JP2007332807A - Exhaust heat generator set - Google Patents

Exhaust heat generator set Download PDF

Info

Publication number
JP2007332807A
JP2007332807A JP2006162801A JP2006162801A JP2007332807A JP 2007332807 A JP2007332807 A JP 2007332807A JP 2006162801 A JP2006162801 A JP 2006162801A JP 2006162801 A JP2006162801 A JP 2006162801A JP 2007332807 A JP2007332807 A JP 2007332807A
Authority
JP
Japan
Prior art keywords
power
generator
stop valve
turbine
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006162801A
Other languages
Japanese (ja)
Other versions
JP4866155B2 (en
Inventor
Tomoyuki Uchimura
知行 内村
Osayuki Inoue
修行 井上
Kiichi Irie
毅一 入江
Tetsuya Endo
哲也 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2006162801A priority Critical patent/JP4866155B2/en
Publication of JP2007332807A publication Critical patent/JP2007332807A/en
Application granted granted Critical
Publication of JP4866155B2 publication Critical patent/JP4866155B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust heat generator set including an inexpensive electric steam stop valve closing means, capable of rapidly and perfectly closing an electric vapor stop valve even in case where power for driving auxiliary machinery cannot be obtained from a host commercial power system cooperatively operated therewith by service interruption of the host commercial power system. <P>SOLUTION: The exhaust heat generator set which includes a vapor generator 11, an electric vapor stop valve 16, a turbine generator 10, a condenser 14, and a medium circulation pump 15 and is cooperatively operated with the host power system comprises an electric vapor stop valve bypass passage L4 for bypassing the stop valve 16, and a bypass valve 20 provided in the bypass passage L4. In the event of service interruption in the host power system, working medium vapor 10 is guided to a turbine 13 of the turbine generator through the bypass valve 20 to drive a generator 18 thereof, closing operation of the stop valve 16 is performed with the power generated by the generator 18, and the bypass valve 20 is closed after the closing operation is completed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、比較的低温の排熱を回収し、この熱エネルギーを電力に変換する商用電力系統と連携する排熱発電装置に関し、特に商用電力系統が停電で補機類を駆動する電力が商用電力系統から得られない場合でもタービン発電機のタービンや発電機を迅速完全に停止できる排熱発電装置に関するものである。   The present invention relates to a waste heat power generation apparatus that cooperates with a commercial power system that recovers relatively low-temperature waste heat and converts this thermal energy into electric power, and in particular, the power that drives the auxiliary equipment in the commercial power system is commercial power. The present invention relates to a waste heat power generator that can quickly and completely stop a turbine or a generator of a turbine generator even when it cannot be obtained from an electric power system.

温度が200〜400℃程度の排ガス或いは温度が60〜100℃の排温水等比較的低温度の廃熱を有効に発電電力として回収することが試みられている。このような低温度の排熱回収は、所謂ランキンサイクル等を利用したクローズドシステムの発電装置として実現可能である。   Attempts have been made to effectively recover relatively low-temperature waste heat such as exhaust gas having a temperature of about 200 to 400 ° C. or waste water having a temperature of 60 to 100 ° C. as generated power. Such low-temperature exhaust heat recovery can be realized as a power generator of a closed system using a so-called Rankine cycle or the like.

図1はこの種の排熱を熱源とする排熱発電装置の基本構成例を示す図である。排熱発電装置は、蒸気発生器11、気液分離器12、タービン発電機10、凝縮器14、媒体循環ポンプ15を備えている。排温水や排ガスなどの比較的低温の排熱媒体100を熱源として蒸気発生器11に導入し、凝縮器14から作動媒体液主経路L2を通って媒体循環ポンプ15により蒸気発生器11に導いた作動媒体液102を加熱して蒸発させ、発生した作動媒体蒸気101を作動媒体蒸気主経路L1を通して気液分離器12に導き、該気液分離器12で作動媒体蒸気101に同伴して流入した作動媒体液滴を分離除去する。また、気液分離器12で分離除去された作動媒体液102は作動媒体液戻り経路L3を通って凝縮器14に戻る。   FIG. 1 is a diagram showing a basic configuration example of an exhaust heat power generation apparatus using this type of exhaust heat as a heat source. The exhaust heat power generator includes a steam generator 11, a gas-liquid separator 12, a turbine generator 10, a condenser 14, and a medium circulation pump 15. A relatively low temperature exhaust heat medium 100 such as waste water or exhaust gas is introduced into the steam generator 11 as a heat source, and is led from the condenser 14 to the steam generator 11 by the medium circulation pump 15 through the working medium liquid main path L2. The working medium liquid 102 is heated to evaporate, and the generated working medium vapor 101 is led to the gas-liquid separator 12 through the working medium vapor main path L1 and flows along with the working medium vapor 101 in the gas-liquid separator 12. Separate and remove working medium droplets. The working medium liquid 102 separated and removed by the gas-liquid separator 12 returns to the condenser 14 through the working medium liquid return path L3.

気液分離器12で作動媒体液滴が除去された作動媒体蒸気101は、作動媒体蒸気主経路L1に設けられた電動の電動蒸気止め弁16及び蒸気加減弁17を経由して、タービン13に送られる。タービン13に送られた作動媒体は、該タービン13を回転・駆動すると共に、減圧・膨張して、該タービン13から作動媒体蒸気主経路L1へ流出する。このタービン13の回転により、発電機18を回転・駆動して、発電を行う。タービン13から流出した低圧の作動媒体蒸気101は、凝縮器(或いは復水器)14に導入された、冷却媒体110と熱交換して、冷却・凝縮して作動媒体液102となる。凝縮器14で凝縮した作動媒体液102は、作動媒体液主経路L2を通って媒体循環ポンプ15に流入し昇圧されて、高圧の作動媒体液102となり、作動媒体液主経路L2を通って再び蒸気発生器11に供給される。   The working medium vapor 101 from which the working medium droplets have been removed by the gas-liquid separator 12 passes to the turbine 13 via the electric motorized steam stop valve 16 and the steam control valve 17 provided in the working medium steam main path L1. Sent. The working medium sent to the turbine 13 rotates and drives the turbine 13, decompresses and expands, and flows out from the turbine 13 to the working medium steam main path L <b> 1. Due to the rotation of the turbine 13, the generator 18 is rotated and driven to generate power. The low-pressure working medium vapor 101 flowing out of the turbine 13 exchanges heat with the cooling medium 110 introduced into the condenser (or condenser) 14 to cool and condense into the working medium liquid 102. The working medium liquid 102 condensed by the condenser 14 flows into the medium circulation pump 15 through the working medium liquid main path L2 and is pressurized to become the high pressure working medium liquid 102, and again through the working medium liquid main path L2. It is supplied to the steam generator 11.

