JP2007335197A - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP2007335197A
JP2007335197A JP2006164824A JP2006164824A JP2007335197A JP 2007335197 A JP2007335197 A JP 2007335197A JP 2006164824 A JP2006164824 A JP 2006164824A JP 2006164824 A JP2006164824 A JP 2006164824A JP 2007335197 A JP2007335197 A JP 2007335197A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
substrate
base material
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006164824A
Other languages
Japanese (ja)
Other versions
JP5160051B2 (en
Inventor
Akinobu Ono
朗伸 小野
Hiroshi Matsui
浩志 松井
Tetsuya Ezure
哲也 江連
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006164824A priority Critical patent/JP5160051B2/en
Publication of JP2007335197A publication Critical patent/JP2007335197A/en
Application granted granted Critical
Publication of JP5160051B2 publication Critical patent/JP5160051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion element having excellent sealability, capable of reducing the weight of the element. <P>SOLUTION: The photoelectric conversion element 10 is equipped with a counter electrode 12 comprising a conductive first substrate 11, an insulative transparent second substrate 13, and a porous oxide semiconductor layer 15 disposed on a face of the second substrate via a transparent conductive film 14 and supporting a pigment in at least one part. The porous oxide semiconductor layer 15 is composed of an acting electrode 16 disposed opposing a face of the first substrate, and an electrolyte layer 17 disposed on at least one part between the counter electrode 12 and the acting electrode 16. The first substrate 11 and the second substrate 13 are overlapped with each other, and have substantially a same surface shape. A sealing material 18 is disposed to cover side face parts of the first substrate 11 and the second substrate 13. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光電変換素子に関する。より詳しくは、新しい封止構造により、耐久性に優れた光電変換素子に関する。   The present invention relates to a photoelectric conversion element. More specifically, the present invention relates to a photoelectric conversion element having excellent durability due to a new sealing structure.

環境問題、資源問題などを背景に、クリーンエネルギーとしての太陽電池が注目を集めている。太陽電池としては単結晶、多結晶あるいはアモルファスのシリコンを用いたものがある。しかし、従来のシリコン系太陽電池は製造コストが高い、原料供給が不充分などの課題が残されており、大幅普及には至っていない。   Against the backdrop of environmental problems and resource problems, solar cells as clean energy are attracting attention. Some solar cells use single crystal, polycrystalline or amorphous silicon. However, conventional silicon-based solar cells still have problems such as high production costs and insufficient supply of raw materials, and have not been widely spread.

また、Cu−In−Se系(CIS系とも呼ぶ)などの化合物系太陽電池が開発されており、極めて高い光電変換効率を示すなど優れた特徴を有しているが、コストや環境負荷などの問題があり、やはり大幅普及への障害となっている。   In addition, compound solar cells such as Cu-In-Se (also referred to as CIS) have been developed and have excellent characteristics such as extremely high photoelectric conversion efficiency. There is a problem, and it is still an obstacle to widespread use.

これらに対して、色素増感型太陽電池は、スイスのグレッツェルらのグループなどから提案されたもので、安価で高い光電変換効率を得られる光電変換素子として着目されている(非特許文献1を参照)。   On the other hand, the dye-sensitized solar cell has been proposed by a group of Gretzel et al. In Switzerland, and has attracted attention as a photoelectric conversion element that can obtain high photoelectric conversion efficiency at low cost (see Non-Patent Document 1). reference).

図4は、従来の色素増感型太陽電池の一例を示す断面図である。
この色素増感型太陽電池100は、増感色素を担持させた多孔質半導体層103が一方の面に形成された第一基板101と、透明導電層104が形成された第二基板105と、これらの間に封入された例えばゲル状電解質からなる電解質層を主な構成要素としている。
FIG. 4 is a cross-sectional view showing an example of a conventional dye-sensitized solar cell.
This dye-sensitized solar cell 100 includes a first substrate 101 on which a porous semiconductor layer 103 carrying a sensitizing dye is formed on one surface, a second substrate 105 on which a transparent conductive layer 104 is formed, The main component is an electrolyte layer made of, for example, a gel electrolyte enclosed between them.

第一基板101としては、光透過性の板材が用いられ、第一基板101の色素増感半導体層103と接する面には導電性を持たせるために透明導電層102が配置されており、第一基板101、透明導電層102および多孔質半導体層103により作用極108をなす。
第二基板105としては、電解質層106と接する側の面には導電性を持たせるために例えば炭素や白金などからなる導電層104が設けられ、第二基板および導電層104により対極109を構成している。
As the first substrate 101, a light transmissive plate material is used, and a transparent conductive layer 102 is disposed on the surface of the first substrate 101 in contact with the dye-sensitized semiconductor layer 103 in order to provide conductivity. A working electrode 108 is formed by one substrate 101, the transparent conductive layer 102, and the porous semiconductor layer 103.
As the second substrate 105, a conductive layer 104 made of, for example, carbon or platinum is provided on the surface on the side in contact with the electrolyte layer 106, and a counter electrode 109 is configured by the second substrate and the conductive layer 104. is doing.

多孔質半導体層103と導電層104が対向するように、第一基板101と第二基板105を所定の間隔をおいて配置し、両基板間の周辺部に熱硬化性樹脂からなる封止材107を設ける。
そして、この封止剤107を介して2つの基板101、105を貼り合わせてセルを積み上げ、電解液の注入口110を介して、両極108、109間にヨウ素・ヨウ化物イオンなどの酸化・還元極を含む有機電解液を充填し、電荷移送用の電解質層106を形成したものが挙げられる。
The first substrate 101 and the second substrate 105 are arranged at a predetermined interval so that the porous semiconductor layer 103 and the conductive layer 104 face each other, and a sealing material made of a thermosetting resin is provided at the periphery between the two substrates. 107 is provided.
The two substrates 101 and 105 are bonded to each other through the sealant 107 and the cells are stacked, and oxidation / reduction of iodine / iodide ions or the like between the electrodes 108 and 109 through the electrolyte inlet 110 is performed. An example is one in which an organic electrolyte solution containing an electrode is filled and an electrolyte layer 106 for charge transfer is formed.

