JP2007332743A - Aseismatic reinforcing member and aseismatic reinforcing method - Google Patents

Aseismatic reinforcing member and aseismatic reinforcing method Download PDF

Info

Publication number
JP2007332743A
JP2007332743A JP2006187193A JP2006187193A JP2007332743A JP 2007332743 A JP2007332743 A JP 2007332743A JP 2006187193 A JP2006187193 A JP 2006187193A JP 2006187193 A JP2006187193 A JP 2006187193A JP 2007332743 A JP2007332743 A JP 2007332743A
Authority
JP
Japan
Prior art keywords
stress transmission
transmission part
slide
seismic
material axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006187193A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nobata
義昭 野畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006187193A priority Critical patent/JP2007332743A/en
Publication of JP2007332743A publication Critical patent/JP2007332743A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aseismatic reinforcing member and an aseismatic reinforcing method, capable of ensuring strength for suppressing deformation as needed, and having such toughness that it is difficult to break even in application of a large force and excellent restoring force. <P>SOLUTION: The aseismatic reinforcing member comprises a pair of material axial stress transmission parts 1 including at least one or more elastic members 6 and disposed substantially in parallel with each of structural materials orthogonal thereto, and at least one or more oblique stress transmission parts 2 located between the material axial stress transmission parts 1 and 1. The material axial stress transmission parts 1 are adapted to be slidably mountable on the structural materials. Both ends of the oblique stress transmission part 2 are fixed to or slidably attached to the material axial stress transmission parts 1. The oblique stress transmission part 2 is desirably joined with each material axial stress transmission part 1 through a rotatable pin connection 12. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は建築物、工作物等、構造材によって構成される構造物において、土台と柱、梁と柱、梁と梁など、隣接する構造材どうしを連結して耐震・耐風圧性能を向上するための耐震補強部材および当該部材を使用した耐震補強工法に関する。なお、建築物を構成する建具、あるいは大型家具等、部材によって構成された物への応用も可能である。The present invention improves the earthquake resistance and wind pressure performance by connecting adjacent structural materials such as foundations and columns, beams and columns, beams and beams, etc., in structures composed of structural materials such as buildings and workpieces. The present invention relates to a seismic reinforcing member and a seismic reinforcing method using the member. In addition, the application to the object comprised by members, such as joinery which comprises a building, or large furniture, is also possible.

従来、木造建築物の耐震工法としては、柱等垂直材と梁等横架材で囲まれた構面に、筋交い、あるいは合板、パネル等を設置した耐力壁を設けて強度を高める工法が公知である。また、鉄骨造においては、同様にブレースを設置して強度を高める工法が公知である。Conventionally, as a seismic construction method for wooden buildings, a method of increasing strength by providing a bearing wall with braces or plywood, panels, etc. on the construction surface surrounded by vertical members such as columns and horizontal members such as beams is known. It is. In steel frame construction, a method of increasing the strength by installing braces is also known.

また、耐震性能を高めるために前記構面の構造材が直交差する部分、すなわちコーナー部を補強する種々の部材が提案されている。
例えば、ばね材の変形によって地震力を吸収する耐震補強金具(特許文献1・2・3参照)。例えば、粘弾性材によって地震力を吸収する仕口ダンパー(特許文献4参照)等がある。上記特許文献に記載の補強構造は、いずれも地震や強風等の水平力がかかった場合に、仕口が変形することによりエネルギーを吸収して建物崩壊を防ぐものである。
特開2003−96911号公報 特開2005−220585号公報 特開2005−68912号公報 特開2005−220614号公報
In order to improve seismic performance, various members that reinforce the portions where the structural members of the construction surface are orthogonally crossed, that is, corner portions, have been proposed.
For example, a seismic reinforcement bracket that absorbs seismic force by deformation of a spring material (see Patent Documents 1, 2, and 3). For example, there is a joint damper (see Patent Document 4) that absorbs seismic force by a viscoelastic material. Each of the reinforcing structures described in the above patent documents absorbs energy and prevents building collapse by deforming the joint when a horizontal force such as an earthquake or strong wind is applied.
JP 2003-96911 A Japanese Patent Laid-Open No. 2005-220585 JP 2005-68912 A JP 2005-220614 A

上記従来の補強部材(特許文献1−3)は、仕口変形のエネルギーを吸収し、地震時に仕口がばらばらになってしまうのを防ぐことは可能であるが、大地震等、大きな力が加わった場合に、変形を抑制するための必要な強度を確保するには未だ不十分である。The above-mentioned conventional reinforcing member (Patent Documents 1-3) absorbs the energy of deformation of the joint and can prevent the joint from breaking apart at the time of an earthquake. When added, it is still insufficient to ensure the necessary strength to suppress deformation.

また、上記従来の補強部材(特許文献4)は必要とされる強度を確保することが可能と思われるが、ずれて変形した仕口金物が元に戻る復元力はなく、地震後建物が変形したままの状態となる恐れがある。In addition, the above-mentioned conventional reinforcing member (Patent Document 4) seems to be able to ensure the required strength, but there is no restoring force to return the fittings that have been displaced and deformed, and the building after the earthquake is deformed. There is a risk that it will remain as it is.

公知の技術である筋交い、合板、パネル等を利用した耐力壁は、耐震工法として安価で最も効果的な方法であるが、建築物における重要な要素である開口部には設置できない。そのため自由なプランニングができない。また、基本的に靭性の小さい剛接合の考え方に基づく技術であるため、上記筋交い、合板等を留め付ける部材は、変形時の復元力を持たない釘、ねじ等で固着される。そのため、大地震等、大きな力が加わった場合には、釘、ねじ等の留め付け部材に力がかかり、変形あるいは破断する恐れもある。The known load-bearing wall using bracing, plywood, and panels, which is a well-known technique, is an inexpensive and most effective method for seismic construction, but cannot be installed in openings that are important elements in buildings. Therefore, free planning is not possible. In addition, since the technique is basically based on the concept of rigid joining with low toughness, the members that fasten the bracing, plywood, and the like are fixed with nails, screws, or the like that do not have a restoring force during deformation. Therefore, when a large force is applied, such as a large earthquake, a force is applied to a fastening member such as a nail or a screw, which may cause deformation or breakage.

本発明は、上記従来技術の欠点を解消するためになされたものであり、変形を抑制するための強度を必要に応じて確保でき、大きな力が加わった時にも壊れにくい靭性を有し、且つ優れた復元力を有する耐震補強部材および耐震補強工法を提供することを目的とする。The present invention has been made to eliminate the above-mentioned drawbacks of the prior art, can ensure the strength for suppressing deformation as needed, has toughness that is not easily broken when a large force is applied, and An object of the present invention is to provide a seismic reinforcing member and a seismic reinforcing method having an excellent restoring force.

本発明は、
(1)建築物、工作物等、構造材によって構成される構造物において、直交差する構造材同士を接合する補強部材であって、
棒状体から成り、当該棒状体の所定の2個所を折り曲げて形成された3つの直線状部分である材軸応力伝達部1、斜め応力伝達部2、および材軸応力伝達部1の内、両端に位置する材軸応力伝達部1が、前記直交差する二つの構造材それぞれと略平行になるように構成した一体型コーナー部材100を備え、
当該一体型コーナー部材100を構成する材軸応力伝達部1、材軸応力伝達部1を、所定の位置で前記構造材と略平行に摺動自在になるように取り付け、且つ前記構造材それぞれに固定可能となるように形成したガイド部4を当該材軸応力伝達部1に一以上備えたことを特徴とする耐震補強部材。
The present invention
(1) In a structure constituted by a structural material such as a building or a workpiece, a reinforcing member that joins the structural materials orthogonal to each other,
Both ends of the material axis stress transmission unit 1, the oblique stress transmission unit 2, and the material axis stress transmission unit 1, which are three linear portions formed of a rod-like body and formed by bending predetermined two portions of the rod-like body, The material-axis stress transmission part 1 located at 1 is provided with an integrated corner member 100 configured so as to be substantially parallel to each of the two orthogonally-different structural materials,
The material axis stress transmitting portion 1 and the material axis stress transmitting portion 1 constituting the integrated corner member 100 are attached so as to be slidable substantially in parallel with the structural material at predetermined positions, and are attached to the structural materials, respectively. A seismic reinforcing member comprising one or more guide portions 4 formed so as to be fixable in the material axial stress transmission portion 1.

(2)建築物、工作物等、構造材によって構成される構造物において、直交差する構造材同士を接合する補強部材であって、
棒状体で形成され、前記直交差する二つの構造材それぞれと略平行になるように配置された材軸応力伝達部1と材軸応力伝達部1と、
当該材軸応力伝達部1と材軸応力伝達部1との間に位置し、所定の形態を有する連接部材12を所定の形態を有する斜め応力伝達部2の両端部に接合して形成された接合型斜め応力伝達部2aの連接部材12を、
当該材軸応力伝達部1および材軸応力伝達部1に接合することで、材軸応力伝達部1、斜め応力伝達部2、および、材軸応力伝達部1が一体となるように形成した接合型コーナー部材101を備え、
当該接合型コーナー部材101を構成する材軸応力伝達部1、材軸応力伝達部1を、所定の位置で前記構造材と略平行に摺動自在になるように取り付け、且つ前記構造材それぞれに固定可能となるように形成したガイド部4を当該材軸応力伝達部1に一以上備えたことを特徴とする耐震補強部材。
(2) In a structure constituted by a structural material such as a building or a workpiece, a reinforcing member that joins the structural materials orthogonal to each other,
A material axis stress transmission unit 1 and a material axis stress transmission unit 1 which are formed of rod-like bodies and are arranged so as to be substantially parallel to each of the two orthogonally different structural materials;
It is located between the material axis stress transmission part 1 and the material axis stress transmission part 1 and is formed by joining connecting members 12 having a predetermined form to both ends of the oblique stress transmission part 2 having a predetermined form. The connecting member 12 of the joining type oblique stress transmission part 2a is
A joint formed by joining the material axis stress transmission unit 1 and the material axis stress transmission unit 1 so that the material axis stress transmission unit 1, the oblique stress transmission unit 2 and the material axis stress transmission unit 1 are integrated. A mold corner member 101,
The material axis stress transmission part 1 and the material axis stress transmission part 1 constituting the joining type corner member 101 are attached so as to be slidable substantially in parallel with the structure material at predetermined positions, and each of the structure materials is attached. A seismic reinforcing member comprising one or more guide portions 4 formed so as to be fixable in the material axial stress transmission portion 1.

(3)建築物、工作物等、構造材によって構成される構造物において、直交差する構造材同士を接合する補強部材であって、
棒状体で形成され、前記直交差する二つの構造材それぞれと略平行になるように配置された材軸応力伝達部1と材軸応力伝達部1と、
当該材軸応力伝達部1と材軸応力伝達部1との間に位置し、当該材軸応力伝達部1に摺動自在に装着できるガイドを有するスライド部材5を所定の形態を有する斜め応力伝達部2の両端部に接合して形成されたスライド型斜め応力伝達部2bのスライド部材5を、
当該材軸応力伝達部1に摺動自在に装着することで、材軸応力伝達部1、スライド型斜め応力伝達部2b、および、材軸応力伝達部1が一体となるように形成したスライド型コーナー部材102を備え、
当該スライド型コーナー部材102を構成する材軸応力伝達部1、材軸応力伝達部1を、所定の位置で前記構造材と略平行に摺動自在になるように取り付け、且つ前記構造材それぞれに固定可能となるように形成したガイド部4を当該材軸応力伝達部1に一以上備えたことを特徴とする耐震補強部材。
(3) In a structure constituted by a structural material such as a building or a workpiece, a reinforcing member that joins the structural materials orthogonal to each other,
A material axis stress transmission unit 1 and a material axis stress transmission unit 1 which are formed of rod-like bodies and are arranged so as to be substantially parallel to each of the two orthogonally different structural materials;
An oblique stress transmission having a predetermined form of a slide member 5 having a guide located between the material axis stress transmission unit 1 and the material axis stress transmission unit 1 and slidably mounted on the material axis stress transmission unit 1 The slide member 5 of the slide-type oblique stress transmission part 2b formed by joining both ends of the part 2
A slide type formed so that the material axis stress transmission unit 1, the slide-type oblique stress transmission unit 2b, and the material axis stress transmission unit 1 are integrated by being slidably attached to the material axis stress transmission unit 1. A corner member 102;
The material axis stress transmission part 1 and the material axis stress transmission part 1 constituting the slide-type corner member 102 are attached so as to be slidable substantially in parallel with the structure material at predetermined positions, and are attached to the respective structure materials. A seismic reinforcing member comprising one or more guide portions 4 formed so as to be fixable in the material axial stress transmission portion 1.

(4)前記接合型コーナー部材101の接合型斜め応力伝達部2a、または、スライド型コーナー部材102のスライド型斜め応力伝達部2bを構成する接合部材12と斜め応力伝達部2との接合部、または、スライド部材5と斜め応力伝達部2との接合部の内、少なくとも一以上の接合部を回動自在なピン接合としたことを特徴とする上記(2)または(3)に記載の耐震補強部材。(4) The joint portion between the joint-type oblique stress transmission portion 2a of the joint-type corner member 101 or the joint member 12 and the oblique stress transmission portion 2 constituting the slide-type oblique stress transmission portion 2b of the slide-type corner member 102, Alternatively, at least one of the joints between the slide member 5 and the oblique stress transmission part 2 is a pivotable pin joint, and the earthquake resistance as described in (2) or (3) above Reinforcing member.

(5)前記接合型コーナー部材101の接合型斜め応力伝達部2aを構成する斜め応力伝達部2、または、前記スライド型コーナー部材102のスライド型斜め応力伝達部2bを構成する斜め応力伝達部2が棒状体で形成されたことを特徴とする上記(2)ないし(4)の何れかに記載の耐震補強部材。(5) The oblique stress transmission part 2 constituting the joint type oblique stress transmission part 2a of the joint type corner member 101 or the oblique stress transmission part 2 constituting the slide type oblique stress transmission part 2b of the slide type corner member 102. The seismic reinforcing member according to any one of (2) to (4), wherein is formed of a rod-shaped body.

(6)上記(1)ないし(5)の何れかに記載の一体型コーナー部材100、または、接合型コーナー部材101を備え、加えて当該一体型コーナー部材100、または、接合型コーナー部材101を構成する材軸応力伝達部1に、上記(3)ないし(5)の何れかに記載のスライド型斜め応力伝達部2bを少なくとも一以上摺動自在に装着したことを特徴とする耐震補強部材。(6) The integrated corner member 100 or the junction type corner member 101 according to any one of the above (1) to (5) is provided, and in addition, the integrated corner member 100 or the junction type corner member 101 is provided. An earthquake-resistant reinforcing member, wherein at least one slide-type oblique stress transmission portion 2b according to any one of (3) to (5) is slidably attached to a material axial stress transmission portion 1 that constitutes.

(7)上記(3)ないし(5)の何れかに記載のスライド型コーナー部材102を備え、加えて当該スライド型コーナー部材102を構成する材軸応力伝達部1に、上記(3)ないし(5)の何れかに記載のスライド型斜め応力伝達部2bを少なくとも一以上摺動自在に装着したことを特徴とする耐震補強部材。(7) The slide type corner member 102 according to any one of the above (3) to (5) is provided, and in addition, the material axis stress transmission portion 1 constituting the slide type corner member 102 is provided with the above (3) to ( 5) A seismic reinforcement member, wherein at least one slide type oblique stress transmission portion 2b according to any one of 5) is slidably mounted.

(8)前記材軸応力伝達部1の一部を所定の形状に成形、あるいは略円形に捲回することで、材軸応力伝達部1自体が伸縮可能となる緩衝湾曲部10を設けたことを特徴とする上記(1)ないし(7)の何れかに記載の耐震補強部材。(8) The buffer bending portion 10 is provided in which the material axial stress transmission portion 1 itself can be expanded and contracted by forming a part of the material axial stress transmission portion 1 into a predetermined shape or winding it into a substantially circular shape. The seismic reinforcement member according to any one of the above (1) to (7).

(9)前記一体型コーナー部材100、または、接合型コーナー部材101、または、スライド型コーナー部材102を構成する材軸応力伝達部1の内、少なくとも一方の材軸応力伝達部1の構造材直交差側の端部を、対置する構造材または基礎に固定された所定の固着部材に接合可能なように構成されたことを特徴とする上記(1)ないし(8)の何れかに記載の耐震補強部材。(9) Among the integral-type corner member 100, the joint-type corner member 101, or the slide-type corner member 102, the structural axis of at least one of the material-axis stress transmission units 1 is directly The earthquake resistance according to any one of the above (1) to (8), characterized in that the end on the crossing side is configured to be able to be joined to a predetermined fixing member fixed to a structural material or a foundation to be opposed. Reinforcing member.

(10)前記材軸応力伝達部1の一部を、当該材軸応力伝達部1が設置された前記構造材に固着可能となるように構成されたことを特徴とする上記(1)ないし(9)の何れかに記載の耐震補強部材。(10) The above-described (1) to (1), wherein a part of the material axial stress transmission unit 1 is configured to be able to be fixed to the structural material in which the material axial stress transmission unit 1 is installed. 9) The seismic reinforcement member according to any one of the above.

(11)前記材軸応力伝達部1が当該材軸応力伝達部1が取り付けられている構造材に対して所定の角度を有するように構成されたことを特徴とする上記(1)ないし(10)の何れかに記載の耐震補強部材。(11) The above-described (1) to (10), wherein the material axial stress transmission portion 1 is configured to have a predetermined angle with respect to the structural material to which the material axial stress transmission portion 1 is attached. The seismic reinforcing member according to any one of the above.

(12)前記材軸応力伝達部1および斜め応力伝達部2から成る一体型コーナー部材100、または、接合型コーナー部材101、または、スライド型コーナー部材102の材軸応力伝達部1を片側1個のみ備え、且つ、当該コーナー部材を構成する斜め応力伝達部2の端部を前記構造材に固着可能、または回動自在なピン接合で固定可能としたことを特徴とする上記(1)ないし(11)の何れかに記載の耐震補強部材。(12) One side of the material axis stress transmission part 1 of the integrated corner member 100 composed of the material axis stress transmission part 1 and the oblique stress transmission part 2, or the joint type corner member 101 or the slide type corner member 102. (1) thru | or (1) thru | or (1) thru | or (1) thru | or which can be fixed to the said structural material, or can be fixed by pivotable pin joining. 11) The seismic reinforcement member according to any one of the above.

(13)前記スライド型斜め応力伝達部2bを構成するスライド部材5に、前記材軸応力伝達部1が挿通可能な通孔を備え、且つ、当該材軸応力伝達部1に当該スライド部材5を嵌着することで、スライド型斜め応力伝達部2bが材軸応力伝達部1に摺動自在に装着されたことを特徴とする上記(3)ないし(12)の何れかに記載の耐震補強部材。(13) The slide member 5 constituting the slide-type oblique stress transmission portion 2b is provided with a through-hole through which the material axis stress transmission portion 1 can be inserted, and the slide member 5 is provided in the material axis stress transmission portion 1. The seismic reinforcement member according to any one of (3) to (12) above, wherein the sliding-type oblique stress transmission portion 2b is slidably attached to the material axis stress transmission portion 1 by being fitted. .

(14)前記ガイド部4に、前記材軸応力伝達部1が挿通可能な通孔を備え、当該ガイド部4に当該材軸応力伝達部1を挿着することで、材軸応力伝達部1が摺動自在となるようにガイド部4が形成されたことを特徴とする上記(1)ないし(13)の何れかに記載の耐震補強部材。(14) The guide part 4 is provided with a through-hole through which the material axis stress transmission part 1 can be inserted, and the material axis stress transmission part 1 is inserted into the guide part 4 so as to be inserted. The earthquake-resistant reinforcing member according to any one of (1) to (13), wherein the guide portion 4 is formed so as to be slidable.

