19mm未満である該工程、(b)該石油誘導ケロシンフラクションに、得られる混合物中のナフタレン含有量が3容量%未満である場合、該混合物の煙点値が25mmを超えるか又は19mmを超えるような量のフィッシャー・トロプシュ誘導ケロシンフラクションを添加する工程、及び(c)該石油誘導ガス油フラクションに、得られる混合物のセタン価が51を超えるような量のフィッシャー・トロプシュ誘導ガス油フラクションを添加する工程による前記原油からのケロシン及びガス油製品の製造法。 (A) a step of isolating a petroleum-derived kerosene fraction and a petroleum-derived gas oil fraction from crude oil having a Watson characteristic coefficient K value of 12.0 or less, wherein the naphthalene content in the kerosene fraction is less than 3% by volume And when the gas oil fraction has a cetane number of less than 50 or the density of the gas oil fraction is greater than 845 kg / m 3 , the smoke point of the petroleum-derived kerosene fraction is less than 25 mm or less than 19 mm, (b) If the petroleum-derived kerosene fraction has a naphthalene content in the resulting mixture of less than 3% by volume, an amount of Fischer-Tropsch derived kerosene fraction such that the smoke point value of the mixture is greater than 25 mm or greater than 19 mm. The step of adding, and (c) the resulting mixture to the petroleum-derived gas oil fraction A method for producing kerosene and gas oil products from the crude oil by adding a Fischer-Tropsch derived gas oil fraction in an amount such that the cetane number of the product exceeds 51. 前記ケロシン及びガス油が水素化スキミング製油所で原油から単離される請求項1に記載の方法。   The method of claim 1, wherein the kerosene and gas oil are isolated from crude oil at a hydrogenation skimming refinery. 前記石油ガス油及びケロシンが、ワトソンK値12.0以下の原油に対し50重量%を超える請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the petroleum gas oil and kerosene exceed 50% by weight with respect to crude oil having a Watson K value of 12.0 or less. 前記石油誘導ケロシンフラクションのASTM D86による蒸留初期沸点が140〜200℃の範囲で、最終沸点が200〜300℃の範囲である請求項1〜3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the petroleum-derived kerosene fraction has an initial boiling point of 140 to 200 ° C and a final boiling point of 200 to 300 ° C according to ASTM D86. 前記石油誘導ガス油フラクションのASTM D86による蒸留初期沸点が250〜300℃の範囲で、最終沸点が340〜380℃の範囲である請求項1〜4のいずれか1項に記載の方法。   The method according to any one of claims 1 to 4, wherein the petroleum-derived gas oil fraction has an initial boiling point in the range of 250 to 300 ° C and a final boiling point in the range of 340 to 380 ° C according to ASTM D86. 前記フィッシャー・トロプシュ誘導ケロシンのイソパラフィン対ノーマルパラフィン重量比が2〜6の範囲である請求項1〜5のいずれか1項に記載の方法。

The method according to any one of claims 1 to 5, wherein the Fischer-Tropsch derived kerosene has an isoparaffin to normal paraffin weight ratio in the range of 2-6.

JP2006530200A 2003-05-22 2004-05-17 A method for improving the quality of kerosene and gas oil from naphthenic and aromatic crudes. Expired - Lifetime JP5478806B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03076566 2003-05-22
EP03076566.3 2003-05-22
PCT/EP2004/050819 WO2004104142A1 (en) 2003-05-22 2004-05-17 Process to upgrade kerosenes and a gasoils from naphthenic and aromatic crude petroleum sources

Publications (2)

Publication Number Publication Date
JP2007502899A true JP2007502899A (en) 2007-02-15
JP5478806B2 JP5478806B2 (en) 2014-04-23

Family

ID=33462163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006530200A Expired - Lifetime JP5478806B2 (en) 2003-05-22 2004-05-17 A method for improving the quality of kerosene and gas oil from naphthenic and aromatic crudes.