上記構成の排熱発電装置の作動媒体蒸気主経路L1及び作動媒体液主経路L2を循環する作動媒体としては、フロン、水、アンモニア、炭化水素類、炭酸ガス、アルコール類などの種々の媒体を使用することができる。凝縮器14で使用する冷却媒体110としては、冷却塔等で冷却されて冷却水ポンプで循環使用される冷却水や、河川水や海水や井水等一度だけ使用する冷却水、或いは送風機により送られる冷却風、LNGその他の排冷熱等がある。上記排熱発電装置で発電された電力は、系統連携装置を経由して電圧、周波数、波形を合わせて商用電力系統(図示せず)に供給される。
特開2000−110514号公報 特表2001−525512号公報
As the working medium circulating through the working medium vapor main path L1 and the working medium liquid main path L2 of the exhaust heat power generation apparatus having the above configuration, various media such as chlorofluorocarbon, water, ammonia, hydrocarbons, carbon dioxide gas, alcohols and the like are used. Can be used. The cooling medium 110 used in the condenser 14 may be cooling water that is cooled by a cooling tower or the like and circulated and used by a cooling water pump, cooling water that is used only once, such as river water, seawater, or well water, or a blower. Cooling air, LNG and other exhaust heat. The electric power generated by the exhaust heat power generation apparatus is supplied to a commercial power system (not shown) by combining the voltage, frequency, and waveform via the system linkage apparatus.
JP 2000-110514 A Special table 2001-525512 gazette

上記構成の排熱発電装置において、上位の商用電力系統が停電した場合、排熱発電装置に過負荷や、逆にタービン13の過回転等が発生することになるため、即座に排熱発電装置を商用電力系統から解列し、タービン発電機10を停止させる必要がある。タービン発電機10の運転を停止させるためには、電動蒸気止め弁16を閉止させるなどの補機類を駆動するための動力源が必要である。通常の運転時においては、商用電力系統及び該商用電力系統と連携している発電装置の電力を使用して電動蒸気止め弁16等の補機類を駆動している。しかし、上位の商用電力系統が停電している場合、排熱発電装置を該商用電力系統から解列しているため、該商用電力系統を動力源として使用することができない。   In the exhaust heat power generation device having the above configuration, when the upper commercial power system fails, the exhaust heat power generation device is overloaded, or conversely, the turbine 13 is over-rotated. Must be disconnected from the commercial power system and the turbine generator 10 must be stopped. In order to stop the operation of the turbine generator 10, a power source for driving auxiliary machinery such as closing the electric steam stop valve 16 is necessary. During normal operation, auxiliary machinery such as the electric steam stop valve 16 is driven using the power of the commercial power system and the power generation device linked to the commercial power system. However, when the upper commercial power system has a power failure, the exhaust heat power generation apparatus is disconnected from the commercial power system, and thus the commercial power system cannot be used as a power source.

一方、この種の排熱発電装置は作動媒体や加熱用の排熱媒体(温水等)100は停電発生においても残存予熱によって作動媒体蒸気を発生する能力を有しているため、排熱発電装置のタービン発電機は商用電力系統に停電が発生し、解列した直後に補機類に駆動動力を供給することが可能である。しかしながら、このタービン発電機で発電された電力を動力源として電動蒸気止め弁16の閉止動作をおこなった場合、閉止動作が進むに従って、つまり弁開度が小さくなるに伴って、タービン13に供給される作動媒体蒸気101の流量が減少し、発電機18の発電電力量が減少し、やがて電動蒸気止め弁16に閉止するために必要な電力を供給できなくなり、電動蒸気止め弁16は全閉となる前に閉動作が停止してしまう。   On the other hand, in this type of exhaust heat power generation apparatus, the exhaust medium and heating exhaust heat medium (hot water or the like) 100 has the ability to generate working medium vapor by residual preheating even in the event of a power failure. This turbine generator can supply driving power to the auxiliary machinery immediately after a power failure occurs in the commercial power system and disconnection. However, when the electric steam stop valve 16 is closed using the power generated by the turbine generator as a power source, the electric steam stop valve 16 is supplied to the turbine 13 as the closing operation proceeds, that is, as the valve opening decreases. Therefore, the electric power necessary for closing the electric steam stop valve 16 cannot be supplied and the electric steam stop valve 16 is fully closed. The closing operation stops before

このため、わずかに開いた電動蒸気止め弁16から継続的に作動媒体蒸気101がタービン13に供給され、タービン13が停止することなく、電力の供給が止まっているため、軸受25の潤滑も行われず、制御もかからない。そして発電機18は軸受25の損傷や回転体の破損の可能性の高い危険な状態で回転し続けることになる。   Therefore, the working medium steam 101 is continuously supplied from the slightly opened electric steam stop valve 16 to the turbine 13, and the supply of electric power is stopped without stopping the turbine 13, so that the bearing 25 is also lubricated. No control is required. The generator 18 continues to rotate in a dangerous state in which there is a high possibility of damage to the bearing 25 or breakage of the rotating body.

このような状態に陥らないように、一般的には、電動蒸気止め弁16にバッテリーやコンデンサー等によるバックアップ電源を設け、商用電力系統の停電時にはバックアップ電源の電力を利用して電動蒸気止め弁16の閉止動作を行ったり、電動蒸気止め弁16にスプリングリターン等の機械的動力による自力閉止機構を設け、停電時に自力閉止させるように構成していた。   In order not to fall into such a state, in general, the electric steam stop valve 16 is provided with a backup power source such as a battery or a condenser, and the electric steam stop valve 16 is utilized by using the power of the backup power source in the event of a power failure in the commercial power system. In addition, the electric steam stop valve 16 is provided with a self-closing mechanism using mechanical power such as a spring return so that the electric steam stop valve 16 can be closed by itself when a power failure occurs.

しかしながら、バックアップ電源を設けたり、スプリングリターン等の機械的動力による自力閉止機構は大きなコストアップの要因となる。特に、小容量の排熱発電装置においては、そのコストアップの影響が排熱発電装置本体コストに占める割合が大きくなり、排熱発電装置の経済的効果を大きく損ねることになる。   However, a self-closing mechanism using a backup power source or mechanical power such as a spring return causes a large cost increase. In particular, in a small-capacity exhaust heat power generation apparatus, the proportion of the influence of the cost increase in the exhaust heat power generation apparatus main body cost increases, and the economic effect of the exhaust heat power generation apparatus is greatly impaired.

本発明は上述の点に鑑みてなされたもので、連携している上位の商用電力系統の停電時で、該商用電力系統から補機類を駆動する電力が得られない場合でも電動蒸気止め弁を迅速に完全に閉止できる安価な電動蒸気止め弁閉止手段を備えた排熱発電装置を提供することを目的とする。   The present invention has been made in view of the above-described points, and when an upper commercial power system that is linked is out of power, even when electric power for driving auxiliary machinery cannot be obtained from the commercial power system, the electric steam stop valve It is an object of the present invention to provide an exhaust heat power generation apparatus including an inexpensive electric steam stop valve closing means capable of quickly and completely closing the engine.

上記課題を解決するため請求項1に記載の発明は、蒸気発生器、電動蒸気止め弁、タービン発電機、凝縮器、媒体循環ポンプを備え、熱源として排熱を前記蒸気発生器に導入し、前記凝縮器から前記媒体循環ポンプにより該蒸気発生器に導いた作動媒体を加熱して蒸発させ、発生した作動媒体蒸気を前記電動蒸気止め弁を通してタービン発電機のタービンに導きその発電機を駆動し、該タービンから排出される作動媒体蒸気を前記凝縮器に戻すように構成した上位電力系統に連携する排熱発電装置において、前記電動蒸気止め弁をバイパスする電動蒸気止め弁バイパス経路を設けると共に、該電動蒸気止め弁バイパス経路にバイパス弁を設け、前記上位電力系統に停電が発生した場合に、前記バイパス弁を通して作動媒体蒸気を前記タービン発電機のタービンに導きその発電機を駆動し、該発電機で発電された電力で前記電動蒸気止め弁の閉止動作を行い、該閉動作完了後に前記バイパス弁を閉じることを特徴とする。   In order to solve the above problems, the invention described in claim 1 includes a steam generator, an electric steam stop valve, a turbine generator, a condenser, and a medium circulation pump, and introduces exhaust heat as a heat source into the steam generator. The working medium led from the condenser to the steam generator is heated and evaporated by the medium circulation pump, and the generated working medium vapor is led to the turbine of the turbine generator through the electric steam stop valve to drive the generator. In the exhaust heat power generation apparatus linked to the upper power system configured to return the working medium vapor discharged from the turbine to the condenser, an electric steam stop valve bypass path for bypassing the electric steam stop valve is provided, A bypass valve is provided in the electric steam stop valve bypass path, and when a power failure occurs in the upper power system, the working medium steam is supplied to the turbine through the bypass valve. It drives its generator leads to electric turbine performs closing operation of said at electric power generated by the generator motor steam stop valve, and wherein the bypass valve closed after the closed operation is completed.