(15)前記一体型コーナー部材100、または、接合型コーナー部材101、または、スライド型コーナー部材102を構成する材軸応力伝達部1の所定の位置に取り付けられ、材軸応力伝達部1が摺動した時、前記ガイド部4、または、スライド部材5と接触することで材軸応力伝達部1の摺動が阻害されるように形成されたストッパ部材3を少なくとも一以上備えたことを特徴とする上記(1)ないし(14)の何れかに記載の耐震補強部材。(15) The integral-type corner member 100, the joint-type corner member 101, or the slide-type corner member 102 is attached to a predetermined position of the material-axis stress transmission unit 1, and the material-axis stress transmission unit 1 is slid. And at least one stopper member 3 formed so that sliding of the material axial stress transmission portion 1 is inhibited by contact with the guide portion 4 or the slide member 5 when moved. The seismic reinforcement member according to any one of (1) to (14).

(16)前記ストッパ部材3の外端が、前記ガイド部4、または、スライド部材5の通孔の縁よりも外方に位置するように形成することで、ガイド部4、または、スライド部材5と接触可能となり、材軸応力伝達部1の摺動が阻害されるように形成されたことを特徴とする上記(15)に記載の耐震補強部材。(16) The guide member 4 or the slide member 5 is formed such that the outer end of the stopper member 3 is positioned outside the edge of the through hole of the guide portion 4 or the slide member 5. The seismic reinforcing member according to (15), wherein the seismic reinforcing member is formed so as to be able to come into contact with the material shaft and to prevent sliding of the material axial stress transmission portion 1.

(17)前記材軸応力伝達部1の一部または全てが雄ねじ部材で形成されたことを特徴とする上記(1)ないし(16)の何れかに記載の耐震補強部材。(17) The seismic reinforcement member according to any one of (1) to (16), wherein a part or all of the material axial stress transmission portion 1 is formed of a male screw member.

(18)前記ストッパ部材3の少なくとも一以上が雌ねじ部材で形成されたことを特徴とする上記(15)ないし(17)の何れかに記載の耐震補強部材。(18) The seismic reinforcement member according to any one of (15) to (17), wherein at least one of the stopper members 3 is formed of a female screw member.

(19)前記スライド型コーナー部材102を構成するスライド部材5の両端に雌ねじ部材を設置し、スライド部材5を材軸応力伝達部1に固着することでスライド部材5、および、雌ねじ部材に前記接合型コーナー部材101を構成する接合部材12としての機能を持たせたことを特徴とする上記(2)ないし(18)の何れかに記載の耐震補強部材。(19) Female screw members are installed at both ends of the slide member 5 constituting the slide-type corner member 102, and the slide member 5 is fixed to the material axis stress transmission unit 1 to join the slide member 5 and the female screw member. The seismic reinforcement member according to any one of the above (2) to (18), which has a function as the joining member 12 constituting the mold corner member 101.

(20)前記一体型コーナー部材100、または、接合型コーナー部材101、または、スライド型コーナー部材102を構成する材軸応力伝達部1の所定の位置に装着し、前記ガイド部4、または、ストッパ部材3、または、スライド部材5、または、接合部材12の端部と接触可能となるように形成された弾性部材6を一以上備えたことを特徴とする上記(1)ないし(19)の何れかに記載の耐震補強部材。(20) The guide unit 4 or the stopper is mounted at a predetermined position of the material axis stress transmission unit 1 constituting the integrated corner member 100, the junction type corner member 101, or the slide type corner member 102. Any one of the above (1) to (19), comprising at least one elastic member 6 formed so as to be in contact with the end of the member 3, the slide member 5 or the joining member 12. The seismic reinforcement member according to the above.

(21)前記一体型コーナー部材100、または、接合型コーナー部材101、または、スライド型コーナー部材102を構成する材軸応力伝達部1の所定の位置に装着し、前記ガイド部4、または、ストッパ部材3、または、スライド部材5、または、接合部材12の端部に一端を固着した弾性部材6を一以上備えたことを特徴とする上記(1)ないし(20)の何れかに記載の耐震補強部材。(21) The guide unit 4 or the stopper is mounted at a predetermined position of the material axis stress transmission unit 1 constituting the integrated corner member 100, the junction type corner member 101, or the slide type corner member 102. The earthquake resistance according to any one of (1) to (20) above, further comprising at least one elastic member 6 having one end fixed to the end of the member 3, the slide member 5 or the joining member 12. Reinforcing member.

(22)前記ストッパ部材3とガイド部4との間に、上記(20)に記載の弾性部材6を一以上備えることで、材軸応力伝達部1がスライド移動した時に、当該弾性部材6が当該ストッパ部材3、および、ガイド部4と接触し、縮退することで圧縮ばねとして機能するように構成したことを特徴とする上記(15)ないし(21)の何れかに記載の耐震補強部材。(22) By providing one or more elastic members 6 according to the above (20) between the stopper member 3 and the guide portion 4, when the material axis stress transmission portion 1 slides, The seismic reinforcement member according to any one of the above (15) to (21), which is configured to function as a compression spring by contacting with the stopper member 3 and the guide portion 4 and retracting.

(23)前記接合部材12とガイド部4との間に、上記(20)に記載の弾性部材6を一以上備えることで、材軸応力伝達部1がスライド移動した時に、当該弾性部材6が接合部材12、および、ガイド部4と接触し、縮退することで圧縮ばねとして機能するように構成したことを特徴とする上記(2)または、上記(4)ないし(22)の何れかに記載の耐震補強部材。(23) By providing one or more elastic members 6 according to the above (20) between the joining member 12 and the guide portion 4, when the material axis stress transmission portion 1 slides, the elastic member 6 Any one of the above (2) or (4) to (22) is configured to function as a compression spring by contacting with the joining member 12 and the guide portion 4 and retracting. Seismic reinforcement member.

(24)前記スライド部材5とガイド部4との間に、上記(20)に記載の弾性部材6を一以上備えることで、材軸応力伝達部1がスライド移動した時に、当該弾性部材6がスライド部材5、および、ガイド部4と接触し、縮退することで圧縮ばねとして機能するように構成したことを特徴とする上記(3)ないし(23)の何れかに記載の耐震補強部材。(24) By providing one or more elastic members 6 as described in (20) above between the slide member 5 and the guide portion 4, when the material axis stress transmission portion 1 slides, the elastic member 6 The seismic reinforcement member according to any one of (3) to (23), wherein the seismic reinforcement member is configured to function as a compression spring by contacting with the slide member 5 and the guide portion 4 and retracting.

(25)前記ストッパ部材3とガイド部4との間に、上記(21)に記載の弾性部材6を備え、当該弾性部材6の両端部をストッパ部材3の端部、および、ガイド部4の端部にそれぞれ固着することで、材軸応力伝達部1がスライド移動した時に、当該弾性部材6が縮退、あるいは伸張し、圧縮ばね、あるいは引きばねとして機能するように構成したことを特徴とする上記(15)ないし(24)の何れかに記載の耐震補強部材。(25) The elastic member 6 according to (21) is provided between the stopper member 3 and the guide portion 4, and both ends of the elastic member 6 are connected to the end portion of the stopper member 3 and the guide portion 4. The elastic member 6 is configured to be contracted or expanded to function as a compression spring or a pulling spring when the material axial stress transmission unit 1 slides by being fixed to the ends. The seismic reinforcement member according to any one of (15) to (24).

(26)前記接合部材12とガイド部4との間に、上記(21)に記載の弾性部材6を備え、当該弾性部材6の両端部を接合部材12の端部、および、ガイド部4の端部にそれぞれ固着することで、材軸応力伝達部1がスライド移動した時に、当該弾性部材6が縮退、あるいは伸張し、圧縮ばね、あるいは引きばねとして機能するように構成したことを特徴とする上記(2)または、上記(4)ないし(25)の何れかに記載の耐震補強部材。(26) The elastic member 6 according to the above (21) is provided between the joining member 12 and the guide portion 4, and both ends of the elastic member 6 are connected to the end portion of the joining member 12 and the guide portion 4. The elastic member 6 is configured to be contracted or expanded to function as a compression spring or a pulling spring when the material axial stress transmission unit 1 slides by being fixed to the ends. The seismic reinforcement member according to any one of (2) or (4) to (25).

(27)前記スライド部材5とガイド部4との間に、上記(21)に記載の弾性部材6を備え、当該弾性部材6の両端部をスライド部材5の端部、および、ガイド部4の端部にそれぞれ固着することで、スライド部材5がスライド移動した時に、当該弾性部材6が縮退、あるいは伸張し、圧縮ばね、あるいは引きばねとして機能するように構成したことを特徴とする上記(3)ないし(26)の何れかに記載の耐震補強部材。(27) The elastic member 6 according to (21) is provided between the slide member 5 and the guide portion 4, and both ends of the elastic member 6 are connected to the end portions of the slide member 5 and the guide portion 4. The above-mentioned (3), wherein the elastic member 6 is contracted or expanded when the slide member 5 is slid by being fixed to the end portions, and functions as a compression spring or a tension spring. The seismic reinforcing member according to any one of (26) to (26).

(28)前記ガイド部4とガイド部4との間に、上記(20)または(21)に記載の弾性部材6を二以上設け、当該弾性部材6と弾性部材6との間に前記ストッパ部材3を二以上設けたことを特徴とする上記(15)ないし(27)の何れかに記載の耐震補強部材。(28) Two or more elastic members 6 according to the above (20) or (21) are provided between the guide portion 4 and the guide portion 4, and the stopper member is provided between the elastic member 6 and the elastic member 6. The seismic reinforcing member according to any one of (15) to (27), wherein two or more 3 are provided.

(29)前記ガイド部4と前記接合部材12との間に、上記(20)または(21)に記載の弾性部材6を二以上設け、当該弾性部材6と弾性部材6との間に前記ストッパ部材3を二以上設けたことを特徴とする上記(15)ないし(28)の何れかに記載の耐震補強部材。(29) Two or more elastic members 6 according to the above (20) or (21) are provided between the guide portion 4 and the joining member 12, and the stopper is provided between the elastic member 6 and the elastic member 6. The seismic reinforcement member according to any one of (15) to (28), wherein two or more members 3 are provided.

(30)前記ガイド部4と前記スライド部材5との間に、上記(20)または(21)に記載の弾性部材6を二以上設け、当該弾性部材6と弾性部材6との間に前記ストッパ部材3を二以上設けたことを特徴とする上記(15)ないし(29)の何れかに記載の耐震補強部材。(30) Two or more elastic members 6 according to the above (20) or (21) are provided between the guide portion 4 and the slide member 5, and the stopper is provided between the elastic member 6 and the elastic member 6. The seismic reinforcement member according to any one of (15) to (29), wherein two or more members 3 are provided.

(31)前記弾性部材6がコイルばねであることを特徴とする上記(20)ないし(30)の何れかに記載の耐震補強部材。(31) The seismic reinforcement member according to any one of (20) to (30), wherein the elastic member 6 is a coil spring.

(32)前記ガイド部4を少なくとも一以上固着することで、ガイド部4と一体となるように形成された台座部7を備えたことを特徴とする上記(1)ないし(31)の何れかに記載の耐震補強部材。(32) Any one of the above (1) to (31), characterized in that the base portion 7 is formed so as to be integrated with the guide portion 4 by fixing at least one of the guide portions 4. The seismic reinforcement member described in 1.

(33)前記台座部7の一部、または全体を板状の部材で形成したことを特徴とする上記(32)に記載の耐震補強部材。(33) The seismic reinforcement member according to (32) above, wherein a part or the whole of the pedestal portion 7 is formed of a plate-like member.

(34)前記台座部7が、前記材軸応力伝達部1と略平行な辺に沿って、当該台座部7と略直角に延伸した脇台座部9を台座部7の片辺、または、両辺に備えたことを特徴とする上記(32)または(33)に記載の耐震補強部材。(34) The side pedestal portion 9 extending substantially perpendicular to the pedestal portion 7 along the side substantially parallel to the material axis stress transmission portion 1 is arranged on one side or both sides of the pedestal portion 7. The earthquake-resistant reinforcing member according to (32) or (33), which is provided in the above.

(35)前記台座部7、または、脇台座部9、または、台座部7と脇台座部9の所定の位置に締結具を挿通するための一以上の締結孔が設けられたことを特徴とする上記(32)ないし(34)の何れかに記載の耐震補強部材。(35) One or more fastening holes for inserting fasteners are provided at predetermined positions of the pedestal portion 7, the side pedestal portion 9, or the pedestal portion 7 and the side pedestal portion 9, The seismic reinforcement member according to any one of (32) to (34).

(36)前記接合型コーナー部材101、または、一体型コーナー部材100、または、スライド型コーナー部材102を構成する材軸応力伝達部1の内、少なくとも一方の材軸応力伝達部1の構造材直交差側端部を、対置する構造材に固着可能な台座部7、または、脇台座部9に接合されたことを特徴とする上記(32)ないし(35)の何れかに記載の耐震補強部材。(36) Among the joint-type corner member 101, the integral-type corner member 100, or the slide-type corner member 102, at least one of the material-axis stress transmission units 1 is directly connected to the structural material. The seismic reinforcing member according to any one of the above (32) to (35), wherein the crossing side end portion is joined to the pedestal portion 7 or the side pedestal portion 9 that can be fixed to the facing structural material. .

(37)前記直交差する構造材の各々に取付け可能となるように構成された前記台座部7の構造材直交差側の端部に、棒状部材が挿通可能となる通孔を有する引寄せ部材8を備えたことを特徴とする上記(32)ないし(36)の何れかに記載の耐震補強部材。(37) A pulling member having a through-hole through which a rod-like member can be inserted in an end portion on the structural material orthogonal difference side of the pedestal portion 7 configured to be attachable to each of the structural materials orthogonal to each other. The seismic reinforcement member according to any one of the above (32) to (36), comprising 8.

(38)前記直交差する構造材の各々に取付け可能となるように構成された一対の前記台座部7を、構造材の直交差する部分近傍まで各々延伸し、構造材の直交差部分近傍にて両台座部同士を接合、または、両台座部を一の部材を折り曲げて略L型の一体の部材となるように形成されたことを特徴とする上記(32)ないし(37)の何れかに記載の耐震補強部材。(38) A pair of the pedestal portions 7 configured so as to be attachable to each of the structural materials that are orthogonally crossed are extended to the vicinity of the orthogonally intersecting portions of the structural materials, respectively, and near the orthogonal difference portions of the structural materials. Any one of the above (32) to (37), wherein the two pedestal portions are joined to each other, or the two pedestal portions are formed to be a substantially L-shaped integral member by bending one member. The seismic reinforcement member described in 1.

(39)前記一対の台座部7の接合部を回動自在なピン接合としたことを特徴とする上記(38)に記載の耐震補強部材。(39) The seismic reinforcement member according to (38), wherein the joint portion of the pair of pedestal portions 7 is a rotatable pin joint.

(40)前記ガイド部4を形成する通孔の一端もしくは両端に、外方に向かう末広がり部を設けたことを特徴とする上記(14)ないし(39)の何れかに記載の耐震補強部材。(40) The seismic reinforcement member according to any one of (14) to (39) above, wherein a diverging portion directed outward is provided at one end or both ends of the through hole forming the guide portion 4.

(41)前記スライド部材5を形成する通孔の一端もしくは両端に、外方に向かう末広がり部を設けたことを特徴とする上記(13)ないし(40)の何れかに記載の耐震補強部材。(41) The seismic reinforcement member according to any one of (13) to (40) above, wherein a diverging portion directed outward is provided at one or both ends of the through hole forming the slide member 5.

(42)前記ガイド部4を形成する通孔において、当該ガイド部4が取り付けられている構造材の材面に対して垂直な方向の内径が、構造材の材面に対して平行な方向の内径よりも大きくなるようにガイド部4の通孔が形成されたことを特徴とする上記(14)ないし(41)の何れかに記載の耐震補強部材。(42) In the through hole forming the guide portion 4, the inner diameter in a direction perpendicular to the material surface of the structural material to which the guide portion 4 is attached is in a direction parallel to the material surface of the structural material. The seismic reinforcement member according to any one of (14) to (41), wherein the through hole of the guide portion 4 is formed to be larger than the inner diameter.

(43)前記ガイド部4の、一端もしくは両端が凹形状に形成されたことを特徴とする上記(42)に記載の耐震補強部材。(43) The earthquake-resistant reinforcing member according to (42), wherein one end or both ends of the guide portion 4 are formed in a concave shape.

(44)前記ガイド部4が、当該ガイド部4に挿着された材軸応力伝達部1に対して、所定の角度を有するように傾斜して形成されていることを特徴とする上記(42)または(43)に記載の耐震補強部材。(44) The above (42), wherein the guide portion 4 is formed so as to be inclined with respect to the material axial stress transmission portion 1 inserted into the guide portion 4 so as to have a predetermined angle. ) Or the seismic reinforcement member according to (43).

(45)前記材軸応力伝達部1、または、斜め応力伝達部2、または、材軸応力伝達部1と斜め応力伝達部2の両方がばね鋼材で形成されたことを特徴とする上記(1)ないし(44)の何れかに記載の耐震補強部材。(45) The above-mentioned (1) characterized in that the material axial stress transmission part 1, or the oblique stress transmission part 2, or both the material axial stress transmission part 1 and the oblique stress transmission part 2 are formed of spring steel. The seismic reinforcement member according to any one of (44) to (44).

(46)前記構造材によって構成される構造物の部分において、4本の構造材で形成された略四角形の構面の隣り合うコーナー部に、前記上記(1)ないし(45)の何れかに記載の耐震補強部材を固着し、当該耐震補強部材を形成する前記材軸応力伝達部1の外端同士を外端接合部材11を介して接合したことを特徴とする耐震補強工法。(46) In any one of the above-mentioned (1) to (45), in a portion of the structure constituted by the structural material, adjacent corner portions of a substantially quadrilateral surface formed by four structural materials A seismic reinforcement construction method characterized by adhering the seismic reinforcement members described above and joining the outer ends of the material axial stress transmission portions 1 forming the seismic reinforcement members via outer end joining members 11.

(47)4本の構造材で形成された略四角形の構面に設置される筋かい、ブレース等、斜材の端部を接合可能とする斜材接合部材13を、前記斜め応力伝達部に備えたことを特徴とする上記(1)ないし(45)の何れかに記載の耐震補強部材。(47) A diagonal joint member 13 capable of joining ends of diagonal members such as braces, braces and the like installed on a substantially rectangular surface formed by four structural members is used as the diagonal stress transmission portion. The seismic reinforcement member according to any one of (1) to (45), characterized in that it is provided.

(48)前記斜材接合部材13が板状部材で形成され、当該板状部材の所定の位置に締結具を挿通するための一以上の締結孔が設けられたことを特徴とする上記(47)に記載の耐震補強部材。(48) The diagonal material joining member 13 is formed of a plate-like member, and one or more fastening holes for inserting fasteners are provided at predetermined positions of the plate-like member (47) ) Seismic reinforcement member described in the above.

本発明は、建築物あるいは工作物において、直交差する構造材それぞれに略平行に配置された二つの棒状部材(材軸応力伝達部)もしくは構造材と、当該棒状部材(材軸応力伝達部)を連接する部材(斜め応力伝達部)とによって略トラス形状を形成することを可能にした耐震補強部材であり、当該トラスを変形可能な構成とすることで、地震等のエネルギーを吸収することが可能な制震構造が得られる。The present invention relates to two rod-shaped members (material axial stress transmission portions) or structural materials arranged substantially in parallel with each of the structural members orthogonal to each other in a building or a workpiece, and the rod-shaped members (material axial stress transmission portions). This is a seismic reinforcement member that can form a substantially truss shape with a member (diagonal stress transmission part) that connects the two, and by making the truss deformable, it can absorb energy such as earthquakes. Possible damping structure is obtained.