しかしながら、このような光電変換素子に用いられているゲル状電解質は、実際には、ナノ無機フィラーがヨウ素を含む電解液に分散されたペースト状の物体であるため、そのまま放置しておけば、徐々に固−液分離して電解液のみが滲むように流れ出てくる。このヨウ素電解液は、多くの高分子や金属に対してアタックが強く、耐えられる樹脂と金属は限られており、高分子の場合は、ポリオレフィン系樹脂くらいしか適当なものがなかった。   However, since the gel electrolyte used in such a photoelectric conversion element is actually a paste-like object in which the nano inorganic filler is dispersed in an electrolyte containing iodine, if left as it is, Gradually, solid-liquid separation is performed and only the electrolyte solution flows out. This iodine electrolyte solution has a strong attack against many polymers and metals, and the resins and metals that can be tolerated are limited. In the case of polymers, only the polyolefin resin is suitable.

このような状況に加え、セルの重量を軽くしたいという要求があり、セルの封止はできる限り単純な方法が求められている。そこで、窓側の透明電極板と背面電極板を直接、シリコンシーラントや感光性エポキシまたは、アクリル樹脂等で封止してきたが、ヨウ素電解液に対する耐性が十分なく、耐久性に問題があった。
O’ Regan B, Gratzel M. A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991;353:737-739
In addition to this situation, there is a demand for reducing the weight of the cell, and there is a demand for a simple method for sealing the cell. Therefore, the transparent electrode plate and the back electrode plate on the window side are directly sealed with silicon sealant, photosensitive epoxy, acrylic resin, or the like, but there is a problem in durability because of insufficient resistance to iodine electrolyte.
O 'Regan B, Gratzel M. A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991; 353: 737-739

本発明は、このような従来の実情に鑑みて提案されたものであり、優れた封止性を有しつつ、素子の軽量化を図ることが可能な光電変換素子を提供することを目的とする。   The present invention has been proposed in view of such a conventional situation, and an object thereof is to provide a photoelectric conversion element capable of reducing the weight of the element while having excellent sealing properties. To do.

本発明の請求項1に記載の光電変換素子は、導電性の第一基材からなる対極と、絶縁性の透明な第二基材と、該第二基材の一面に透明導電膜を介して配され、少なくとも一部に色素を担持した多孔質酸化物半導体層とを備え、該多孔質酸化物半導体層が前記第一基材の一面と対向して配される作用極と、前記対極と前記作用極との間の少なくとも一部に配された電解質層と、から構成され、前記第一基材は、前記第二基材と重なり略同一の面形状を有し、前記前記第一基材と前記第二基材の側面部を被覆するように封止材を配したことを特徴とする。
本発明の請求項2に記載の光電変換素子は、請求項1において、前記封止材は、前記第一基材と前記第二基材の間の外周部にも入り込むように配されていることを特徴とする。
本発明の請求項3に記載の光電変換素子は、請求項1または2において、前記封止材を被覆するように、保護部材が配されていることを特徴とする
本発明の請求項4に記載の光電変換素子は、請求項1ないし3のいずれかにおいて、前記封止材は、ポリオレフィン系樹脂からなることを特徴とする。
The photoelectric conversion element according to claim 1 of the present invention includes a counter electrode made of a conductive first base material, an insulating transparent second base material, and a transparent conductive film on one surface of the second base material. A working electrode in which the porous oxide semiconductor layer is disposed to face one surface of the first substrate, and the counter electrode. And an electrolyte layer disposed in at least a part between the first electrode and the working electrode, wherein the first base material overlaps with the second base material and has substantially the same surface shape, A sealing material is provided so as to cover the side surface of the base material and the second base material.
The photoelectric conversion element according to a second aspect of the present invention is the photoelectric conversion element according to the first aspect, wherein the sealing material is arranged so as to enter an outer peripheral portion between the first base material and the second base material. It is characterized by that.
The photoelectric conversion element according to claim 3 of the present invention is the photoelectric conversion element according to claim 1 or 2, wherein a protective member is disposed so as to cover the sealing material. The photoelectric conversion element according to any one of claims 1 to 3, wherein the sealing material is made of a polyolefin-based resin.

本発明では、作用極と重なり略同一の面形状を有する対極との側面部を被覆するように封止材を配することで封止しているので、優れた封止性を有しつつ、素子の軽量化を図ることが可能な光電変換素子を提供することができる。   In the present invention, since the sealing is performed by arranging the sealing material so as to cover the side portion of the counter electrode having the substantially same surface shape as the working electrode, while having excellent sealing properties, A photoelectric conversion element capable of reducing the weight of the element can be provided.

以下、本発明に係る光電変換素子の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of a photoelectric conversion element according to the present invention will be described with reference to the drawings.

図1は、本発明に係る光電変換素子10A(10)の一実施形態を示す概略断面図である。
本発明の光電変換素子10は、導電性の第一基材11からなる対極12と、絶縁性の透明な第二基材13と、該第二基材13の一面に透明導電膜14を介して配され、少なくとも一部に色素を担持した多孔質酸化物半導体層15とを備え、該多孔質酸化物半導体層15が前記第一基材11の一面と対向して配される作用極16と、前記対極11と前記作用極16との間の少なくとも一部に配された電解質層17と、から構成される。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a photoelectric conversion element 10A (10) according to the present invention.
The photoelectric conversion element 10 of the present invention includes a counter electrode 12 made of a conductive first base material 11, an insulating transparent second base material 13, and a transparent conductive film 14 on one surface of the second base material 13. And a porous oxide semiconductor layer 15 supporting at least a part of the pigment, and the porous oxide semiconductor layer 15 is disposed to face one surface of the first substrate 11. And an electrolyte layer 17 disposed at least at a part between the counter electrode 11 and the working electrode 16.

そして本発明の光電変換素子10は、前記第一基材11は、前記第二基材13と重なり略同一の面形状を有し、前記第一基材11と前記第二基材13の側面部を被覆するように封止材18を配したことを特徴とする。
従来の光電変換素子では、作用極と対極との間に封止材を配していたが、本発明では、重ねられた作用極16と対極12の側面部を少なくとも被覆するように封止材18を配することで封止しているので、優れた封止性を有し、電解質の液漏れを防止しつつ、素子の薄型化、軽量化を図ることができる。
In the photoelectric conversion element 10 of the present invention, the first base material 11 overlaps the second base material 13 and has substantially the same surface shape, and the side surfaces of the first base material 11 and the second base material 13 are the same. The sealing material 18 is arranged so as to cover the portion.
In the conventional photoelectric conversion element, the sealing material is disposed between the working electrode and the counter electrode. However, in the present invention, the sealing material is provided so as to cover at least the side portions of the stacked working electrode 16 and counter electrode 12. Since the sealing is performed by arranging 18, it is possible to reduce the thickness and weight of the element while having excellent sealing performance and preventing electrolyte leakage.