請求項2に記載の発明は、請求項1に記載の排熱発電装置において、前記バイパス弁は電源投入で開き、電源遮断で閉じる電磁弁であることを特徴とする。   The invention according to claim 2 is the exhaust heat power generator according to claim 1, wherein the bypass valve is an electromagnetic valve that opens when power is turned on and closes when power is turned off.

請求項3に記載の発明は、請求項1又は2に記載の排熱発電装置において、前記電動蒸気止め弁バイパス経路の配管口径及びバイパス弁の容量は、前記電動蒸気止め弁を閉止する動力に前記タービン発電機に潤滑油を送る潤滑油ポンプを駆動する動力を加算した動力を賄える電力を前記タービン発電機が発電するのに必要な前記作動媒体蒸気流量を該タービン発電機のタービンに供給できる口径及び容量であることを特徴とする。   According to a third aspect of the present invention, in the exhaust heat power generation device according to the first or second aspect, the pipe diameter of the electric steam stop valve bypass path and the capacity of the bypass valve are determined by the power for closing the electric steam stop valve. The working medium steam flow rate required for the turbine generator to generate electric power that can supply the power obtained by adding the motive power for driving the lubricating oil pump that sends lubricating oil to the turbine generator can be supplied to the turbine of the turbine generator. It is characterized by a caliber and a capacity.

請求項4に記載の発明は、請求項1又は2に記載の排熱発電装置において、前記電動蒸気止め弁バイパス経路の配管口径及びバイパス弁の容量は、前記電動蒸気止め弁を閉止する動力に、前記バイパス弁の開動作を維持する動力、及び前記タービン発電機に潤滑油を送る潤滑油ポンプを駆動する動力を加算した動力を賄える電力を前記タービン発電機が発電するのに必要な前記作動媒体蒸気流量を該タービン発電機のタービンに供給できる口径及び容量であることを特徴とする。   According to a fourth aspect of the present invention, in the exhaust heat power generation apparatus according to the first or second aspect, the pipe diameter of the electric steam stop valve bypass path and the capacity of the bypass valve are determined by the power for closing the electric steam stop valve. The operation required for the turbine generator to generate electric power that can cover the power that maintains the opening operation of the bypass valve and the power that drives the lubricating oil pump that sends lubricating oil to the turbine generator It is the diameter and capacity | capacitance which can supply a medium vapor | steam flow volume to the turbine of this turbine generator.

請求項1に記載の発明によれば、電動蒸気止め弁をバイパスする電動蒸気止め弁バイパス経路を設けると共に、該電動蒸気止め弁バイパス経路にバイパス弁を設け、上位電力系統に停電が発生した場合に、バイパス弁を通して作動媒体蒸気をタービン発電機のタービンに導きその発電機を駆動し、該発電機で発電された電力で電動蒸気止め弁の閉止動作を行い、該閉止動作完了後にバイパス弁を閉じるので、電動蒸気止め弁バイパス経路とバイパス弁を設けるだけの簡単、且つ安価な構成で、上位電力系統の停電時に排熱発電装置を解列した場合、速やかに電動蒸気止め弁を完全に閉止してタービン発電機を停止することが可能な排熱発電装置を提供できる。   According to the first aspect of the present invention, when the electric steam stop valve bypass path for bypassing the electric steam stop valve is provided, the bypass valve is provided in the electric steam stop valve bypass path, and a power failure occurs in the upper power system In addition, the working medium steam is guided to the turbine of the turbine generator through the bypass valve, the generator is driven, the electric steam stop valve is closed with the electric power generated by the generator, and the bypass valve is turned on after the closing operation is completed. Because it closes, the electric steam stop valve bypass path and bypass valve are simply and inexpensively configured, and when the exhaust heat power generator is disconnected in the event of a power failure in the host power system, the electric steam stop valve is quickly closed completely. Thus, the exhaust heat power generation apparatus capable of stopping the turbine generator can be provided.

請求項2に記載の発明によれば、バイパス弁は電源投入で開き、電源遮断で閉じる電磁弁であるので、上位電力系統の停電時に装置を解列しても、タービン発電機は発電しているから、その電量でバイパス弁の開動作は維持され、タービン発電機のタービンに作動媒体蒸気を継続して供給し続け、該発電機で発電した電力で電動蒸気止め弁を速やかに完全に閉止できる。閉止後電磁弁からなるバイパス弁の電源を遮断するとバイパス弁は閉じ、タービンへの作動媒体蒸気の供給は停止する。   According to the invention described in claim 2, since the bypass valve is an electromagnetic valve that opens when the power is turned on and closes when the power is shut off, the turbine generator generates power even if the device is disconnected at the time of power failure of the host power system. Therefore, the opening operation of the bypass valve is maintained by the amount of electricity, the working medium steam is continuously supplied to the turbine of the turbine generator, and the electric steam stop valve is quickly and completely closed by the electric power generated by the generator. it can. When the power supply of the bypass valve including the electromagnetic valve is shut off after the closing, the bypass valve is closed and the supply of the working medium vapor to the turbine is stopped.

請求項3に記載の発明によれば、電動蒸気止め弁バイパス経路の配管口径及びバイパス弁の容量は、電動蒸気止め弁を閉止する動力にタービン発電機に潤滑油を送る潤滑油ポンプを駆動する動力を加算した動力を賄える電力をタービン発電機が発電するのに必要な作動媒体蒸気流量をタービン発電機のタービンに供給できる口径及び容量であるので、上位電力系統の停電時に装置を解列した場合に、タービン発電機の発電機で発電する電力で電動蒸気止め弁の完全閉止までの動力及び潤滑油ポンプの駆動動力を賄うことができ、タービン発電機を速やかに停止できると共に、停止までの軸受への潤滑油の供給も確保できる。   According to the third aspect of the present invention, the pipe diameter of the electric steam stop valve bypass path and the capacity of the bypass valve drive the lubricating oil pump that sends the lubricant to the turbine generator with the power to close the electric steam stop valve. The diameter and capacity of the working medium steam flow required for the turbine generator to generate the power that can supply the power added to the power is the diameter and capacity that can be supplied to the turbine of the turbine generator. In this case, the power generated by the generator of the turbine generator can cover the power until the electric steam stop valve is completely closed and the drive power of the lubricating oil pump, and the turbine generator can be stopped quickly and Supply of lubricating oil to the bearing can also be secured.