Country Status (8)

Country Link
US (1) US20070021636A1 (en)
EP (1) EP1627028B1 (en)
JP (1) JP5478806B2 (en)
CN (1) CN100362085C (en)
AT (1) ATE380855T1 (en)
DE (1) DE602004010648T2 (en)
DK (1) DK1627028T3 (en)
WO (1) WO2004104142A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520854A (en) * 2005-12-22 2009-05-28 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Fuel composition

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0414475A (en) 2003-09-17 2006-11-14 Shell Int Research fuel composition, use of a kerosene fuel, method of operating a jet engine or diesel engine and / or aircraft and process for the preparation of a fuel composition
EP1869146B1 (en) 2005-04-11 2011-03-02 Shell Internationale Research Maatschappij B.V. Process to blend a mineral and a fischer-tropsch derived product onboard a marine vessel
CN101305080A (en) * 2005-09-21 2008-11-12 国际壳牌研究有限公司 Process to blend a mineral derived hydrocarbon product and a Fisher-Tropsch derived hydrocarbon product
AR060143A1 (en) * 2006-03-29 2008-05-28 Shell Int Research PROCESS TO PREPARE AVIATION FUEL
JP4908038B2 (en) * 2006-03-30 2012-04-04 Jx日鉱日石エネルギー株式会社 Method for treating synthetic oil, hydrocarbon oil for hydrogen production and hydrocarbon oil for diesel fuel base material
JP4908037B2 (en) * 2006-03-30 2012-04-04 Jx日鉱日石エネルギー株式会社 Method for treating synthetic oil, hydrocarbon oil for kerosene smoke point improver and hydrocarbon oil for diesel fuel base material
AU2007232015B2 (en) * 2006-03-30 2011-11-24 Nippon Oil Corporation Method for treatment of synthetic oil, process for production of hydrocarbon oil, hydrocarbon oil for hydrogen production, hydrocarbon oil for the smoke point improver for kerosene, and hydrocarbon oil for diesel fuel base
WO2008124607A1 (en) * 2007-04-06 2008-10-16 Syntroleum Corporation Process for co-producing jet fuel and lpg from renewable sources
JP4261598B2 (en) * 2007-07-30 2009-04-30 ファナック株式会社 Striated structure of industrial robot
US8058484B2 (en) 2007-08-24 2011-11-15 Syntroleum Corporation Flexible glycerol conversion process
US8575409B2 (en) 2007-12-20 2013-11-05 Syntroleum Corporation Method for the removal of phosphorus
US8026401B2 (en) 2007-12-20 2011-09-27 Syntroleum Corporation Hydrodeoxygenation process
US20090300971A1 (en) 2008-06-04 2009-12-10 Ramin Abhari Biorenewable naphtha
US8581013B2 (en) 2008-06-04 2013-11-12 Syntroleum Corporation Biorenewable naphtha composition and methods of making same
US7968757B2 (en) 2008-08-21 2011-06-28 Syntroleum Corporation Hydrocracking process for biological feedstocks and hydrocarbons produced therefrom
US20100116711A1 (en) * 2008-11-12 2010-05-13 Kellogg Brown & Root Llc Systems and Methods for Producing N-Paraffins From Low Value Feedstocks
US8231804B2 (en) 2008-12-10 2012-07-31 Syntroleum Corporation Even carbon number paraffin composition and method of manufacturing same
FR2957607B1 (en) * 2010-03-18 2013-05-03 Inst Francais Du Petrole PROCESS AND CONVERSION PRODUCTS OF CHARCOAL COMPRISING TWO STEPS OF DIRECT LIQUEFACTION IN BOILING BED AND A FIXED BED HYDROCRACKING STEP
US8394900B2 (en) 2010-03-18 2013-03-12 Syntroleum Corporation Profitable method for carbon capture and storage
US9328303B2 (en) 2013-03-13 2016-05-03 Reg Synthetic Fuels, Llc Reducing pressure drop buildup in bio-oil hydroprocessing reactors
US8969259B2 (en) 2013-04-05 2015-03-03 Reg Synthetic Fuels, Llc Bio-based synthetic fluids
SG11201802774QA (en) 2015-11-11 2018-05-30 Shell Int Research Process for preparing a diesel fuel composition
JP6361643B2 (en) * 2015-12-15 2018-07-25 横河電機株式会社 Energy storage service system
WO2018077976A1 (en) * 2016-10-27 2018-05-03 Shell Internationale Research Maatschappij B.V. Process for preparing an automotive gasoil
EP3898879A1 (en) * 2018-12-19 2021-10-27 MOL Magyar Olaj- és Gázipari Nyilvánosan Müködö Részvénytársaság Colliodal disperse system suitable for phase inversion to stimulate hydrocarbon production wells
US11248176B2 (en) 2019-08-28 2022-02-15 Saudi Arabian Oil Company Low-sulfur aromatic-rich fuel oil blending component