また、棒状部材の所定の2個所を折り曲げて形成された一体型コーナー部材で構成した耐震補強部材の場合は、当該一体の部材の変形により地震エネルギーを吸収できるとともに、当該部材の曲げ抵抗力によりトラスの変形を抑制し、且つ良好な復元力を得ることができる。In addition, in the case of an earthquake-resistant reinforcing member composed of an integrated corner member formed by bending two predetermined portions of a rod-shaped member, the deformation of the integrated member can absorb seismic energy and the bending resistance of the member The deformation of the truss can be suppressed and a good restoring force can be obtained.

さらには、構造材と略平行な棒状部材に配置した弾性部材が変形することでさらに大きなエネルギーを吸収できるとともに、当該弾性部材の弾発力によりトラスの変形を抑制し、且つ良好な復元力を得ることができる。Furthermore, the elastic member disposed on the rod-like member substantially parallel to the structural material can be deformed to absorb a larger amount of energy, suppress the deformation of the truss by the elastic force of the elastic member, and provide a good restoring force. Obtainable.

さらには、構造材と略平行な棒状部材(材軸応力伝達部)に配置した弾性部材の数は、必要に応じて増減できるので、強度の大きな耐震補強部材、あるいは強度の小さな耐震補強部材等、強度を変えた耐震補強部材が製造上の大きな変更をすることなく簡単に製造できる。Furthermore, the number of elastic members arranged on a bar-shaped member (material axial stress transmission part) substantially parallel to the structural material can be increased or decreased as necessary, so that a strong earthquake resistant reinforcement member or a less strong earthquake resistant reinforcement member, etc. The seismic reinforcing members with different strengths can be easily manufactured without major changes in manufacturing.

さらには、本耐震補強部材の変形時には、棒状部材(材軸応力伝達部)が構造材と略平行にスライドして変形するため、本耐震補強部材を構造材に締結しているねじ等の締結具に生じる力は引抜き力のみではなく、構造材と平行な力、すなわちせん断力にも分散される。そのため、締結具は引抜き抵抗力とせん断抵抗力との両方で抵抗し、より破壊し難い耐震補強部材が得られる。Furthermore, when the seismic reinforcement member is deformed, the rod-shaped member (material axial stress transmission part) slides and deforms substantially parallel to the structural material. The force generated in the tool is distributed not only to the pulling force but also to a force parallel to the structural material, that is, a shearing force. Therefore, the fastener is resisted by both the pulling resistance and the shearing resistance, and an earthquake-resistant reinforcing member that is more difficult to break is obtained.

本発明は前記「課題を解決するための手段」に記したとおり、数種の部材の組合せにより成立するものである。例えば接合方法、接合部材、接合形態など、略同一機能を有するものであっても多くの異なる形態があり、異なる部材、形態、組合せを採用したとしても、その効果の大小に差はあるものの、課題を解決する手段としては有効である。以下、添付図面を参照しながら本発明を実施例に基づいて説明するが、本実施例は本発明の実施形態の代表的実施例であり、本発明はかかる実施形態のみに限定されるものではない。As described in the above-mentioned “Means for Solving the Problems”, the present invention is established by combining several members. For example, there are many different forms even if they have substantially the same function, such as a joining method, a joining member, and a joining form, and even if different members, forms, and combinations are adopted, there are differences in the magnitude of the effect, It is effective as a means for solving the problems. Hereinafter, the present invention will be described based on examples with reference to the accompanying drawings. However, the present examples are representative examples of the embodiments of the present invention, and the present invention is not limited to the embodiments. Absent.

(実施例1)図1(a)は本発明の実施例1にかかる耐震補強部材の斜視図、図1(b)、(c)は構造原理を説明するための図であり、地震力等、水平力が加わった場合の本耐震補強部材の変形状態を示した側面図である。(本説明図においては、原理を示すため、図を簡略化している。以下他の実施例の説明図も同様とする)なお、矢印は本耐震補強部材の各部材に生じる力の方向を示している。(以下他の実施例の説明図も同様とする)(Embodiment 1) FIG. 1 (a) is a perspective view of a seismic reinforcing member according to Embodiment 1 of the present invention, and FIGS. 1 (b) and 1 (c) are diagrams for explaining the structural principle, such as seismic force. It is the side view which showed the deformation | transformation state of this seismic reinforcement member when a horizontal force is added. (In this explanatory diagram, the diagram is simplified to show the principle. The same applies to the explanatory diagrams of other embodiments.) The arrows indicate the direction of the force generated in each member of the seismic reinforcing member. ing. (The same applies to the explanatory drawings of the other embodiments below.)

実施例1は、棒状体の2箇所を折り曲げ、二つの材軸応力伝達部1と一つの斜め応力伝達部2を形成した一体型コーナー部材100で構成されている。なお、棒状部材はばね鋼材を素材とするのがより好ましい。図1(a)に示すように二つの材軸応力伝達部1は略90度の角度をなし、斜め応力伝達部2がその間に略45度の角度を成して構成されている。材軸応力伝達部1はそれぞれ二つのガイド部4にスライド可能に挿着されている。また、ガイド部4とガイド部4との間、及び外側にはガイド部4と接触可能となるように突出したストッパ3が材軸応力伝達部1に取り付けられている。The first embodiment includes an integrated corner member 100 in which two portions of a rod-like body are bent to form two material axis stress transmission portions 1 and one oblique stress transmission portion 2. The rod-shaped member is more preferably made of spring steel. As shown in FIG. 1 (a), the two material axis stress transmission parts 1 form an angle of about 90 degrees, and the oblique stress transmission parts 2 are formed with an angle of about 45 degrees therebetween. Each of the material axis stress transmission portions 1 is slidably inserted into the two guide portions 4. Further, a stopper 3 protruding so as to be in contact with the guide portion 4 is attached to the material axis stress transmission portion 1 between and outside the guide portion 4 and the guide portion 4.

本実施例1にかかる耐震補強部材は、図1(b)に示すように、直交差する構造材に取り付ける。地震力等、水平力(この場合は構造材が開く方向)が加わった場合には、図1(c)のごとく垂直の構造材が傾く。このとき材軸応力伝達部1は図面下方及び左方にスライドするとともに斜め応力伝達部2はコーナー側に移動し、耐震補強部材は図示のように全体として変形する。(破線は材軸応力伝達部1と斜め応力伝達部2の元の形状を示している。以下他の実施例においても同様とする)なお、この変形はストッパ3がガイド部4と接触することで止まる。このように、地震力が加わった場合には、本耐震補強部材が変形することで一定の地震力を吸収(構造体に作用する地震力を減ずる)するのである。As shown in FIG. 1B, the seismic reinforcing member according to the first embodiment is attached to a structural material that is orthogonally crossed. When a horizontal force (in this case, the opening direction of the structural material) such as seismic force is applied, the vertical structural material is inclined as shown in FIG. At this time, the material axis stress transmission part 1 slides downward and leftward in the drawing, and the oblique stress transmission part 2 moves to the corner side, and the seismic reinforcement member is deformed as a whole as shown in the figure. (The broken lines indicate the original shapes of the material axis stress transmission portion 1 and the oblique stress transmission portion 2. The same applies to other embodiments below.) This deformation is caused by the stopper 3 coming into contact with the guide portion 4. Stop at. In this way, when seismic force is applied, the seismic reinforcement member is deformed to absorb a certain seismic force (reduce the seismic force acting on the structure).

また、本実施例の場合は、材軸応力伝達部1と斜め応力伝達部2とが同一部材で一体に形成されているので、材軸応力伝達部1と斜め応力伝達部2とで形成されたコーナー部には元に戻ろうとする曲げ応力が生じる。同時にストッパ3がガイド部4と接触することでガイド部4には、構造材と略平行、すなわち、材軸方向の力が生じる。In the case of the present embodiment, since the material axial stress transmission portion 1 and the oblique stress transmission portion 2 are integrally formed of the same member, the material axial stress transmission portion 1 and the oblique stress transmission portion 2 are formed. Bending stress that tries to return to the original corner portion is generated. At the same time, when the stopper 3 comes into contact with the guide portion 4, the guide portion 4 is substantially parallel to the structural material, that is, a force in the material axis direction is generated.

本実施例ではガイド部4に固着された台座部7が、木ねじ等締結具によって構造材に固定されるように構成されているが、この締結具にかかる力は先の曲げモーメントによって生じる引抜き力と、材軸応力伝達部1がスライドすることによって構造材の材軸方向に生じるせん断力である。すなわち従来の多くの耐震補強部材の締結具が主として引抜き力で抵抗するのに対し、本発明にかかる耐震補強部材の場合は引抜き力とせん断力の両方で抵抗する。従って、より大きな地震力にも、締結具が破断することなく耐えることができる。なお、本実施例では締結孔を設けた台部座7によって構造材に固定されているが、このような形態に限定されるものではない。例えば鉄骨造の構造材にガイド部4を直接溶接しても良い。また、その形状も実施例に限定されることは無い。In this embodiment, the pedestal portion 7 fixed to the guide portion 4 is configured to be fixed to the structural material by a fastener such as a wood screw, but the force applied to this fastener is the pulling force generated by the previous bending moment. And the shearing force generated in the axial direction of the structural material by sliding the axial stress transmitting portion 1. That is, many conventional fasteners of seismic reinforcing members resist mainly by pulling force, whereas the seismic reinforcing members according to the present invention resist both by pulling force and shearing force. Accordingly, it is possible to withstand a greater seismic force without breaking the fastener. In this embodiment, the pedestal 7 is provided with a fastening hole and is fixed to the structural material. However, the present invention is not limited to such a form. For example, the guide portion 4 may be directly welded to a steel structure material. Further, the shape is not limited to the embodiment.

(実施例2)図2(a)は本発明の実施例2にかかる耐震補強部材の斜視図、図2(b)、(c)は構造原理を説明するための側面図である。(Embodiment 2) FIG. 2 (a) is a perspective view of a seismic reinforcing member according to Embodiment 2 of the present invention, and FIGS. 2 (b) and 2 (c) are side views for explaining the structural principle.

実施例2は、図2(a)に示すように二つの材軸応力伝達部1と一つの接合型斜め応力伝達部2aとから成る接合型コーナー部材101で構成されている。接合型斜め応力伝達部2aは斜め応力伝達部2の両端に回動自在にピン接合した接合部材12を有し、当該接合部材12が材軸応力伝達部1に溶接により接合されている。材軸応力伝達部1は実施例1と同様、ガイド部4にスライド可能に挿着されている。
また、材軸応力伝達部1は一部に雄ねじが切られ、ストッパ部材3(雌ねじ部材)が設けられている。なお、ガイド部4とガイド部4との間は、接合部材12がストッパ部材としての機能を有している。
As shown in FIG. 2 (a), the second embodiment includes a joining-type corner member 101 that includes two material axis stress transmission portions 1 and one joining-type oblique stress transmission portion 2a. The joint-type oblique stress transmission part 2a has a joining member 12 that is pivotally connected to both ends of the oblique stress transmission part 2, and the joining member 12 is joined to the material axis stress transmission part 1 by welding. As in the first embodiment, the material axial stress transmission portion 1 is slidably inserted into the guide portion 4.
Further, the material axis stress transmission portion 1 is partially male threaded and is provided with a stopper member 3 (female thread member). In addition, between the guide part 4 and the guide part 4, the joining member 12 has a function as a stopper member.

図2(b)に示すように、本実施例2にかかる耐震補強部材は、実施例1と同様、直交差する構造材に取り付ける。図2(c)に示すように、地震力が加わった場合には、実施例1と略同様に変形する。実施例1と同様、本実施例2の場合も本耐震補強部材が変形することで地震力を吸収するのである。ただし、ピン接合のため、変形時において曲げモーメントは生じず、そのため締結具にかかる引抜き力は小さい。As shown in FIG. 2B, the seismic reinforcing member according to the second embodiment is attached to a structural material that is orthogonally crossed, as in the first embodiment. As shown in FIG. 2C, when a seismic force is applied, the deformation is performed in substantially the same manner as in the first embodiment. Like Example 1, also in the case of Example 2, the seismic reinforcing member is deformed to absorb the seismic force. However, since the pins are joined, no bending moment is generated at the time of deformation, and therefore the pulling force applied to the fastener is small.

(実施例3)図3(a)は本発明の実施例3にかかる耐震補強部材の斜視図、図3(b)、(c)は構造原理を説明するための側面図である。(Embodiment 3) FIG. 3 (a) is a perspective view of a seismic reinforcing member according to Embodiment 3 of the present invention, and FIGS. 3 (b) and 3 (c) are side views for explaining the structural principle.

実施例3は、図3(a)に示すように二つの材軸応力伝達部1と一つのスライド型斜め応力伝達部2bとから成るスライド型コーナー部材102で構成されている。前記スライド型斜め応力伝達部2bは斜め応力伝達部2の両端に、材軸応力伝達部1が挿通可能な部材(筒体)で形成されたスライド部材5を接合(ピン接合)し、当該スライド部材5を材軸応力伝達部1に摺動自在となるように嵌着させている。
なお、材軸応力伝達部1が実施例2と同様にガイド部4にスライド可能に取り付けられているが、本実施例の場合、スライド部材5がスライドするので材軸応力伝達部1をガイド部4に固定することで材軸応力伝達部1を構造材に固着するようにしても良い。
As shown in FIG. 3A, the third embodiment is configured by a slide-type corner member 102 including two material axis stress transmission portions 1 and one slide-type oblique stress transmission portion 2b. The slide-type oblique stress transmission part 2b joins (pin joins) a slide member 5 formed of a member (tubular body) into which the material axis stress transmission part 1 can be inserted at both ends of the oblique stress transmission part 2. The member 5 is fitted to the material axis stress transmission portion 1 so as to be slidable.
In addition, although the material axial stress transmission part 1 is slidably attached to the guide part 4 similarly to Example 2, in the case of the present Example, since the slide member 5 slides, the material axial stress transmission part 1 is used as the guide part. 4 may be fixed to the structural material.

図3(b)(c)に示すように、本実施例3にかかる耐震補強部材の構造材への取り付け方、地震力が加わった場合の変形形態は、実施例2と略同様である。ただし、本実施例の場合は図面右方、すなわち圧縮側に水平力が加わった場合の変形状態を示してある。この場合もガイド部4にかかる力、すなわち締結具にかかる力は主に構造材の材軸方向に生じるせん断力である。As shown in FIGS. 3B and 3C, the method of attaching the seismic reinforcing member according to the third embodiment to the structural material and the deformation mode when the seismic force is applied are substantially the same as those of the second embodiment. However, in the case of the present embodiment, a deformed state when a horizontal force is applied to the right side of the drawing, that is, the compression side is shown. Also in this case, the force applied to the guide portion 4, that is, the force applied to the fastener is a shearing force mainly generated in the material axis direction of the structural material.

(実施例4)図4(a)は本発明の実施例4にかかる耐震補強部材の斜視図、図4(b)は構造原理を説明するための側面図である。(Embodiment 4) FIG. 4 (a) is a perspective view of a seismic reinforcing member according to Embodiment 4 of the present invention, and FIG. 4 (b) is a side view for explaining the structural principle.

実施例4は、実施例1と同様、材軸応力伝達部1と斜め応力伝達部2とが一体の部材で形成された一体型コーナー部材100で構成され、当該材軸応力伝達部1に取り付けられたストッパ部材3とガイド部4との間に、コイルばねで形成された弾性部材6が設けられている。材軸応力伝達部1と斜め応力伝達部2は、ばね鋼材で形成するほうがより好ましい。なお、ガイド部4は2つとも1枚の板状部材からなる台座部7に固着され、当該台座部7に設けた締結孔を通してねじ等の締結具により構造材に固定されている。As in the first embodiment, the fourth embodiment includes an integrated corner member 100 in which the material axial stress transmission portion 1 and the oblique stress transmission portion 2 are formed as an integral member, and is attached to the material axial stress transmission portion 1. An elastic member 6 formed of a coil spring is provided between the stopper member 3 and the guide portion 4 thus formed. It is more preferable that the material axial stress transmission part 1 and the oblique stress transmission part 2 are formed of spring steel. Both guide portions 4 are fixed to a pedestal portion 7 made of a single plate-like member, and are fixed to a structural material by a fastener such as a screw through a fastening hole provided in the pedestal portion 7.

図4(b)に示すように、本実施例4にかかる耐震補強部材へ地震力が加わった場合の変形形態は、実施例1と略同様である。また部材に生じる応力の方向も実施例1と略同様であり、本体(材軸応力伝達部1と斜め応力伝達部2)コーナー部に生じる曲げ応力も実施例1と略同様である。また、本実施例4においても材軸応力伝達部1が構造材の材軸と略平行にスライドする。このとき、ストッパ部材3とガイド部4との間に設けられた弾性部材6(この場合はコイルばね)は当該ストッパ部材3、および、ガイド部4と接触することで、縮退する。As shown in FIG. 4B, the deformation mode when the seismic force is applied to the seismic reinforcing member according to the fourth embodiment is substantially the same as that of the first embodiment. The direction of the stress generated in the member is also substantially the same as in the first embodiment, and the bending stress generated in the corner portion of the main body (the material axis stress transmission portion 1 and the oblique stress transmission portion 2) is also substantially the same as in the first embodiment. Also in the fourth embodiment, the material axis stress transmission portion 1 slides substantially parallel to the material axis of the structural material. At this time, the elastic member 6 (in this case, a coil spring) provided between the stopper member 3 and the guide portion 4 is contracted by coming into contact with the stopper member 3 and the guide portion 4.

本実施例4にかかる耐震補強部材は、このように耐震補強部材全体の変形と耐震補強部材内部に設けられた弾性部材6の変形とで地震力を吸収するのである。同時に、縮退した弾性部材6が復元しようとする弾発力と一体型コーナー部材100本体の曲げ応力の両方で耐震補強部材の変形に抵抗するのである。
すなわち、変形に抵抗する力、すなわち、弾性部材6の弾発力と曲げ応力の両方が合わさった抵抗力が本耐震補強部材における変形時(変形限度内)での強度となる。
The seismic reinforcing member according to the fourth embodiment absorbs the seismic force by the deformation of the whole seismic reinforcing member and the deformation of the elastic member 6 provided inside the seismic reinforcing member. At the same time, the elastic member 6 that has degenerated resists deformation of the seismic reinforcing member by both the elastic force to be restored and the bending stress of the integrated corner member 100 main body.
That is, the force that resists deformation, that is, the resistance force that combines both the elastic force and the bending stress of the elastic member 6 is the strength when the seismic reinforcing member is deformed (within the deformation limit).

なお、弾性部材6をその両端に位置するストッパ部材3とガイド部4とにそれぞれ固着(例えば溶接あるいは止着する等)しても良い。そのようにすれば一の弾性部材6は圧縮ばね、隣に位置する弾性部材6は引きばねとして働く。すなわち同一の弾性部材が圧縮/引きばねの両機能を有することとなり、略半分の数で略同一の強度を確保することが可能である。また、地震が収まり外力が零(ゼロ)となった場合には、弾性部材6の復元力および、本体の復元力により本耐震補強部材ならびに構造体が元の形状に復元することは言うまでもない。The elastic member 6 may be fixed (for example, welded or fixed) to the stopper member 3 and the guide portion 4 located at both ends thereof. By doing so, one elastic member 6 functions as a compression spring, and the adjacent elastic member 6 functions as a tension spring. That is, the same elastic member has both functions of a compression / pull spring, and it is possible to ensure substantially the same strength with approximately half the number. Needless to say, when the earthquake stops and the external force becomes zero, the seismic reinforcing member and the structure are restored to the original shape by the restoring force of the elastic member 6 and the restoring force of the main body.