請求項4に記載の発明によれば、電動蒸気止め弁バイパス経路の配管口径及びバイパス弁の容量は、前記電動蒸気止め弁を閉止する動力に、バイパス弁の開動作を維持する動力、及び前記タービン発電機に潤滑油を送る潤滑油ポンプを駆動する動力を加算した動力を賄える電力を前記タービン発電機が発電するのに必要な前記作動媒体蒸気流量を該タービン発電機のタービンに供給できる口径及び容量であるので、上位電力系統の停電時に装置を解列した場合に、タービン発電機の発電機で発電する電力で電動蒸気止め弁の完全閉止するまでの動力、バイパス弁の開動作を維持する動力、及び潤滑油ポンプの駆動動力を賄うことができ、タービン発電機を速やかに停止できると共に、停止までの軸受への潤滑油の供給も確保できる。   According to the invention described in claim 4, the pipe diameter of the electric steam stop valve bypass path and the capacity of the bypass valve are determined by the power for closing the electric steam stop valve, the power for maintaining the opening operation of the bypass valve, and the A diameter capable of supplying the turbine medium of the turbine generator with the working medium steam flow rate necessary for the turbine generator to generate electric power that can supply the power obtained by adding the power for driving the lubricating oil pump that sends the lubricating oil to the turbine generator. Therefore, when the equipment is disconnected in the event of a power failure in the host power system, the power generated by the generator of the turbine generator is used to maintain the power until the electric steam stop valve is fully closed and the opening operation of the bypass valve. It is possible to cover the power to drive and the driving power of the lubricating oil pump, the turbine generator can be stopped quickly, and the supply of lubricating oil to the bearing until the stop can be ensured.

以下、本発明の実施形態例を図面に基づいて説明する。図2は本発明に係る排熱発電装置の構成例を示す図である。図2において、図1と同一符号を付した部分は同一または相当部分を示す。本排熱発電装置は、蒸気発生器11、気液分離器12、タービン発電機10、凝縮器14、媒体循環ポンプ15を備え、蒸気発生器11で発生した作動媒体蒸気101を作動媒体蒸気主経路L1を通して気液分離器12に導き、該気液分離器12で同伴する作動媒体液滴を分離除去し、作動媒体蒸気主経路L1に設けられた電動蒸気止め弁16及び蒸気加減弁17を通して、タービン13に送り、該タービン13を回転・駆動することにより、発電機18が回転・駆動して、発電を行う点は、図1の排熱発電装置と同一である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing a configuration example of the exhaust heat power generator according to the present invention. 2, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. This exhaust heat power generation apparatus includes a steam generator 11, a gas-liquid separator 12, a turbine generator 10, a condenser 14, and a medium circulation pump 15. The working medium steam 101 generated by the steam generator 11 is mainly used as a working medium steam. It is led to the gas-liquid separator 12 through the path L1, and the working medium droplets entrained by the gas-liquid separator 12 are separated and removed, and the electric steam stop valve 16 and the steam control valve 17 provided in the working medium steam main path L1 are passed through. 1 is the same as the exhaust heat power generator of FIG. 1 in that the generator 18 is rotated and driven by rotating the turbine 13 and rotating and driving the turbine 13 to generate power.

また、タービン13から作動媒体蒸気主経路L1に流出した低圧の作動媒体蒸気101は、凝縮器(或いは復水器)14に導入され、冷却媒体110と熱交換して、冷却・凝縮して作動媒体液102となり、該作動媒体液102は作動媒体液主経路L2を通って媒体循環ポンプ15に流入し昇圧されて、高圧の作動媒体液102となり、作動媒体液主経路L2を通って再び蒸気発生器11に供給される点も図1の排熱発電装置と同一である。即ち、本排熱発電装置は図1と同じクローズドシステムを採用している。   Further, the low-pressure working medium steam 101 flowing out from the turbine 13 to the working medium steam main path L1 is introduced into the condenser (or condenser) 14 and exchanges heat with the cooling medium 110 to be cooled and condensed to operate. The liquid medium 102 becomes a medium liquid 102, and the working medium liquid 102 flows into the medium circulation pump 15 through the working medium liquid main path L2 and is pressurized to become the high-pressure working medium liquid 102, and again passes through the working medium liquid main path L2. The point supplied to the generator 11 is also the same as that of the exhaust heat power generator of FIG. That is, this exhaust heat power generation apparatus employs the same closed system as in FIG.

本排熱発電装置では、電動蒸気止め弁16及び蒸気加減弁17をバイパスする電動蒸気止め弁バイパス経路L4を設け、該電動蒸気止め弁バイパス経路L4にバイパス弁20を設けている。また、起動時に、安定したタービン発電機10の運転を可能にするため、蒸気発生器11と気液分離器12を接続する作動媒体蒸気主経路L1から分岐してタービン13と凝縮器14を接続する作動媒体蒸気主経路L1に合流するタービンバイパス作動媒体蒸気経路L5を設け、該タービンバイパス作動媒体蒸気経路L5にタービンバイパス弁21を設けている。   In the present exhaust heat power generator, an electric steam stop valve bypass path L4 that bypasses the electric steam stop valve 16 and the steam control valve 17 is provided, and a bypass valve 20 is provided in the electric steam stop valve bypass path L4. Further, at the time of start-up, in order to enable stable operation of the turbine generator 10, the turbine 13 and the condenser 14 are connected by branching from the working medium steam main path L <b> 1 connecting the steam generator 11 and the gas-liquid separator 12. A turbine bypass working medium steam path L5 joining the working medium steam main path L1 is provided, and a turbine bypass valve 21 is provided in the turbine bypass working medium steam path L5.

また、媒体循環ポンプ15と蒸気発生器11を接続する作動媒体液主経路L2に熱回収器22と予熱器23を設けている。熱回収器22の加熱側には気液分離器12から作動媒体液戻り経路L3を通って凝縮器14に戻る作動媒体液102を通して、凝縮器14から蒸気発生器11に送られる作動媒体液102を加熱して回収を行っている。なお、作動媒体液戻り経路L3には開閉弁24が設けられている。また、予熱器23の加熱側では排熱媒体100を通して、蒸気発生器11に送られる作動媒体液102を予熱している。   Further, a heat recovery device 22 and a preheater 23 are provided in the working medium liquid main path L2 connecting the medium circulation pump 15 and the steam generator 11. On the heating side of the heat recovery unit 22, the working medium liquid 102 sent from the condenser 14 to the steam generator 11 passes through the working medium liquid 102 returning from the gas-liquid separator 12 through the working medium liquid return path L 3 to the condenser 14. Is recovered by heating. An opening / closing valve 24 is provided in the working medium liquid return path L3. On the heating side of the preheater 23, the working medium liquid 102 sent to the steam generator 11 is preheated through the exhaust heat medium 100.

また、タービン発電機10の発電機18の軸受25を潤滑した潤滑油120は潤滑油戻り経路L10を通って油/媒体分離器26に回収され、該油/媒体分離器26に導入される排熱媒体100で加熱され、潤滑油120中に溶解する作動媒体は気化して分離される。作動媒体が気化し分離した作動媒体蒸気101は作動媒体蒸気経路L6を通って凝縮器14に導かれる。油/媒体分離器26内の作動媒体が分離除去された潤滑油120は潤滑油ポンプ27により、油冷却器28に送られる。冷却器28で冷却された潤滑油120は潤滑油供給経路L11を通って、発電機18の軸受25に供給される。油冷却器28には冷却媒体として、媒体循環ポンプ15で加圧された作動媒体液102が通る作動媒体液経路L7から開閉弁29を経由し作動媒体液102が供給され、潤滑油120を冷却している。これにより、潤滑油120は所定の温度で所定の粘度を有した潤滑油として軸受25に供給される。また、作動媒体液経路L7を通る作動媒体液102は発電機18に冷却媒体として供給され、発電機18を冷却している。   Further, the lubricating oil 120 that has lubricated the bearing 25 of the generator 18 of the turbine generator 10 is recovered by the oil / medium separator 26 through the lubricating oil return path L10 and is discharged to the oil / medium separator 26. The working medium heated by the heat medium 100 and dissolved in the lubricating oil 120 is vaporized and separated. The working medium vapor 101 from which the working medium is vaporized and separated is guided to the condenser 14 through the working medium vapor path L6. The lubricating oil 120 from which the working medium in the oil / medium separator 26 is separated and removed is sent to the oil cooler 28 by the lubricating oil pump 27. The lubricating oil 120 cooled by the cooler 28 is supplied to the bearing 25 of the generator 18 through the lubricating oil supply path L11. The oil cooler 28 is supplied with the working medium liquid 102 via the on-off valve 29 from the working medium liquid path L7 through which the working medium liquid 102 pressurized by the medium circulation pump 15 passes, and cools the lubricating oil 120 as a cooling medium. is doing. Thereby, the lubricating oil 120 is supplied to the bearing 25 as a lubricating oil having a predetermined viscosity at a predetermined temperature. Further, the working medium liquid 102 passing through the working medium liquid path L7 is supplied to the generator 18 as a cooling medium to cool the generator 18.