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607729A (en) * 1969-04-07 1971-09-21 Shell Oil Co Production of kerosene jet fuels
US3630885A (en) * 1969-09-09 1971-12-28 Chevron Res Process for producing high yields of low freeze point jet fuel
US3775297A (en) * 1971-10-04 1973-11-27 Sun Oil Co Hydrocracking process to produce gasoline and naphthenic lubricating oils concurrently
JPS57198789A (en) * 1981-06-01 1982-12-06 Masaya Kuno Method for distillation of crude oil in hydrogen atmosphere and hydrogenative desulfurization treatment of crude oil
CN1061617A (en) * 1990-11-20 1992-06-03 杨家振 A kind of prescription of coal-tar type diesel and compound method
US5107056A (en) * 1990-12-05 1992-04-21 Exxon Research And Engineering Company Selective separation of naphthenes from paraffins by membrane extraction
US5851381A (en) * 1990-12-07 1998-12-22 Idemitsu Kosan Co., Ltd. Method of refining crude oil
US5378348A (en) * 1993-07-22 1995-01-03 Exxon Research And Engineering Company Distillate fuel production from Fischer-Tropsch wax
US5888376A (en) * 1996-08-23 1999-03-30 Exxon Research And Engineering Co. Conversion of fischer-tropsch light oil to jet fuel by countercurrent processing
US5766274A (en) * 1997-02-07 1998-06-16 Exxon Research And Engineering Company Synthetic jet fuel and process for its production
US6180842B1 (en) * 1998-08-21 2001-01-30 Exxon Research And Engineering Company Stability fischer-tropsch diesel fuel and a process for its production
US6204426B1 (en) * 1999-12-29 2001-03-20 Chevron U.S.A. Inc. Process for producing a highly paraffinic diesel fuel having a high iso-paraffin to normal paraffin mole ratio
JP2003524697A (en) * 2000-02-14 2003-08-19 ザ、プロクター、エンド、ギャンブル、カンパニー Synthetic jet and diesel fuel compositions and methods
WO2001083648A2 (en) * 2000-05-02 2001-11-08 Exxonmobil Research And Engineering Company Low emissions f-t fuel/cracked stock blends
US6846402B2 (en) * 2001-10-19 2005-01-25 Chevron U.S.A. Inc. Thermally stable jet prepared from highly paraffinic distillate fuel component and conventional distillate fuel component
US20070070807A1 (en) * 2003-05-19 2007-03-29 Maarten Bracht Process to upgrade kerosenes and a gasoils from naphthenic and aromatic crude petroleum sources

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520854A (en) * 2005-12-22 2009-05-28 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Fuel composition

Also Published As

Publication number Publication date
JP5478806B2 (en) 2014-04-23
CN1795258A (en) 2006-06-28
EP1627028B1 (en) 2007-12-12
ATE380855T1 (en) 2007-12-15
DE602004010648T2 (en) 2008-12-11
DK1627028T3 (en) 2008-03-17
WO2004104142A1 (en) 2004-12-02
CN100362085C (en) 2008-01-16
US20070021636A1 (en) 2007-01-25
DE602004010648D1 (en) 2008-01-24
EP1627028A1 (en) 2006-02-22

Similar Documents

Publication Publication Date Title
JP5478806B2 (en) A method for improving the quality of kerosene and gas oil from naphthenic and aromatic crudes.
US10836970B2 (en) Low sulfur marine fuel compositions
US20230295528A1 (en) Low sulfur fuel oil blends for stability enhancement and associated methods
US10457881B2 (en) Fuel compositions
US10597594B1 (en) Low sulfur marine fuel compositions
FI20175815A1 (en) Low sulfur fuel oil bunker composition and process for producing the same
US9169451B2 (en) Jet fuels having superior thermal stability
EP1979444B1 (en) Method for making a fuel composition
US8444718B2 (en) Process to prepare an aviation fuel
US20200165535A1 (en) Low sulfur marine fuel compositions
EP1869146B1 (en) Process to blend a mineral and a fischer-tropsch derived product onboard a marine vessel
WO2020112096A1 (en) Low sulfur marine fuel compositions
CA3106576A1 (en) A process of coprocessing a lignocellulosic liquid stream and an intermediate fossil stream in an oil refining process and a process for producing fuel from a deasphalted oil stream
US20230059182A1 (en) Low sulfur fuel oil bunker composition and process for producing the same
JP2022032664A (en) Fuel composition and production method thereof
Crowe et al. Coal Liquefaction—Impact on the Petroleum Refiner
RU2221838C1 (en) Diesel fuel production process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20090608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090713

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20090713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100730

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120821

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130927

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131029

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140212

R150 Certificate of patent or registration of utility model

Ref document number: 5478806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140320

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term