本実施例においては、二つのガイド部4が1枚の板状部材からなる台座部7に固着され、ねじ等、締結具で構造体に固定されている。このようにすることで、力は一部に集中することなく台座部7に分散される。また、締結具をより多く設置できるという利点があることは言うまでもない。締結具にかかる力は実施例1と同様引抜き力とせん断力である。In this embodiment, the two guide portions 4 are fixed to a base portion 7 made of a single plate-like member, and are fixed to the structure with a fastener such as a screw. By doing in this way, force is disperse | distributed to the base part 7, without concentrating on one part. Moreover, it cannot be overemphasized that there exists an advantage that more fasteners can be installed. The force applied to the fastener is the pulling force and the shearing force as in the first embodiment.

(実施例5)図5(a)は本発明の実施例5にかかる耐震補強部材の斜視図、図5(b)は構造原理を説明するための側面図である。(Embodiment 5) FIG. 5 (a) is a perspective view of a seismic reinforcing member according to Embodiment 5 of the present invention, and FIG. 5 (b) is a side view for explaining the structural principle.

実施例5は、前記実施例3と同様、斜め応力伝達部2の両端にスライド部材5をピン接合したスライド型斜め応力伝達部2bのスライド部材5を材軸応力伝達部1に摺動自在に嵌着させたスライド型コーナー部材102で構成され、当該スライド部材5とガイド部4との間に、コイルばねで形成された弾性部材6が設けられている。In the fifth embodiment, as in the third embodiment, the slide member 5 of the slide type oblique stress transmission portion 2b in which the slide member 5 is pin-joined to both ends of the oblique stress transmission portion 2 can be slid freely on the material axis stress transmission portion 1. An elastic member 6 formed of a coil spring is provided between the slide member 5 and the guide portion 4.

図5(b)に示すように、本実施例5にかかる耐震補強部材へ地震力が加わった場合の変形形態は、実施例3と略同様で、本実施例5においても、スライド部材5が材軸応力伝達部1に沿ってスライドすることで全体が変形する。このとき、スライド部材5とガイド部4との間に設けられた弾性部材6(コイルばね)が当該スライド部材5および、ガイド部4と接触することで、縮退する。As shown in FIG. 5B, the deformation mode when the seismic force is applied to the seismic reinforcing member according to the fifth embodiment is substantially the same as that of the third embodiment. The whole is deformed by sliding along the material axis stress transmission portion 1. At this time, the elastic member 6 (coil spring) provided between the slide member 5 and the guide portion 4 is brought into contact with the slide member 5 and the guide portion 4 to be degenerated.

本実施例5にかかる耐震補強部材は、実施例4と略同様に、耐震補強部材全体の変形と耐震補強部材内部に設けた弾性部材6の変形とで地震力を吸収する。また、圧縮された弾性部材6の弾発力で耐震補強部材の変形に抵抗する。そしてこの場合は、弾性部材6の弾発力が本耐震補強部材における変形時(変形限度内)での強度となる。The seismic reinforcing member according to the fifth embodiment absorbs the seismic force by the deformation of the entire seismic reinforcing member and the deformation of the elastic member 6 provided inside the seismic reinforcing member, as in the fourth embodiment. Further, the elastic force of the compressed elastic member 6 resists deformation of the seismic reinforcement member. In this case, the elastic force of the elastic member 6 becomes the strength when the seismic reinforcing member is deformed (within the deformation limit).

なお、弾性部材が圧縮されて最大限に縮小した場合は、スライド型斜め応力伝達部2b自身の強度、および、締結具の強度で変形、あるいは崩壊に抵抗することは言うまでもない。また、本実施例においては、材軸応力伝達部1の両端に位置するガイド部4の外側に固着部材(ナット)が設けられて材軸応力伝達部1を構造材に固着可能となるように構成されている。スライド型コーナー部材102で構成された本実施例の場合は、このように材軸応力伝達部1を構造材に固着してもよい。Needless to say, when the elastic member is compressed and contracted to the maximum, it is resistant to deformation or collapse due to the strength of the slide-type oblique stress transmission portion 2b itself and the strength of the fastener. Further, in this embodiment, fixing members (nuts) are provided outside the guide portions 4 located at both ends of the material axial stress transmission portion 1 so that the material axial stress transmission portion 1 can be fixed to the structural material. It is configured. In the case of the present embodiment configured by the slide type corner member 102, the material axis stress transmission portion 1 may be fixed to the structural material in this way.

(実施例6)図6(a)は本発明の実施例6にかかる耐震補強部材の斜視図、図6(b)は構造原理を説明するための側面図である。(Embodiment 6) FIG. 6 (a) is a perspective view of a seismic reinforcing member according to Embodiment 6 of the present invention, and FIG. 6 (b) is a side view for explaining the structural principle.

実施例6は、実施例2と同様に、斜め応力伝達部2の両端に連接部材12をピン接合した接合型斜め応力伝達部2aの連接部材12を材軸応力伝達部1に接合した接合型コーナー部材101で構成されている。ただし本実施例の場合は、実施例2と異なり、スライド部材5の両端に固着用部材(雌ねじ)を配することで斜め応力伝達部2を材軸応力伝達部1に固着し、スライド部材5と両端の雌ねじとが連接部材12としての機能を備えている。このように斜め応力伝達部2を材軸応力伝達部1に固着しても良い。あるいは、スライド部材5そのものに雌ねじを形成することで、雄ねじを形成した材軸応力伝達部1に固着しても良い。(図示せず)In the sixth embodiment, as in the second embodiment, the joining type in which the connecting member 12 of the connecting oblique stress transmitting portion 2a is joined to the material stress transmitting portion 1 by connecting the connecting member 12 to both ends of the oblique stress transmitting portion 2 by pin connection. The corner member 101 is configured. However, in the case of the present embodiment, unlike the second embodiment, by arranging fixing members (female screws) at both ends of the slide member 5, the oblique stress transmission portion 2 is fixed to the material axial stress transmission portion 1, and the slide member 5. And the female screws at both ends have a function as the connecting member 12. In this way, the oblique stress transmission part 2 may be fixed to the material axis stress transmission part 1. Or you may adhere to the material axial stress transmission part 1 which formed the external thread by forming an internal thread in the slide member 5 itself. (Not shown)

また、連接部材12とガイド部4、ならびにガイド部4とストッパ部材3との間には弾性部材6が設けられている。
また、垂直な構造材に取り付けられた台座部7の端部に、土台、基礎に固定された棒状部材(アンカーボルト)が挿通可能となる通孔を有する引寄せ部材8を備えている。
An elastic member 6 is provided between the connecting member 12 and the guide portion 4 and between the guide portion 4 and the stopper member 3.
In addition, a pulling member 8 having a through hole through which a rod-like member (anchor bolt) fixed to the base and the foundation can be inserted is provided at an end of the pedestal portion 7 attached to the vertical structural member.

本実施例6にかかる耐震補強部材は、実施例4と略同様に、耐震補強部材全体の変形と内部に設けられた弾性部材6の変形とで地震力を吸収する。しかしながら、図bのように、図面上、左方から力がかかった場合、すなわち本耐震補強部材が圧縮されるように力がかかった場合には、垂直な構造材に上方に向かう大きな引抜き力が生じる。The seismic reinforcement member according to the sixth embodiment absorbs seismic force by the deformation of the entire seismic reinforcement member and the deformation of the elastic member 6 provided in the interior in substantially the same manner as in the fourth embodiment. However, as shown in FIG. B, when a force is applied from the left side in the drawing, that is, when a force is applied so that the seismic reinforcing member is compressed, a large pulling force upwards on the vertical structural member. Occurs.

本実施例6にかかる耐震補強部材においては、図示のごとく引寄せ部材8を設け、アンカーボルトで土台、基礎等に繋ぐことで、垂直な構造材の引き抜きを防止できる。さらには、本実施例のように引寄せ部材8と台座部7とを一体的に形成すれば、上方に向かう力とアンカーボルトの引抜き抵抗力(下方に向かう力)とが釣り合う。そのため、台座部7を固定している締結具にかかる力の内、本耐震補強部材に起因するせん断力は略零(ゼロ)となり、よって締結具をより簡易なものとすることが可能になる。In the seismic reinforcement member according to the sixth embodiment, the pulling member 8 is provided as shown and connected to the base, the foundation, etc. with the anchor bolt, thereby preventing the vertical structural member from being pulled out. Furthermore, if the attracting member 8 and the pedestal portion 7 are integrally formed as in this embodiment, the upward force and the pulling resistance force (downward force) of the anchor bolt balance. Therefore, among the forces applied to the fasteners fixing the pedestal 7, the shearing force due to the seismic reinforcement member is substantially zero (zero), and thus the fasteners can be made simpler. .

なお、引寄せ部材は本実施例の形態に限定されるものではない。アンカーボルト等、土台、基礎等に定着可能な部材を留め着け可能で、且つ、所定の強度を有するように形成されていればどのような形態でも良い。The attracting member is not limited to the form of the present embodiment. Any form may be used as long as it can be fastened to anchor bolts or other members that can be fixed to the foundation, foundation, or the like and has a predetermined strength.

(実施例7)図7(a)は本発明の実施例7にかかる耐震補強部材の斜視図、図7(b)は構造原理を説明するための側面図である。(Embodiment 7) FIG. 7 (a) is a perspective view of a seismic reinforcing member according to Embodiment 7 of the present invention, and FIG. 7 (b) is a side view for explaining the structural principle.

実施例7は、前記実施例4と略同様、一体型コーナー部材100で構成され、ばね鋼材で形成された材軸応力伝達部1の一部を折り曲げることで、材軸応力伝達部1自体が伸縮可能となる緩衝湾曲部10を設けたものである。また、実施例6と同様、引寄せ部材8を備えている。As in the fourth embodiment, the seventh embodiment is configured by the integrated corner member 100, and the material shaft stress transmission section 1 itself is formed by bending a part of the material shaft stress transmission section 1 formed of spring steel. A buffer bending portion 10 that can be expanded and contracted is provided. Further, as in the sixth embodiment, a drawing member 8 is provided.

本発明にかかる耐震補強部材は、耐震補強部材全体が変形するとともに、変形時、地震によって生じる力が構造材の材軸と略平行に配置した材軸応力伝達部1に流れ、スライド可能な材軸応力伝達部1に配置した弾性部材6が変形することで地震力を吸収するものであるが、本実施例7は、さらに材軸応力伝達部1に緩衝湾曲部10を設けることで、材軸応力伝達部1自体が伸縮可能となるようにしたものである。本実施例7においては、図7(b)に示したように、地震等による水平力(この場合は圧縮側)が加わった場合、耐震補強部材が変形し、材軸応力伝達部1が上方(右方)にスライドすることで、ガイド部4の下側(左側)の弾性部材6が縮退する。そしてさらに力が加わり、弾性部材6が弾性限度一杯まで縮退した場合には、緩衝湾曲部10が変形することで、地震力をさらに吸収することが可能となる。In the seismic reinforcement member according to the present invention, the entire seismic reinforcement member is deformed, and at the time of deformation, the force generated by the earthquake flows to the material axis stress transmission portion 1 disposed substantially parallel to the material axis of the structural material, and is slidable. The elastic member 6 disposed in the axial stress transmission portion 1 is deformed to absorb the seismic force. However, in the seventh embodiment, the buffer bending portion 10 is further provided in the material axial stress transmission portion 1 so that the material The axial stress transmission part 1 itself is configured to be extendable and contractible. In the seventh embodiment, as shown in FIG. 7B, when a horizontal force (in this case, the compression side) due to an earthquake or the like is applied, the seismic reinforcement member is deformed, and the material axial stress transmission portion 1 is moved upward. By sliding (to the right), the elastic member 6 on the lower side (left side) of the guide portion 4 is retracted. When a further force is applied and the elastic member 6 is retracted to the full elastic limit, the buffer bending portion 10 is deformed to further absorb the seismic force.

なお、弾性部材6を設けることなく材軸応力伝達部1に緩衝湾曲部10のみを備えていても良い。その場合は材軸応力伝達部1の一部をガイド部4に固定(すなわち構造材に固定)するのが望ましい。In addition, you may provide only the buffer bending part 10 in the material axial stress transmission part 1 without providing the elastic member 6. FIG. In that case, it is desirable to fix a part of the material axial stress transmission part 1 to the guide part 4 (that is, to the structural material).

なお、緩衝湾曲部10の形態は図示の形状に限定されることはなく、たとえば、略円形に捲回することでコイルばね形状としてもよい。(図示せず)すなわち、材軸応力伝達部1自身が伸縮可能な機能を有していれば、どのような形態であっても良いのである。In addition, the form of the buffer bending part 10 is not limited to the shape shown in figure, For example, it is good also as a coil spring shape by winding in a substantially circular shape. That is, any form may be used as long as the material axis stress transmission part 1 itself has a function capable of expanding and contracting.

(実施例8)図8(a)は本発明の実施例8にかかる耐震補強部材の斜視図、図8(b)は本実施例8にかかる耐震補強部材の部品の構成を示した斜視図である。(Embodiment 8) FIG. 8 (a) is a perspective view of a seismic reinforcing member according to an eighth embodiment of the present invention, and FIG. 8 (b) is a perspective view showing a configuration of parts of the seismic reinforcing member according to the eighth embodiment. It is.

実施例8は、前記実施例4と略同様の構成に引寄せ部材8を備えたものであるが、ガイド部4とガイド部4との間に位置する一の弾性部材6と他の弾性部材6との間にストッパ部材3(雌ねじ部材)を二つ備えていることを特徴とする。In the eighth embodiment, the pulling member 8 is provided in a configuration substantially similar to that of the fourth embodiment, but one elastic member 6 and another elastic member positioned between the guide portion 4 and the guide portion 4 are used. 6 is provided with two stopper members 3 (female screw members).

このような構成とすれば、図8(a)に示すように、本耐震補強部材を構造材に設置したあと、ストッパ部材3をスパナ等で回転して上下させることで、コイルばねから成る弾性部材6を縮退させ、ばね力を強くするなど微調整が可能となる。さらには、ストッパ部材3を上下させることで、材軸応力伝達部1本体が構造材の材軸に沿って上下することとなり、本耐震補強部材全体の形状が変形する。そのため構造材(この場合は垂直材)が他の構造材(横架材)と成す角度(略90度)が変わる。すなわち、建築物等の建て入れに際して、ストッパ部材3を回転させるだけで、建て入れ精度の微調整が可能になる。With such a configuration, as shown in FIG. 8 (a), after the seismic reinforcement member is installed on the structural material, the stopper member 3 is rotated up and down with a spanner or the like, so that an elastic spring comprising a coil spring is obtained. Fine adjustments such as reducing the member 6 and increasing the spring force are possible. Furthermore, by moving the stopper member 3 up and down, the material axis stress transmission portion 1 main body moves up and down along the material axis of the structural material, and the shape of the entire seismic reinforcement member is deformed. Therefore, the angle (approximately 90 degrees) formed by the structural material (in this case, the vertical material) with another structural material (horizontal material) changes. That is, when building a building or the like, it is possible to finely adjust the building accuracy only by rotating the stopper member 3.

(実施例9)図9(a)は本発明の実施例9にかかる耐震補強部材の斜視図、図9(b)は実施例9にかかる耐震補強部材の正面図、図9(c)は実施例9にかかる耐震補強部材の側面図、図9(d)〜(l)は実施例9にかかる耐震補強部材の部分詳細図である。(Example 9) FIG. 9A is a perspective view of a seismic reinforcing member according to Example 9 of the present invention, FIG. 9B is a front view of the seismic reinforcing member according to Example 9, and FIG. The side view of the earthquake-resistant reinforcement member concerning Example 9, FIG.9 (d)-(l) is the partial detail drawing of the earthquake-proof reinforcement member concerning Example 9. FIG.

実施例9は、斜め応力伝達部2の両端に連接部材12をピン接合した接合型斜め応力伝達部2aを材軸応力伝達部1に接合した接合型コーナー部材101を備え、加えて当該材軸応力伝達部1に摺動自在に嵌着し、ピン接合したスライド型斜め応力伝達部2bを備えたものである。The ninth embodiment includes a joining type corner stress member 101 in which a joining type oblique stress transmitting part 2a in which the connecting member 12 is pin joined to both ends of the oblique stress transmitting part 2 is joined to the material axis stress transmitting part 1, and in addition to the material axis. The slide type oblique stress transmission unit 2b is slidably fitted to the stress transmission unit 1 and pin-bonded.

このような構成とすれば、実施例6と略同様に、耐震補強部材全体が変形するとともに、材軸応力伝達部1にピン接合した接合型斜め応力伝達部2aの変形(移動)により材軸応力伝達部1がスライドし、弾性部材6が縮退して地震力を吸収する。さらに本実施例においては、耐震補強部材全体の変形時にスライド型斜め応力伝達部2bも変形(移動)する。そのため、スライド部材両端に設置した弾性部材6の一方を縮退させ、さらに地震力を吸収する。すなわち、より多くの地震力を吸収できると同時に、当該弾性部材6の抵抗力が加わることで、本耐震補強部材の変形時(変形限度内)での強度をより大きくできる。
また両構造材を連結する点が、接合型斜め応力伝達部2aの端部とスライド型斜め応力伝達部2bの端部との2点となるので、応力も分散され、構造的にも有利となる。
なお、本実施例ではスライド型斜め応力伝達部2bは1個のみ設けているが複数設置しても良い。この場合、より強度が大きくなるのは言うまでもない。
With such a configuration, substantially the same as in the sixth embodiment, the entire seismic reinforcing member is deformed, and the material shaft is deformed (moved) by the joint-type oblique stress transmitting portion 2a pin-bonded to the material shaft stress transmitting portion 1. The stress transmission part 1 slides and the elastic member 6 degenerates to absorb the seismic force. Further, in the present embodiment, the slide-type oblique stress transmission portion 2b is also deformed (moved) when the entire seismic reinforcement member is deformed. Therefore, one of the elastic members 6 installed at both ends of the slide member is degenerated, and further seismic force is absorbed. That is, more seismic force can be absorbed, and at the same time, the resistance force of the elastic member 6 is applied, so that the strength of the seismic reinforcing member when deformed (within the deformation limit) can be increased.
In addition, since the two connecting points are the two points of the end portion of the joint-type oblique stress transmission portion 2a and the end portion of the slide-type oblique stress transmission portion 2b, the stress is dispersed, which is advantageous in terms of structure. Become.
In this embodiment, only one slide-type oblique stress transmission portion 2b is provided, but a plurality of them may be provided. In this case, it goes without saying that the strength is increased.

図9(d)〜(f)はガイド部4の側面詳細図、平断面詳細図、縦断面詳細図である。本実施例においては材軸応力伝達部1が摺動自在となるようにガイド部4に通孔を設けているが、当該通孔の両端が内部よりも広く、すなわち、末広がりとなるように形成されている。このようにすることで、材軸応力伝達部1がガイド部4の通孔端部で引っ掛かることなくスムースにスライドすることが可能となる。無論、本実施例に限定されることなく、他の実施例においてもこのような形態とするのが好ましいことは言うまでもない。9D to 9F are a detailed side view, a detailed plan view, and a vertical cross-sectional view of the guide portion 4. In this embodiment, the guide portion 4 is provided with a through hole so that the material axial stress transmission portion 1 is slidable. However, both ends of the through hole are wider than the inside, that is, formed so as to widen toward the end. Has been. By doing in this way, it becomes possible for the material axial stress transmission part 1 to slide smoothly, without being caught by the through-hole edge part of the guide part 4. FIG. Needless to say, the present invention is not limited to this embodiment, and it is needless to say that such a configuration is preferable in other embodiments.

図9(g)〜(i)は接合型斜め応力伝達部2aの接合部の側面詳細図、平断面詳細図、縦断面詳細図である。本実施形態は既に実施例6においても例示されているが、このように、スライド部材5の両端に固着用部材(この場合はナット)を配して材軸応力伝達部1に接合して接合型コーナー部材101を形成しても良い。この場合は、スライド部材と固着用部材(ナット)の両方が連接部材12の機能を有することになる。9 (g) to 9 (i) are a detailed side view, a detailed plane sectional view, and a longitudinal sectional detailed view of the bonded portion of the bonded oblique stress transmission portion 2a. Although this embodiment has already been exemplified in Example 6, as described above, a fixing member (in this case, a nut) is arranged at both ends of the slide member 5 and joined to the material axial stress transmission portion 1 and joined. The mold corner member 101 may be formed. In this case, both the slide member and the fixing member (nut) have the function of the connecting member 12.

図9(j)〜(l)はスライド部材5の側面詳細図、平断面詳細図、縦断面詳細図である。本実施例においては材軸応力伝達部1が摺動自在となるようにスライド部材5に通孔を設けているが、当該通孔の両端が内部よりも広く、すなわち、末広がりとなるように形成されている。このようにすることで、材軸応力伝達部1がガイド部4の通孔端部で引っ掛かることなくスムースにスライドすることが可能となる。無論、本実施例に限定されることなく、他の実施例においてもこのような形態とするのが好ましいことは言うまでもない。9 (j) to 9 (l) are a detailed side view, a flat cross-sectional detailed view, and a vertical cross-sectional detailed view of the slide member 5. FIG. In the present embodiment, the through hole is provided in the slide member 5 so that the material axial stress transmission portion 1 is slidable. However, both ends of the through hole are wider than the inside, that is, are formed so as to widen toward the end. Has been. By doing in this way, it becomes possible for the material axial stress transmission part 1 to slide smoothly, without being caught by the through-hole edge part of the guide part 4. FIG. Needless to say, the present invention is not limited to this embodiment, and it is needless to say that such a configuration is preferable in other embodiments.

(実施例10)図10(a)は本発明の実施例10にかかる耐震補強部材の斜視図、図10(b)〜(f)は実施例10にかかる耐震補強部材の部分詳細図である。(Embodiment 10) FIG. 10 (a) is a perspective view of a seismic reinforcement member according to Embodiment 10 of the present invention, and FIGS. 10 (b) to 10 (f) are partial detailed views of the earthquake resistance reinforcement member according to Embodiment 10. FIG. .

実施例10は、斜め応力伝達部2と材軸応力伝達部1とを同一の棒状部材で一体のものとして形成した一体型コーナー部材100を備え、加えて当該材軸応力伝達部1に摺動自在に嵌着し、ピン接合したスライド型斜め応力伝達部2bを備えたものである。The tenth embodiment includes an integrated corner member 100 in which the oblique stress transmission portion 2 and the material axial stress transmission portion 1 are integrally formed of the same rod-shaped member, and additionally slides on the material axial stress transmission portion 1. It is provided with a slide-type oblique stress transmission portion 2b that is freely fitted and pin-joined.

本実施例10は、実施例9と略同様に斜め応力伝達部2とスライド型斜め応力伝達部2bとの二つを備えることで、変形時(変形限度内)での強度をより大きくできる。また両構造材を連結する点が斜め応力伝達部2とスライド型斜め応力伝達部2bとの2点となるので、応力も分散され、構造的にも有利となる。なお、本実施例においては、一体の棒状部材で形成された一体型コーナー部材100を備えているため、変形時における一体型コーナー部材100の曲折部の復元力(曲げ応力)が期待できる。そのためさらに大きな強度、および、復元力を得ることができる。
なお、本実施例ではスライド型斜め応力伝達部2bは1個のみ設けているが複数設置しても良い。この場合、より強度が大きくなるのは言うまでもない。
In the tenth embodiment, the strength at the time of deformation (within the deformation limit) can be further increased by providing two of the oblique stress transmission portion 2 and the slide-type oblique stress transmission portion 2b as in the ninth embodiment. Further, since the connecting points of the two structural materials are the two points of the oblique stress transmission part 2 and the slide type oblique stress transmission part 2b, the stress is dispersed, which is structurally advantageous. In addition, in the present Example, since the integrated corner member 100 formed with the integral rod-shaped member is provided, the restoring force (bending stress) of the bending part of the integrated corner member 100 at the time of a deformation | transformation can be anticipated. As a result, greater strength and restoring force can be obtained.
In this embodiment, only one slide-type oblique stress transmission portion 2b is provided, but a plurality of them may be provided. In this case, it goes without saying that the strength is increased.

図10(b)〜(d)はガイド部4の側面詳細図、平断面詳細図、縦断面詳細図であり、図10(e)は材軸応力伝達部1が構造体に取り付けられた状態の縦断面詳細図、図10(f)は外力(地震力)が加わった時の変形形態を示す縦断面詳細図である。
本実施例においては材軸応力伝達部1が摺動自在となるようにガイド部4に通孔を設けているが、図(c)に示したように、当該ガイド部4が取り付けられている台座部7、すなわち構造材の材面に対して垂直な方向の内径が、台座部7、すなわち構造材の材面に対して平行な方向の内径よりも大きくなるようにガイド部4の通孔が形成されている。ガイド部4はこのような形状であっても良い。
FIGS. 10B to 10D are a detailed side view, a flat cross-sectional detailed view, and a vertical cross-sectional detailed view of the guide portion 4, and FIG. 10E shows a state in which the material axial stress transmission portion 1 is attached to the structure. FIG. 10F is a detailed longitudinal sectional view showing a modified form when an external force (earthquake force) is applied.
In the present embodiment, the guide portion 4 is provided with a through hole so that the material axial stress transmission portion 1 is slidable. However, as shown in FIG. The through hole of the guide portion 4 so that the inner diameter in the direction perpendicular to the surface of the pedestal portion 7, that is, the structural material is larger than the inner diameter in the direction parallel to the pedestal portion 7, ie, the material surface of the structural material. Is formed. The guide portion 4 may have such a shape.

このような形状とすれば、変形初期の段階では材軸応力伝達部1はガイド部4の通孔内でスライドするので、図10(f)に示すように材軸応力伝達部1の変形(傾斜)は生じず、弾性体の変形のみ生じる。すなわち、コーナー部材として一体型コーナー部材100を使用した場合でも、この段階では一体型コーナー部材100に曲げ応力が生じないため、締結具に引抜き力があまり生じない。さらに外力が大きくなって構造材が変形(さらに傾斜)した場合には、ガイド部4の通孔内端と接触することで材軸応力伝達部1が変形(傾斜)し、一体型コーナー部材100に曲げ応力が生じる。その場合には締結具の引抜き抵抗とせん断抵抗とで構造材との接合部分の崩壊を防ぐのである。With such a shape, the material axial stress transmission portion 1 slides in the through hole of the guide portion 4 in the initial stage of deformation, so that the deformation of the material axial stress transmission portion 1 (see FIG. 10F) (Inclination) does not occur, and only deformation of the elastic body occurs. That is, even when the integrated corner member 100 is used as the corner member, bending stress is not generated in the integrated corner member 100 at this stage, so that a pulling force is not generated much in the fastener. When the external force is further increased and the structural material is deformed (further inclined), the material axis stress transmission portion 1 is deformed (tilted) by contacting with the inner end of the guide portion 4, and the integrated corner member 100. Bending stress is generated. In that case, the pull-out resistance and shear resistance of the fastener prevent the joint portion from collapsing with the structural material.

図11(a)〜(c)は前記実施例10で示したガイド部4の変形例である。形状は前記実施例10のガイド部4と略同様であるが、当該ガイド部4の端部が凹形状に形成されている。このようにすれば、外力が加わらない場合には、上下の弾性体の弾発力によって凹形状の最底部に材軸応力伝達部1が位置するようになる。すなわち、平常時は常に材軸応力伝達部1がガイド部4の略中央に保持されることになる。FIGS. 11A to 11C are modified examples of the guide portion 4 shown in the tenth embodiment. The shape is substantially the same as the guide portion 4 of the tenth embodiment, but the end portion of the guide portion 4 is formed in a concave shape. In this way, when no external force is applied, the material axis stress transmission portion 1 is positioned at the bottom of the concave shape by the elastic force of the upper and lower elastic bodies. That is, the material axis stress transmission part 1 is always held at the approximate center of the guide part 4 in normal times.

図12(a)〜(c)も前記実施例10で示したガイド部4の変形例である。形状は前記実施例10のガイド部4と略同様であるが、当該ガイド部4が当該ガイド部4に挿着された材軸応力伝達部1に対して、所定の角度を有するように傾斜して形成されている。このようにすれば、外力が加わらない場合には、上下の弾性体の弾発力によって材軸応力伝達部1がガイド部4の略中央に位置するようになる。すなわち、平常時は常に材軸応力伝達部1がガイド部4の略中央に保持されることになる。12A to 12C are also modifications of the guide portion 4 shown in the tenth embodiment. The shape is substantially the same as the guide portion 4 of the tenth embodiment, but the guide portion 4 is inclined so as to have a predetermined angle with respect to the material axis stress transmission portion 1 inserted into the guide portion 4. Is formed. In this way, when no external force is applied, the material axis stress transmission part 1 is positioned at the approximate center of the guide part 4 by the elastic force of the upper and lower elastic bodies. That is, the material axis stress transmission part 1 is always held at the approximate center of the guide part 4 in normal times.

なお、前記ガイド部4は一体型コーナー部材100を保持する部材として例示されているが、接合型コーナー部材101、あるいは、スライド型コーナー部材102を保持する部材としても利用できる。Although the guide portion 4 is exemplified as a member that holds the integrated corner member 100, the guide portion 4 can also be used as a member that holds the joint-type corner member 101 or the slide-type corner member 102.

(実施例11)図13は本発明の実施例11にかかる耐震補強部材の斜視図である。(Embodiment 11) FIG. 13 is a perspective view of a seismic reinforcement member according to Embodiment 11 of the present invention.

実施例11は、直交差する二つの構造材それぞれに配置された材軸応力伝達部1と材軸応力伝達部1とをスライド型斜め応力伝達部2bで回動自在にピン接合したスライド型コーナー部材102を備え、加えてスライド型斜め応力伝達部2bを材軸応力伝達部1に摺動自在に装着し、且つ垂直構造材に配置された材軸応力伝達部1の端部(構造材直交差側の端部)を、対置する構造材(基礎)に固定された所定の固着部材(本実施例ではアンカーボルト)に接合したものである。The eleventh embodiment is a slide type corner in which a material axis stress transmission unit 1 and a material axis stress transmission unit 1 arranged on two orthogonally different structural materials are rotatably pin-joined by a slide type oblique stress transmission unit 2b. In addition, the slide-type oblique stress transmission portion 2b is slidably attached to the material axial stress transmission portion 1 and the end of the material axial stress transmission portion 1 disposed on the vertical structural material (directly connected to the structural material) is provided. The end portion on the crossing side) is joined to a predetermined fixing member (an anchor bolt in this embodiment) fixed to a structural material (foundation) to be placed.

本実施例11は、耐震補強部材としての機能を備えると同時に、材軸応力伝達部1を対置した構造材に固定された固着部材(この場合はアンカーボルト)に接合したものである。このような構成とすることで、地震力等による変形時の構造材(この場合は柱)の引抜きを防止できる。また、当該材軸応力伝達部1には弾性部材6が配置されているので、例えば地震等で垂直な方向に外力が加わった場合でも、当該弾性部材6の縮退により外力を吸収し、ねじ等、部材を緊結する締結具の先行破壊を防止できる。The present Example 11 is provided with the function as an earthquake-proof reinforcement member, and at the same time joined to a fixing member (in this case, an anchor bolt) fixed to a structural material facing the material axial stress transmission portion 1. By adopting such a configuration, it is possible to prevent the structural material (in this case, a column) from being pulled out during deformation due to seismic force or the like. In addition, since the elastic member 6 is disposed in the material axis stress transmission portion 1, even when an external force is applied in a vertical direction due to an earthquake or the like, for example, the external force is absorbed by the degeneration of the elastic member 6, and a screw or the like. Further, it is possible to prevent the preceding breakage of the fastener that binds the members.

なお、本実施例では材軸応力伝達部1とアンカーボルトとの接合は金具を介して接合されているが、材軸応力伝達部1が確実に接合されれば接合部の形態はどのような形態であっても良い。また、接合方法もピン接合であっても良い。さらには、アンカーボルトと材軸応力伝達部1とが一体の部材で形成されても良い。また、本実施例では例としてアンカーボルトが例示されているが、梁,柱等を緊結するボルト等と接合しても良いことは言うまでもない。In this embodiment, the material axis stress transmission part 1 and the anchor bolt are joined via a metal fitting. However, if the material axis stress transmission part 1 is securely joined, what kind of form of the joint part is possible? Form may be sufficient. Further, the bonding method may be pin bonding. Furthermore, the anchor bolt and the material axial stress transmission portion 1 may be formed as an integral member. Further, in this embodiment, an anchor bolt is exemplified as an example, but it goes without saying that it may be joined to a bolt or the like for fastening a beam, a column or the like.

(実施例12)図14は本発明の実施例12にかかる耐震補強部材の斜視図である。(Embodiment 12) FIG. 14 is a perspective view of a seismic reinforcing member according to Embodiment 12 of the present invention.

実施例12は、実施例11と略同様の形態を有し、且つ垂直構造材に配置された材軸応力伝達部1の端部(構造材直交差側の端部)を、対置した構造材に固定された台座部7に接合したものである。機能およびその効果は実施例11と略同様であるが、より簡易に構造材に設置することができるので、例えば改修時における耐震補強等に有効である。
なお、本実施例では台座部と一体になったプレートにピン接合されているが、剛接合であってもよく、またその形態は本実施例に限定されるものではなく、材軸応力伝達部1が確実に接合されれば接合部はどのような形態であっても良いことは言うまでも無い。
Example 12 has substantially the same form as Example 11, and is a structural material in which the ends (ends on the structural material orthogonal difference side) of the material axial stress transmission portion 1 arranged in the vertical structural material are opposed to each other. It is joined to the pedestal portion 7 fixed to. Although the function and the effect are substantially the same as those of Example 11, it can be installed on the structural material more easily, and is effective for, for example, seismic reinforcement at the time of repair.
In this embodiment, the plate is joined to the plate integrated with the pedestal portion. However, the plate may be rigidly joined, and the form is not limited to this embodiment. Needless to say, the joining portion may have any form as long as 1 is securely joined.

(耐震工法の実施例)図15(a)は本発明にかかる耐震補強部材を使用した耐震補強工法の側面図、図15(b)はA部分の詳細図である。(Embodiment of the seismic construction method) FIG. 15A is a side view of the seismic strengthening construction method using the seismic strengthening member according to the present invention, and FIG.

本耐震補強工法は、梁、柱、土台等、4本の構造材で構成された略四角形の構面の隣り合うコーナー部に、本発明にかかる耐震補強部材を少なくとも二つ設置し、当該耐震補強部材を形成する材軸応力伝達部1の外端同士を外端接合部材11にて繋いだものである。本実施例においては、両端に雄ねじを形成した棒鋼をターンバックルにて当該材軸応力伝達部1に接合している。In this seismic reinforcement method, at least two seismic reinforcement members according to the present invention are installed at adjacent corners of a substantially rectangular structure composed of four structural materials such as beams, columns, and foundations. The outer ends of the material axial stress transmission portions 1 forming the reinforcing member are connected by an outer end joining member 11. In the present embodiment, a steel bar having male threads formed at both ends is joined to the material axial stress transmission portion 1 with a turnbuckle.

図示のような構面に地震等の水平外力が加わった場合には、構面を形成するコーナーの位置によって生じる力が異なるが、図示の如く隣り合う材軸応力伝達部1を繋ぐことで、材軸応力伝達部1がスライドしたときに、材軸方向に生じる力を隣接する耐震補強部材の材軸応力伝達部1に伝達することが可能となる。すなわち力を分散することが可能になり、当該耐震補強部材がより有効に機能することになる。When horizontal external force such as an earthquake is applied to the construction surface as shown in the figure, the force generated varies depending on the position of the corner forming the construction surface, but by connecting the adjacent material axis stress transmission parts 1 as shown in the figure, When the material axis stress transmission unit 1 slides, it is possible to transmit the force generated in the material axis direction to the material axis stress transmission unit 1 of the adjacent seismic reinforcement member. That is, the force can be distributed, and the seismic reinforcing member functions more effectively.

なお、本実施例では外端接合部材11として棒鋼を使用し、ターンバックルにて接合しているが、本実施例の形態に限定されることは無い。接合方法も隣り合う耐震補強部材を緊結して力が確実に伝達されれば、どのような形態であっても良い。In this embodiment, a steel bar is used as the outer end joining member 11 and is joined by a turnbuckle. However, the present embodiment is not limited to this embodiment. The joining method may be any form as long as adjacent seismic reinforcing members are tightly coupled and the force is reliably transmitted.

(実施例13)図16は本発明の実施例13にかかる耐震補強部材の斜視図である。(Embodiment 13) FIG. 16 is a perspective view of a seismic reinforcement member according to Embodiment 13 of the present invention.

実施例13は本耐震補強部材を、筋かい、ブレース等を留め付ける部材として利用したものである。図示の如く、斜め応力伝達部2に筋かい、ブレース等、斜材の端部を接合可能とする斜材接合部材13を備えた構成とすることで可能となる。本実施例では、斜材接合部材13をプレートで形成し、斜材を留め付けるための締結孔を設けている。
従来、筋かい、ブレース等は、プレート等を介して、釘等締結具によって留め付ける、あるいは溶接等によって留め付ける方法が一般的であるが、釘等締結具は弾性を持たないため、大きな力がかかった場合には、変形、あるいは破断してしまう可能性がある。
本発明にかかる耐震補強部材を使用すれば、材軸応力伝達部1がスライドし、弾性部材6が縮退することで地震力を吸収する。また、大きな力がかかった場合にも崩壊し難い靭性を有する耐震補強とすることができる。
In Example 13, the present seismic reinforcing member is used as a member for fastening a brace, brace or the like. As shown in the figure, the oblique stress transmitting portion 2 can be configured by including an oblique material joining member 13 capable of joining an end of an oblique material such as a brace or brace. In this embodiment, the diagonal member joining member 13 is formed of a plate, and a fastening hole for fastening the diagonal member is provided.
Conventionally, braces, braces, etc. are generally fastened with fasteners such as nails, etc. via plates, etc., or are fastened by welding, etc. However, since fasteners such as nails do not have elasticity, a large force is required. If it is applied, there is a possibility that it will be deformed or broken.
If the seismic reinforcement member according to the present invention is used, the material axial stress transmission part 1 slides and the elastic member 6 is degenerated to absorb the seismic force. Moreover, it can be set as the earthquake-proof reinforcement which has the toughness which does not collapse easily even when big force is applied.

(実施例14)図17は本発明の実施例14にかかる耐震補強部材の斜視図である。(Embodiment 14) FIG. 17 is a perspective view of a seismic reinforcement member according to Embodiment 14 of the present invention.

実施例14はスライド型コーナー部材102を構成する斜め応力伝達部2に斜材接合部材13を備えたものである。また、本実施例では締結孔を一つ設けてピン接合が可能な形態としている。斜材接合部材13はこのような形態であってもよく、またその形状は実施例13、14に限定されない。筋かい、ブレース等を接合できるものであれば、どのような形態であっても良い。In the fourteenth embodiment, the diagonal stress transmitting portion 2 constituting the slide type corner member 102 is provided with the diagonal member joining member 13. In this embodiment, one fastening hole is provided to allow pin joining. The oblique material joining member 13 may be in such a form, and the shape thereof is not limited to those in Examples 13 and 14. Any form may be used as long as it can join braces, braces, or the like.

本発明は、以上の実施の形態に限定されることなく、特許請求の範囲に記載された発明の範囲内で、部材の組合せ、形状、その他種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることは言うまでもない。The present invention is not limited to the above-described embodiments, and various combinations and shapes of members and other various modifications are possible within the scope of the invention described in the claims. Needless to say, it is included in the range.

たとえば、実施例1〜14において材軸応力伝達部が構造材と略平行になるように形成されているが、このような構成に限定されるものではない。
(実施例15)図18は本発明の実施例15にかかる耐震補強部材の斜視図である。
本実施例のように、材軸応力伝達部1が構造材に対して所定の角度を有するように構成されてもよい。特に本実施例の如く材軸応力伝達部1の内端(構造材直交差側)と斜め応力伝達部2との成す角度がより大きくなるように形成すれば、斜め応力伝達部2から材軸応力伝達部1への力の流れはよりスムースになる。
For example, in Examples 1 to 14, the material axial stress transmission portion is formed so as to be substantially parallel to the structural material, but is not limited to such a configuration.
(Embodiment 15) FIG. 18 is a perspective view of a seismic reinforcement member according to Embodiment 15 of the present invention.
As in this embodiment, the material axial stress transmission unit 1 may be configured to have a predetermined angle with respect to the structural material. In particular, if the angle formed between the inner end (the structural material orthogonal difference side) of the material axis stress transmission part 1 and the oblique stress transmission part 2 is made larger as in this embodiment, the material axis is separated from the oblique stress transmission part 2. The force flow to the stress transmission part 1 becomes smoother.

たとえば、実施例1〜15において材軸応力伝達部が直交差する構造材それぞれに配置されているが、このような構成に限定されるものではない。
(実施例16)図19は本発明の実施例16にかかる耐震補強部材の斜視図である。
本実施例では、材軸応力伝達部1を片側1個のみ備え、斜め応力伝達部2の端部を構造材に固着可能(締結孔を有する台座部に溶接固定することで固着可能)としている。このような構成とすれば、部材の数は少なくて済み、製造単価を低減することが可能となる。なお、斜め応力伝達部2の端部は、回動自在なピン接合としてもよい。(図示せず)
For example, in Examples 1-15, although the material axial stress transmission part is arrange | positioned at each structural material orthogonally different, it is not limited to such a structure.
(Embodiment 16) FIG. 19 is a perspective view of a seismic reinforcement member according to Embodiment 16 of the present invention.
In this embodiment, only one material axial stress transmission part 1 is provided on one side, and the end of the oblique stress transmission part 2 can be fixed to a structural material (it can be fixed by welding and fixing to a pedestal part having a fastening hole). . With such a configuration, the number of members is small, and the manufacturing unit price can be reduced. In addition, the edge part of the diagonal stress transmission part 2 is good also as a pivotable pin joint. (Not shown)

たとえば、実施例1、4、7,8、13、15、16において斜め応力伝達部2は丸棒で形成されているがこのような形態に限定されるものではない。
(実施例17)図20は本発明の実施例17にかかる耐震補強部材の斜視図である。
本実施例では、斜め応力伝達部2にプレートを取り付けて斜め応力伝達部2の剛性を高めている。このような構成とすれば、斜め応力伝達部2の座屈を防ぎ、耐震補強部材の強度をより大きくすることが可能となる。なお、その斜め応力伝達部2の形状、断面等はどんな形態であってもよい。
For example, in Examples 1, 4, 7, 8, 13, 15, and 16, the oblique stress transmission portion 2 is formed of a round bar, but is not limited to such a form.
(Embodiment 17) FIG. 20 is a perspective view of a seismic reinforcement member according to Embodiment 17 of the present invention.
In this embodiment, a plate is attached to the oblique stress transmission part 2 to increase the rigidity of the oblique stress transmission part 2. With such a configuration, it is possible to prevent buckling of the oblique stress transmission part 2 and to increase the strength of the seismic reinforcement member. In addition, the shape, cross section, etc. of the oblique stress transmission part 2 may be in any form.

たとえば、実施例1〜17において斜め応力伝達部は直軸の部材で構成されているが、このような構成に限定されるものではない。
(実施例18)図21は本発明の実施例18にかかる耐震補強部材の斜視図である。
本実施例では、斜め応力伝達部2の一部を曲折することで、斜め応力伝達部2自体が伸縮可能となる緩衝湾曲部を設けている。このような構成とすれば、材軸応力伝達部1に設置された弾性部材6が最大限縮退しても、緩衝湾曲部の変形により、耐震補強部材全体がさらに変形し、地震力を吸収することが可能となる。無論、その形態は図示の形状に限定されることはなく、たとえば、略円形に捲回することでコイルばね形状としてもよい。(図示せず)
For example, in Examples 1-17, although the diagonal stress transmission part is comprised by the member of a straight axis, it is not limited to such a structure.
(Embodiment 18) FIG. 21 is a perspective view of a seismic reinforcement member according to Embodiment 18 of the present invention.
In the present embodiment, a portion of the oblique stress transmission portion 2 is bent to provide a buffer bending portion that allows the oblique stress transmission portion 2 itself to expand and contract. With such a configuration, even if the elastic member 6 installed in the material stress transmission portion 1 is retracted to the maximum extent, the entire seismic reinforcement member is further deformed by the deformation of the buffer bending portion and absorbs the seismic force. It becomes possible. Of course, the form is not limited to the shape shown in the figure. For example, the shape may be formed into a coil spring shape by winding in a substantially circular shape. (Not shown)

たとえば、実施例1〜18において斜め応力伝達部は材軸応力伝達部同士を直線状に繋いでいるが、このような構成に限定されるものではない。
(実施例19)図22は本発明の実施例19にかかる耐震補強部材の斜視図である。
本実施例では、材軸応力伝達部1同士をL型の斜め応力伝達部2で繋いでいる。このような構成とすれば耐震補強部材は構面コーナーに収まり、より大きな開口部が設置できるなど、構造物設計の自由度がより大きくなる。
For example, in Examples 1-18, although the diagonal stress transmission part has connected the material axial stress transmission parts linearly, it is not limited to such a structure.
(Embodiment 19) FIG. 22 is a perspective view of a seismic reinforcement member according to Embodiment 19 of the present invention.
In this embodiment, the material axis stress transmission parts 1 are connected to each other by an L-shaped oblique stress transmission part 2. With such a configuration, the seismic reinforcing member can be accommodated in the corner of the construction surface, and a larger opening can be installed, so that the degree of freedom in designing the structure is increased.

また、斜め応力伝達部を材軸応力伝達部に接合する位置は、実施例1〜19に例示した実施形態に限定されることはない。
(実施例20)図23は本発明の実施例20にかかる耐震補強部材の斜視図である。
本実施例では、材軸応力伝達部1の外端(構造材直交差部分と反対側)同士を斜め応力伝達部2で繋いでいる。このような構成とすれば耐震補強部材をよりコンパクトに形成することができる。
Moreover, the position which joins an oblique stress transmission part to a material axial stress transmission part is not limited to embodiment illustrated in Examples 1-19.
(Example 20) FIG. 23 is a perspective view of a seismic reinforcing member according to Example 20 of the present invention.
In this embodiment, the outer ends of the material axis stress transmission part 1 (on the opposite side to the structural material orthogonal difference part) are connected by the oblique stress transmission part 2. With such a configuration, the seismic reinforcement member can be formed more compactly.

たとえば、斜め応力伝達部と材軸応力伝達部とによって構成される角度が、実施例1〜18、20においては略45度となっているが、これらの実施形態に限定されることはない。
(実施例21)図24は本発明の実施例21にかかる耐震補強部材の斜視図である。
本実施例では、垂直方向の材軸応力伝達部1に対して略30度内外となるように、接合型斜め応力伝達部2a、および、スライド型斜め応力伝達部2bが接合されている。このように斜め応力伝達部と材軸応力伝達部との成す角度は0〜90度の範囲内で可能であり、設置する構造体の形状、機能に合わせて自由な選択ができる。
For example, the angle formed by the oblique stress transmission portion and the material axis stress transmission portion is approximately 45 degrees in Examples 1 to 18 and 20, but is not limited to these embodiments.
(Embodiment 21) FIG. 24 is a perspective view of a seismic reinforcing member according to Embodiment 21 of the present invention.
In the present embodiment, the joint-type oblique stress transmission portion 2a and the slide-type oblique stress transmission portion 2b are joined so as to be approximately 30 degrees inside and outside with respect to the material axis stress transmission portion 1 in the vertical direction. Thus, the angle formed by the oblique stress transmission part and the material axis stress transmission part can be in the range of 0 to 90 degrees, and can be freely selected according to the shape and function of the structure to be installed.

なお、斜め応力伝達部の数も、図示してはいないが、3つ以上設けることも無論可能である。多く設けるほど耐震補強部材の強度は大きくなる。それらも本発明の範囲内に包含されるものであることは言うまでもない。In addition, although the number of the diagonal stress transmission parts is not illustrated, it is of course possible to provide three or more. The greater the number, the greater the strength of the seismic reinforcement member. Needless to say, they are also included in the scope of the present invention.

たとえば、斜め応力伝達部の一端と材軸応力伝達部との接合部は、実施例1〜21において一箇所のみとなっているが、これらの実施形態に限定されることはない。
(実施例22)図25は本発明の実施例22にかかる耐震補強部材の斜視図である。
本実施例では、接合型斜め応力伝達部2a、および、スライド型斜め応力伝達部2bの一端にそれぞれ一対の連接部材12、あるいはスライド部材5が取り付けられ、材軸応力伝達部1に各々2箇所で接合されている。
本耐震補強部材に地震等水平外力が加わった場合には、斜め応力伝達部を通して当該接合部に大きな力が加わり、材軸応力伝達部の接合部分が湾曲する恐れがある。しかしながら、本実施例のような構成とすれば、接合部分にかかる力は2箇所に分散され、小さくなる。そのため、材軸応力伝達部の部材断面を小さくできるなどのメリットが生じる。
無論、接合部の数は、2箇所以上であってもよいのは言うまでもない。
For example, the joint portion between the one end of the oblique stress transmission portion and the material axial stress transmission portion is only one place in Examples 1 to 21, but is not limited to these embodiments.
(Embodiment 22) FIG. 25 is a perspective view of a seismic reinforcing member according to Embodiment 22 of the present invention.
In the present embodiment, a pair of connecting members 12 or slide members 5 are attached to one end of the joint-type oblique stress transmission portion 2a and the slide-type oblique stress transmission portion 2b, respectively, and two portions are provided on the material axis stress transmission portion 1 respectively. It is joined with.
When a horizontal external force such as an earthquake is applied to the seismic reinforcing member, a large force is applied to the joint portion through the oblique stress transmission portion, and the joint portion of the material axial stress transmission portion may be curved. However, with the configuration as in the present embodiment, the force applied to the joint portion is distributed at two locations and becomes smaller. Therefore, the merit that the member cross section of a material axial stress transmission part can be made small arises.
Needless to say, the number of joints may be two or more.

たとえば、弾性部材の形状、数、取付形態は、実施例4〜22の実施形態に限定されることはない。実施例4〜22において、コイルばねを使用しているが、たとえば板ばねを使用してもよい。(図示せず)その他、素材、数、取付形態も実施例4〜22の実施形態に限定されることはなく、材軸応力伝達部、あるいは斜め応力伝達部の摺動を、その弾発力で阻害、および、変形を復元する機能が備わっていればよい。For example, the shape, the number, and the attachment form of the elastic member are not limited to the embodiments of Examples 4-22. In Examples 4-22, although the coil spring is used, you may use a leaf | plate spring, for example. In addition, the material, the number, and the mounting form are not limited to the embodiments of Examples 4 to 22, and the elastic force of sliding the material axial stress transmission part or the oblique stress transmission part is not limited. It is only necessary to have a function to restore inhibition and deformation.

(実施例23)図26は本発明の実施例23にかかる耐震補強部材の斜視図である。
本実施例では、垂直方向の材軸応力伝達部1が上方に長く延伸し、多数の弾性部材6が取り付けられている。このように構造材に沿って弾性部材を補強できるので、構面(四周を構造材で形成する架構面)内に大きく出っ張ることなく、本耐震補強部材の強度を大きくすることができる。また、同時に垂直構造材のせん断補強としての機能も有する。
(Example 23) FIG. 26 is a perspective view of a seismic reinforcing member according to Example 23 of the present invention.
In the present embodiment, the material axis stress transmission portion 1 in the vertical direction extends long upward, and a large number of elastic members 6 are attached. Since the elastic member can be reinforced along the structural material in this way, the strength of the seismic reinforcing member can be increased without projecting greatly in the structural surface (the frame surface formed by the structural material on the four circumferences). At the same time, it also functions as a shear reinforcement for vertical structural members.

たとえば、台座部の形態も、実施例1〜23の実施形態に限定されることはない。ねじ、コーチボルト、さらには溶接等で構造材に確実に固着可能な形態であれば、どんな形状であってもよい。また、実施例1〜23においては板状部材で台座部が形成されているが、板状部材に限定されることはない。たとえば、リブを設ける(図示せず)等、剛性を確保して外力が締結部材に分散するようにしてもよい。For example, the form of the pedestal portion is not limited to the embodiments of Examples 1 to 23. Any shape may be used as long as it can be securely fixed to the structural material by screws, coach bolts, or welding. Moreover, in Examples 1-23, although the base part is formed with the plate-shaped member, it is not limited to a plate-shaped member. For example, a rib may be provided (not shown), and the external force may be distributed to the fastening member while ensuring rigidity.

(実施例24)図27は本発明の実施例24にかかる耐震補強部材の斜視図である。
本実施例では、材軸応力伝達部1と略平行な辺に沿って台座部7と略直角に延伸した脇台座部9を備えている。このような構成とすれば、構造材の側面にも締結具にて固着できるため、台座部を留めつける締結具にかかる引抜き抵抗力、およびせん断抵抗力を補強することができる。
(Embodiment 24) FIG. 27 is a perspective view of a seismic reinforcing member according to Embodiment 24 of the present invention.
In the present embodiment, a side pedestal portion 9 extending substantially perpendicular to the pedestal portion 7 along a side substantially parallel to the material axis stress transmission portion 1 is provided. With such a configuration, it is possible to fix the side surface of the structural material to the side surface of the structural member with the fastener, and therefore it is possible to reinforce the pulling resistance force and the shear resistance force applied to the fastener that fastens the base portion.

たとえば、直交差する構造材に設置された台座同士を接合した構成としてもよい。
(実施例25)図28は本発明の実施例25にかかる耐震補強部材の斜視図である。
本実施例では、水平、垂直な構造材に取り付けた台座部7同士を、構造材が直交差する近傍において、接合(本実施例においては両部材を一体の部材で形成)している。
For example, it is good also as a structure which joined the bases installed in the structural material orthogonally crossed.
(Embodiment 25) FIG. 28 is a perspective view of a seismic reinforcing member according to Embodiment 25 of the present invention.
In this embodiment, the pedestal portions 7 attached to the horizontal and vertical structural members are joined in the vicinity where the structural members are orthogonally crossed (in the present embodiment, both members are formed as an integral member).

(実施例26)図29は本発明の実施例26にかかる耐震補強部材の斜視図である。
本実施例では、水平、垂直な構造材に取り付けた台座部7同士を、構造材が直交差する近傍において、回動自在にピン接合している。
このように、台座部同士を接合してもよい。このようにすれば、引寄せ部材を備えてなくても、柱等の引抜きを防止することが可能で、特に引抜き力が小さい部位に設置するような場合には有効である。
(Embodiment 26) FIG. 29 is a perspective view of a seismic reinforcement member according to Embodiment 26 of the present invention.
In this embodiment, the pedestal portions 7 attached to the horizontal and vertical structural members are pin-joined so as to be rotatable in the vicinity where the structural members are orthogonally crossed.
In this way, the pedestal portions may be joined together. In this way, it is possible to prevent the column or the like from being pulled out even if no drawing member is provided, and this is particularly effective when it is installed at a site where the pulling force is small.

また、材軸応力伝達部の形態も、実施例1〜26の形態に限定されることはない。構造材の所定の個所に設置でき、且つスライド可能となる機能を備えていれば、どのような形態であってもよい。Moreover, the form of a material axial stress transmission part is not limited to the form of Examples 1-26. Any form may be used as long as it can be installed at a predetermined position of the structural material and has a function of being slidable.

また、斜め応力伝達部の形態も、実施例1〜26の形態に限定されることはない。材軸応力伝達部の所定の個所に接合でき、且つ一方の材軸応力伝達部の力を他方の材軸応力伝達部に連接部材、あるいは、スライド部材を介して伝達する機能が備わっていれば、どのような形態であってもよい。Moreover, the form of the oblique stress transmission part is not limited to the form of Examples 1-26. If it can be joined to a predetermined part of the material axis stress transmission part and has a function of transmitting the force of one material axis stress transmission part to the other material axis stress transmission part via a connecting member or a slide member Any form may be used.

また、ガイド部の形態も、実施例1〜26の実施の形態に限定されることはない。材軸応力伝達部を所定の位置に保持し、且つスライド可能となる機能を備えていれば、どのような形態であってもよい。Further, the form of the guide portion is not limited to the embodiments of Examples 1 to 26. Any form may be used as long as it has a function to hold the material axis stress transmission part in a predetermined position and to be slidable.

また、ストッパ部材の形態も、実施例1〜26の実施の形態に限定されることはない。材軸応力伝達部の所定の位置に形成あるいは固着され、材軸応力伝達部がスライドしたときに、弾性部材と接触することで弾性部材を縮退(固着した場合は、縮退あるいは伸張)させるように形成されていればよい。Moreover, the form of the stopper member is not limited to the embodiment of Examples 1-26. It is formed or fixed at a predetermined position of the material axial stress transmission part, and when the material axial stress transmission part slides, the elastic member is contracted by contacting with the elastic member (when fixed, it is contracted or expanded) It only has to be formed.

また、スライド部材の形態も、実施例1〜26の実施の形態に限定されることはない。斜め応力伝達部に接合され、且つ材軸応力伝達部の所定の位置に摺動自在に取付られるように形成されていればよい。実施例においては、通孔を備え、材軸応力伝達部に嵌着することで摺動可能なように形成されているが、例えば、材軸応力伝達部に通孔を形成し、スライド部材を挿着することで摺動自在に取り付けても良い。すなわち、斜め応力伝達部に接合され、且つ材軸応力伝達部の所定の位置に摺動自在に装着できるように構成されていればよい。Also, the form of the slide member is not limited to the embodiment of Examples 1-26. What is necessary is just to be formed so that it may be slidably attached to the predetermined position of a material axial stress transmission part while being joined to an oblique stress transmission part. In the embodiment, a through hole is provided and formed so as to be slidable by being fitted to the material axis stress transmission part. For example, a through hole is formed in the material axis stress transmission part, and a slide member is provided. It may be slidably attached by inserting. That is, it is only necessary to be configured to be joined to the oblique stress transmission part and to be slidably mounted at a predetermined position of the material axis stress transmission part.

また、連接部材の形態も、実施例1〜26の実施の形態に限定されることはない。斜め応力伝達部に固着、あるいは、ピン接合され、且つ材軸応力伝達部の所定の位置に固着されていればよい。Further, the form of the connecting member is not limited to the embodiment of Examples 1-26. It is only necessary to be fixed to the oblique stress transmission part or pin-bonded and fixed to a predetermined position of the material axis stress transmission part.

また、引寄せ部材の形態も、実施例1〜26の実施の形態に限定されることはない。当該台座部に取り付け、あるいは一体に形成され、対置する構造材(基礎を含む)に固着されたボルト等、接合部材を固着できるように形成されていればよい。Further, the form of the attracting member is not limited to the embodiments of Examples 1 to 26. What is necessary is just to be formed so that joining members, such as a bolt attached to the said base part, or integrally formed, and fixed to the structural material (including a foundation) to face, can be fixed.

第1の実施例にかかる耐震補強部材の斜視図、および構造原理を説明するための側面図である。It is a perspective view of a seismic reinforcement member concerning the 1st example, and a side view for explaining a structural principle. 第2の実施例にかかる耐震補強部材の斜視図、および構造原理を説明するための側面図である。It is a perspective view of a seismic reinforcement member concerning the 2nd example, and a side view for explaining a structural principle. 第3の実施例にかかる耐震補強部材の斜視図、および構造原理を説明するための側面図である。It is a perspective view of a seismic reinforcement member concerning the 3rd example, and a side view for explaining a structural principle. 第4の実施例にかかる耐震補強部材の斜視図、および構造原理を説明するための側面図である。It is a perspective view of a seismic reinforcement member concerning the 4th example, and a side view for explaining a structural principle. 第5の実施例にかかる耐震補強部材の斜視図、および構造原理を説明するための側面図である。It is a perspective view of a seismic reinforcement member concerning the 5th example, and a side view for explaining a structural principle. 第6の実施例にかかる耐震補強部材の斜視図、および構造原理を説明するための側面図である。It is a perspective view of a seismic reinforcement member concerning the 6th example, and a side view for explaining a structural principle. 第7の実施例にかかる耐震補強部材の斜視図、および構造原理を説明するための側面図である。It is a perspective view of a seismic reinforcement member concerning the 7th example, and a side view for explaining a structural principle. 第8の実施例にかかる耐震補強部材の斜視図、および本耐震補強部材を構成する部品の構成図である。It is a perspective view of the earthquake-resistant reinforcement member concerning an 8th Example, and the block diagram of the components which comprise this earthquake-resistant reinforcement member. 第9の実施例にかかる耐震補強部材の斜視図である。It is a perspective view of the seismic reinforcement member concerning the 9th example. 第9の実施例にかかる耐震補強部材の正面図である。It is a front view of the seismic reinforcement member concerning the 9th example. 第9の実施例にかかる耐震補強部材の側面図である。It is a side view of the seismic reinforcement member concerning the 9th example. 第9の実施例にかかる側面部分詳細図である。It is side surface part detail drawing concerning a 9th Example. 第9の実施例にかかるA−A平断面詳細図である。It is AA plane cross-section detail drawing concerning a 9th Example. 第9の実施例にかかるB−B縦断面詳細図である。It is a BB longitudinal cross-sectional detail figure concerning a 9th Example. 第9の実施例にかかる側面部分詳細図である。It is side surface part detail drawing concerning a 9th Example. 第9の実施例にかかるA−A平断面詳細図である。It is AA plane cross-section detail drawing concerning a 9th Example. 第9の実施例にかかるB−B縦断面詳細図である。It is a BB longitudinal cross-sectional detail figure concerning a 9th Example. 第9の実施例にかかる側面部分詳細図である。It is side surface part detail drawing concerning a 9th Example. 第9の実施例にかかるA−A平断面詳細図である。It is AA plane cross-section detail drawing concerning a 9th Example. 第9の実施例にかかるB−B縦断面詳細図である。It is a BB longitudinal cross-sectional detail figure concerning a 9th Example. 第10の実施例にかかる耐震補強部材の斜視図である。It is a perspective view of the seismic reinforcement member concerning a 10th example. 第10の実施例にかかる側面部分詳細図である。It is side surface detail drawing concerning a 10th Example. 第10の実施例にかかるA−A平断面詳細図である。It is AA plane cross-section detail drawing concerning a 10th Example. 第10の実施例にかかるB−B縦断面詳細図である。It is a BB longitudinal cross-sectional detail figure concerning a 10th Example. 第10の実施例にかかる縦断面詳細図である。It is a longitudinal cross-section detailed drawing concerning a 10th Example. 第10の実施例にかかる変形時の縦断面詳細図である。It is a longitudinal cross-sectional detail figure at the time of a deformation | transformation concerning a 10th Example. ガイド部の変形例の部分詳細図である。It is a partial detail drawing of the modification of a guide part. ガイド部の変形例の部分詳細図である。It is a partial detail drawing of the modification of a guide part. 第11の実施例にかかる耐震補強部材の斜視図である。It is a perspective view of the seismic reinforcement member concerning an 11th example. 第12の実施例にかかる耐震補強部材の斜視図である。It is a perspective view of the seismic reinforcement member concerning a 12th example. 本発明にかかる耐震補強部材を使用した耐震補強工法の側面図、および詳細図である。It is the side view and detailed drawing of an earthquake-proof reinforcement method using the earthquake-proof reinforcement member concerning the present invention. 第13の実施例にかかる耐震補強部材の斜視図である。It is a perspective view of the seismic reinforcement member concerning 13th Example. 第14の実施例にかかる耐震補強部材の斜視図である。It is a perspective view of the seismic reinforcement member concerning 14th Example. 第15の実施例にかかる耐震補強部材の斜視図である。It is a perspective view of the seismic reinforcement member concerning 15th Example. 第16の実施例にかかる耐震補強部材の斜視図である。It is a perspective view of the seismic reinforcement member concerning a 16th example. 第17の実施例にかかる耐震補強部材の斜視図である。It is a perspective view of the earthquake-proof reinforcement member concerning a 17th Example. 第18の実施例にかかる耐震補強部材の斜視図である。It is a perspective view of the seismic reinforcement member concerning the 18th example. 第19の実施例にかかる耐震補強部材の斜視図である。It is a perspective view of the seismic reinforcement member concerning the 19th example. 第20の実施例にかかる耐震補強部材の斜視図である。It is a perspective view of the earthquake-proof reinforcement member concerning a 20th Example. 第21の実施例にかかる耐震補強部材の斜視図である。It is a perspective view of the earthquake-proof reinforcement member concerning a 21st Example. 第22の実施例にかかる耐震補強部材の斜視図である。It is a perspective view of the earthquake-proof reinforcement member concerning a 22nd Example. 第23の実施例にかかる耐震補強部材の斜視図である。It is a perspective view of the seismic reinforcement member concerning the 23rd example. 第24の実施例にかかる耐震補強部材の斜視図である。It is a perspective view of the seismic reinforcement member concerning the 24th example. 第25の実施例にかかる耐震補強部材の斜視図である。It is a perspective view of the earthquake-proof reinforcement member concerning a 25th Example. 第26の実施例にかかる耐震補強部材の斜視図である。It is a perspective view of the seismic reinforcement member concerning the 26th example.

符号の説明Explanation of symbols

1 材軸応力伝達部
2 斜め応力伝達部
2a 接合型斜め応力伝達部
2b スライド型斜め応力伝達部
3 ストッパ部材
4 ガイド部
5 スライド部材
6 弾性部材
7 台座部
8 引寄せ部材
9 脇台座部
10 緩衝湾曲部
11 外端接合部材
12 連接部材
13 斜材接合部材
100 一体型コーナー部材
101 接合型コーナー部材
102 スライド型コーナー部材
DESCRIPTION OF SYMBOLS 1 Material axial stress transmission part 2 Diagonal stress transmission part 2a Joining type diagonal stress transmission part 2b Sliding type diagonal stress transmission part 3 Stopper member 4 Guide part 5 Slide member 6 Elastic member 7 Base part 8 Attraction member 9 Side base part 10 Buffer Curved portion 11 Outer end joining member 12 Connecting member 13 Diagonal member joining member 100 Integrated corner member 101 Joining corner member 102 Sliding corner member

Claims (48)