電動蒸気止め弁バイパス経路L4に設けたバイパス弁20は電源の遮断時に自力で閉となるような自動弁である。本排熱発電装置が連携する上位の商用電力系統(図示せず)に停電が発生し、本排熱発電装置を該商用電力系統から解列し、タービン13を電動蒸気止め弁16の閉止動作によって停止させる場合に、バイパス弁20を開として電動蒸気止め弁バイパス経路L4を経由してタービン13に作動媒体蒸気101を供給してタービン13を回転・駆動し続けることにより、発電機18を回転・駆動させ、発電を継続し、その電力を利用して電動蒸気止め弁16を全閉できるようになっている。なお、バイパス弁20は、停電発生時に開としても、平常運転時から開としておいても差し支えない。バイパス弁20としては電源投入により開となり、電源遮断により自力で閉となる電磁弁を用いることが開閉時間が短く、安価であるから好適である。   The bypass valve 20 provided in the electric steam stop valve bypass path L4 is an automatic valve that is closed by itself when the power is shut off. A power failure occurs in a higher-level commercial power system (not shown) with which the present exhaust heat power generator is linked, the present exhaust heat power generator is disconnected from the commercial power system, and the turbine 13 is closed by the electric steam stop valve 16. , The bypass valve 20 is opened, the working medium steam 101 is supplied to the turbine 13 via the electric steam stop valve bypass path L4, and the turbine 13 is continuously rotated and driven to rotate the generator 18. -It is made to drive, electric power generation is continued, and the electric steam stop valve 16 can be fully closed using the electric power. The bypass valve 20 may be opened when a power failure occurs, or may be opened after normal operation. As the bypass valve 20, it is preferable to use an electromagnetic valve that opens when the power is turned on and closes by itself when the power is turned off because the opening / closing time is short and the cost is low.

電動の電動蒸気止め弁16が全閉になった時点で、バイパス弁20の電源を遮断(電力供給を停止)することで、バイパス弁20は自力閉止し、タービン13への作動媒体蒸気の供給を停止して、タービン13を安全に停止することが可能となる。   When the electric electric steam stop valve 16 is fully closed, the power supply of the bypass valve 20 is shut off (power supply is stopped), so that the bypass valve 20 is closed by itself and the working medium vapor is supplied to the turbine 13. And the turbine 13 can be safely stopped.

電動蒸気止め弁バイパス経路L4の配管口径及びバイパス弁20の容量(Cv値)は、タービン発電機10の発電機18が電動蒸気止め弁16を完全に閉止するまでの動力にバイパス弁20の開動作を維持する動力を加算した動力を賄うことができる電力を発電するのに必要な流量の作動媒体蒸気101をタービン13に供給できるように設定すればよい。電動蒸気止め弁16を完全に閉止するまでの動力及びバイパス弁20の開動作を維持する動力(本例では0.2kW)は、発電機18の発電容量(本例では20kW)に対して微小であるため、電動蒸気止め弁バイパス経路L4の配管口径及びバイパス弁20の容量は、作動媒体蒸気主経路L1の配管口径や電動蒸気止め弁16の容量に比し、それぞれ極めて小さくて(流量比で1%、配管口径比で10%)で済む。従って、商用電力系統の停電時の対策設備コストを大幅に節減できることになる。   The pipe diameter of the electric steam stop valve bypass path L4 and the capacity (Cv value) of the bypass valve 20 are such that the power of the generator 18 of the turbine generator 10 until the electric steam stop valve 16 is completely closed opens the bypass valve 20. What is necessary is just to set so that the working medium vapor | steam 101 of the flow volume required in order to generate | occur | produce the electric power which can cover the motive power which added the motive power which maintains operation | movement can be supplied to the turbine 13. The power until the electric steam stop valve 16 is completely closed and the power for maintaining the opening operation of the bypass valve 20 (in this example, 0.2 kW) are minute relative to the power generation capacity of the generator 18 (in this example, 20 kW). Therefore, the pipe diameter of the electric steam stop valve bypass path L4 and the capacity of the bypass valve 20 are extremely smaller than the pipe diameter of the working medium steam main path L1 and the capacity of the electric steam stop valve 16, respectively (flow rate ratio). 1%, and the pipe diameter ratio is 10%). Therefore, it is possible to greatly reduce the cost of countermeasure facilities in the event of a power failure in the commercial power system.

また、電動蒸気止め弁16を閉止する動力及びバイパス弁20の開動作を維持する動力(バイパス弁の制御電源を含む)に加えて潤滑油ポンプ27を駆動する動力を加算した動力をもとに、電動蒸気止め弁バイパス経路L4の配管口径及びバイパス弁の容量(Cv値)を決定することによって、タービン13の停止に際しての安全性の向上を図ることも可能である。更に、タービン13を急速に停止させるために、発電機18に電気ヒータ等の電気負荷を掛けて制動する際に、電動蒸気止め弁16を閉止する動力及びバイパス弁20の開動作を維持する動力に加え電気負荷の制御電源も考慮して電動蒸気止め弁バイパス経路L4の配管口径及びバイパス弁20の容量を決定することによって、タービン停止時間の短縮を図ることも可能である。   Further, based on the power obtained by adding the power for driving the lubricating oil pump 27 in addition to the power for closing the electric steam stop valve 16 and the power for maintaining the opening operation of the bypass valve 20 (including the control power supply for the bypass valve). By determining the pipe diameter of the electric steam stop valve bypass path L4 and the capacity (Cv value) of the bypass valve, it is possible to improve safety when the turbine 13 is stopped. Furthermore, in order to stop the turbine 13 rapidly, when the generator 18 is braked by applying an electric load such as an electric heater, the power for closing the electric steam stop valve 16 and the power for maintaining the opening operation of the bypass valve 20 are maintained. In addition, it is possible to shorten the turbine stop time by determining the pipe diameter of the electric steam stop valve bypass path L4 and the capacity of the bypass valve 20 in consideration of the control power source of the electric load.