また、図2に示すように、前記封止材18は、作用極16(第二基材13)と対極12(第一基材11)の間の外周部にも入り込むように配されていることが好ましい。封止材18を、基板間に入り込むように配することで、強固に封止することができる。これにより、封止性が向上し、電解質の液漏れを確実に防止することができる。   Further, as shown in FIG. 2, the sealing material 18 is arranged so as to enter the outer peripheral portion between the working electrode 16 (second base material 13) and the counter electrode 12 (first base material 11). It is preferable. By arranging the sealing material 18 so as to enter between the substrates, the sealing material 18 can be firmly sealed. Thereby, sealing property improves and it can prevent the liquid leakage of electrolyte reliably.

さらに、図3に示すように、前記封止材18を被覆するように、保護部材19が配されていることが好ましい。保護部材19が配されることにより、封止性がより向上し、電解質の液漏れをより確実に防止することができる。   Further, as shown in FIG. 3, a protective member 19 is preferably arranged so as to cover the sealing material 18. By providing the protective member 19, the sealing performance can be further improved, and electrolyte leakage can be prevented more reliably.

第二基材13としては、光透過性の素材からなる基板が用いられ、ガラス、ポリエチレンテレフタレート、ポリカーボネート、ポリエーテルスルホンなど、通常、光電変換素子10の透明基材として用いられるものであればいかなるものでも用いることができる。第二基材13は、これらの中から電解液への耐性などを考慮して適宜選択される。また、第二基材13としては、用途上、できる限り光透過性に優れる基板が好ましく、透過率が90%以上の基板がより好ましい。   As the second base material 13, a substrate made of a light-transmitting material is used, and any glass, polyethylene terephthalate, polycarbonate, polyethersulfone, or the like that is usually used as a transparent base material for the photoelectric conversion element 10 can be used. Even things can be used. The second base material 13 is appropriately selected from these in consideration of resistance to the electrolytic solution. Moreover, as the 2nd base material 13, the board | substrate which is excellent in the light transmittance as much as possible is preferable on a use, and the board | substrate whose transmittance | permeability is 90% or more is more preferable.

透明導電膜14は、第二基材13に導電性を付与するために、その一方の面に形成された薄膜である。透明導電性基板の透明性を著しく損なわない構造とするために、透明導電膜14は、導電性金属酸化物からなる薄膜であることが好ましい。
透明導電膜14を形成する導電性金属酸化物としては、例えば、スズ添加酸化インジウム(ITO)、フッ素添加酸化スズ(FTO)、酸化スズ(SnO)などが用いられる。これらの中でも、成膜が容易かつ製造コストが安価であるという観点から、ITO、FTOが好ましい。また、透明導電膜14は、ITOのみからなる単層の膜、または、ITOからなる膜にFTOからなる膜が積層されてなる積層膜であることが好ましい。
The transparent conductive film 14 is a thin film formed on one surface of the second base material 13 in order to impart conductivity. In order to obtain a structure that does not significantly impair the transparency of the transparent conductive substrate, the transparent conductive film 14 is preferably a thin film made of a conductive metal oxide.
Examples of the conductive metal oxide that forms the transparent conductive film 14 include tin-added indium oxide (ITO), fluorine-added tin oxide (FTO), and tin oxide (SnO 2 ). Among these, ITO and FTO are preferable from the viewpoint of easy film formation and low manufacturing costs. The transparent conductive film 14 is preferably a single layer film made of only ITO or a laminated film in which a film made of FTO is laminated on a film made of ITO.

透明導電膜14を、ITOのみからなる単層の膜、または、ITOからなる膜にFTOからなる膜が積層されてなる積層膜とすることにより、可視域における光の吸収量が少なく、導電率が高い透明導電性基板を構成することができる。   By making the transparent conductive film 14 a single-layer film made of only ITO or a laminated film in which a film made of FTO is laminated on a film made of ITO, the amount of light absorption in the visible region is small, and the conductivity A transparent conductive substrate having a high thickness can be formed.

多孔質酸化物半導体層15は、透明導電膜14の上に設けられており、その表面には増感色素が担持されている。多孔質酸化物半導体層15を形成する半導体としては特に限定されず、通常、光電変換素子用の多孔質酸化物半導体を形成するのに用いられるものであれば、いかなるものでも用いることができる。このような半導体としては、例えば、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)などを用いることができる。 The porous oxide semiconductor layer 15 is provided on the transparent conductive film 14, and a sensitizing dye is supported on the surface thereof. The semiconductor for forming the porous oxide semiconductor layer 15 is not particularly limited, and any semiconductor can be used as long as it is usually used for forming a porous oxide semiconductor for a photoelectric conversion element. As such a semiconductor, for example, titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), or the like can be used. .

多孔質酸化物半導体層15を形成する方法としては、例えば、市販の酸化物半導体微粒子を所望の分散媒に分散させた分散液、あるいは、ゾル−ゲル法により調製できるコロイド溶液を、必要に応じて所望の添加剤を添加した後、スクリーンプリント法、インクジェットプリント法、ロールコート法、ドクターブレード法、スプレー塗布法など公知の塗布方法により塗布した後、このポリマーマイクロビーズを加熱処理や化学処理により除去して空隙を形成させ多孔質化する方法などを適用することができる。   As a method for forming the porous oxide semiconductor layer 15, for example, a dispersion in which commercially available oxide semiconductor fine particles are dispersed in a desired dispersion medium or a colloidal solution that can be prepared by a sol-gel method is used as necessary. After adding desired additives, the polymer microbeads are applied by heat treatment or chemical treatment after coating by a known coating method such as screen printing method, ink jet printing method, roll coating method, doctor blade method, spray coating method, etc. It is possible to apply a method of removing the void to form a porous structure.

増感色素としては、ピピリジン構造、ターピリジン構造などを配位子に含むルテニウム錯体、ポリフィリン、フタロシアニンなどの含金属錯体、エオニン、ローダミン、メロシアンなどの有機色素などを適用することができ、これらの中から、用途、使用半導体に適した挙動を示すものを特に限定なく選ぶことができる。   As sensitizing dyes, ruthenium complexes containing a pyridin structure, a terpyridine structure, etc. as ligands, metal-containing complexes such as polyphylline and phthalocyanine, and organic dyes such as eonin, rhodamine and merocyanine can be applied. Therefore, those exhibiting behavior suitable for the intended use and the semiconductor used can be selected without particular limitation.

電解質層17は、多孔質酸化物半導体層15内に電解液を含浸させてなるものか、または、多孔質酸化物半導体層15内に電解液を含浸させた後に、この電解液を適当なゲル化剤を用いてゲル化(擬固体化)して、多孔質酸化物半導体層15と一体に形成されてなるもの、あるいは、イオン性液体、酸化物半導体粒子および導電性粒子を含むゲル状の電解質が用いられる。   The electrolyte layer 17 is formed by impregnating the porous oxide semiconductor layer 15 with the electrolytic solution, or after impregnating the porous oxide semiconductor layer 15 with the electrolytic solution, the electrolytic solution is applied to an appropriate gel. Gelled (pseudo-solidified) using an agent and formed integrally with the porous oxide semiconductor layer 15, or a gel-like material containing ionic liquid, oxide semiconductor particles and conductive particles An electrolyte is used.

上記電解液としては、ヨウ素、ヨウ化物イオン、ターシャリ−ブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解されてなるものが用いられる。
この電解液をゲル化する際に用いられるゲル化剤としては、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などが挙げられる。
As said electrolyte solution, what melt | dissolved electrolyte components, such as an iodine, iodide ion, and tertiary butyl pyridine, in organic solvents, such as ethylene carbonate and methoxyacetonitrile, is used.
Examples of the gelling agent used for gelling the electrolytic solution include polyvinylidene fluoride, a polyethylene oxide derivative, and an amino acid derivative.

上記イオン性液体としては、特に限定されるものではないが、室温で液体であり、四級化された窒素原子を有する化合物をカチオンまたはアニオンとした常温溶融性塩が挙げられる。
常温溶融性塩のカチオンとしては、四級化イミダゾリウム誘導体、四級化ピリジニウム誘導体、四級化アンモニウム誘導体などが挙げられる。
常温溶融塩のアニオンとしては、BF 、PF 、F(HF) 、ビストリフルオロメチルスルホニルイミド[N(CFSO ]、ヨウ化物イオンなどが挙げられる。
イオン性液体の具体例としては、四級化イミダゾリウム系カチオンとヨウ化物イオンまたはビストリフルオロメチルスルホニルイミドイオンなどからなる塩類を挙げることができる。
Although it does not specifically limit as said ionic liquid, Room temperature meltable salt which is a liquid at room temperature and made the compound which has the quaternized nitrogen atom into a cation or an anion is mentioned.
Examples of the cation of the room temperature melting salt include quaternized imidazolium derivatives, quaternized pyridinium derivatives, quaternized ammonium derivatives and the like.
Examples of the anion of the room temperature molten salt include BF 4 , PF 6 , F (HF) n , bistrifluoromethylsulfonylimide [N (CF 3 SO 2 ) 2 ], iodide ions, and the like.
Specific examples of the ionic liquid include salts composed of a quaternized imidazolium cation and iodide ion or bistrifluoromethylsulfonylimide ion.

上記酸化物半導体粒子としては、物質の種類や粒子サイズなどが特に限定されないが、イオン性液体を主体とする電解液との混和製に優れ、この電解液をゲル化させるようなものが用いられる。また、酸化物半導体粒子は、電解質の半導電性を低下させることがなく、電解質に含まれる他の共存成分に対する化学的安定性に優れることが必要である。特に、電解質がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合であっても、酸化物半導体粒子は、酸化反応による劣化を生じないものが好ましい。
このような酸化物半導体粒子としては、TiO、SnO、WO、ZnO、Nb、In、ZrO、Ta、La、SrTiO、Y、Ho、Bi、CeO、Alからなる群から選択される1種または2種以上の混合物が好ましく、二酸化チタン微粒子(ナノ粒子)が特に好ましい。この二酸化チタンの平均粒径は2nm〜1000nm程度が好ましい。
The oxide semiconductor particles are not particularly limited in terms of the type and particle size of the substance, but those that are excellent in mixing with an electrolytic solution mainly composed of an ionic liquid and that gel the electrolytic solution are used. . In addition, the oxide semiconductor particles are required to have excellent chemical stability against other coexisting components contained in the electrolyte without reducing the semiconductivity of the electrolyte. In particular, even when the electrolyte contains a redox pair such as iodine / iodide ions or bromine / bromide ions, the oxide semiconductor particles are preferably those that do not deteriorate due to an oxidation reaction.
Examples of such oxide semiconductor particles include TiO 2 , SnO 2 , WO 3 , ZnO, Nb 2 O 5 , In 2 O 3 , ZrO 2 , Ta 2 O 5 , La 2 O 3 , SrTiO 3 , Y 2 O. 3 , Ho 2 O 3 , Bi 2 O 3 , CeO 2 , Al 2 O 3 are preferably selected from one or a mixture of two or more, and titanium dioxide fine particles (nanoparticles) are particularly preferable. The average particle diameter of the titanium dioxide is preferably about 2 nm to 1000 nm.

上記導電性微粒子としては、導電体や半導体など、導電性を有する粒子が用いられる。この導電性粒子の比抵抗の範囲は、好ましくは1.0×10−2Ω・cm以下であり、より好ましくは、1.0×10−3Ω・cm以下である。また、導電性粒子の種類や粒子サイズなどは特に限定されないが、イオン性液体を主体とする電解液との混和性に優れ、この電解液をゲル化するようなものが用いられる。さらに、電解質中で酸化被膜19(絶縁被膜19)などを形成して導電性を低下させることがなく、電解質に含まれる他の共存成分に対する化学的安定性に優れることが必要である。特に、電解質がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合でも、酸化反応による劣化を生じないものが好ましい。
このような導電性微粒子としては、カーボンを主体とする物質からなるものが挙げられ、具体例としては、カーボンナノチューブ、カーボンファイバ、カーボンブラックなどの粒子を例示できる。これらの物質の製造方法はいずれも公知であり、また、市販品を用いることもできる。
As the conductive fine particles, conductive particles such as a conductor and a semiconductor are used. The range of the specific resistance of the conductive particles is preferably 1.0 × 10 −2 Ω · cm or less, and more preferably 1.0 × 10 −3 Ω · cm or less. Further, the type and particle size of the conductive particles are not particularly limited, and those that are excellent in miscibility with an electrolytic solution mainly composed of an ionic liquid and that gel the electrolytic solution are used. Furthermore, it is necessary that the oxide film 19 (insulating film 19) or the like is not formed in the electrolyte to lower the conductivity, and that the chemical stability against other coexisting components contained in the electrolyte is excellent. In particular, even when the electrolyte contains an oxidation-reduction pair such as iodine / iodide ions or bromine / bromide ions, an electrolyte that does not deteriorate due to an oxidation reaction is preferable.
Examples of such conductive fine particles include those composed mainly of carbon, and specific examples include particles such as carbon nanotubes, carbon fibers, and carbon black. All methods for producing these substances are known, and commercially available products can also be used.

第一基材11としては、導電性を有する基材からなり、第二基材13と同様のものや、特に光透過性をもつ必要がないことから金属板、合成樹脂板などが用いられる。
第一基材がガラスや合成樹脂板などからなる場合、導電性を付与するために、その一方の面に金属、炭素などからなる薄膜(導電膜)が形成されていてもよい。導電膜としては、例えば炭素や白金などの層を、蒸着、スパッタ、塩化白金酸塗布後に熱処理を行ったものが好適に用いられるが、電極として機能するものであれば特に限定されるものではない。
As the 1st base material 11, it consists of a base material which has electroconductivity, a metal plate, a synthetic resin board, etc. are used from the thing similar to the 2nd base material 13, and since it does not need to have a light transmittance especially.
When the first substrate is made of glass, a synthetic resin plate, or the like, a thin film (conductive film) made of metal, carbon, or the like may be formed on one surface in order to impart conductivity. As the conductive film, for example, a layer of carbon, platinum, or the like, which has been heat-treated after vapor deposition, sputtering, and chloroplatinic acid coating is preferably used, but is not particularly limited as long as it functions as an electrode. .

封止材18としては、ポリオレフィン系樹脂からなることが好ましい。ポリオレフィン系樹脂からなる封止材を用いることにより、電解液による封止材の劣化を防止することができ、これにより、電解液漏れを防止して耐久性を向上することができる。また、色素の劣化を抑制することができる。
このようなポリオレフィン系樹脂としては、例えば、ハイミラン(登録商標、三井・デュポン ポリケミカル社製)等が好ましく用いられる。
The sealing material 18 is preferably made of a polyolefin resin. By using a sealing material made of a polyolefin-based resin, it is possible to prevent deterioration of the sealing material due to the electrolytic solution, thereby preventing leakage of the electrolytic solution and improving durability. Moreover, deterioration of the pigment can be suppressed.
As such polyolefin resin, for example, Himiran (registered trademark, manufactured by Mitsui DuPont Polychemical Co., Ltd.) and the like are preferably used.

また、図3に示すように、封止材18を被覆するように保護部材19を配する場合、このような保護部材19としては、例えば、熱収縮チューブ等が用いられる。   Moreover, as shown in FIG. 3, when arrange | positioning the protection member 19 so that the sealing material 18 may be coat | covered, as such a protection member 19, a heat shrinkable tube etc. are used, for example.

次に、この実施形態の光電変換素子10Cの製造方法について説明する。
まず、透明な第二基材13の一方の面の全域を覆うように透明導電膜14を形成し、透明導電性基板を作製する。
透明導電膜14を形成する方法としては、特に限定されるものではなく、例えば、スパッタリング法、CVD(化学気相成長)法、スプレー熱分解法(SPD法)、蒸着法などの薄膜形成法が挙げられる。
Next, a method for manufacturing the photoelectric conversion element 10C of this embodiment will be described.
First, the transparent conductive film 14 is formed so as to cover the entire area of one surface of the transparent second base material 13 to produce a transparent conductive substrate.
The method for forming the transparent conductive film 14 is not particularly limited, and examples thereof include thin film formation methods such as sputtering, CVD (chemical vapor deposition), spray pyrolysis (SPD), and vapor deposition. Can be mentioned.

その中でも、前記透明導電膜14は、スプレー熱分解法により形成されたものであることが好ましい。透明導電膜14を、スプレー熱分解法により形成することで、容易にヘーズ率を制御することができる。また、スプレー熱分解法は、減圧システムが不要なため、製造工程の簡素化低コスト化を図ることができるので好適である。   Among them, the transparent conductive film 14 is preferably formed by a spray pyrolysis method. By forming the transparent conductive film 14 by spray pyrolysis, the haze rate can be easily controlled. In addition, the spray pyrolysis method is preferable because it does not require a decompression system and can simplify the manufacturing process and reduce costs.

次いで、透明導電膜14を覆うように、多孔質酸化物半導体層15を形成する。この多孔質酸化物半導体層15の形成は、主に塗布工程と乾燥・焼成工程からなる。
塗布工程とは、例えばTiO粉末と界面活性剤を所定の比率で混ぜ合わせてなるTiOコロイドのペーストを、親水性化を図った透明導電膜14の表面に塗布するものである。その際、親水性化を図った透明導電膜14の表面に塗布するものである。その際、塗布法としては、加圧手段(例えば、ガラス棒)を用いて前記コロイドを透明導電膜14上に押し付けながら、塗布されたコロイドが均一な厚さを保つように、加圧手段を透明導電膜14の上空を移動させる方法が挙げられる。
Next, the porous oxide semiconductor layer 15 is formed so as to cover the transparent conductive film 14. The formation of the porous oxide semiconductor layer 15 mainly includes a coating process and a drying / firing process.
The coating process is a process in which, for example, a paste of TiO 2 colloid obtained by mixing TiO 2 powder and a surfactant at a predetermined ratio is applied to the surface of the transparent conductive film 14 that has been made hydrophilic. At that time, it is applied to the surface of the transparent conductive film 14 which has been made hydrophilic. At this time, as a coating method, a pressing unit (for example, a glass rod) is used to press the colloid onto the transparent conductive film 14 so that the applied colloid maintains a uniform thickness. A method of moving the sky above the transparent conductive film 14 is exemplified.