建築物、工作物等、構造材によって構成される構造物において、直交差する構造材同士を接合する補強部材であって、
棒状体から成り、当該棒状体の所定の2個所を折り曲げて形成された3つの直線状部分である材軸応力伝達部、斜め応力伝達部、および材軸応力伝達部の内、両端に位置する材軸応力伝達部が、前記直交差する二つの構造材それぞれと略平行になるように構成した一体型コーナー部材を備え、
当該一体型コーナー部材を構成する材軸応力伝達部、材軸応力伝達部を、所定の位置で前記構造材と略平行に摺動自在になるように取り付け、且つ前記構造材それぞれに固定可能となるように形成したガイド部を当該材軸応力伝達部に一以上備えたことを特徴とする耐震補強部材。
In a structure constituted by a structural material such as a building or a workpiece, a reinforcing member that joins the structural materials orthogonal to each other,
It is composed of a rod-like body, and is located at both ends of the material axis stress transmission portion, the oblique stress transmission portion, and the material axis stress transmission portion, which are three linear portions formed by bending two predetermined portions of the rod-like body. The material axis stress transmission portion includes an integrated corner member configured to be substantially parallel to each of the two structural materials that are orthogonally different from each other,
The material axis stress transmission part and the material axis stress transmission part constituting the integrated corner member are attached so as to be slidable substantially in parallel with the structural material at a predetermined position, and can be fixed to each structural material. A seismic reinforcing member comprising at least one guide portion formed in the material axial stress transmission portion.
建築物、工作物等、構造材によって構成される構造物において、直交差する構造材同士を接合する補強部材であって、
棒状体で形成され、前記直交差する二つの構造材それぞれと略平行になるように配置された材軸応力伝達部と材軸応力伝達部と、
当該材軸応力伝達部と材軸応力伝達部との間に位置し、所定の形態を有する連接部材を所定の形態を有する斜め応力伝達部の両端部に接合して形成された接合型斜め応力伝達部の連接部材を、
当該材軸応力伝達部および材軸応力伝達部に接合することで、材軸応力伝達部、斜め応力伝達部、および、材軸応力伝達部が一体となるように形成した接合型コーナー部材を備え、当該接合型コーナー部材を構成する材軸応力伝達部、材軸応力伝達部を、所定の位置で前記構造材と略平行に摺動自在になるように取り付け、且つ前記構造材それぞれに固定可能となるように形成したガイド部を当該材軸応力伝達部に一以上備えたことを特徴とする耐震補強部材。
In a structure constituted by a structural material such as a building or a workpiece, a reinforcing member that joins the structural materials orthogonal to each other,
A material axis stress transmission part and a material axis stress transmission part, which are formed of a rod-like body and arranged so as to be substantially parallel to each of the two orthogonally different structural materials;
Joined oblique stress formed by joining a connecting member having a predetermined form to both ends of the oblique stress transmitting part having a predetermined shape, located between the material axial stress transmitting part and the material axial stress transmitting part The connecting member of the transmission part
By joining to the material axis stress transmission part and the material axis stress transmission part, a material type stress transmission part, an oblique stress transmission part, and a joining type corner member formed so that the material axis stress transmission part is integrated. The material axis stress transmission part and the material axis stress transmission part constituting the joining type corner member can be attached so as to be slidable substantially parallel to the structural material at a predetermined position, and can be fixed to each structural material. A seismic reinforcing member comprising at least one guide portion formed in the material axial stress transmission portion.
建築物、工作物等、構造材によって構成される構造物において、直交差する構造材同士を接合する補強部材であって、
棒状体で形成され、前記直交差する二つの構造材それぞれと略平行になるように配置された材軸応力伝達部と材軸応力伝達部と、
当該材軸応力伝達部と材軸応力伝達部との間に位置し、当該材軸応力伝達部に摺動自在に装着できるガイドを有するスライド部材を所定の形態を有する斜め応力伝達部の両端部に接合して形成されたスライド型斜め応力伝達部のスライド部材を、
当該材軸応力伝達部に摺動自在に装着することで、材軸応力伝達部、スライド型斜め応力伝達部、および、材軸応力伝達部が一体となるように形成したスライド型コーナー部材を備え、
当該スライド型コーナー部材を構成する材軸応力伝達部、材軸応力伝達部を、所定の位置で前記構造材と略平行に摺動自在になるように取り付け、且つ前記構造材それぞれに固定可能となるように形成したガイド部を当該材軸応力伝達部に一以上備えたことを特徴とする耐震補強部材。
In a structure constituted by a structural material such as a building or a workpiece, a reinforcing member that joins the structural materials orthogonal to each other,
A material axis stress transmission part and a material axis stress transmission part, which are formed of a rod-like body and arranged so as to be substantially parallel to each of the two orthogonally different structural materials;
Both ends of the oblique stress transmission part having a predetermined shape with slide members located between the material axis stress transmission part and the material axis stress transmission part and having guides that can be slidably mounted on the material axis stress transmission part The slide member of the slide type oblique stress transmission part formed by joining to
By slidably attaching to the material axis stress transmission part, a material type stress transmission part, a slide type oblique stress transmission part, and a slide type corner member formed so that the material axis stress transmission part are integrated are provided. ,
The material axis stress transmission part and the material axis stress transmission part constituting the slide type corner member are attached so as to be slidable substantially in parallel with the structure material at a predetermined position, and can be fixed to each of the structure materials. A seismic reinforcing member comprising at least one guide portion formed in the material axial stress transmission portion.
前記接合型コーナー部材の接合型斜め応力伝達部、または、スライド型コーナー部材のスライド型斜め応力伝達部を構成する接合部材と斜め応力伝達部との接合部、または、スライド部材と斜め応力伝達部との接合部の内、少なくとも一以上の接合部を回動自在なピン接合としたことを特徴とする請求項2または3に記載の耐震補強部材。The joint-type diagonal stress transmission part of the joint-type corner member, or the joint part of the joint member and the diagonal stress transmission part constituting the slide-type diagonal stress transmission part of the slide-type corner member, or the slide member and the diagonal stress transmission part 4. The earthquake-resistant reinforcing member according to claim 2, wherein at least one or more of the joint portions is a pivotable pin joint. 5. 前記接合型コーナー部材の接合型斜め応力伝達部を構成する斜め応力伝達部、または、前記スライド型コーナー部材のスライド型斜め応力伝達部を構成する斜め応力伝達部が棒状体で形成されたことを特徴とする請求項2ないし4の何れか一項に記載の耐震補強部材。The slanting stress transmission part constituting the joining type slanting stress transmission part of the joining type corner member or the slanting stress transmission part constituting the sliding type slanting stress transmission part of the slide type corner member is formed of a rod-shaped body. The seismic reinforcement member according to any one of claims 2 to 4, wherein the seismic reinforcement member is provided. 請求項1ないし5の何れか一項に記載の一体型コーナー部材、または、接合型コーナー部材を備え、加えて当該一体型コーナー部材、または、接合型コーナー部材を構成する材軸応力伝達部に、請求項3ないし5の何れか一項に記載のスライド型斜め応力伝達部を少なくとも一以上摺動自在に装着したことを特徴とする耐震補強部材。An integral corner member according to any one of claims 1 to 5 or a joint type corner member is provided, and in addition to the material axis stress transmission portion constituting the integral corner member or the joint type corner member. An earthquake-resistant reinforcing member, wherein at least one or more slide-type oblique stress transmission portions according to any one of claims 3 to 5 are slidably mounted. 請求項3ないし5の何れか一項に記載のスライド型コーナー部材を備え、加えて当該スライド型コーナー部材を構成する材軸応力伝達部に、請求項3ないし5の何れか一項に記載のスライド型斜め応力伝達部を少なくとも一以上摺動自在に装着したことを特徴とする耐震補強部材。The slide-type corner member according to any one of claims 3 to 5 is provided, and in addition, the material axial stress transmission portion constituting the slide-type corner member is provided with any one of claims 3 to 5. An earthquake-resistant reinforcing member, wherein at least one slide-type oblique stress transmission portion is slidably mounted. 前記材軸応力伝達部の一部を所定の形状に成形、あるいは略円形に捲回することで、材軸応力伝達部自体が伸縮可能となる緩衝湾曲部を設けたことを特徴とする請求項1ないし7の何れか一項に記載の耐震補強部材。The buffer shaft bending portion is provided, in which a part of the material axis stress transmission part is formed into a predetermined shape or wound into a substantially circular shape so that the material axis stress transmission part itself can expand and contract. The seismic reinforcement member according to any one of 1 to 7. 前記一体型コーナー部材、または、接合型コーナー部材、または、スライド型コーナー部材を構成する材軸応力伝達部の内、少なくとも一方の材軸応力伝達部の構造材直交差側の端部を、対置する構造材または基礎に固定された所定の固着部材に接合可能なように構成されたことを特徴とする請求項1ないし8の何れか一項に記載の耐震補強部材。At least one of the material axis stress transmission parts constituting the integral type corner member, the joint type corner member, or the slide type corner member is opposed to the structural material orthogonal difference end of the material axis stress transmission part. The seismic reinforcing member according to any one of claims 1 to 8, wherein the seismic reinforcing member is configured to be able to be joined to a structural member or a predetermined fixing member fixed to a foundation. 前記材軸応力伝達部の一部を、当該材軸応力伝達部が設置された前記構造材に固着可能となるように構成されたことを特徴とする請求項1ないし9の何れか一項に記載の耐震補強部材。10. The structure according to claim 1, wherein a part of the material axial stress transmission part is configured to be able to be fixed to the structural material provided with the material axial stress transmission part. The seismic reinforcement member described. 前記材軸応力伝達部が当該材軸応力伝達部が取り付けられている構造材に対して所定の角度を有するように構成されたことを特徴とする請求項1ないし10の何れか一項に記載の耐震補強部材。The said material axial stress transmission part is comprised so that it may have a predetermined angle with respect to the structural material to which the said material axial stress transmission part is attached, The one or more Claims 1 thru | or 10 characterized by the above-mentioned. Seismic reinforcement member. 前記材軸応力伝達部および斜め応力伝達部から成る一体型コーナー部材、または、接合型コーナー部材、または、スライド型コーナー部材の材軸応力伝達部を片側1個のみ備え、且つ、当該コーナー部材を構成する斜め応力伝達部の端部を前記構造材に固着可能、または回動自在なピン接合で固定可能としたことを特徴とする請求項1ないし11の何れか一項に記載の耐震補強部材。An integral corner member comprising the material axis stress transmission part and the oblique stress transmission part, or a joint type corner member, or a slide type corner member having only one material axis stress transmission part on one side, and the corner member The seismic reinforcing member according to any one of claims 1 to 11, wherein an end portion of the oblique stress transmission portion constituting the member can be fixed to the structural member or can be fixed by a pivotable pin joint. . 前記スライド型斜め応力伝達部を構成するスライド部材に、前記材軸応力伝達部が挿通可能な通孔を備え、且つ、当該材軸応力伝達部に当該スライド部材を嵌着することで、スライド型斜め応力伝達部が材軸応力伝達部に摺動自在に装着されたことを特徴とする請求項3ないし12の何れか一項に記載の耐震補強部材。The slide member constituting the slide-type oblique stress transmission portion has a through-hole through which the material axis stress transmission portion can be inserted, and the slide member is fitted into the material axis stress transmission portion so that the slide type The seismic reinforcement member according to any one of claims 3 to 12, wherein the oblique stress transmission portion is slidably attached to the material axial stress transmission portion. 前記ガイド部に、前記材軸応力伝達部が挿通可能な通孔を備え、当該ガイド部に当該材軸応力伝達部を挿着することで、材軸応力伝達部が摺動自在となるようにガイド部が形成されたことを特徴とする請求項1ないし13の何れか一項に記載の耐震補強部材。The guide portion is provided with a through-hole through which the material axis stress transmission portion can be inserted, and the material axis stress transmission portion is slidable by inserting the material axis stress transmission portion into the guide portion. The earthquake-resistant reinforcing member according to any one of claims 1 to 13, wherein a guide portion is formed. 前記一体型コーナー部材、または、接合型コーナー部材、または、スライド型コーナー部材を構成する材軸応力伝達部の所定の位置に取り付けられ、材軸応力伝達部が摺動した時、前記ガイド部、または、スライド部材と接触することで材軸応力伝達部の摺動が阻害されるように形成されたストッパ部材を少なくとも一以上備えたことを特徴とする請求項1ないし14の何れか一項に記載の耐震補強部材。When the material axis stress transmission part is slid and attached to a predetermined position of the material axis stress transmission part constituting the integral corner member, the joint type corner member or the slide type corner member, the guide part, Alternatively, at least one stopper member formed so as to inhibit the sliding of the material axis stress transmission portion by being in contact with the slide member is provided. The seismic reinforcement member described. 前記ストッパ部材の外端が、前記ガイド部、または、スライド部材の通孔の縁よりも外方に位置するように形成することで、ガイド部、または、スライド部材と接触可能となり、材軸応力伝達部の摺動が阻害されるように形成されたことを特徴とする請求項15に記載の耐震補強部材。By forming the outer end of the stopper member so as to be located outside the edge of the guide portion or the slide member through hole, the guide member or the slide member can be contacted, and the material axial stress The seismic reinforcement member according to claim 15, wherein the seismic reinforcement member is formed so as to inhibit sliding of the transmission portion. 前記材軸応力伝達部の一部または全てが雄ねじ部材で形成されたことを特徴とする請求項1ないし16の何れか一項に記載の耐震補強部材。The seismic reinforcement member according to any one of claims 1 to 16, wherein a part or all of the material axial stress transmission portion is formed of a male screw member. 前記ストッパ部材の少なくとも一以上が雌ねじ部材で形成されたことを特徴とする請求項15ないし17の何れか一項に記載の耐震補強部材。The seismic reinforcement member according to any one of claims 15 to 17, wherein at least one of the stopper members is formed of a female screw member. 前記スライド型コーナー部材を構成するスライド部材の両端に雌ねじ部材を設置し、スライド部材を材軸応力伝達部に固着することでスライド部材、および、雌ねじ部材に前記接合型コーナー部材を構成する接合部材としての機能を持たせたことを特徴とする請求項2ないし18の何れか一項に記載の耐震補強部材。A female screw member is installed at both ends of the slide member that constitutes the slide type corner member, and the slide member is fixed to the material axis stress transmission portion, and the joint member that constitutes the joint type corner member on the female screw member The seismic reinforcement member according to any one of claims 2 to 18, characterized by having a function as: 前記一体型コーナー部材、または、接合型コーナー部材、または、スライド型コーナー部材を構成する材軸応力伝達部の所定の位置に装着し、前記ガイド部、または、ストッパ部材、または、スライド部材、または、接合部材の端部と接触可能となるように形成された弾性部材を一以上備えたことを特徴とする請求項1ないし19の何れか一項に記載の耐震補強部材。Mounted at a predetermined position of the material axis stress transmission part constituting the integral corner member, the joint type corner member, or the slide type corner member, and the guide part, the stopper member, or the slide member, or The earthquake-resistant reinforcing member according to any one of claims 1 to 19, further comprising at least one elastic member formed so as to be in contact with an end portion of the joining member. 前記一体型コーナー部材、または、接合型コーナー部材、または、スライド型コーナー部材を構成する材軸応力伝達部の所定の位置に装着し、前記ガイド部、または、ストッパ部材、または、スライド部材、または、接合部材の端部に一端を固着した弾性部材を一以上備えたことを特徴とする請求項1ないし20の何れか一項に記載の耐震補強部材。Mounted at a predetermined position of the material axis stress transmission part constituting the integral corner member, the joint type corner member, or the slide type corner member, and the guide part, the stopper member, or the slide member, or The earthquake-resistant reinforcing member according to any one of claims 1 to 20, further comprising at least one elastic member having one end fixed to an end of the joining member. 前記ストッパ部材とガイド部との間に、請求項20に記載の弾性部材を一以上備えることで、材軸応力伝達部がスライド移動した時に、当該弾性部材が当該ストッパ部材、および、ガイド部と接触し、縮退することで圧縮ばねとして機能するように構成したことを特徴とする請求項15ないし21の何れか一項に記載の耐震補強部材。By providing one or more elastic members according to claim 20 between the stopper member and the guide portion, when the material axis stress transmission portion slides, the elastic member becomes the stopper member and the guide portion. The seismic reinforcement member according to any one of claims 15 to 21, which is configured to function as a compression spring by contacting and retracting. 前記接合部材とガイド部との間に、請求項20に記載の弾性部材を一以上備えることで、材軸応力伝達部がスライド移動した時に、当該弾性部材が接合部材、および、ガイド部と接触し、縮退することで圧縮ばねとして機能するように構成したことを特徴とする請求項2または、請求項4ないし22の何れか一項に記載の耐震補強部材。21. One or more elastic members according to claim 20 are provided between the joining member and the guide part, so that the elastic member contacts the joining member and the guide part when the material axis stress transmission part slides. 23. The seismic reinforcement member according to claim 2, wherein the seismic reinforcement member is configured to function as a compression spring when retracted. 前記スライド部材とガイド部との間に、請求項20に記載の弾性部材を一以上備えることで、材軸応力伝達部がスライド移動した時に、当該弾性部材がスライド部材、および、ガイド部と接触し、縮退することで圧縮ばねとして機能するように構成したことを特徴とする請求項3ないし23の何れか一項に記載の耐震補強部材。21. One or more elastic members according to claim 20 are provided between the slide member and the guide portion, so that the elastic member contacts the slide member and the guide portion when the material axis stress transmission portion slides. The seismic reinforcing member according to any one of claims 3 to 23, wherein the seismic reinforcing member is configured to function as a compression spring when retracted. 前記ストッパ部材とガイド部との間に、請求項21に記載の弾性部材を備え、当該弾性部材の両端部をストッパ部材の端部、および、ガイド部の端部にそれぞれ固着することで、材軸応力伝達部がスライド移動した時に、当該弾性部材が縮退、あるいは伸張し、圧縮ばね、あるいは引きばねとして機能するように構成したことを特徴とする請求項15ないし24の何れか一項に記載の耐震補強部材。The elastic member according to claim 21 is provided between the stopper member and the guide portion, and both end portions of the elastic member are fixed to the end portion of the stopper member and the end portion of the guide portion, respectively. 25. The elastic member according to any one of claims 15 to 24, wherein when the axial stress transmission portion slides, the elastic member contracts or expands to function as a compression spring or a tension spring. Seismic reinforcement member. 前記接合部材とガイド部との間に、請求項21に記載の弾性部材を備え、当該弾性部材の両端部を接合部材の端部、および、ガイド部の端部にそれぞれ固着することで、材軸応力伝達部がスライド移動した時に、当該弾性部材が縮退、あるいは伸張し、圧縮ばね、あるいは引きばねとして機能するように構成したことを特徴とする請求項2または、請求項4ないし25の何れか一項に記載の耐震補強部材。The elastic member according to claim 21 is provided between the joining member and the guide part, and both ends of the elastic member are fixed to the end part of the joining member and the end part of the guide part, respectively. 26. Any one of claims 2 and 4 to 25, wherein when the axial stress transmission portion slides, the elastic member contracts or expands to function as a compression spring or a tension spring. The earthquake-proof reinforcement member as described in one. 前記スライド部材とガイド部との間に、請求項21に記載の弾性部材を備え、当該弾性部材の両端部をスライド部材の端部、および、ガイド部の端部にそれぞれ固着することで、スライド部材がスライド移動した時に、当該弾性部材が縮退、あるいは伸張し、圧縮ばね、あるいは引きばねとして機能するように構成したことを特徴とする請求項3ないし26の何れか一項に記載の耐震補強部材。The elastic member according to claim 21 is provided between the slide member and the guide portion, and both ends of the elastic member are fixed to the end portion of the slide member and the end portion of the guide portion, respectively. 27. The seismic reinforcement according to any one of claims 3 to 26, wherein when the member slides, the elastic member contracts or expands to function as a compression spring or a tension spring. Element. 前記ガイド部とガイド部との間に、請求項20または21に記載の弾性部材を二以上設け、当該弾性部材と弾性部材との間に前記ストッパ部材を二以上設けたことを特徴とする請求項15ないし27の何れか一項に記載の耐震補強部材。The elastic member according to claim 20 or 21 is provided between the guide part and the guide part, and two or more stopper members are provided between the elastic member and the elastic member. Item 28. The seismic reinforcing member according to any one of Items 15 to 27. 前記ガイド部と前記接合部材との間に、請求項20または21に記載の弾性部材を二以上設け、当該弾性部材と弾性部材との閧に前記ストッパ部材を二以上設けたことを特徴とする請求項15ないし28の何れか一項に記載の耐震補強部材。Two or more elastic members according to claim 20 or 21 are provided between the guide portion and the joining member, and two or more stopper members are provided on a flange between the elastic member and the elastic member. The seismic reinforcing member according to any one of claims 15 to 28. 前記ガイド部と前記スライド部材との間に、請求項20または21に記載の弾性部材を二以上設け、当該弾性部材と弾性部材との間に前記ストッパ部材を二以上設けたことを特徴とする請求項15ないし29の何れか一項に記載の耐震補強部材。Two or more elastic members according to claim 20 or 21 are provided between the guide portion and the slide member, and two or more stopper members are provided between the elastic member and the elastic member. The seismic reinforcement member according to any one of claims 15 to 29. 前記弾性部材がコイルばねであることを特徴とする請求項20ないし30の何れか一項に記載の耐震補強部材。The earthquake-resistant reinforcing member according to any one of claims 20 to 30, wherein the elastic member is a coil spring. 前記ガイド部を少なくとも一以上固着することで、ガイド部と一体となるように形成された台座部を備えたことを特徴とする請求項1ないし31の何れか一項に記載の耐震補強部材。The seismic reinforcement member according to any one of claims 1 to 31, further comprising a pedestal portion formed so as to be integrated with the guide portion by fixing at least one of the guide portions. 前記台座部の一部または全体を板状の部材で形成したことを特徴とする請求項32に記載の耐震補強部材。The seismic reinforcement member according to claim 32, wherein a part or the whole of the pedestal part is formed of a plate-like member. 前記台座部が、前記材軸応力伝達部と略平行な辺に沿って、当該台座部と略直角に延伸した脇台座部を台座部の片辺、または、両辺に備えたことを特徴とする請求項32または33に記載の耐震補強部材。The pedestal portion includes a side pedestal portion extending substantially perpendicular to the pedestal portion along a side substantially parallel to the material axis stress transmission portion, on one side or both sides of the pedestal portion. The seismic reinforcement member according to claim 32 or 33. 前記台座部、または、脇台座部、または、台座部と脇台座部の所定の位置に締結具を挿通するための一以上の締結孔が設けられたことを特徴とする請求項32ないし34の何れか一項に記載の耐震補強部材。35. The one or more fastening holes for inserting fasteners at predetermined positions of the pedestal part, the side pedestal part, or the pedestal part and the side pedestal part are provided. The earthquake-proof reinforcement member as described in any one of Claims. 前記接合型コーナー部材、または、一体型コーナー部材、または、スライド型コーナー部材を構成する材軸応力伝達部の内、少なくとも一方の材軸応力伝達部の構造材直交差側端部を、対置する構造材に固着可能な台座部、または、脇台座部に接合されたことを特徴とする請求項32ないし35の何れか一項に記載の耐震補強部材。The structural material orthogonal difference side end of at least one material axis stress transmission portion of the joining type corner member, the integral type corner member, or the slide type corner member is opposed to each other. 36. The seismic reinforcing member according to any one of claims 32 to 35, wherein the seismic reinforcing member is joined to a pedestal portion that can be fixed to a structural material or a side pedestal portion. 前記直交差する構造材の各々に取付け可能となるように構成された前記台座部の構造材直交差側の端部に、棒状部材が挿通可能となる通孔を有する引寄せ部材を備えたことを特徴とする請求項32ないし36の何れか一項に記載の耐震補強部材。A pulling member having a through-hole through which a rod-like member can be inserted is provided at an end of the pedestal portion that is configured to be attachable to each of the structural members that are orthogonally crossed. 37. The seismic reinforcing member according to any one of claims 32 to 36. 前記直交差する構造材の各々に取付け可能となるように構成された一対の前記台座部を、構造材の直交差する部分近傍まで各々延伸し、構造材の直交差部分近傍にて両台座部同士を接合、または、両台座部を一の部材を折り曲げて略L型の一体の部材となるように形成されたことを特徴とする請求項32ないし37の何れか一項に記載の耐震補強部材。A pair of the pedestal portions configured to be attachable to each of the structural materials that are orthogonally different from each other are extended to the vicinity of the portions where the structural materials are orthogonally crossed, and both pedestal portions are positioned in the vicinity of the orthogonal difference portions of the structural materials 38. The earthquake-proof reinforcement according to any one of claims 32 to 37, wherein the members are joined to each other, or both pedestals are formed by bending one member into a substantially L-shaped integral member. Element. 前記一対の台座部の接合部を回動自在なピン接合としたことを特徴とする請求項38に記載の耐震補強部材。The seismic reinforcement member according to claim 38, wherein the joint portion of the pair of pedestal portions is a rotatable pin joint. 前記ガイド部を形成する通孔の一端もしくは両端に、外方に向かう末広がり部を設けたことを特徴とする請求項14ないし39の何れか一項に記載の耐震補強部材。The seismic reinforcement member according to any one of claims 14 to 39, wherein a diverging portion directed outward is provided at one or both ends of the through hole forming the guide portion. 前記スライド部材を形成する通孔の一端もしくは両端に、外方に向かう末広がり部を設けたことを特徴とする請求項13ないし40の何れか一項に記載の耐震補強部材。The seismic reinforcement member according to any one of claims 13 to 40, wherein an outwardly diverging portion is provided at one or both ends of the through hole forming the slide member. 前記ガイド部を形成する通孔において、当該ガイド部が取り付けられている構造材の材面に対して垂直な方向の内径が、構造材の材面に対して平行な方向の内径よりも大きくなるようにガイド部の通孔が形成されたことを特徴とする請求項14ないし41の何れか一項に記載の耐震補強部材。In the through hole forming the guide portion, the inner diameter in the direction perpendicular to the material surface of the structural material to which the guide portion is attached is larger than the inner diameter in the direction parallel to the material surface of the structural material. The earthquake-resistant reinforcing member according to any one of claims 14 to 41, wherein the through hole of the guide portion is formed as described above. 前記ガイド部の、一端もしくは両端が凹形状に形成されたことを特徴とする請求項42に記載の耐震補強部材。The earthquake-resistant reinforcing member according to claim 42, wherein one end or both ends of the guide portion are formed in a concave shape. 前記ガイド部が、当該ガイド部に挿着された材軸応力伝達部に対して、所定の角度を有するように傾斜して形成されていることを特徴とする請求項42または43に記載の耐震補強部材。44. The earthquake resistance according to claim 42, wherein the guide portion is formed to be inclined so as to have a predetermined angle with respect to a material axial stress transmission portion inserted into the guide portion. Reinforcing member. 前記材軸応力伝達部、または、斜め応力伝達部、または、材軸応力伝達部と斜め応力伝達部の両方がばね鋼材で形成されたことを特徴とする請求項1ないし44の何れか一項に記載の耐震補強部材。45. The material axial stress transmission portion, the oblique stress transmission portion, or both the material axial stress transmission portion and the oblique stress transmission portion are formed of spring steel material. The seismic reinforcement member described in 1. 前記構造材によって構成される構造物の部分において、4本の構造材で形成された略四角形の構面の隣り合うコーナー部に、前記請求項1ないし45の何れか一項に記載の耐震補強部材を固着し、当該耐震補強部材を形成する前記材軸応力伝達部の外端同士を外端接合部材を介して接合したことを特徴とする耐震補強工法。46. The earthquake-proof reinforcement according to any one of claims 1 to 45, wherein a corner of a structure formed by the structural material is adjacent to a corner portion of a substantially rectangular surface formed by four structural materials. A seismic reinforcement method characterized in that members are fixed and the outer ends of the material axial stress transmission parts forming the seismic reinforcement member are joined together via an outer end joining member. 4本の構造材で形成された略四角形の構面に設置される筋かい、ブレース等、斜材の端部を接合可能とする斜材接合部材を、前記斜め応力伝達部に備えたことを特徴とする請求項1ないし45の何れか一項に記載の耐震補強部材。The oblique stress transmission section includes a diagonal joint member capable of joining the ends of diagonal members such as braces and braces installed on a substantially rectangular surface formed of four structural members. The earthquake-resistant reinforcing member according to any one of claims 1 to 45, wherein the member is an earthquake-resistant reinforcing member. 前記斜材接合部材が板状部材で形成され、当該板状部材の所定の位置に締結具を挿通するための一以上の締結孔が設けられたことを特徴とする請求項47に記載の耐震補強部材。The seismic material according to claim 47, wherein the diagonal member is formed of a plate-like member, and one or more fastening holes for inserting fasteners are provided at predetermined positions of the plate-like member. Reinforcing member.
JP2006187193A 2006-06-12 2006-06-12 Aseismatic reinforcing member and aseismatic reinforcing method Pending JP2007332743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006187193A JP2007332743A (en) 2006-06-12 2006-06-12 Aseismatic reinforcing member and aseismatic reinforcing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006187193A JP2007332743A (en) 2006-06-12 2006-06-12 Aseismatic reinforcing member and aseismatic reinforcing method

Publications (1)

Publication Number Publication Date
JP2007332743A true JP2007332743A (en) 2007-12-27

Family

ID=38932472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006187193A Pending JP2007332743A (en) 2006-06-12 2006-06-12 Aseismatic reinforcing member and aseismatic reinforcing method

Country Status (1)

Country Link
JP (1) JP2007332743A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109629697A (en) * 2019-01-28 2019-04-16 皖西学院 A kind of connector that can enhance steel core concrete column contact stability
CN111455823A (en) * 2020-04-30 2020-07-28 重庆交通大学 Longitudinal beam falling prevention device
CN114622764A (en) * 2021-12-06 2022-06-14 浙江德宝通讯科技股份有限公司 Novel tower of preventing wind of collapsible contraction type
CN117888628A (en) * 2024-03-14 2024-04-16 南安市装备制造业技术研究院 Building steel structure with anti-seismic function

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109629697A (en) * 2019-01-28 2019-04-16 皖西学院 A kind of connector that can enhance steel core concrete column contact stability
CN111455823A (en) * 2020-04-30 2020-07-28 重庆交通大学 Longitudinal beam falling prevention device
CN111455823B (en) * 2020-04-30 2021-07-27 重庆交通大学 Longitudinal beam falling prevention device
CN114622764A (en) * 2021-12-06 2022-06-14 浙江德宝通讯科技股份有限公司 Novel tower of preventing wind of collapsible contraction type
CN114622764B (en) * 2021-12-06 2023-09-01 浙江德宝通讯科技股份有限公司 Novel collapsible shrink type windproof pole tower
CN117888628A (en) * 2024-03-14 2024-04-16 南安市装备制造业技术研究院 Building steel structure with anti-seismic function
CN117888628B (en) * 2024-03-14 2024-05-28 南安市装备制造业技术研究院 Building steel structure with anti-seismic function

Similar Documents

Publication Publication Date Title
JPWO2011158289A1 (en) Metal plate for vibration control and building structure
CN110847358B (en) Steel structure self-resetting beam column node connecting device
KR20210084027A (en) Seismic controling system of constructure and construction method thereof
JP2007332743A (en) Aseismatic reinforcing member and aseismatic reinforcing method
JP2008019692A (en) Brace connector
JP2002235457A (en) Vibration control device and vibration control structure of joint part
JP5596990B2 (en) Bearing wall structure of wooden building
JP4664997B2 (en) Buildings with joint hardware
JP2007040063A (en) Bracing structure
JP5243816B2 (en) Damping damper
JP2010216611A (en) Seismic response control metallic plate
JP2008019693A (en) Aseismatic reinforcing member and aseismatic reinforcing method
JP5037031B2 (en) Wall panel fixing structure and building
JP5251933B2 (en) Buildings with joint hardware
JP6348085B2 (en) Seismic control structure of wooden buildings
KR100360377B1 (en) Steel structure with damper joint
JP3998313B2 (en) Bonded hardware
JP2009030321A (en) Portal frame by connection of composite beam and wooden pillar
JP2003090144A (en) Damping device, damping structure, and damping structural body
JP3209800U7 (en)
JP6074132B2 (en) Damping brace joint structure
JP2013060803A (en) Earthquake-resistant hardware and earthquake-resistant structure using the same
JP2020090812A (en) Vibration control structure
JP3215235U (en) Vibration control panel
JP4609628B2 (en) Seismic shock absorber and seismic joint device using the same