バイパス弁20を閉じる時期、即ち電動蒸気止め弁16が全閉となった時点の判断には、電動蒸気止め弁16の全閉をリミットスイッチで確認する方法や、電動蒸気止め弁16が全開状態から閉止動作を開始し全閉になるまでに必要な時間(余裕時間を加味してもよい)をタイマーにセットしておき、電動蒸気止め弁16の閉止動作開始から該セットした時間が経過した時点で電動蒸気止め弁16が全閉と判断するなどがある。例えば電動蒸気止め弁16の全閉で接点が開となるリミットスイッチを、バイパス弁20の電源供給回路に直列に挿入して接続すると、電動蒸気止め弁16が全閉になると同時にバイパス弁20の電源が遮断されバイパス弁20が閉じる。また、リミットスイッチによる方法とタイマーによる方法のAND回路やOR回路による併用も可能である。   To determine when the bypass valve 20 is closed, that is, when the electric steam stop valve 16 is fully closed, a method of confirming whether the electric steam stop valve 16 is fully closed with a limit switch, or the electric steam stop valve 16 is fully open. The time required from the start of the closing operation to the full closing (may include a surplus time) is set in the timer, and the set time has elapsed since the start of the closing operation of the electric steam stop valve 16 For example, it may be determined that the electric steam stop valve 16 is fully closed at the time. For example, when a limit switch whose contact is opened when the electric steam stop valve 16 is fully closed is inserted and connected in series to the power supply circuit of the bypass valve 20, the electric steam stop valve 16 is fully closed and the bypass valve 20 is closed. The power is shut off and the bypass valve 20 is closed. Further, the limit switch method and the timer method can be used in combination with an AND circuit or an OR circuit.

上記排熱発電装置では、電動蒸気止め弁16は蒸気加減弁17より作動媒体蒸気主経路L1の上流側に設けているが、下流側に設けてもよい。また、電動蒸気止め弁16と蒸気加減弁17は兼用されて、電動蒸気止め弁兼蒸気加減弁としてもよい。この場合には、電動蒸気止め弁バイパス経路L4は該電動蒸気止め弁兼蒸気加減弁をバイパスするように設ける。電動蒸気止め弁16とタービン13の両者をバイパスするバイパス経路を設け、このバイパス経路に小容量の副タービン発電機を設けて発電を行い、商用電力系統の停電時の対策を行う方法も考えられるが、タービン及び発電機などが2重化されるためコストが高くなる。   In the exhaust heat power generator, the electric steam stop valve 16 is provided on the upstream side of the working medium steam main path L1 from the steam control valve 17, but may be provided on the downstream side. Further, the electric steam stop valve 16 and the steam control valve 17 may be used in combination as an electric steam stop valve / steam control valve. In this case, the electric steam stop valve bypass path L4 is provided so as to bypass the electric steam stop valve / steam control valve. There is also a method of providing a bypass path that bypasses both the electric steam stop valve 16 and the turbine 13 and providing a power generation by providing a small-capacity sub-turbine generator in the bypass path to take measures against a power failure in the commercial power system. However, the cost increases because the turbine and the generator are duplicated.

バイパス弁20として電磁弁の替わりに、小型のスプリングターン機能付きの電動弁をバイパス弁20として使用することも可能だが、一般に電磁弁よりも高価である。しかし、必要なバルブ容量(Cv値)が大きい場合は、電磁弁よりも有利な場合がある。また、小型のスプリングターン機能付きの電動弁を用いる場合でも電動蒸気止め弁16に比べれば格段に小径、小容量でよく、コストメリットがある。(但し、電磁弁も内部にバネを有しており一種のスプリングターンとも言える。)   A small electric valve with a spring turn function can be used as the bypass valve 20 in place of the solenoid valve, but it is generally more expensive than the solenoid valve. However, when the required valve capacity (Cv value) is large, it may be more advantageous than the solenoid valve. Further, even when using a small motor-operated valve with a spring turn function, the diameter and the capacity are much smaller than that of the electric steam stop valve 16, and there is a cost merit. (However, the solenoid valve also has a spring inside and can be said to be a kind of spring turn.)

バイパス弁20として電磁弁の替わりに、小型のバックアップ電源若しくは小型のバックアップ電源付の電動弁をバイパス弁20として使用することも可能であるが、一般に電磁弁より高価である。しかし、必要なバルブ容量が大きい場合は、電磁弁よりも有利な場合がある。また、小型のバックアップ電源付きの電動弁を用いる場合でも、電動蒸気止め弁16に比べれば格段に小径、小容量でよく、コスト的に利点がある。但し、一般的なバックアップ電源である充電池は寿命があるため、信頼性とメンテナンスの面で不利である。   A small backup power source or an electric valve with a small backup power source can be used as the bypass valve 20 instead of the electromagnetic valve as the bypass valve 20, but it is generally more expensive than the electromagnetic valve. However, when the required valve capacity is large, it may be more advantageous than the solenoid valve. Even when using a small motor-operated valve with a backup power source, the diameter and capacity of the motor-operated steam stop valve 16 are much smaller than that of the electric steam stop valve 16, which is advantageous in terms of cost. However, since a rechargeable battery, which is a general backup power supply, has a lifetime, it is disadvantageous in terms of reliability and maintenance.

タービン発電機10の発電機18で発電された電力は交流のまま停電対策に使用してもよいし、図3に示すように、交流/直流変換器(コンバータ)30を使用して直流に変換してから使用してもよい。更に直流/交流変換器(インバータ)31を使用して所定周波数・電圧の交流に変換してから制御装置(AC200V)32に供給し、制御装置32で電動蒸気止め弁16や潤滑油ポンプ27等の補機を駆動制御するようにしてもよい。ここで、補機の駆動に必要な電圧は常時400V(AC)、最低375V(AC)である。なお、33は本排熱発電装置を商用電力系統40に連携・解列するための開閉器である。   The electric power generated by the generator 18 of the turbine generator 10 may be used for power failure countermeasures while being AC, or converted to DC using an AC / DC converter (converter) 30 as shown in FIG. Then you may use it. Further, a DC / AC converter (inverter) 31 is used to convert the alternating current to a predetermined frequency and voltage and then supplied to the control device (AC200V) 32. The control device 32 uses the electric steam stop valve 16, the lubricating oil pump 27, etc. The auxiliary machine may be driven and controlled. Here, the voltage required for driving the auxiliary machine is always 400 V (AC) and at least 375 V (AC). Reference numeral 33 denotes a switch for linking / disconnecting the exhaust heat power generator to / from the commercial power system 40.

また、図4に示すように、制御系統を直流の低電圧(例えばDC24V)の仕様とし、タービン発電機10の発電機18で発電した電力を交流/直流変換器30を使用して直流に変換し、直流電圧変換器(所謂DC−DCコンバータ)35でさらに低い直流電圧(DC24V)の電力に変換すると共に、直流/交流変換器(インバータ)31を使用して所定周波数・電圧の交流に変換し電力を交流/直流変換器34でさらに低い直流電圧(DC24V)の電力に変換して制御装置(DC24V)に供給するようにしてもよい。そして制御装置36で電動蒸気止め弁16や潤滑油ポンプ27等の補機を直流の低電圧で駆動制御するようにしてもよい。このように電動蒸気止め弁16や潤滑油ポンプ27等の補機類の駆動電源を低くすることにより、発電機18の回転数が低下して電圧が低下しても、直流電圧変換器34により低電圧の直流電力に変換し制御装置36に供給できる。例えば停電時に必要な補機だけを低電圧仕様としてもい。   Further, as shown in FIG. 4, the control system has a DC low voltage (for example, DC 24 V) specification, and the electric power generated by the generator 18 of the turbine generator 10 is converted into DC using an AC / DC converter 30. In addition, the DC voltage converter (so-called DC-DC converter) 35 converts the electric power into a lower DC voltage (DC 24V), and the DC / AC converter (inverter) 31 converts the electric power into an AC having a predetermined frequency and voltage. Then, the electric power may be converted into electric power of a lower DC voltage (DC24V) by the AC / DC converter 34 and supplied to the control device (DC24V). The control device 36 may drive and control auxiliary machines such as the electric steam stop valve 16 and the lubricating oil pump 27 with a low DC voltage. Thus, even if the rotational speed of the generator 18 is lowered and the voltage is lowered by lowering the drive power supply of the auxiliary machines such as the electric steam stop valve 16 and the lubricating oil pump 27, the DC voltage converter 34 It can be converted into low voltage DC power and supplied to the controller 36. For example, only the auxiliary equipment required at the time of a power failure can be set to low voltage specifications.