乾燥・焼成工程とは、例えば大気雰囲気中におよそ30分間、室温にて放置し、塗布されたコロイドを乾燥させた後、電気炉を用いおよそ30分間、350℃の温度にて焼成する方法が挙げられる。   The drying / firing process is, for example, a method in which the coated colloid is allowed to stand at room temperature for about 30 minutes in an air atmosphere and dried, and then fired at a temperature of 350 ° C. for about 30 minutes using an electric furnace. Can be mentioned.

次に、この塗布工程と乾燥・焼成工程により形成された多孔質酸化物半導体層15に対して色素担持を行う。
色素担持用の色素溶液は、例えばアセトニトリルとt−ブタノールを容積比で1:1とした溶媒に対して極微量のN719粉末を加えて調整したものを予め準備しておく。
シャーレ状の容器内に入れた色素溶媒に、別途電気炉にて120〜150℃程度に加熱処理した多孔質酸化物半導体層15を浸した状態とし、暗所にて一昼夜(およそ20時間)浸漬する。その後、色素溶液から取り出した多孔質酸化物半導体層15は、アセトニトリルとt−ブタノールからなる混合溶液を用い洗浄する。
上述した工程により、色素担持したTiO薄膜からなる多孔質酸化物半導体層15を透明な第一基板13上に設けてなる作用極16(窓極とも呼ぶ)を得る。
Next, a dye is supported on the porous oxide semiconductor layer 15 formed by the coating process and the drying / firing process.
As the dye solution for supporting the dye, for example, a solution prepared by adding an extremely small amount of N719 powder to a solvent of acetonitrile and t-butanol in a volume ratio of 1: 1 is prepared in advance.
The porous oxide semiconductor layer 15 that has been separately heated in an electric furnace at about 120 to 150 ° C. is immersed in a dye solvent placed in a petri dish-like container, and is immersed for a whole day and night (approximately 20 hours) in a dark place. To do. Thereafter, the porous oxide semiconductor layer 15 taken out from the dye solution is washed using a mixed solution of acetonitrile and t-butanol.
Through the above-described steps, a working electrode 16 (also referred to as a window electrode) obtained by providing a porous oxide semiconductor layer 15 made of a dye-supported TiO 2 thin film on a transparent first substrate 13 is obtained.

一方、別の基材(必ずしも透明である必要はない)の一方の面に、例えば白金からなる導電膜を蒸着法などにより形成してなる対極12を設ける。この対極12には、その厚み方向に貫通する穴を少なくとも2ヶ所設ける。この穴は、後述する電解液を注入する際の注入口である。   On the other hand, a counter electrode 12 formed by forming a conductive film made of, for example, platinum by a vapor deposition method or the like is provided on one surface of another base material (not necessarily transparent). The counter electrode 12 is provided with at least two holes penetrating in the thickness direction. This hole is an inlet for injecting an electrolyte solution to be described later.

色素担持させたTiO薄膜からなる多孔質酸化物半導体層15が上方をなすように作用極16を配置し、この多孔質酸化物半導体層15と第一基材11が対向するように、対極12を作用極16に重ねて設ける。その後、すなわち作用極16と対極12の重なった側面部を被覆するように封止材18を配する。 The working electrode 16 is disposed so that the porous oxide semiconductor layer 15 made of a dye-supported TiO 2 thin film faces upward, and the counter electrode is disposed so that the porous oxide semiconductor layer 15 and the first substrate 11 face each other. 12 is provided so as to overlap the working electrode 16. After that, the sealing material 18 is disposed so as to cover the side surface portion where the working electrode 16 and the counter electrode 12 overlap.

具体的には、例えば、まず作用極16と対極12が重ねられてなる積層体の周囲に、リング状に成形されたポリオレフィン系樹脂からなる封止材18をはめ込み、さらに、その上に熱収縮チューブからなる保護部材19をはめ込む。   Specifically, for example, first, a sealing material 18 made of a polyolefin-based resin molded into a ring shape is fitted around the laminated body in which the working electrode 16 and the counter electrode 12 are stacked, and further, heat shrinkage is applied thereon. A protective member 19 made of a tube is fitted.

次に、工業用高温ドライヤー(ブラジェット)を用いて加熱し、熱収縮チューブ(保護部材19)を収縮させる。これにより熱収縮チューブが強い収縮応力を有しながら収縮し、封止材18をより強固に積層体の側面部に圧接するとともに、封止材18も熱を受けて流動可能な状態になり、効果的にセルを封止する。このあと、さらに熱圧着器を利用して加圧を行うと、より確実にセルを封止することができる。   Next, heating is performed using an industrial high-temperature dryer (Blajet), and the heat-shrinkable tube (protective member 19) is contracted. As a result, the heat-shrinkable tube contracts while having a strong contraction stress, and the sealing material 18 is more firmly pressed against the side surface of the laminate, and the sealing material 18 is also in a state where it can flow by receiving heat, Effectively seal the cell. Thereafter, the cell can be sealed more reliably by applying pressure using a thermocompression bonding device.

封止材18が固化した後、積層体20の空隙、すなわち作用極16と対極12と封止材18で囲まれた空間内に、対極12に設けた注入口から電解質溶液を注入する。これにより色素増感型の光電変換素子10が形成される。   After the sealing material 18 is solidified, the electrolyte solution is injected from the inlet provided in the counter electrode 12 into the gap of the laminate 20, that is, the space surrounded by the working electrode 16, the counter electrode 12, and the sealing material 18. Thereby, the dye-sensitized photoelectric conversion element 10 is formed.

このようにして得られる光電変換素子は、作用極と重なり略同一の面形状を有する対極との側面部を被覆するように封止材を配することで封止しているので、優れた封止性を有し、電解液による封止材の劣化や電解質の液漏れを防止し耐久性を向上することができる。また、素子の薄型化を図ることができる。
さらに、前記封止材を被覆するように、保護部材が配されているので、より強固に封止すことができ、電解質の液漏れをより確実に防止することができる。
The photoelectric conversion element thus obtained is sealed by providing a sealing material so as to cover the side surface portion of the counter electrode that overlaps the working electrode and has substantially the same surface shape. It has a sealing property and can prevent deterioration of the sealing material due to the electrolytic solution and leakage of the electrolyte, thereby improving durability. Further, the element can be thinned.
Furthermore, since the protective member is disposed so as to cover the sealing material, the sealing member can be more firmly sealed, and the leakage of the electrolyte can be more reliably prevented.

(実施例)
ガラス基板(20mm×20mm)上に、スプレー熱分解法によりITO透明導電膜を700nmの厚さに成膜した。
透明導電性基板の透明導電層上に、酸化チタン微粒子多孔質層(面積5×9mm)を約6μmの厚さに形成した。そして該酸化チタン微粒子多孔質膜にN3色素(Ru(2,2’-bipyridine-4,4’-dicarboxylic acid)(NCS))を担持させることで多孔質酸化物半導体層を形成し、作用極を得た。
(Example)
An ITO transparent conductive film having a thickness of 700 nm was formed on a glass substrate (20 mm × 20 mm) by spray pyrolysis.
A titanium oxide fine particle porous layer (area 5 × 9 mm 2 ) was formed to a thickness of about 6 μm on the transparent conductive layer of the transparent conductive substrate. Then, a porous oxide semiconductor layer is formed by supporting the N3 dye (Ru (2,2′-bipyridine-4,4′-dicarboxylic acid) 2 (NCS) 2 ) on the titanium oxide fine particle porous film, A working electrode was obtained.

対極は、チタン基板(厚さ0.5mm)上に白金をスパッタリング法により成膜することで作製した。
得られた作用極と対極との間に電解質を介在させて積層し、対極と電解質層との側面部に封止材を配して封止することで色素増感型の光電変換素子を作製した。電解質には、メトキシアセトニトリルを溶媒とした揮発系電解液を用いた。
The counter electrode was produced by forming a film of platinum on a titanium substrate (thickness 0.5 mm) by a sputtering method.
A dye-sensitized photoelectric conversion element is manufactured by laminating an electrolyte between the obtained working electrode and the counter electrode, and sealing by placing a sealing material on the side surface of the counter electrode and the electrolyte layer. did. As the electrolyte, a volatile electrolytic solution using methoxyacetonitrile as a solvent was used.

ここで、封止材には、ハイミラン(登録商標、三井・デュポン ポリケミカル社製) を用い、保護部材には、熱収縮チューブ(住友電工社製)を用いた。
まず、ハイミランを熱プレスにより厚さ0.5mmのシートを作製した。そのシートを幅15mm×長さ80mmにカットし、さらに、両端5mmを重ね合わせ、熱圧着して、円周が75mmの輪状のものを用意した。また熱収縮チューブは、円周が85mmのものを用意し、幅20mmにカットした。
Here, HiMilan (registered trademark, manufactured by Mitsui DuPont Polychemical Co., Ltd.) was used as the sealing material, and a heat shrinkable tube (Sumitomo Electric Co., Ltd.) was used as the protective member.
First, a sheet having a thickness of 0.5 mm was prepared by hot pressing a high millan. The sheet was cut into a width of 15 mm and a length of 80 mm, and 5 mm at both ends were overlapped and thermocompression bonded to prepare a ring having a circumference of 75 mm. A heat-shrinkable tube having a circumference of 85 mm was prepared and cut to a width of 20 mm.

次に、輪状にハイミランのシートを延伸しながら、20mm角セルの周囲にはめ込み、さらに、その上に収縮チューブをはめ込み、20mm角の周囲の外にまずハイミランのシート、次に収縮チューブがくるようにした。   Next, while stretching a high-Milan sheet in a ring shape, it is fitted around a 20 mm square cell, and further, a shrink tube is fitted on it, so that a high-Milan sheet and then a shrink tube are placed outside the circumference of the 20 mm square. I made it.

そのようになったセルをまず、熱収縮チューブの収縮加工に利用する工業用高温ドライヤー(ブラジェット)を利用し加熱し、収縮させた。このあと、さらに熱圧着器を利用して加圧を行い、より確実にセルを封止した。
このようにして得られた光電変換素子の全体厚は2.8mmであった。
この光電変換素子は、1ヶ月間放置しても、電解液による封止材の劣化が生じず、電解液漏れが起きないことが確認された。
The cell thus formed was first heated and shrunk using an industrial high-temperature dryer (Blajet) used for shrinking the heat-shrinkable tube. Thereafter, pressurization was further performed using a thermocompression bonding device, and the cell was more reliably sealed.
The total thickness of the photoelectric conversion element thus obtained was 2.8 mm.
Even if this photoelectric conversion element was allowed to stand for one month, it was confirmed that the sealing material was not deteriorated by the electrolytic solution and the electrolytic solution did not leak.

本発明は、色素増感型太陽電池に代表される光電変換素子に適用可能である。   The present invention can be applied to a photoelectric conversion element represented by a dye-sensitized solar cell.

本発明に係る光電変換素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the photoelectric conversion element which concerns on this invention. 本発明に係る光電変換素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the photoelectric conversion element which concerns on this invention. 本発明に係る光電変換素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the photoelectric conversion element which concerns on this invention. 従来の光電変換素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the conventional photoelectric conversion element.

符号の説明Explanation of symbols

10 光電変換素子、11 第一基材、12 対極、13 第二基材、14 透明導電膜、15 多孔質酸化物半導体層、16 作用極、17 電解質層、18 封止材、19 保護部材。
DESCRIPTION OF SYMBOLS 10 Photoelectric conversion element, 11 1st base material, 12 Counter electrode, 13 2nd base material, 14 Transparent electrically conductive film, 15 Porous oxide semiconductor layer, 16 Working electrode, 17 Electrolyte layer, 18 Sealing material, 19 Protection member.

Claims (4)

導電性の第一基材からなる対極と、
絶縁性の透明な第二基材と、該第二基材の一面に透明導電膜を介して配され、少なくとも一部に色素を担持した多孔質酸化物半導体層とを備え、該多孔質酸化物半導体層が前記第一基材の一面と対向して配される作用極と、
前記対極と前記作用極との間の少なくとも一部に配された電解質層と、から構成され、
前記第一基材は、前記第二基材と重なり略同一の面形状を有し、前記前記第一基材と前記第二基材の側面部を被覆するように封止材を配したことを特徴とする光電変換素子。
A counter electrode made of a conductive first substrate;
An insulating transparent second base material, and a porous oxide semiconductor layer disposed on one surface of the second base material via a transparent conductive film and supporting a pigment at least in part. A working electrode in which a physical semiconductor layer is disposed to face one surface of the first base;
An electrolyte layer disposed at least in part between the counter electrode and the working electrode,
The first base material overlaps with the second base material and has substantially the same surface shape, and a sealing material is disposed so as to cover the side surfaces of the first base material and the second base material. A photoelectric conversion element characterized by the above.
前記封止材は、前記第一基材と前記第二基材の間の外周部にも入り込むように配されていることを特徴とする請求項1に記載の光電変換素子。   2. The photoelectric conversion element according to claim 1, wherein the sealing material is disposed so as to enter an outer peripheral portion between the first base material and the second base material. 前記封止材を被覆するように、保護部材が配されていることを特徴とする請求項1または2に記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein a protective member is disposed so as to cover the sealing material. 前記封止材は、ポリオレフィン系樹脂からなることを特徴とする請求項1ないし3のいずれかに記載の光電変換素子。
The photoelectric conversion element according to claim 1, wherein the sealing material is made of a polyolefin-based resin.
JP2006164824A 2006-06-14 2006-06-14 Photoelectric conversion element Active JP5160051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006164824A JP5160051B2 (en) 2006-06-14 2006-06-14 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006164824A JP5160051B2 (en) 2006-06-14 2006-06-14 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2007335197A true JP2007335197A (en) 2007-12-27
JP5160051B2 JP5160051B2 (en) 2013-03-13

Family

ID=38934466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006164824A Active JP5160051B2 (en) 2006-06-14 2006-06-14 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP5160051B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009136517A1 (en) 2008-05-08 2009-11-12 Nok株式会社 Dye-sensitized solar cell
JP2010123462A (en) * 2008-11-20 2010-06-03 Dainippon Printing Co Ltd Coating liquid for forming electrolyte, and dye-sensitized solar cell using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150005A (en) * 1998-11-05 2000-05-30 Nikon Corp Manufacture of coloring material sensitizing solar battery
JP2004087387A (en) * 2002-08-28 2004-03-18 Nisshinbo Ind Inc Electrolyte composition and photoelectrochemical cell
JP2004119149A (en) * 2002-09-25 2004-04-15 Hitachi Maxell Ltd Photoelectric conversion element
JP2004292247A (en) * 2003-03-27 2004-10-21 Fujikura Ltd Joining method of glass substrate
JP2006100068A (en) * 2004-09-29 2006-04-13 Kyocera Corp Photoelectric conversion device and photovoltaic power generator using the same
JP2006236788A (en) * 2005-02-25 2006-09-07 Sony Corp Photoelectric conversion device
JP2007073401A (en) * 2005-09-08 2007-03-22 Electric Power Dev Co Ltd Sealing structure of dye-sensitized solar cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150005A (en) * 1998-11-05 2000-05-30 Nikon Corp Manufacture of coloring material sensitizing solar battery
JP2004087387A (en) * 2002-08-28 2004-03-18 Nisshinbo Ind Inc Electrolyte composition and photoelectrochemical cell
JP2004119149A (en) * 2002-09-25 2004-04-15 Hitachi Maxell Ltd Photoelectric conversion element
JP2004292247A (en) * 2003-03-27 2004-10-21 Fujikura Ltd Joining method of glass substrate
JP2006100068A (en) * 2004-09-29 2006-04-13 Kyocera Corp Photoelectric conversion device and photovoltaic power generator using the same
JP2006236788A (en) * 2005-02-25 2006-09-07 Sony Corp Photoelectric conversion device
JP2007073401A (en) * 2005-09-08 2007-03-22 Electric Power Dev Co Ltd Sealing structure of dye-sensitized solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009136517A1 (en) 2008-05-08 2009-11-12 Nok株式会社 Dye-sensitized solar cell
JP2010123462A (en) * 2008-11-20 2010-06-03 Dainippon Printing Co Ltd Coating liquid for forming electrolyte, and dye-sensitized solar cell using the same

Also Published As

Publication number Publication date
JP5160051B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
US8933328B2 (en) Dye-sensitized solar cell module and method of producing the same
TWI381535B (en) Pigment Sensitive Photoelectric Conversion Device and Manufacturing Method thereof
JP5241912B2 (en) Method for producing dye-sensitized solar cell
TW201003951A (en) Photoelectric transducer module
WO2013008642A1 (en) Photoelectric conversion element, method for manufacturing same, electronic device, counter electrode for photoelectric conversion elements, and building
AU2009219662A1 (en) Counter electrode and photoelectric conversion element including the counter electrode
CA2878406C (en) Photoelectrically convertible composition comprising an anionic polymer, a laminate, and processes therefor
JP5144986B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5095126B2 (en) Photoelectric conversion element
JP2009238571A (en) Electrolyte for dye-sensitized solar cell
JP4678125B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, ELECTRONIC DEVICE AND ITS MANUFACTURING METHOD
JP5160045B2 (en) Photoelectric conversion element
JP2004319130A (en) Manufacturing method of photoelectric transfer device, photoelectric transfer element, manufacturing method of electronic device, electronic device and forming method of semiconductor particulate layer and laminate structure
JP5465446B2 (en) Photoelectric conversion element
JP5160051B2 (en) Photoelectric conversion element
JP2007149652A (en) Photoelectrochemical battery
JP5197965B2 (en) Photoelectric conversion element
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
JP2010015830A (en) Photoelectric conversion element
KR102522551B1 (en) Semi-solid Electrolyte for Dye-Sensitized Solar Cell and Manufacturing Method Using the Same
JP5128076B2 (en) Dye-sensitized solar cell and method for producing the same
JP2009187844A (en) Method of manufacturing photoelectric conversion element
JP4628728B2 (en) Transparent conductive substrate and dye-sensitized solar cell provided with the same
JP2004319197A (en) Photoelectric conversion element and its manufacturing method
JP5191631B2 (en) Method for manufacturing counter electrode and method for manufacturing photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121212

R151 Written notification of patent or utility model registration

Ref document number: 5160051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250