また、図4の直流電圧変換器34に代え昇圧回路を用いることにより、発電機18の回転数が低下して電圧が低下しても、昇圧回路で昇圧して制御装置(AC200V)に供給するようにしてもよい。   Further, by using a booster circuit instead of the DC voltage converter 34 of FIG. 4, even if the rotation speed of the generator 18 decreases and the voltage decreases, the booster circuit boosts the voltage and supplies it to the control device (AC200V). You may do it.

電動蒸気止め弁バイパス経路L4の配管口径及びバイパス弁20の容量(Cv値)を大きくしていくことで、停電時に使用できる排熱発電装置の補機類を増やすことができ、より安全に停電時対策を行うことができるようになる。しかし、使用する補機類を増やすために電動蒸気止め弁バイパス経路L4の配管口径及びバイパス弁20の容量(Cv値)を大きくすると、コストの利点が減少する。   By increasing the pipe diameter of the electric steam stop valve bypass path L4 and the capacity (Cv value) of the bypass valve 20, the auxiliary equipment of the exhaust heat power generator that can be used in the event of a power failure can be increased, and the power failure can be made more safely It becomes possible to take measures against time. However, if the piping diameter of the electric steam stop valve bypass path L4 and the capacity (Cv value) of the bypass valve 20 are increased in order to increase the number of auxiliary machines to be used, the cost advantage is reduced.

実際には、電動蒸気止め弁バイパス経路L4の配管口径やバイパス弁20の容量(Cv値)は任意に選定できるものではなく、市販されているものから選定することになるため、選定した配管口径や容量に余裕があれば、停電時に使用する補機を増やすことができる。   Actually, the pipe diameter of the electric steam stop valve bypass path L4 and the capacity (Cv value) of the bypass valve 20 are not arbitrarily selected, but are selected from commercially available ones. And if there is enough capacity, you can increase the number of auxiliary equipment used in the event of a power failure.

作動媒体の残存予熱を利用して、蒸気発生器11等に熱交換素子を利用して発電を行い、その電力を使用して停電対策を行う方法も考えられるが、電動蒸気止め弁バイパス経路L4による方式がコスト的に有利であると考えられる。   A method is also conceivable in which the residual preheating of the working medium is used to generate power using a heat exchange element in the steam generator 11 and the like, and the power is used to take measures against power failure, but the electric steam stop valve bypass path L4 It is considered that the method according to is advantageous in terms of cost.

以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書、図面に記載された技術的思想の範囲内において種々の変形が可能である。なお、直接明細書及び図面に記載のない何れの形状・構造・材質であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。例えば、排熱発電装置の具体的な構成は、上記実施形態に示すものには限定されず、本発明の範囲内であれば、適宜他の構成を採用することが可能である。また、上記実施形態例では蒸気発生器の加熱源として温水を用いる例を示したが、加熱源は温水に限定されるものではなく、他の排熱媒体でもよい。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims, the specification, and the drawings. Is possible. It should be noted that any shape, structure, and material not directly described in the specification and drawings are within the scope of the technical idea of the present invention as long as the effects and advantages of the present invention are exhibited. For example, the specific configuration of the exhaust heat power generator is not limited to that shown in the above embodiment, and other configurations can be adopted as appropriate as long as they are within the scope of the present invention. Moreover, although the example which uses warm water as a heating source of a steam generator was shown in the said example of an embodiment, a heating source is not limited to warm water, Other waste heat media may be sufficient.

排熱発電装置の基本構成例を示す図である。It is a figure which shows the basic structural example of an exhaust heat power generator. 本発明に係る排熱発電装置の構成例を示す図である。It is a figure which shows the structural example of the waste heat power generator which concerns on this invention. 本発明に係る排熱発電装置で補機類を交流電力で駆動する場合を説明する図である。It is a figure explaining the case where auxiliary machinery is driven by alternating current power with the exhaust heat power generator concerning the present invention. 本発明に係る排熱発電装置で補機類を交流電力で駆動する場合を説明する図である。It is a figure explaining the case where auxiliary machinery is driven by alternating current power with the exhaust heat power generator concerning the present invention.

符号の説明Explanation of symbols

10 タービン発電機
11 蒸気発生器
12 気液分離器
13 タービン
14 凝縮器
15 媒体循環ポンプ
16 電動蒸気止め弁
17 蒸気加減弁
18 発電機
20 バイパス弁
21 タービンバイパス弁
22 熱回収器
23 予熱器
24 開閉弁
25 軸受
26 油/媒体分離器
27 潤滑油ポンプ
28 油冷却器
29 開閉弁
30 交流/直流変換器(コンバータ)
31 直流/交流変換器(インバータ)
32 制御装置(AC200V)
33 開閉器
34 直流電圧変換器(DC−DCコンバータ)
35 交流/直流変換器(コンバータ)
36 制御装置(DC24V)
L1 作動媒体蒸気主経路
L2 作動媒体液主経路
L3 作動媒体液戻り経路
L4 電動蒸気止め弁バイパス経路
L5 タービンバイパス作動媒体蒸気経路
L6 作動媒体蒸気経路
L7 作動媒体液経路
L10 潤滑油戻り経路
L11 潤滑油供給経路
DESCRIPTION OF SYMBOLS 10 Turbine generator 11 Steam generator 12 Gas-liquid separator 13 Turbine 14 Condenser 15 Medium circulation pump 16 Electric steam stop valve 17 Steam control valve 18 Generator 20 Bypass valve 21 Turbine bypass valve 22 Heat recovery device 23 Preheater 24 Opening and closing Valve 25 Bearing 26 Oil / medium separator 27 Lubricating oil pump 28 Oil cooler 29 On-off valve 30 AC / DC converter (converter)
31 DC / AC converter (inverter)
32 Control device (AC200V)
33 Switch 34 DC voltage converter (DC-DC converter)
35 AC / DC converter (converter)
36 Control device (DC24V)
L1 Working medium steam main path L2 Working medium liquid main path L3 Working medium liquid return path L4 Electric steam stop valve bypass path L5 Turbine bypass working medium steam path L6 Working medium steam path L7 Working medium liquid path L10 Lubricating oil return path L11 Lubricating oil Supply route

Claims (4)

蒸気発生器、電動蒸気止め弁、タービン発電機、凝縮器、媒体循環ポンプを備え、熱源として排熱を前記蒸気発生器に導入し、前記凝縮器から前記媒体循環ポンプにより該蒸気発生器に導いた作動媒体を加熱して蒸発させ、発生した作動媒体蒸気を前記電動蒸気止め弁を通してタービン発電機のタービンに導きその発電機を駆動し、該タービンから排出される作動媒体蒸気を前記凝縮器に戻すように構成した上位電力系統に連携する排熱発電装置において、
前記電動蒸気止め弁をバイパスする電動蒸気止め弁バイパス経路を設けると共に、該電動蒸気止め弁バイパス経路にバイパス弁を設け、
前記上位電力系統に停電が発生した場合に、前記バイパス弁を通して作動媒体蒸気を前記タービン発電機のタービンに導きその発電機を駆動し、該発電機で発電された電力で前記電動蒸気止め弁の閉止動作を行い、該閉止動作完了後に前記バイパス弁を閉じることを特徴とする排熱発電装置。
A steam generator, an electric steam stop valve, a turbine generator, a condenser, and a medium circulation pump are provided. Exhaust heat is introduced into the steam generator as a heat source, and is led from the condenser to the steam generator by the medium circulation pump. The working medium vapor is heated and evaporated, and the generated working medium vapor is led to the turbine of the turbine generator through the electric steam stop valve to drive the generator, and the working medium vapor discharged from the turbine is fed to the condenser. In the exhaust heat power generator linked to the upper power system configured to return,
An electric steam stop valve bypass path for bypassing the electric steam stop valve is provided, and a bypass valve is provided in the electric steam stop valve bypass path,
When a power failure occurs in the upper power system, the working medium steam is guided to the turbine of the turbine generator through the bypass valve to drive the generator, and the electric steam stop valve is driven by the electric power generated by the generator. An exhaust heat power generation apparatus that performs a closing operation and closes the bypass valve after the closing operation is completed.
請求項1に記載の排熱発電装置において、
前記バイパス弁は電源投入で開き、電源遮断で閉じる電磁弁であることを特徴とする排熱発電装置。
The exhaust heat power generator according to claim 1,
The exhaust heat generator according to claim 1, wherein the bypass valve is an electromagnetic valve that opens when power is turned on and closes when power is turned off.
請求項1又は2に記載の排熱発電装置において、
前記電動蒸気止め弁バイパス経路の配管口径及びバイパス弁の容量は、前記電動蒸気止め弁を閉止する動力に前記タービン発電機に潤滑油を送る潤滑油ポンプを駆動する動力を加算した動力を賄える電力を前記タービン発電機が発電するのに必要な前記作動媒体蒸気流量を該タービン発電機のタービンに供給できる口径及び容量であることを特徴とする排熱発電装置。
The exhaust heat power generator according to claim 1 or 2,
The pipe diameter of the electric steam stop valve bypass path and the capacity of the bypass valve are electric power that can cover the power that closes the electric steam stop valve plus the power that drives the lubricating oil pump that sends lubricating oil to the turbine generator. An exhaust heat power generator having a diameter and a capacity capable of supplying the working medium vapor flow rate necessary for generating power to the turbine of the turbine generator.
請求項1又は2に記載の排熱発電装置において、
前記電動蒸気止め弁バイパス経路の配管口径及びバイパス弁の容量は、前記電動蒸気止め弁を閉止する動力に、前記バイパス弁の開動作を維持する動力、及び前記タービン発電機に潤滑油を送る潤滑油ポンプを駆動する動力を加算した動力を賄える電力を前記タービン発電機が発電するのに必要な前記作動媒体蒸気流量を該タービン発電機のタービンに供給できる口径及び容量であることを特徴とする排熱発電装置。
The exhaust heat power generator according to claim 1 or 2,
The piping diameter of the electric steam stop valve bypass path and the capacity of the bypass valve are determined based on the power to close the electric steam stop valve, the power to maintain the opening operation of the bypass valve, and the lubrication to send lubricating oil to the turbine generator. A diameter and a capacity capable of supplying the turbine medium of the turbine generator with a flow rate of the working medium vapor necessary for the turbine generator to generate electric power that can cover the power obtained by adding the power for driving the oil pump. Waste heat power generator.
JP2006162801A 2006-06-12 2006-06-12 Waste heat power generator Expired - Fee Related JP4866155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162801A JP4866155B2 (en) 2006-06-12 2006-06-12 Waste heat power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162801A JP4866155B2 (en) 2006-06-12 2006-06-12 Waste heat power generator

Publications (2)

Publication Number Publication Date
JP2007332807A true JP2007332807A (en) 2007-12-27
JP4866155B2 JP4866155B2 (en) 2012-02-01

Family

ID=38932525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162801A Expired - Fee Related JP4866155B2 (en) 2006-06-12 2006-06-12 Waste heat power generator

Country Status (1)

Country Link
JP (1) JP4866155B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198056A (en) * 2008-02-20 2009-09-03 Osaka Gas Co Ltd Hybrid refrigerator
JP2011083161A (en) * 2009-10-09 2011-04-21 Ebara Corp Waste heat power generator system
JP2012067616A (en) * 2010-09-21 2012-04-05 Ihi Corp Centrifugal compressor and heat pump
KR101911139B1 (en) * 2016-04-28 2018-10-23 재단법인 건설기계부품연구원 Fuel efficiency improvement system by recovering waste heat of construction machinery
CN111828112A (en) * 2020-07-29 2020-10-27 苏州必信环境科技有限公司 Power generation system for preventing turbine of expansion machine of organic Rankine generator set from running at overspeed

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587805A (en) * 1978-12-25 1980-07-03 Toshiba Corp Controller for steam turbine generator
JP2000110514A (en) * 1998-10-05 2000-04-18 Takeshi Hatanaka Waste heat generating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587805A (en) * 1978-12-25 1980-07-03 Toshiba Corp Controller for steam turbine generator
JP2000110514A (en) * 1998-10-05 2000-04-18 Takeshi Hatanaka Waste heat generating device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198056A (en) * 2008-02-20 2009-09-03 Osaka Gas Co Ltd Hybrid refrigerator
JP2011083161A (en) * 2009-10-09 2011-04-21 Ebara Corp Waste heat power generator system
JP2012067616A (en) * 2010-09-21 2012-04-05 Ihi Corp Centrifugal compressor and heat pump
KR101911139B1 (en) * 2016-04-28 2018-10-23 재단법인 건설기계부품연구원 Fuel efficiency improvement system by recovering waste heat of construction machinery
CN111828112A (en) * 2020-07-29 2020-10-27 苏州必信环境科技有限公司 Power generation system for preventing turbine of expansion machine of organic Rankine generator set from running at overspeed

Also Published As

Publication number Publication date
JP4866155B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4913904B2 (en) Oil removal from turbines in organic Rankine cycle (ORC) systems
JP4889956B2 (en) Power generator
DK2944812T3 (en) Thermal energy recovery device and control method.
CN103608549B (en) Exhaust system
JP4866155B2 (en) Waste heat power generator
CN101806250B (en) Waste heat utilization for pre-heating fuel
CN103562504B (en) The method and apparatus heated for the rapid oil of the decompressor of oil lubrication
JP2011047364A (en) Steam turbine power generation facility and operation method for the same
CN102422006A (en) Rankine cycle heat recovery methods and devices
CN102713167A (en) Waste heat recovery power generation device and ship with same
WO2011149916A1 (en) Generating energy from fluid expansion
EP3093456B1 (en) Heat energy recovery system
CN104870760B (en) Electricity generation system, the maintaining method of electricity generation system
US9879885B2 (en) Cooling water supply system and binary cycle power plant including same
US20210095572A1 (en) Combined cycle plant and method for operating same
JP2014009624A (en) Waste heat utilization method, waste heat utilization system and treatment method of boiler exhaust gas
EP1709303A2 (en) Method of and apparatus for pressurizing gas flowing in a pipeline
US9540961B2 (en) Heat sources for thermal cycles
JP2004353517A (en) Power generating device
JPH05272308A (en) Organic medium applied motive power recovery plant
JP5142817B2 (en) Operation method of condensate system in steam power plant
JP3670319B2 (en) Binary power generation system
JP2001280103A (en) Turbine equipment
JP3697291B2 (en) Fluidized bed boiler power plant
JP2014218922A (en) Prime motor system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees