JP2007332533A - Ecologically friendly residence - Google Patents

Ecologically friendly residence Download PDF

Info

Publication number
JP2007332533A
JP2007332533A JP2006150931A JP2006150931A JP2007332533A JP 2007332533 A JP2007332533 A JP 2007332533A JP 2006150931 A JP2006150931 A JP 2006150931A JP 2006150931 A JP2006150931 A JP 2006150931A JP 2007332533 A JP2007332533 A JP 2007332533A
Authority
JP
Japan
Prior art keywords
heat
moisture
heat insulating
air
moisture absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006150931A
Other languages
Japanese (ja)
Inventor
Kojiro Tazaki
幸二郎 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENKO HOUSE KK
Original Assignee
KENKO HOUSE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENKO HOUSE KK filed Critical KENKO HOUSE KK
Priority to JP2006150931A priority Critical patent/JP2007332533A/en
Publication of JP2007332533A publication Critical patent/JP2007332533A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/90Passive houses; Double facade technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)
  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize energy saving as an environmental measure, to suppress influence on a heat island phenomenon through producing heat of condensation accompanied with dehumidification and exhaust of sensible heat while enhancing a dehumidifying/heat shielding function in summer, and furthermore to improve a heating effect in winter. <P>SOLUTION: A means giving high airtight heat insulating performance of a house in winter, and exhausting air by a ventilating layer in summer is provided. By using interior material with moisture absorbing/discharging properties, cooperation between moisture absorbing/discharging and the phase change of H<SB>2</SB>O is controlled (promoted/suppressed) by combination/superposition of different moisture absorbing/discharging materials. Natural energy such as ground temperature/radiation cooling/solar heat and midnight power are efficiently used for adjusting humidity/moving energy. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、高温・湿潤の地域で高性能住宅の普及を図るべく、省エネルギー・快適な屋内環境・環境負荷という背反するものを止揚するべく、地熱・放射冷却等の自然エネルギーに深夜電力をエネルギー源とし、夏季の日射により注がれる太陽熱を吸収する、イ:吸放湿とH2Oの相変化との連携に伴うエネルギー移転又はその制御、あるいは、ロ:吸放湿とH2Oの相変化との連携に伴うエネルギー移転を制御する断熱パネル、あるいは、ハ:イ又はロを利用した空調方法、あるいは、ニ:イ又はロ又はハを利用した建物、あるいは、ホ:イ又はロ又はハ又はニの冷暖房負荷・除湿負荷管理・含水率管理・環境負荷に関する。   In order to disseminate high-performance houses in high-temperature / humid areas, this invention uses midnight power as natural energy, such as geothermal and radiative cooling, in order to stop the contradictory of energy saving, comfortable indoor environment, and environmental load. As a source, it absorbs solar heat poured by solar radiation in summer, a: energy transfer or control associated with the linkage between moisture absorption / release and H2O phase change, or b: phase change of moisture absorption / release and H2O Insulation panel that controls energy transfer associated with cooperation, or air conditioning method that uses b: i or b, or d: building that uses b, i, b, or c, or i: b, b, c, or d Regarding air conditioning load, dehumidification load management, moisture content management, and environmental load.

社会的背景について。
産業革命以後、化石エネルギーに依存する社会構造が定着し、そのお陰で我々は豊かな生活を送ることができた。ところが、今日社会的レベルで活動の活発化する一方で、地球環境への悪影響が強く意識され、広くその対策が議論される様になった。その方向は、京都議定書に表わされている。
ところで、個人レベルでは住宅で消費されるエネルギーが大きな割合を占めている。最近では、夏・冬の冷暖房による室内の空調は当たり前の時代である。それで、省エネルギーを実践しながら、快適な生活を送れる工夫が求められ、社会的コンセンサスを得られるに至った。省エネルギーの実践としては、一方では次世代型省エネルギー住宅に代表される省エネルギー化であり、他方、エアコン等の機器のエネルギー消費効率の改善による省エネルギーの追求である。
その様な時代背景の下、我々生活者の高まる欲求を満たしながら、自然エネルギーあるいは余剰の深夜電力の活用並びに高性能住宅の普及を通じて、省エネルギーを実践する第三の道を開拓し、広くはヒートアイランド化・地球温暖化等の環境問題への取組の一助にするものである。
About social background.
After the Industrial Revolution, a social structure that relied on fossil energy has become established, which has allowed us to live a rich life. However, while activities are becoming more active at the social level today, the negative impact on the global environment is strongly conscious and the countermeasures have been widely discussed. The direction is expressed in the Kyoto Protocol.
By the way, at the individual level, the energy consumed in houses accounts for a large proportion. Recently, indoor air conditioning by air conditioning in summer and winter is a natural era. Therefore, a device that can lead a comfortable life while practicing energy conservation was required, and social consensus was reached. As for the practice of energy saving, on the one hand, it is energy saving represented by the next generation type energy saving house, and on the other hand, the pursuit of energy saving by improving the energy consumption efficiency of devices such as air conditioners.
Under such circumstances, we have pioneered a third way to practice energy conservation through the use of natural energy or surplus midnight power and the spread of high-performance housing while meeting the growing needs of consumers. It helps to address environmental issues such as climate change and global warming.

寒冷地では、一般に暖房の為に消費するエネルギー量は多く、家計には大きな負担となっている。高気密・高断熱住宅は、開発された厳寒地では冬季に求められる省エネルギー効果は著しく、しかも、快適な住環境を提供しえるので、費用対効果を認められて普及しつつある。
ところが、温暖地においては省エネルギーによる費用対効果が小さく、又、冬でも氷点下に外気温が下がることは稀で、住環境面でも寒冷地に比較する程の改善効果が認められがたい。更に、決定的な所は、夏季の遮熱対策が未だ不十分であるというところにある。
In cold regions, the amount of energy consumed for heating is generally large, which is a heavy burden on the household. Highly airtight and highly heat-insulated houses are becoming more popular in the developed cold regions because they have a remarkable energy saving effect that is required in winter and can provide a comfortable living environment.
However, in warm regions, the cost-effectiveness of energy saving is small, and it is rare that the outside temperature falls below freezing even in winter, and it is difficult to recognize the improvement effect as compared with the cold region in terms of the living environment. Furthermore, the decisive point is that summer heat insulation measures are still insufficient.

高気密・高断熱住宅には一般に、熱損失の少ない合成樹脂系の断熱材が使用されている。冬には断熱性能の高さが発揮されるので、寒冷地向けの断熱材としては最適な資材である。又、結露の発生を阻止する上では、断熱性能に加えて気密性能の高さが求められる。その面でも、ボード状の合成樹脂系の断熱材は最適な資材である。
ところが、夏季は事情が逆転し、太陽の日射により壁体・天井等に用いられる断熱材は長時間加熱に曝される。断熱材は熱を吸収・蓄えて高温となり、又、その蓄熱効果によって発生する輻射熱により好適な室温を維持するのに支障が出てくる。
更に、昼間断熱効果によって蓄熱した分を、外側通気層を通じて夜間に放熱して冷却するものの、断熱材はその熱容量によって蓄熱体となる為、冷却するのに時間がかかる。冷却が進むまで、室内への輻射熱となり、室内の冷房負荷の増大要因となる。
以上の様な事情から、温暖地ほど夏季の遮熱対策は不可欠となり、これまで、不十分ながらも実施されているものを検討する。
Generally, a synthetic resin-based heat insulating material with a small heat loss is used in a highly airtight and highly heat insulating house. In winter, it has a high thermal insulation performance, so it is an optimal material for thermal insulation in cold regions. Further, in order to prevent the occurrence of condensation, high airtightness is required in addition to heat insulation. In that respect as well, board-shaped synthetic resin insulation is the optimal material.
However, the situation is reversed in summer, and heat insulation materials used for walls and ceilings are exposed to heating for a long time due to solar radiation. The heat insulating material absorbs and stores heat to become high temperature, and radiant heat generated by the heat storage effect impedes maintaining a suitable room temperature.
Furthermore, although the amount of heat stored by the daytime heat insulation effect is radiated and cooled at night through the outer ventilation layer, the heat insulating material becomes a heat storage body due to its heat capacity, so it takes time to cool. Until cooling progresses, it becomes radiant heat into the room, which increases the cooling load in the room.
In view of the above circumstances, heat shield measures in summer become indispensable in warmer regions, and what has been implemented, though insufficient, has been examined.

特許第3251000号公報(特許文献1)並びに特開2003−328464号(特許文献2)において、日射取得された太陽熱エネルギーが断熱材内での蓄熱効果によって輻射熱と化して、室内の冷房負荷を増大させることを指摘し、太陽光を遮蔽することで断熱材内での蓄熱を阻止する手段を提供している。
簡単に記すと、「断熱材の表面の熱反射箔による太陽熱の反射によって、断熱材の表面への熱伝導が大幅に軽減でき、断熱材自体への加熱と蓄熱が減少するため、居室への天井・壁等の外周からの貫流熱量が減少され、その結果、居室内の冷房に要するエネルギー量を削減できる。」
上記手段は、夏季に室内の温度上昇を抑制し、冷房負荷の増大を抑える面では効果を現わす。しかし、この遮熱の手段は、建築的工夫による屋内の湿度調節並びに空気浄化機能を備えるに至っていない。又、遮熱された太陽熱エネルギーは顕熱の形でしか排熱されない。更に、熱反射箔は、季節に関係なく太陽熱を反射する。それで、太陽熱エネルギー利用の必要性の高い冬季に、熱反射により太陽熱エネルギーの利用を阻まれ、形を変えた熱損失を被る。
更に、冬季壁体内通気を利用したエネルギー変換の結果得られる輻射暖房効果を目的とする場合、熱反射箔によって昼間の日射による太陽熱エネルギーの取得を抑制すると、その効果に影響を及ぼす熱損失となりかねない。それで、熱反射箔を利用する遮熱の方法は必ずしも最適とは言えない。
In Japanese Patent No. 3251000 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2003-328464 (Patent Document 2), solar thermal energy acquired by solar radiation is converted to radiant heat by the heat storage effect in the heat insulating material, thereby increasing the indoor cooling load. It provides a means to prevent heat storage in the heat insulating material by shielding sunlight.
To put it simply, “The reflection of solar heat from the heat-reflecting foil on the surface of the heat insulating material can greatly reduce the heat conduction to the surface of the heat insulating material, and the heating and heat storage on the heat insulating material itself are reduced. The amount of heat that flows through the ceiling, walls, and other perimeters is reduced, resulting in a reduction in the amount of energy required to cool the room. "
The above means is effective in suppressing an increase in indoor temperature in the summer and suppressing an increase in cooling load. However, this heat shielding means has not yet been provided with an indoor humidity control and air purification function by architectural ingenuity. Further, the shielded solar thermal energy is exhausted only in the form of sensible heat. Further, the heat reflecting foil reflects solar heat regardless of the season. So, in winter when solar thermal energy use is high, the use of solar thermal energy is hindered by heat reflection and suffers a changed heat loss.
Furthermore, when aiming at the radiant heating effect obtained as a result of energy conversion using wall ventilation in the winter season, suppressing the acquisition of solar thermal energy by daytime solar radiation with a heat reflecting foil may result in heat loss affecting the effect. Absent. Therefore, the heat shielding method using the heat reflecting foil is not necessarily optimal.

特開2000−54518号(特許文献3)において、「断熱層を境に外側通気層・内側通気層の二つの通気層を形成し、互いに独立して外気に連通し、内側通気層と外気との連通路の開閉により夏と冬とで相反する性能を具備する手段及び夏季壁体内の内側通気層内及び床下空間での結露の発生を抑制する手段」が開示された。但し、意見書では、「床下空間での結露の発生を防止することが可能になる」と表現されている。
冬は、内側通気層の上端の連通路及び下端の基礎布部ダンパーを閉じて気密性及び保温性を高め、夏は、連通路及びダンパーを開いて通風性を高め、冬と夏とで相反する性能を備えることが図られている。
それで、夏季に限れば、内側通気層は通気性を確保され、熱気・湿気は屋内に過剰には籠らず、日射による熱気の一部は外側通気層を通じて屋外に顕熱の形で排出されることを図られている。ところが、顕熱による排熱の方法は一般にその目論見に反して十分にその効果を表わさない。それは、排熱しながらも、一方で躯体への蓄熱は避けられないからである。更に、湿気の過剰の籠りは避けられ、内側通気層内での結露の発生を防止できるものの、屋内外の湿度は変わらず、屋内の湿度を屋外に比較して低く調節する機能を持たない。しかも、熱気・湿気は絶えず屋外から供給されるので、室内を除湿・冷房する負荷は増加する。それに対し、高気密高断熱住宅の欠点とされる夏季の熱の籠りは多少改善され、不快指数の上昇を多少抑える効能を持つものの、人為的な除湿・冷房を行なわずに、快適な屋内環境を実現するほどの効能は現さない。
さて、夏季の屋外の気温は高く、日中は35度前後の日が続く。人が生活する室内は通常それよりも低く保たれている。自然の状態で屋外より低く保てない場合は、空気調和機等の人為的手段を用い、快適に生活する上で概ね28度以下に室内の温度は保たれる。その場合、室内と内側通気層を隔てる内装材を通じて、内側通気層内の空気は冷やされる。その結果、内側通気層内の空気は屋外より重くなり、相対湿度は上昇する。更に、湿気は暖かいところから冷たいところに移動するので、相対湿度の上昇要因となる。しかも、重くなった空気は壁体内空間を下降する方向に働き、床下の換気口を通じて屋外に排出される。太陽熱を日射取得できない北側の内側通気層内は断熱層を透過する放射熱エネルギーを得られず、顕著に現れる。(もしくは、内側通気層内で停滞する。)
ところで、連通路内の送風ファンにより内側通気層内の通風は図られるものの、ダンパーを通じて湿気の供給は継続し、内側通気層内及び床下空間の相対湿度は高止まりする。それで、床下空間は地熱の冷気の影響で元々湿気が滞留し易いが、通風の効果が薄れる分床下空間での結露の発生に繋がり、構造材に付着する。それは、初期の目的である結露の発生を抑制する目的に反する結果となるが、通風の効果だけでは床下空間の結露の防止を図れない。結局、より快適な室内環境の実現を図り、エアコンで室内を冷房する場合、更に床下空間での結露を誘引する。
尚、請求項に記載されていないが、連通路内に送風ファンを装着した場合、暖かく湿った空気が屋外から絶えず供給されるので、冷房の負荷は増大する。しかも、除湿負荷を軽減できるとかの特段の効果は無い。又、内側通気層内の通気だけでは、機械式通気の効果の薄く淀み勝ちの床下空間での結露発生を抑制するに至らない。
内装材について特段の記載は見られない。只、送風ファンを用い内側通気層の通風を促進して室内の涼房効果を得ようとすれば、あるいは、エアコンで室内を冷房すれば、内側通気層内・床下空間への湿気の屋外からの流入は促される。元来湿気の滞留し易い床下空間で結露発生を防止する方法としては、内装材に吸放湿材を用い、吸湿する方法が有力である。ところが、内装材に吸放湿材を用いれば、条件次第では吸放湿材を通じた室内への湿気の透過・流入は避けられない。又、室内の湿度を下げるために除湿装置を用いて人為的に除湿した場合、内装材の内外で湿度の高低差が著しく生じ、内側通気層内・床下空間から内装材を通じて室内への湿気の透過・流入は継続する。結局、屋外からの湿気の供給(逆流)は増加し、室内における除湿の負荷は増大する。それは、冷房負荷の増大のみならず、除湿装置稼動による凝縮熱の生成の増加に繋がり、一層のヒートアイランド化の要因となる。
In Japanese Patent Laid-Open No. 2000-54518 (Patent Document 3), “two ventilation layers of an outer ventilation layer and an inner ventilation layer are formed with a heat insulation layer as a boundary, and communicate with the outside air independently of each other. "Means having performances that conflict with each other in summer and winter by opening and closing the communication passage and means for suppressing the occurrence of condensation in the inner ventilation layer and the underfloor space in the summer wall" have been disclosed. However, in the opinion, it is expressed as “It is possible to prevent the occurrence of condensation in the space under the floor”.
In winter, the communication path at the upper end of the inner ventilation layer and the foundation fabric damper at the lower end are closed to improve airtightness and heat insulation, and in summer, the communication path and damper are opened to improve air permeability. It is intended to have the performance to do.
Therefore, in the summer season only, the inner ventilation layer ensures air permeability, hot air and moisture do not flow excessively indoors, and part of the hot air from solar radiation is discharged outside in the form of sensible heat through the outer ventilation layer. It is planned to be. However, the method of exhaust heat by sensible heat generally does not sufficiently exhibit its effect, contrary to its intention. This is because, while exhausting heat, heat storage in the housing is inevitable. Furthermore, excessive swell of moisture can be avoided and the occurrence of condensation in the inner ventilation layer can be prevented, but the humidity inside and outside does not change, and it does not have a function of adjusting indoor humidity to be lower than outdoors. In addition, since hot air and humidity are constantly supplied from the outside, the load for dehumidifying and cooling the room increases. On the other hand, although the heat of summer heat, which is a drawback of high-air-tightness and high-insulation houses, is somewhat improved and has the effect of slightly suppressing the rise in discomfort index, it has a comfortable indoor environment without artificial dehumidification and cooling. Efficacy to realize is not revealed.
Now, the outdoor temperature in summer is high, and the day around 35 degrees continues during the day. The room in which people live is usually kept lower. If it cannot be kept lower than the outdoors in a natural state, the indoor temperature is kept at approximately 28 degrees or less for comfortable living by using artificial means such as an air conditioner. In that case, the air in the inner ventilation layer is cooled through the interior material separating the room and the inner ventilation layer. As a result, the air in the inner ventilation layer becomes heavier than outdoors, and the relative humidity increases. Furthermore, since moisture moves from a warm place to a cold place, it becomes a factor for increasing the relative humidity. In addition, the heavier air acts in the direction of descending the wall space and is discharged to the outside through a vent under the floor. The inside ventilation layer on the north side where solar heat cannot be obtained by solar radiation cannot be obtained radiant heat energy that passes through the heat insulation layer, and appears prominently. (Or stagnant in the inner ventilation layer.)
By the way, although the ventilation fan in the communication passage allows ventilation in the inner ventilation layer, the supply of moisture continues through the damper, and the relative humidity in the inner ventilation layer and the underfloor space remains high. As a result, moisture tends to stay in the underfloor space due to the influence of the geothermal cool air, but it causes condensation in the underfloor space where the ventilation effect is weakened, and adheres to the structural material. This is contrary to the purpose of suppressing the occurrence of condensation, which is the initial purpose, but it is not possible to prevent condensation in the underfloor space only by the effect of ventilation. Eventually, a more comfortable indoor environment is realized, and when the room is cooled by an air conditioner, condensation is further induced in the underfloor space.
Although not described in the claims, when a blower fan is mounted in the communication path, warm and humid air is constantly supplied from the outside, and thus the cooling load increases. In addition, there is no particular effect that the dehumidifying load can be reduced. Moreover, the ventilation in the inner ventilation layer alone does not suppress the occurrence of condensation in the under-floor space where the mechanical ventilation effect is thin and easily squeezed.
There is no particular description of interior materials.只 If you want to improve the ventilation effect of the room by using the blower fan to promote the ventilation of the inner ventilation layer, or if you cool the room with an air conditioner, the moisture inside the inner ventilation layer and under the floor space Inflow is encouraged. As a method for preventing the occurrence of condensation in an underfloor space where moisture tends to stay, a method of absorbing moisture by using a moisture absorbing / releasing material as an interior material is effective. However, if a moisture absorbing / releasing material is used for the interior material, the permeation / inflow of moisture into the room through the moisture absorbing / releasing material is inevitable depending on the conditions. In addition, when dehumidification is performed artificially using a dehumidifier to reduce the humidity in the room, there is a significant difference in humidity between the interior and exterior of the interior material. Permeation and inflow continue. Eventually, the moisture supply (back flow) from the outside increases, and the load of dehumidification in the room increases. This leads to not only an increase in cooling load but also an increase in the generation of condensation heat due to the operation of the dehumidifying device, which causes a further heat island.

尚、特許番号第2980883号特許公報(特許文献4)に記載の内容は、形状記憶合金を利用して基礎換気口から内側通気層・棟換気口を通じて屋外に排気する流路内の空気の流れを夏冬で制御するもので、換気口等の開閉を通じて空気の流れを制御するという基本的な機能は前記特許文献3の内容と変わらない。それは、人為的手段を用いずに室内の環境を良好に保とうと意図するものである。具体的には、「内部通気層では空気は下方から上方へ通流する。・・・小屋裏の通気装置から外部に放出される。・・・壁面で空気が呼吸できるようにすることによって部屋内の湿度、換気調節、構造体の木材等の湿度、換気調節が極めて効果的になされ、住環境をきわめて好適な条件にすることが可能となる。」(0011〜0012)更に、「外部通気層及び内部通気層に空気を通流させることは、空気の流れによって住宅を涼しく維持することができることと、とくに蒸し暑い真夏などであっても、・・・木材が蒸れたりすることを防止し、住宅全体を良好な状態で維持管理することが可能となる。この様な空気の流れは壁面による呼吸作用を促進させ室内の湿度分を排出する作用としてきわめて有効である。」(0025)
元々技術の開発された場所が夏季の避暑地で有名な信州であり、蒸し暑い真夏でも比較的涼しく過ごせ、温暖湿潤な地域との気候的な差は大きい。それで、温暖湿潤な地域において、人為的手段を用いずに実現できる室内環境には限度があり、生活する人に我慢を強いらざるを得ない。
そこで、エアコンを用いてより快適な環境を求めた場合、前記技術の抱えている問題と同じ問題が現われる。具体的には、「内壁材を吸排湿可能に設ける」(請求項1)という具合に内壁の内装材に吸放湿材を積極的に用いて、「壁面による呼吸作用を促進させ室内の湿度分を排出する作用」により室内空間と内側通気層との間に湿気の透過を図っている分、用いる吸放湿材の選定しだいでは先の問題(エアコン稼動の際、室内の湿度低下により湿度の高い内側通気層から室内へ内壁材を湿気が浸透し、室内の除湿負荷は増大する)はより深刻に現れる。又、内壁の内外を隔てる吸放湿材が相対湿度の高低差によって湿気透過の方向性を規定される限り、先の問題から逃れられず、目的とされる「室内の湿度分を排出する作用」を期待できない。しかし、エアコン稼動時のこの問題は想到されていない。又、用いる吸放湿材の選定しだいで先の問題を解消できるのであるが、そもそも、問題の在所について想到されていないので、用いる吸放湿材の特性についての記述及び吸放湿材の特性の違いに基づく選定のもたらす影響についての言及は見られず、問題として想到されず、提起されていない。(技術水準)
更に、エアコンで冷房すれば、冷気は室内から内壁材を通じて内側通気層に伝わる。その結果、内側通気層内の空気は温度低下し、相対湿度は上昇する。更に、空気は重くなり、空気の上昇力も失われ、滞留・下降する。しかし、その滞留・下降を解消する手段は備わっていない。夏季に比較的涼しい信州の地と異なり暖かく湿潤の地で快適に過ごす上では、エアコン使用は避けられない。それ故、エアコン使用時に派生する問題(結露)を想到し、システムを好適に実施する為の方策(送風ファン等)を備える必要がある。
ところで、「この様な空気(内側通気層を上昇する)の流れは、壁面による呼吸作用を促進させ、室内の湿度分を排出する作用としてきわめて有効である」(0025)の記載から見れば、室内の除湿を図る上で、吸放湿の方向は相対湿度・含水率・平衡含水率の関係から把握されている。
尚、床下空間と室内を隔てる床材についての特段の記載は無い。内壁材の吸放湿特性を利用しながらも、通常床材として用いられる無垢板もしくは合板の吸放湿特性について考慮されていない。内壁については、「室内湿度分を排出する作用」により室内から内側通気層に排出される。内壁材の場合と同様に考えれば、床材については、室内から床下空間に湿気は浸透し、排出される。そして、床下空間・内側通気層を通じて上昇する。しかし、実際には床下空間の一部で通風は十分確保されず、床下空間の湿度上昇要因となる。湿度が上昇すれば、室内への逆流の可能性について検討を要する。しかも、床下空間は日射取得を得られず、地熱の影響で冷やされているので、床下換気口を通じた建物外から不断の湿気の流入も合わさり相対湿度は高止まりする。逆流の可能性は更に高まる。又、床下空間の一部は湿気の滞留し易く、結露発生の条件は満たされ、結露の発生リスクは内側通気層内に比較して格段に高く、適切な湿気の排出手段が無ければ、結露の発生は避けられない。結局、矛盾するものを止揚する技術の必要性については、課題として想到されず、解決する手段も想到されていない。(技術水準)
以上の問題を解決する方法としては、連通路・換気口を閉じて内側通気層と屋外との連通性を断ち、夏季も気密住宅とする。その場合、放射冷却・地熱のエネルギーを利用できず、又、目的の一つである内側通気層・連通路・換気口を通じた排湿による調湿機能の実現の可能性は消える。しかも、気密性能が高まるので、逆に24時間換気システム稼動の必要性が生じる。又、調湿機能の消失により除湿装置の除湿負荷は高まり、エネルギー消費は増加する。更に、エアコンの除湿機能の働きにより凝縮熱生成量は増加し、ヒートアイランド化を助長する。
そこで、涼しい信州の地から温暖湿潤の地まで異なる気候特性の下、冬季は、気密住宅の閉鎖性を活かし、暖房効果を高めて省エネを追求しながら、夏季は、通気住宅の開放性を活かせる建築的工夫を最大限に追求しながら、地熱・放射冷却等の自然エネルギーを有効利用して、人為的なエネルギーの省エネ化を図りながら、冷房負荷の増大・除湿負荷の増大及びヒートアイランド化の助長を避けられ、しかも、床下空間の結露発生を抑制できるシステムの構築を図る。
In addition, the content of patent number 2998083 patent gazette (patent document 4) is the flow of the air in the flow path exhausted outdoors from a basic ventilation port through an inner ventilation layer and a building ventilation port using a shape memory alloy. Is controlled in summer and winter, and the basic function of controlling the flow of air through opening and closing of a ventilation port or the like is not different from the content of Patent Document 3. It is intended to maintain a good indoor environment without using human means. Specifically, “In the internal ventilation layer, air flows from below to above. It is released to the outside from the ventilation device in the back of the hut .... The room by allowing air to breathe on the wall surface. The humidity and ventilation of the inside of the structure, the humidity of the timber of the structure, and the ventilation can be adjusted very effectively, and the living environment can be brought into a very favorable condition. ”(0011 to 0012) By letting the air flow through the layer and the internal ventilation layer, it is possible to keep the house cool by the flow of air, and even in the midsummer, especially in the sultry summer ... It becomes possible to maintain and manage the entire house in good condition.Such air flow is very effective in promoting the breathing action by the wall surface and exhausting the humidity in the room. "(0025)
Shinshu, where the technology was originally developed, is famous for summer resorts. It is relatively cool even in the hot and humid midsummer, and there is a great climatic difference from warm and humid areas. Therefore, there is a limit to the indoor environment that can be realized without using artificial means in a warm and humid area, and it is necessary to endure the people who live.
Therefore, when a more comfortable environment is demanded by using an air conditioner, the same problem as the problem of the technology appears. Specifically, the moisture absorbing / releasing material is positively used for the interior material of the inner wall, such as “providing the inner wall material so that moisture can be absorbed and exhausted” (Claim 1), and “ As the moisture permeation between the indoor space and the inner ventilation layer is achieved by the action of “discharging the water”, depending on the selection of the moisture absorbing / releasing material to be used, the previous problem (when the air conditioner is operating, The moisture penetrates the inner wall material from the high inner ventilation layer into the room, and the dehumidification load in the room increases). In addition, as long as the moisture absorbing / releasing material that separates the inside and outside of the inner wall defines the direction of moisture permeation due to the difference in relative humidity, it will not be escaped from the previous problem, and it is the target `` effect of exhausting indoor humidity. I can't expect. However, this problem at the time of air conditioner operation is not conceived. In addition, the selection of the moisture absorbing / releasing material to be used can solve the previous problem, but since the location of the problem has not been conceived in the first place, the description of the characteristics of the moisture absorbing / releasing material to be used and the moisture absorbing / releasing material There is no mention of the impact of selection based on differences in characteristics, and it has not been conceived or raised as a problem. (Technical level)
Further, if the air conditioner is used for cooling, the cold air is transmitted from the room through the inner wall material to the inner ventilation layer. As a result, the temperature of the air in the inner ventilation layer decreases and the relative humidity increases. Furthermore, the air becomes heavier, the ascending force of the air is lost, and the air stays and descends. However, there is no means to eliminate the stay / descent. Air conditioning is unavoidable in order to spend comfortably in warm and humid places, unlike Shinshu, which is relatively cool in summer. Therefore, it is necessary to come up with a problem (condensation) derived from the use of the air conditioner and to provide a measure (such as a blower fan) for suitably implementing the system.
By the way, according to the description of “0025, such a flow of air (raising the inner ventilation layer) is very effective as an action of promoting the breathing action by the wall surface and exhausting the humidity in the room” (0025) When dehumidifying indoors, the direction of moisture absorption and desorption is known from the relationship of relative humidity, moisture content, and equilibrium moisture content.
There is no particular description of the flooring that separates the underfloor space from the room. While utilizing the moisture absorption and desorption characteristics of the inner wall material, the moisture absorption and desorption characteristics of the solid board or plywood usually used as flooring are not considered. The inner wall is discharged from the room to the inner ventilation layer by the “effect of discharging room humidity”. If considered similarly to the case of the inner wall material, moisture permeates from the room into the space under the floor and is discharged. And it rises through the underfloor space and the inner ventilation layer. However, in reality, sufficient ventilation is not ensured in a part of the underfloor space, which causes a humidity increase in the underfloor space. If the humidity rises, it is necessary to examine the possibility of backflow into the room. Moreover, since the underfloor space is not able to obtain solar radiation and is cooled by the influence of geothermal heat, the relative humidity remains high due to the continuous inflow of moisture from outside the building through the underfloor vent. The possibility of backflow is further increased. Also, a portion of the underfloor space is prone to moisture retention, the conditions for condensation are satisfied, the risk of condensation is much higher than in the inner ventilation layer, and if there is no appropriate means for draining moisture, condensation occurs. The occurrence of is inevitable. In the end, the need for a technology to fix contradictions is not conceived as a problem, and no means for solving it is conceived. (Technical level)
As a method for solving the above problems, the communication path / ventilation port is closed to cut off the communication between the inner ventilation layer and the outside, and the house is made airtight in summer. In that case, the energy of radiation cooling and geothermal energy cannot be used, and the possibility of realizing the humidity control function by exhausting moisture through the inner ventilation layer, the communication path, and the ventilation port, which is one of the purposes, disappears. In addition, since the airtight performance is enhanced, the necessity of operating the ventilation system for 24 hours arises. Further, the loss of the humidity control function increases the dehumidifying load of the dehumidifying device and increases the energy consumption. Furthermore, the amount of condensed heat generated increases due to the function of the dehumidifying function of the air conditioner, which promotes the formation of a heat island.
Therefore, under the different climatic characteristics from the cool Shinshu area to the warm and humid area, in the winter season, we take advantage of the air-tightness of the airtight house to improve the heating effect and save energy, while in the summer we make use of the openness of the ventilated house. While pursuing the maximum architectural ingenuity, the effective use of natural energy such as geothermal and radiative cooling to conserve energy artificially while increasing the cooling load, increasing the dehumidifying load, and creating a heat island The construction of a system that can avoid the promotion and suppress the occurrence of condensation in the underfloor space.

日本に昔から伝統的な工法として伝わっている土壁造りの建物は、土の吸放湿機能を活かし、土の含水率と相対湿度との関係並びに運動エネルギーの供給による相変化を伴う放湿の際に発生する気化熱によって、太陽熱の日射により建物の屋根・壁に蓄熱した結果発生する輻射熱を抑制するものである。夏季に限定すれば、放射冷却エネルギーを得られる範囲に限られるとはいえ、遮熱効果を得られる。
只、土壁は熱伝導率が高く、しかもエネルギー移動の夏季と冬季とで生じる反転のもたらすエネルギー損失により、断熱性の確保が難しい。又、乾燥するほどにひび割れが進み、気密性を確保するのは更に難しい。それで、建物の基本性能として重要な気密・断熱性能を確保する上で問題が大きい。
気密性能が低いと、湿気を多量に含む空気の浸入を阻止できず、土壁の吸湿機能のもたらす湿度調節の効果を好適に維持できない。更に、建物内の空気循環の流路の確保並びに流路内の流通の制御が困難である。それで、湿気の供給及び吸湿促進、並びに、冷却エネルギーの供給及び吸収促進を好適に制御できない。結局、地熱の供給による冷却エネルギーの利用が出来ず、相対湿度の変化及びH2Oの相変化による吸湿促進を図れない。吸湿及び液化の促進、並びに、吸湿とH2Oの相変化との連携の比率、更に、吸放湿の方向については、全ては自然の通風による風任せに終わり、それが、屋内環境改善の限界である。
夏季に吸放湿とH2Oの相変化との連携により温度上昇を抑える効果を現す半面で、冬季に吸放湿とH2Oの相変化との連携により熱損失を被る場合がある。その熱損失を阻止する為には、建物内の空気循環の流路の確保並びに流路内の流通の制御が必要である。しかし、好適に制御できず、熱損失は免れない。あるいは、断熱性に背反する伝熱性の創出を促進する結果、夏と冬との間に生じるエネルギー移動の断熱層内での逆転を阻止する手段が必要であるが、簡単な工夫で阻止できる、換言すると断熱性に背反する伝熱性の創出を抑制する手段はこれまで提供されていない。否、断熱性に背反する伝熱性の創出について想到せず、更に、促進・抑制という制御について想到せずというべきである。(技術水準)
Mud-walled buildings that have been handed down as a traditional construction method in Japan have been taking advantage of the moisture absorption and desorption function of the soil, and the moisture release with phase change due to the relationship between the moisture content of the soil and the relative humidity and the supply of kinetic energy. The heat of vapor generated at the time of heating suppresses the radiant heat generated as a result of accumulating heat on the roof / wall of the building by solar heat. If it is limited to the summer, the heat shielding effect can be obtained although it is limited to the range where the radiant cooling energy can be obtained.
土, the soil wall has high thermal conductivity, and it is difficult to ensure heat insulation due to the energy loss caused by the reversal of energy transfer in summer and winter. In addition, cracks progress as the film dries, making it more difficult to ensure airtightness. Therefore, there are significant problems in securing airtightness and heat insulation performance, which are important as basic performance of buildings.
When the airtight performance is low, the infiltration of air containing a large amount of moisture cannot be prevented, and the humidity adjustment effect brought about by the moisture absorption function of the soil wall cannot be suitably maintained. Furthermore, it is difficult to secure a flow path for air circulation in the building and control the flow in the flow path. Therefore, it is not possible to suitably control the moisture supply and moisture absorption promotion and the cooling energy supply and absorption promotion. Eventually, cooling energy cannot be used due to the supply of geothermal heat, and moisture absorption cannot be promoted by changes in relative humidity and H2O phase changes. The ratio of cooperation between moisture absorption and liquefaction, and the relationship between moisture absorption and H2O phase change, as well as the direction of moisture absorption and release, all end up being left by natural ventilation, which is the limit of indoor environment improvement. is there.
On the other hand, the effect of suppressing the temperature rise by the cooperation between the moisture absorption / release and the phase change of H2O in the summer is exhibited, and in the winter, the heat loss may be caused by the combination of the moisture absorption / release and the phase change of the H2O. In order to prevent the heat loss, it is necessary to secure the air circulation channel in the building and control the circulation in the channel. However, it cannot be controlled favorably and heat loss is inevitable. Or, as a result of promoting the creation of heat transfer that contradicts heat insulation, it is necessary to have a means to prevent reversal of the heat transfer that occurs between summer and winter in the heat insulation layer, but it can be prevented with simple measures. In other words, no means has been provided so far to suppress the creation of heat transfer that is contrary to heat insulation. No, it should not be conceived about creation of heat conductivity contrary to heat insulation, and further, it should not be conceived about control of promotion and suppression. (Technical level)

ところで、特開平6−3000386号(特許文献5)に開示の通り、「水の蒸発する際に生じる気化熱を利用して、太陽熱の輻射熱による住宅の小屋裏内の温度上昇を抑え、それを室温上昇の抑制に繋げ、エアコンの冷房効果を高めることを目指す」小屋裏排熱方法が提供された。
前記発明は、「水分を吸収及び放出する吸放湿材を小屋裏に内装しておき、夜間に小屋裏をファンにより強制換気して、外気に含まれる水分を吸放湿材に吸収させ、昼間に、小屋裏をファンにより強制換気して吸放湿材に吸収させた水分を気化させ、水分の気化潜熱により小屋裏を冷却する」ことにある。
「要するに、水分の気化には多量の熱が必要であるから、気化潜熱による小屋裏の冷却能力は極めて高く、たとえ夏季であっても、太陽の日射による小屋裏の温度上昇を十分に抑制でき、室内の温度上昇を十分に抑制できる。」
その結果、初期の目的である室内でのエアコン使用に伴う省エネルギー効果は上げられる。概ね、10%程度の消費エネルギーの削減効果を示している。只、吸放湿材からの放湿が、液体状のH2Oの相変化によりもしくは気体状のH2Oの放出されたものかのいずれであるかによって、気化潜熱の効果で冷却能力を得られるか否かが定まる。そこら辺りが判然としていないのも難点である。
但し、吸放湿とH2Oの相変化との連携の下に、屋内の湿気を液化により吸収し、且つ、屋内で供給された冷却エネルギーを移動(伝熱)して、気化熱により太陽熱エネルギーを吸収し、湿気の形で排熱し、結果として、屋内の湿気を屋外に排出して除湿し、遮熱する機能を備えるに至っていない。
By the way, as disclosed in Japanese Patent Laid-Open No. 6-3000386 (Patent Document 5), “the use of the heat of vaporization that occurs when water evaporates, suppresses the rise in temperature in the back of the house due to solar heat radiation, The aim is to increase the cooling effect of the air conditioner, leading to the suppression of the rise in room temperature.
The invention described above, “Moisture absorption and release material that absorbs and releases moisture is housed in the back of the hut, and the back of the hut is forcibly ventilated by a fan at night, so that moisture contained in the outside air is absorbed by the absorption and release material. In the daytime, the roof is forcibly ventilated by a fan to vaporize the moisture absorbed by the moisture absorbing / releasing material, and the cabin is cooled by the latent heat of vaporization of moisture.
“In short, because a large amount of heat is required for vaporization of moisture, the cooling capacity of the hut is very high due to the latent heat of vaporization, and even in summer, the temperature rise of the hut can be sufficiently suppressed due to solar radiation. The indoor temperature rise can be sufficiently suppressed. "
As a result, the energy saving effect associated with the use of the air conditioner in the room, which is the initial purpose, can be improved. In general, the energy consumption is reduced by about 10%.只 Whether or not the cooling capacity can be obtained by the effect of the latent heat of vaporization, depending on whether the moisture release from the moisture absorbing / releasing material is due to the phase change of liquid H2O or the release of gaseous H2O. It will be decided. It is also a difficult point that the neighborhood is not clear.
However, under the cooperation between moisture absorption and release and H2O phase change, the indoor moisture is absorbed by liquefaction, and the cooling energy supplied indoors is transferred (heat transfer), and the solar heat energy is converted by the heat of vaporization. It absorbs and exhausts heat in the form of moisture. As a result, it has not been provided with the function of exhausting indoor moisture to the outside to dehumidify and shield it from heat.

高気密・高断熱住宅に限らず、夏の高温・多湿の地域では、不快指数が高く、過ごしづらい。そこで、温度調節のみならず、一般的に除湿機・エアコンの除湿機能を用い、電気エネルギーを消費する形で室内空間の湿気を取り除いている。しかも、エアコンに依存して除湿する場合、冷房に比較して電気エネルギーの消費は多い。更に、除湿に伴い、水と凝縮熱を生成する。この凝縮熱は都会におけるヒートアイランド現象の一要因でもある。
さて、エアコンを用いた室内の温度調節の際は、室内に冷気を導入し、室内の熱気を屋外に排出する。この場合、室内に導入された冷気はいずれ屋外に排出され、先に排出された熱気と融合する。それで、排出した熱気の環境に及ぼす影響は中立的である。只、エアコンの稼動の為に消費するエネルギーの影響は残る。
湿度調節にエアコン等の除湿装置を用いると、空気中の湿気を液化する際に凝縮熱を生じる。つまり、室内の湿度調節を行なう際、エアコン等の稼動の為に電気エネルギーを消費するのみならず、水と凝縮熱を生成し、屋外に排出される。それで、周囲の環境に影響する。それは、社会問題化しているヒートアイランド現象を助長する要因となっている。結局、エアコンを利用する場合、湿度調節が温度調節よりも環境に及ぼす影響は大きい。それで、屋内の湿度調節に関し、部分的にせよエアコンの機能に代替できれば、環境負荷を軽減することができる。
壁体内空気循環システムを利用するにしても、春夏秋冬のスパンで見れば、夏の間は、屋内外の湿度は高く、構造材・仕上げ材に用いる木材・土類の吸放湿材は湿気を吸収するのみである。しかも、含水率と平衡含水率と間の乖離はいずれ消滅し、吸湿余力は無くなる。冬の間は、屋内外の環境は乾燥し、吸放湿素材は逆に湿気を放出する。それで、夏季の間に溜められた屋内の湿気の一部は壁体内空気循環システムによって建物外に放出される。
室内の除湿を行なうに当たり、一部は構造材・仕上げ材に用いる木材・土類の吸放湿の季節的変動を利用して建物外に放出されるにしろ、大部分は除湿機・エアコンの除湿機能により、電気エネルギーを消費して行なわれる。その際、生成される凝縮熱の排出は避けられない。しかも、除湿装置は大半夏季の昼間に稼動される。それで、冷房の需要の多い時期に重なり、夏季の昼間の電力需要は極端に大きくなる。昼間の除湿装置の稼動を避けられれば、電力需要の平準化に貢献する。
Not only in highly airtight and highly insulated houses, but also in hot and humid areas in summer, the discomfort index is high, making it difficult to spend. Therefore, not only temperature control but generally the dehumidifying function of a dehumidifier / air conditioner is used to remove moisture from the indoor space in a form that consumes electric energy. In addition, when dehumidifying depending on the air conditioner, electric energy is consumed more than cooling. Furthermore, with dehumidification, water and heat of condensation are generated. This heat of condensation is also a factor in the urban heat island phenomenon.
Now, when adjusting the indoor temperature using an air conditioner, cool air is introduced into the room and the indoor hot air is discharged to the outside. In this case, the cold air introduced into the room is eventually discharged outdoors, and is fused with the previously discharged hot air. Therefore, the influence of discharged hot air on the environment is neutral.只 The effect of energy consumed for air conditioner operation remains.
When a dehumidifying device such as an air conditioner is used for humidity adjustment, condensation heat is generated when the moisture in the air is liquefied. That is, when adjusting the humidity in the room, not only electric energy is consumed for the operation of an air conditioner or the like, but also water and condensation heat are generated and discharged outdoors. So it affects the surrounding environment. It is a factor that promotes the heat island phenomenon that has become a social problem. After all, when using an air conditioner, humidity control has a greater influence on the environment than temperature control. Therefore, environmental humidity can be reduced if indoor humidity control can be partially replaced by the function of an air conditioner.
Even if you use the air circulation system in the wall, if you look at the span of spring, summer, autumn and winter, the humidity inside and outside is high during the summer, and the moisture absorbing and releasing materials for wood and earth used for structural materials and finishing materials are It only absorbs moisture. Moreover, the difference between the moisture content and the equilibrium moisture content will eventually disappear, and there will be no moisture absorption capacity. During winter, the indoor and outdoor environments are dry, and the moisture-absorbing and releasing materials release moisture. Thus, some of the indoor humidity accumulated during the summer season is released outside the building by the wall air circulation system.
In order to dehumidify indoors, some of them are released outside the building by using seasonal fluctuations in the moisture absorption and desorption of wood and earth used for structural materials and finishing materials, but most of them are used for dehumidifiers and air conditioners. Dehumidification function is performed by consuming electric energy. At that time, the generated heat of condensation is inevitably discharged. Moreover, most dehumidifiers are operated during the daytime in summer. Therefore, the demand for electricity in the daytime in summer is extremely large, overlapping with a period of high demand for cooling. If operation of the dehumidifier during the daytime can be avoided, it will contribute to the leveling of power demand.

最近の高気密・高断熱住宅は24時間換気システムが必需品である。そして、換気の際に湿気の除去を行なう機能を備える全熱交換式換気扇を用いられる。それは、外気を取り入れる際に熱交換を行い、それと同時に湿気の除去を行なうものである。只、排気・給気の単純な換気に比較すれば、エネルギー消費は増加する。しかも、全熱交換式換気扇は、温暖・湿潤地においてそれだけで温湿度に関し、好適な室内環境を作り出せるほどの性能を備えていない。そして、必要不可欠の換気機能に湿度調節の機能を促進する効果が現れる程のシステムの向上に至っているわけでもない。   Recent high airtight and highly insulated houses require a 24-hour ventilation system. And the total heat exchange type exhaust fan provided with the function to remove moisture at the time of ventilation is used. It performs heat exchange when taking in outside air and at the same time removes moisture.エ ネ ル ギ ー Energy consumption increases compared to simple ventilation with exhaust and air supply. Moreover, the total heat exchange type exhaust fan does not have a performance sufficient to create a suitable indoor environment with respect to temperature and humidity in a warm and humid place. And it does not mean that the system has been improved to such an extent that the effect of promoting the humidity control function appears in the indispensable ventilation function.

壁体内二重通気システムが開発され、そのシステムを利用した様々な方法が開発・提案されてきた。一つの方向として、内側の通気層(インナーサーキット)を空気の通気手段としてのみでなく、 (イ) 換気システムの一部を構成し、(ロ) エネルギー供給上の流路並びに流通を確保し、(ハ) エネルギー移転並びにエネルギー変換の機構の一部として活用される。建築的工夫に依存して建物の働きを高める代表的なものである。   A double ventilation system in the wall has been developed, and various methods using the system have been developed and proposed. In one direction, the inner ventilation layer (inner circuit) is not only used as an air ventilation means, but also (a) constitutes a part of the ventilation system, and (b) ensures the flow path and distribution of energy supply, (C) Used as part of energy transfer and energy conversion mechanisms. It is a typical example that enhances the work of a building by relying on architectural ingenuity.

特許第2905417号公報(特許文献6)に開示の通り、屋内外の換気の手段を冬季の暖房システムと一体化しながら運用する方法が提供された。具体的には、「空気循環建物は床下全体を建物全体で共通の空気の流通空間とし、この床下空間から空気を上昇させるようにして壁体の内側及び各室内内に空気を流通させる。」そして、「内壁部に設けた開口部は室内内にエアーを流入させるためのもの」と。
ところで、この記載の通り、天井裏空間は空気の流通路を構成していない。それは、以下の様な事情による。夏季の太陽の日射により取得される熱エネルギーの天井裏の断熱材への蓄熱の結果生じる輻射熱の天井裏空間への影響により、床下空間から流通する冷気を天井裏空間まで維持・流通するのが難しいという事情があるからである。あるいは、普通に換気機能のみを期待する場合、流通する空気は、天井裏空間を経由する過程で先の輻射熱の影響を受けて暖められ、それが室内に流入し、室内の温熱環境の悪化を招くからである。更に、開発された地域の気候特性から、夏季に求められる効果よりも、冬季に求められる効果の方が重要視されたからである。
それは、結局、前記空気循環建物は換気の手段を冬季の暖房時のエネルギー移動・エネルギー移転と連携して効果を上げることを目指すものであって、夏季の冷房時に効率的にエネルギー移動を行なうことに効果を上げることを目指すものではないからである。しかしながら、夏季の対策が全く不要であるわけではない。本来、壁体内を利用した空気循環システムは天井裏空間を含めて空気の流路として活用するものである。しかし、従来の方法では夏季の効率を考慮すると、天井裏空間での太陽熱エネルギーの影響を軽減することは重要である。それで、軽減する為の妥協の産物ではあるが、天井裏空間を流通空間から除外する手段として、空気が室内空間へ流入するための開口部の設置場所は天井部を除外し、内壁部が選択された。それで、床下空間から壁体の内側通気層及び室内空間に至る空気の流路を形成し、天井裏空間を経由した場合に比較しての熱損失を軽減しようとするものである。
以上を裏付ける様に、文献の図1では、内側通気層と天井裏空間は連通していない。特許請求の範囲並びに発明の詳細な説明の項目に具体的な記述は無いものの、図1の表記では、内側通気層と天井裏空間との間を隔てる壁が設けられている。この壁によって、内側通気層と天井裏空間との間の空気の流通は阻止されている。
但し、手段について技術的に確立していないのか、特許請求の範囲に室内に流入する開口部(連通口)の記載は見られない。それで、天井部に開口部を設けることも許容される。その場合、先に検討した様に太陽熱の蓄熱効果により、室内に流入する空気の温度上昇は一層避けられない。
As disclosed in Japanese Patent No. 2905417 (Patent Document 6), a method of operating indoor and outdoor ventilation means while being integrated with a winter heating system has been provided. Specifically, “the air circulation building uses the entire underfloor as a common air circulation space in the entire building, and air is circulated inside the walls and in the respective rooms so as to raise air from the underfloor space.” “The opening provided in the inner wall is for allowing air to flow into the room”.
By the way, as described above, the space behind the ceiling does not constitute an air flow path. This is due to the following circumstances. Due to the influence of the radiant heat generated as a result of heat storage in the thermal insulation of the ceiling behind the thermal energy acquired by solar radiation in the summer, the cold air circulating from the underfloor space is maintained and distributed to the ceiling space. This is because it is difficult. Or, normally, when only the ventilation function is expected, the circulating air is warmed by the influence of the radiant heat in the process of passing through the ceiling space, which flows into the room and deteriorates the indoor thermal environment. Because it invites. Furthermore, because of the climatic characteristics of the developed area, the effect required in winter was more important than the effect required in summer.
After all, the air circulation building aims to improve the effect of the ventilation means in cooperation with the energy transfer / energy transfer during the heating in the winter, and efficiently transfer the energy during the cooling in the summer. It is because it does not aim to improve the effect. However, summer countermeasures are not completely unnecessary. Originally, an air circulation system using a wall is used as an air flow path including the space behind the ceiling. However, in the conventional method, it is important to reduce the influence of solar thermal energy in the ceiling space in consideration of summer efficiency. Therefore, although it is a product of compromise to reduce, as a means to exclude the ceiling space from the distribution space, the installation location of the opening for air to flow into the indoor space is excluded from the ceiling and the inner wall is selected It was done. Therefore, an air flow path from the underfloor space to the inner ventilation layer of the wall body and the indoor space is formed to reduce heat loss as compared with the case of passing through the ceiling space.
To support the above, in FIG. 1 of the document, the inner ventilation layer and the ceiling space are not in communication. Although there is no specific description in the claims and the detailed description of the invention, the notation of FIG. 1 is provided with a wall separating the inner ventilation layer and the ceiling space. This wall prevents air from flowing between the inner ventilation layer and the ceiling space.
However, the description of the opening (communication port) flowing into the room is not seen in the claims, whether the means is technically established. Therefore, it is permitted to provide an opening in the ceiling. In this case, as discussed above, the temperature rise of the air flowing into the room is more unavoidable due to the heat storage effect of solar heat.

ところで、これまでの空気循環の方法では、夏季にどの様な流路を選択するにしろ、太陽熱エネルギーの蓄熱の結果である輻射熱のもたらす熱損失を避けられない。それは、熱損失を小さくするために、天井裏空間への流通を避けたとしても同様で、東・西・南側の壁体を通じた熱損失は避けられないのである。しかも、開発された信州の地に比較して、温暖な地域では夏季の熱損失は更に大きくなり、夏季のエネルギー移動の手段の側面から見れば、上記空気循環の方法は不適である。更に、常温の空気を送るにしろ、冷気を送るにしろ、室内の温熱環境を良好に保つ上では不適である。
湿度調節に関しては、壁体内二重通気システムと全熱交換式換気扇との連携による除湿効果を狙っている。先に説明したように、全熱交換式換気扇は温湿度調節に関して好適な環境を実現できる能力を備えていない。そして、前記空気循環建物は温湿度調節に関して、全熱交換式換気扇の備える性能以上の性能を備えるに至っていない。
それを具体的に述べると、実用新案公報平5−38168号で開示された技術とエアサイクルの技術の流れで、壁体に二重通気層を備え、内側の通気層は空気を流通している。只、内側の通気層は換気のための空気の流路に活用されるものの、気密断熱層によって隔絶される外側の通気層との間に、その繋がりを断たれる工夫が重視され、その二つの通気層の間に補完的連携を創出・活用する発想・工夫は見出されない。
結局、温暖・湿潤の地域では大半をエアコンの除湿・冷房の機能に依存しなければ、昼夜を問わず、夏季の好適な屋内環境を実現できない。
By the way, in the conventional air circulation method, no matter what kind of flow path is selected in the summer, heat loss caused by radiant heat, which is a result of heat storage of solar thermal energy, cannot be avoided. The same is true even if distribution to the ceiling space is avoided to reduce heat loss, and heat loss through the walls on the east, west, and south sides is unavoidable. Moreover, compared with the developed Shinshu area, heat loss in the summer is even greater in the warmer regions, and the air circulation method is unsuitable from the viewpoint of the means of energy transfer in the summer. Furthermore, whether air at normal temperature or cold air is sent, it is unsuitable for maintaining a good indoor thermal environment.
Regarding humidity control, the dehumidification effect is aimed at by the cooperation between the double ventilation system in the wall and the total heat exchange type ventilation fan. As described above, the total heat exchange type exhaust fan does not have the ability to realize a favorable environment for temperature and humidity control. And the said air circulation building has not led to the performance more than the performance with which a total heat exchange type exhaust fan is equipped regarding temperature / humidity adjustment.
Specifically, it is a flow of the technology disclosed in Utility Model Publication No. 5-38168 and the technology of the air cycle. The wall body has a double ventilation layer, and the inner ventilation layer circulates air. Yes.只 Although the inner ventilation layer is used for the air flow path for ventilation, it is important to devise an idea to cut the connection between the inner ventilation layer and the outer ventilation layer isolated by the hermetic insulation layer. No idea or ingenuity has been found for creating or utilizing complementary cooperation between the two ventilation layers.
After all, in the warm and humid areas, unless it depends on the function of dehumidification and cooling of the air conditioner, it is not possible to realize a suitable indoor environment in summer, day or night.

さて、特許第2935942号公報(特許文献7)においても、前記空気循環建物と同様に、床下空間・壁内空間・天井裏空間は連通し、熱交換式換気扇を介して、屋内外の換気を行い、暖房時のエネルギー供給の手段とする方法が開示された。開示された技術には、遮熱対策に関する具体的な記述は無いものの、壁内空間と居住空間(室内空間)とを通じる通気口(連通口)は窓下部に設置されている。それで、空気の流路は連通する床下空間・窓下部の壁内空間・居住空間より構成される。それで、窓より上部の壁内空間は居住空間へ流通する流路から除外される。更に、居住空間に加えて天井裏空間の空気も熱交換式換気扇を介して屋外へ排気される。これは、前記の空気循環建物には見られない工夫で、天井裏空間に蓄積された熱気を新鮮な空気と一緒に強制的に屋外に排出し、屋根から被る熱損失を軽減し、太陽熱エネルギーの居住空間への影響を軽減するものである。この二つの手段によって、夏季の太陽熱エネルギーの屋根・壁体への蓄積によって生じる輻射熱の影響を軽減しようとするものである。
只、この技術では屋外から取り入れた酸素濃度の高い新鮮な空気を居住空間を経ずに排熱の目的から屋外に放出するので、換気の本来の目的からすると効率の面で不適である。その分、換気に要するランニングコストは上昇する。又、輻射冷房効果を実現する上でも不適である。しかも、外側通気層は形成されていないので、内側通気層と外側通気層との補完的連携による除湿・遮熱機構へと進展する余地は無い。即ち、断熱性に背反する伝熱性を創出し、屋内で吸冷・吸湿し、日射取得する太陽熱エネルギーを吸収し、外側通気層・屋根通気層(もしく小屋裏空間)を通じて屋外に潜熱の形で排熱し、除湿・遮熱の効果を実現するに至らない。
根本的な事情として、壁体に二重通気層は形成されていない。それで、外側通気層・小屋裏空間を通じた排熱の手段をもてない。排熱の手段を持たないと、日射される太陽熱エネルギーの蓄積効果である輻射熱の影響は大きい。それで、居住空間の温熱環境への影響を軽減する為には、天井裏空間から強制的な手段を用いて排熱せざるを得ないのである。換気と通気との連携による効率的な排熱の手段に見えるが、エネルギー消費の少ない送風機を別途設置し、外側通気層・小屋裏空間から排気・排熱の為に活用した方が断熱性に背反する伝熱性の創出を促す利用の方法に繋がり、効率はよい。
尚、前記二つの技術表記に当たり、特許請求の範囲に室内と壁内を連通する手段である連通口及び連通口を通じて壁内から室内に空気の流入する旨の記載は見られない。特に、後者においては室内へ流入する為の連通口のみならず、外部へ排出する路の形成上必要な吸気口及び排出路並びに外部から床下空間に給気する給気路について構成要素としての記載も見られない。
In Japanese Patent No. 2935942 (Patent Document 7), as in the case of the air circulation building, the underfloor space, the space in the wall, and the space behind the ceiling communicate with each other, and the indoor and outdoor ventilation is performed through the heat exchange type ventilation fan. A method of performing and providing energy supply during heating has been disclosed. Although there is no specific description regarding the heat shielding measures in the disclosed technology, a vent (communication port) through the space in the wall and the living space (indoor space) is installed in the lower part of the window. Therefore, the air flow path is composed of an underfloor space, a wall space under the window, and a living space. Therefore, the wall space above the window is excluded from the flow path flowing into the living space. Furthermore, in addition to the living space, air in the ceiling space is exhausted to the outside through the heat exchange type ventilation fan. This is an ingenuity not found in the above-mentioned air circulation building, forcibly discharging the hot air accumulated in the space behind the ceiling together with fresh air to reduce heat loss from the roof, and solar thermal energy This will reduce the impact on the living space. By these two means, it is intended to reduce the influence of radiant heat generated by the accumulation of solar thermal energy in the roof and walls in summer.
で は In this technology, fresh air with high oxygen concentration taken from outside is released to the outside for the purpose of exhaust heat without passing through the living space, so it is not suitable in terms of efficiency from the original purpose of ventilation. Therefore, the running cost required for ventilation increases. It is also unsuitable for realizing a radiation cooling effect. In addition, since the outer ventilation layer is not formed, there is no room for progress to a dehumidification / heat shielding mechanism by complementary cooperation between the inner ventilation layer and the outer ventilation layer. In other words, it creates heat transfer that is contrary to heat insulation, absorbs solar heat energy that is absorbed and absorbed indoors, and receives solar radiation, and forms latent heat outdoors through the outer ventilation layer and roof ventilation layer (or the space behind the hut). The heat is exhausted and the effects of dehumidification and heat insulation are not realized.
As a fundamental circumstance, no double ventilation layer is formed on the wall. Therefore, there is no way to exhaust heat through the outer ventilation layer and the attic space. If there is no means for exhaust heat, the influence of radiant heat, which is an effect of accumulating solar solar energy that is radiated, is great. Therefore, in order to reduce the influence of the living space on the thermal environment, heat must be exhausted from the ceiling space using forced means. Although it seems to be an effective means of exhaust heat by linking ventilation and ventilation, it is better to install a blower with less energy consumption and use it for exhaust and exhaust heat from the outer ventilation layer / back space of the hut for better heat insulation This leads to a method of use that promotes the creation of contradictory heat transfer, and is efficient.
In addition, in the above two technical notations, there is no description in the claims that air flows into the room from the wall through the communication port and the communication port which are means for communicating the room and the wall. In particular, in the latter case, not only the communication port for flowing into the room, but also the intake port and the discharge channel necessary for forming the channel for discharging to the outside and the supply channel for supplying air to the underfloor space from the outside as the constituent elements Also not seen.

ところで、夏季の輻射冷房効果の実現を目的に、天井裏空間にエアコンを設置し、そこから冷却エネルギーを放出しても、冷却エネルギーの円滑な循環を図れない。それは、先に説明した太陽熱エネルギーのもたらす熱損失に加えて、空気の循環流路内での気圧差が阻害要因となっている。
そこで、特開2003-120957号(特許文献8)に開示されたように、床下空間の空気圧を負圧に保つことによって、2階天井裏に設置されたエアコンから放出された冷気が壁体内空間を下降し、建物全体を循環できるようにしたものである。この技術によれば、冷房時に建物内の空気の循環を好適に確保出来るので、十分な冷却エネルギーを供給できれば、寒冷地では身体に優しい輻射冷房を利用することができる。
これは、冷房時の空気の循環を円滑に行なえるという観点では意義あるものであるが、それだけで、直ちに冷房効果が上がるわけではない。温暖地で冷房効果を上げられるには、太陽熱の蓄積の結果生じる輻射熱を抑えるために断熱材を冷やさざるを得ず、結局、社会的に電気使用量の多い夏季の昼間に大量の電気を消費し、大量に冷却エネルギーを供給せざるを得ない。又、床下空間と天井裏空間との気圧差を作り出すにも、送風ファンの駆動エネルギーを消費する。結局、 温暖・湿潤の地域で、太陽熱エネルギーの蓄熱の結果断熱材内で生じる輻射熱を抑制して、省エネルギーあるいは昼間の電力使用量の抑制を実現しながら、冷房の効果を効率的に得られる迄には至っていない。
更に、高気密・高断熱住宅に必要不可欠の換気の機能を備えていないので、別系統にしろ何らかの方法による換気の手段が必要になる。更に遡及すれば、送風ファンを用いて気圧差を作り出さないと、大量のエネルギー供給を円滑に行なうことができない。しかも、大量のエネルギー供給の為にエアコンを用いると、冷媒による冷却のために電気エネルギーを消費し、更に、屋外機を通じた排熱は昼間に集中するので、社会問題化しているヒートアイランド化を助長するものとなる。
その上、除湿に関してはエアコンの機能に全面的に依存するので、除湿の結果生成される凝縮熱の屋外への排出によるエネルギーの放出・移転は避けられない。それは、一層のヒートアイランド化を助長するものである。
By the way, for the purpose of realizing a radiant cooling effect in summer, even if an air conditioner is installed in the space behind the ceiling and the cooling energy is released therefrom, the cooling energy cannot be smoothly circulated. In addition to the heat loss caused by the solar thermal energy described above, the air pressure difference in the air circulation channel is an obstacle.
Therefore, as disclosed in Japanese Patent Application Laid-Open No. 2003-120957 (Patent Document 8), by keeping the air pressure in the underfloor space at a negative pressure, the cold air discharged from the air conditioner installed on the second floor ceiling is in the wall space. Is lowered so that the entire building can be circulated. According to this technique, the circulation of air in the building can be suitably secured during cooling, so that if sufficient cooling energy can be supplied, radiation cooling that is gentle on the body can be used in cold regions.
This is significant from the viewpoint that air can be smoothly circulated during cooling, but that alone does not immediately increase the cooling effect. In order to increase the cooling effect in temperate areas, it is necessary to cool the heat insulating material to suppress the radiant heat that results from the accumulation of solar heat. However, a large amount of cooling energy must be supplied. Also, the drive energy of the blower fan is consumed to create a pressure difference between the underfloor space and the ceiling space. Eventually, in temperate and humid areas, the radiant heat generated in the heat insulating material as a result of heat storage of solar thermal energy is suppressed, realizing energy saving or reducing the amount of power used in the daytime, while effectively obtaining the cooling effect. It has not reached.
Furthermore, since it does not have a function of ventilation that is indispensable for a highly airtight and highly insulated house, it is necessary to provide a means of ventilation by some method even if it is a separate system. Further retroactively, a large amount of energy cannot be supplied smoothly unless a pressure difference is created using a blower fan. In addition, using an air conditioner to supply a large amount of energy consumes electrical energy for cooling by the refrigerant, and exhaust heat through the outdoor unit is concentrated in the daytime, which helps to create a heat island that is becoming a social problem. To be.
In addition, since dehumidification depends entirely on the function of the air conditioner, the release and transfer of energy due to the discharge of condensed heat generated as a result of dehumidification to the outside is inevitable. It promotes further heat island formation.

何れも、日本国内の地理的条件で言えば、寒冷地に属する地域での発明であり、その地域特有の気候の下では有効なものである。気候的特性から、断熱気密は、寒さ対策に重点をおいた温度管理の重要な手段であった。
冬季に限れば、寒冷地に限らず、温暖な地域でも最良の選択である。しかし、夏季に限れば、それだけでは温度管理は十分ではなく、特に温暖な地域では、夏の強い日差しが直接照射される屋根、外壁の南面・東面・西面は日中の温度は60℃〜70℃に達し、その熱気をエネルギー源とする壁体等に発生する輻射熱は室内の温熱環境に多大の影響を及ぼしてきた。
何れにせよ、冬季に求められる断熱性能の高さ(熱貫流率の低さ)が逆に夏季には断熱材内における蓄熱効果を生み、輻射熱という厄介な存在を生み出す。それで、夏季の輻射熱対策は重要であるが、上記の発明では何れも、この輻射熱に対する対策は施されていない。その上好適な湿度調節並びに空気浄化の機能をも備えていない。
以上のごとく、IV・V地域の所謂高温・多湿の地域においては、夏季の湿気・猛暑対策が格別に重要である。夏に比較的に過ごしやすい北海道・信州とは比較できないほど重要である。
ところで、文献6及び7において、屋根面を介して集熱した太陽熱エネルギーを換気システムを介して冬季の暖房に利用する旨記載されている。只、寒冷地の大半の地域では、冬季の間積雪により屋根面に太陽熱を常時日射取得することは難しく、太陽熱エネルギーを安定して利用出来る地域は限られているのが実情である。それで、上記に示された換気システムを利用した冬季の省エネルギーの手法は、太陽熱を日射取得できない場合は効果を現すことは出来ない。
ところで、温暖地向けに比較すると寒冷地仕様として断熱性能の強化が必要で、求められている。一般には、断熱材の厚みを増すことで対処されている。只、その方法では、断熱材の熱還流率の数値に表される以上の性能を期待することは出来ない。又、断熱材を厚くすると、夏季に必要なエネルギー移動に支障が出てくる。それで、I・II・III地域の寒冷地では積雪時に相応しい断熱性能の向上に寄与する工夫が必要となる。
In any case, in terms of geographical conditions in Japan, the invention is an invention in a region belonging to a cold region, and is effective under a climate unique to that region. Due to the climatic characteristics, adiabatic and airtightness has been an important means of temperature management with an emphasis on cold countermeasures.
If it is limited to the winter season, it is the best choice not only in cold regions but also in warm regions. However, if it is limited to the summer season, it is not enough to manage the temperature alone. Especially in a warm area, the roof is directly irradiated with the strong sunlight of the summer. The radiant heat generated in the wall body etc., which reaches ˜70 ° C. and uses the hot air as an energy source, has greatly affected the indoor thermal environment.
In any case, the high thermal insulation performance required in winter (low thermal conductivity), on the contrary, produces a heat storage effect in the thermal insulation in the summer, creating a troublesome existence of radiant heat. Therefore, countermeasures against radiant heat in the summer are important, but none of the above inventions take countermeasures against radiant heat. In addition, it does not have suitable humidity control and air purification functions.
As described above, in the so-called high-temperature and high-humidity regions of the IV and V regions, measures against moisture and extreme heat in summer are particularly important. It is so important that it cannot be compared with Shinshu, Hokkaido, which is relatively easy to spend in summer.
By the way, in References 6 and 7, it is described that solar thermal energy collected through the roof surface is used for winter heating through the ventilation system.只 In most areas of the cold region, it is difficult to obtain solar heat on the roof surface constantly due to snow during the winter, and the area where solar heat energy can be stably used is limited. Therefore, the winter energy saving method using the ventilation system shown above cannot be effective if solar heat cannot be obtained.
By the way, compared with those for temperate regions, it is necessary and required to enhance the heat insulation performance as a cold region specification. Generally, this is dealt with by increasing the thickness of the heat insulating material. In that case, it is not possible to expect a performance higher than that indicated by the numerical value of the heat reflux rate of the heat insulating material. Moreover, if the heat insulating material is thickened, it will hinder the energy transfer required in summer. Therefore, in the cold regions of I, II, and III regions, it is necessary to devise a device that contributes to the improvement of thermal insulation performance that is suitable for snowfall.

先の二つの発明では、壁体内は、通気と換気の機能を兼ね、エネルギーの流路並びに流通を担い、更に、エネルギー移動並びに変換の機構を担うことで、特色ある機能を備えるに至った。
ところが、実用新案公報平7−1367号に開示された様に、「断熱材の使用は、気密・断熱を図る上で目的とする二つの通気層の隔絶性を確保できるものとして使用された。それは冬季に特徴的な結露を防止するには、その源である湿気の侵入を阻止する」と言う意識を視野に考案されたものである。
以後、壁体内二重通気システムを採用した高気密・高断熱住宅は、結露防止というその発想の呪縛から逃れられずに今日に至っている。それで、吸放湿性が無く、透湿抵抗が高い、気密断熱性能の高い合成樹脂系のボード状の断熱材が暗黙の内に広く用いられてきた。
しかし、合成樹脂系の断熱材を用いて通気層を形成して、通気と換気の機能を兼ね、エネルギー移動の流路の役割を担う場合、夏季の夜間には新たに別の問題が生じる。床下空間に取り入れられた相対湿度の高い外気は、地熱の影響で冷やされ、露点に達し、床下で結露を生じやすい。しかも、輻射冷房を狙い、流路内にエアコンを設置して大量の冷気を生成・供給する場合は更に深刻となり、床下・壁体の通気層内で結露を生じやすくなる。
その解決策として、吸湿能力の高いシリカゲル等を流路内に設置して、床下空間内の除湿を行う。只、その効果は継続しないのが難点である。結局、エアコンの除湿機能に頼って除湿せざるを得ない。それは、除湿負荷の軽減に貢献できず、ヒートアイランド化を抑制する一助とはならない。
In the previous two inventions, the wall body has a function of ventilation and ventilation, is responsible for the flow and distribution of energy, and is further responsible for the mechanism of energy transfer and conversion.
However, as disclosed in Japanese Utility Model Publication No. 7-1367, “The use of a heat insulating material was used to ensure the isolation between two air-permeable layers intended for airtightness and heat insulation. In order to prevent the dew condensation characteristic of winter, it is devised with a view to consciousness that "the intrusion of moisture, which is the source, is prevented."
Since then, highly airtight and highly insulated houses that have adopted a double ventilation system in the wall have reached the present day without escaping from the idea of preventing condensation. Therefore, a synthetic resin board-like heat insulating material having no moisture absorption / release property, high moisture permeation resistance and high airtight heat insulating performance has been widely used implicitly.
However, when a ventilation layer is formed by using a synthetic resin-based heat insulating material and serves as a ventilation and ventilation function and plays a role of an energy transfer channel, another problem arises at night in summer. Outside air with high relative humidity taken into the underfloor space is cooled by the influence of geothermal heat, reaches the dew point, and tends to cause condensation under the floor. Moreover, when a large amount of cold air is generated / supplied by installing an air conditioner in the flow channel aiming at radiant cooling, condensation is more likely to occur in the underfloor / wall ventilation layer.
As a solution to this problem, silica gel or the like having high moisture absorption capacity is installed in the flow path to perform dehumidification in the underfloor space.只 The effect is that it does not continue. In the end, we have to rely on the dehumidifying function of the air conditioner to dehumidify. It cannot contribute to reducing the dehumidifying load and does not help to suppress the heat island.

ところで、高気密・高断熱住宅の開発された寒冷地では、断熱性能の高さのもたらす寒さ対策が優先される地域の気候特性もあり、断熱性能の低下並びに結露の発生に対するリスクを侵してまで、吸放湿性を備える断熱材を使用する必要性が乏しいのが実情である。
それにも拘らず、そのリスクを抑えて、吸放湿性を備える断熱材を採用するメリットをもたらす要因の一つは「強制的に潜熱式の排熱」を行い、屋内での湿気の滞留による吸放湿材の含水率の上昇を抑制できる可能性を孕むところにある。その可能性とは、H2Oに屋内で液化に必要な冷却エネルギーを供給し、相変化を媒介する断熱材を経由すると、日射取得する太陽熱エネルギーをH2Oの気化によって吸収し、その際湿気という潜熱の形に閉じ込めて屋外に排熱することが出来る。結局、太陽熱を顕熱から潜熱の形に閉じ込めながら、屋内の湿気を屋外へ排出する手段を提供できる。(以後、気密断熱層で隔絶された内側を屋内、外側を屋外と称す)
只、その可能性は、昔から日本の住宅を蝕んできた「結露」を活用するところに開けてくる。そこが、現実の住宅の性能・耐久性の問題に止まらず、人間の意識の上で克服すべき課題を提供している。
By the way, in cold regions where highly airtight and highly insulated houses have been developed, there are also climatic characteristics in areas where priority is given to measures against the cold caused by high insulation performance. In fact, the need for using a heat insulating material with moisture absorption and desorption is scarce.
Nevertheless, one of the factors that brings about the advantage of adopting a heat insulating material that absorbs and absorbs moisture by suppressing the risk is to `` forced latent heat exhaust heat '' and absorb moisture due to moisture retention indoors. There is a possibility of suppressing the increase in moisture content of the moisture release material. The possibility is that the cooling energy required for liquefaction is supplied indoors to H2O, and when it passes through a heat insulating material that mediates phase change, solar heat energy acquired by solar radiation is absorbed by the evaporation of H2O, and in that case, the latent heat of moisture It can be trapped in a shape and discharged outside. In the end, it is possible to provide a means for exhausting indoor moisture to the outside while confining solar heat from sensible heat to latent heat. (Hereinafter, the inside isolated by the airtight insulation layer is called indoor, and the outside is called outdoor.)
只, the possibility opens to the place of utilizing “condensation” that has been eating away Japanese houses since long ago. This is not only a problem of the performance and durability of real houses, but also provides issues that should be overcome with human consciousness.

ところで、高気密・高断熱住宅ではないが、断熱材に吸放湿性の素材を用いることで、屋内に滞留する湿気・熱気を屋外に排出し、結露を防止する手段を特許第2585458号(特許文献9)において提供された。
請求項1に「建築物の壁体内に断熱層と壁体内の湿気を通す透湿性防水・防風層を組み合わせた構成よりなる透湿性断熱層を設け、・・・・床下に公知の開閉式換気口を設け、・・・・小屋裏換気口より排出せしめたり・・・・湿気と熱気とを排出せしめ、・・・・」の記載の通り、床下換気口より風を取り入れて流通させるので、屋内に滞留し易い熱気を排出することに関しては効果を望める。しかし、湿気に関しては床下換気口を通じて絶えず屋外から新たに供給され、しかも、気密性能が高いわけではないので、何処からでも湿気は浸入してくる。それで、屋内に滞留し易い湿気を風の流通によって透湿性の断熱層を経由しながら屋外に排出する効果は見込めるものの、湿度に関して室内環境の改善効果を表わすほどではない。しかも、先の記した様に、夏季の夜間は放射冷却の影響もあり、相対湿度の高くしかも重くなった空気は小屋裏換気口から壁体内・床下換気口を通じて下降し、それに伴い湿気の逆流は生じる
快適な室内の温湿度環境を求める人にとっては、湿度に限っても十分とは言えず、エアコン等の機器の除湿機能に頼らざるを得ない。その際、気密性の確保されていない部分に加えて、透湿性の断熱層を通じ屋外から屋内への湿気の浸入(逆流)は更に増加し、結果としてエネルギー損失を招き、その上、除湿による凝縮熱生成の増加に繋がり、ヒートアイランド化を助長する。それで、透湿性の断熱層を設ける利点は見出せない。あるいは、エアコン等の機器に頼らないことを前提にしているのであれば、それが実現できる温湿度環境は自然志向の人でも大きな我慢を強いられざるを得ない。
しかも、東西南北の壁体は、吸放湿性を具備する断熱材を用いる場合、太陽熱エネルギーを直接日射取得できるか否かで、その影響は大きく異なる。日射取得できれば、放湿を促し、断熱材は含水率を下げることが出来る。日射取得できなければ、湿気を呼び込む形で吸湿を促し、含水率は高止まりする。結局、含水率管理を好適に行い、高いレベルで躯体の健康と快適な住環境の実現を両立するまでに至らない。
更に、熱気の排出に当たり、透湿性の断熱層の媒介による相変化が見られず、湿気という潜熱の形に閉じ込める機能が見られない。即ち、熱気は顕熱の形で通気層を通じて排出されるに止まる。それは、潜熱化を図る上で必要となる冷却エネルギー供給手段が構成要素として認識されていないことに繋がる。
只、壁内に滞留する湿気の吸放湿性の断熱材を経た排出は、壁体内での結露の発生を阻止するという課題に答えるもので、重要である。しかし、湿気は結露防止の為に除去すべき対象ではあるが、湿気の内包するエネルギーを利用して、断熱材の媒介するH2Oの相変化との連携のもと屋内からのエネルギー移動を実現し、太陽熱エネルギ―の潜熱化を図るところまで、あるいは、湿気の流れる方向の制御を図るところまでは想定されていない。
By the way, although it is not a highly airtight and highly heat-insulated house, Patent No. 2585458 (patent No. 2585458) is a means for discharging moisture and hot air staying indoors to prevent condensation by using a moisture absorbing / releasing material for the heat insulating material. Reference 9).
According to claim 1, “a moisture permeable heat insulating layer composed of a combination of a heat insulating layer and a moisture permeable waterproof / windproof layer that allows moisture in the wall to pass through the wall of the building is provided. As it is described in `` ... and letting out exhaust from the back ventilation vent ... The effect can be expected for discharging hot air that tends to stay indoors. However, moisture is constantly supplied from the outside through the underfloor vents, and the airtightness is not high, so moisture enters from anywhere. Therefore, although the effect of exhausting moisture that tends to stay indoors to the outside through the moisture-permeable heat insulating layer by the flow of wind can be expected, it does not show the effect of improving the indoor environment with respect to humidity. Moreover, as mentioned above, there is also the effect of radiative cooling at night in the summer, and the air with high relative humidity and heaviness descends from the back of the hut through the wall and under-floor vents, and as a result, the backflow of moisture For those who want a comfortable indoor temperature and humidity environment, humidity is not enough, and they must rely on the dehumidifying function of air conditioners and other equipment. At that time, in addition to the part where airtightness is not ensured, moisture intrusion (back flow) from the outside through the moisture-permeable heat insulating layer further increases, resulting in energy loss and condensing due to dehumidification. It leads to increase of heat generation and promotes heat island formation. Therefore, the advantage of providing a moisture-permeable heat insulating layer cannot be found. Alternatively, if it is assumed that it does not rely on equipment such as an air conditioner, the temperature and humidity environment in which it can be realized must be forced to endure greatly even for nature-oriented people.
Moreover, when the heat insulating material having moisture absorption / release properties is used, the influence of the walls of east, west, north, south, and north varies greatly depending on whether solar thermal energy can be directly acquired by solar radiation. If solar radiation can be obtained, moisture release can be promoted, and the heat insulating material can lower the moisture content. If solar radiation cannot be obtained, moisture absorption will be promoted by attracting moisture, and the moisture content will remain high. In the end, it is not possible to properly manage the moisture content and achieve both a high level of health and a comfortable living environment at a high level.
Furthermore, in discharging hot air, no phase change is mediated by the moisture-permeable heat insulating layer, and no function of confining in the form of latent heat of moisture is seen. That is, the hot air is only discharged through the ventilation layer in the form of sensible heat. This leads to the fact that the cooling energy supply means necessary for achieving latent heat is not recognized as a component.
In addition, the discharge of moisture staying in the wall through the hygroscopic heat insulating material is important because it answers the problem of preventing the occurrence of condensation in the wall. However, moisture is a target that should be removed to prevent dew condensation, but the energy contained in the moisture is used to realize energy transfer from the interior in cooperation with the phase change of H2O mediated by the heat insulating material. However, it is not assumed that the solar heat energy is made latent heat or the humidity flow direction is controlled.

実用新案出願公開昭63−58103号(特許文献10)において、室内の除湿方法が提供された。
「建物の天井及び壁の少なくとも一方に設けた内装材を通気性とし、この内装材の室外面に吸放湿材を設けたので、居室内の水分を含んだ空気は、内装材を通過して吸放湿材に水分を吸収される。この吸放湿材に風を触れさせる通風路を形成した通風路形成材を設けたので、吸放湿材の水分は通風路内に蒸発していく。この様に、居室内の空気に含まれている水分を居室外に出すことが出来るので、居室内を常に低湿度の状態に保てる。又、内装材の室内面に結露が発生するのも防止できる。」とするものである。
要点は、室内空間の湿気を吸放湿材に吸収し、室外側の通風路に放湿し、室内の湿気を除去し、低湿度の状態を保つと伴に、結露の発生を防止するものである。この点は、前項の文献の内容と同様の課題・効果である。更に、エネルギー移転の利用に関しても、湿気の内包するエネルギーを利用して、断熱材の媒介するH2Oの相変化との連携の下エネルギー移動を実現し、太陽熱エネルギ―の潜熱化を図るところまでは想定されていない。つまり、空気中の湿気は湿気として吸放湿材を透過し、湿気として放出されるに止まり、相変化の際のエネルギー移転を利用して、断熱性に背反する伝熱性を創出し、屋内からの冷却エネルギーの供給を太陽熱エネルギーの吸収に繋げて、除湿・遮熱の効果を実現するまでには至らない。ところで、前二者ともに知らず知らずに冷気の吸収は生じ易く、吸放湿速度は吸湿が放湿に比べて優れているので、吸放湿とH2Oの相変化との連携の比率は考慮されていない。それで、太陽熱を直射により獲得できない「北面の断熱材の含水率は高止まり」する。又、エアコンの除湿機能を用い、居室内の湿度を下げた場合、通常湿気は居室外から吸放湿材を透過して居室内に逆流する。しかし、何れについても、その打開策は提示されていない。つまり、課題として想到されず、提起されていない。更に、吸放湿材の吸放湿性を利用して、湿気を除去し、結露を防止することが課題となっているように、「結露」は避けるべきものとして強く意識されている。
さて、内装材の屋外側に通風を確保することにより、室内から吸湿し、内装材を透過して湿気を屋外側に排出できる構成は重要である。只、現実の建物は多くの要素から成り立ち、種々の要因による床下空間での相対湿度の高まりの結果、空気の滞留による床下空間での結露の発生或いは床下から室内への湿気の逆流という問題が出てくる。地熱・放射冷却等の自然エネルギーを加味して生じる新たな問題を総合的に解決する為に太陽熱エネルギーを活用できる湿気伝導の方向性の制御及び異質の湿気排出路の形成という課題を着想するに至っていない。結局、結露=液化を作用として利用することに想到しない限り、新たに生じる新規な課題を着想することは難しい。
Japanese Utility Model Application Publication No. 63-58103 (Patent Document 10) provided an indoor dehumidification method.
“Because the interior material provided on at least one of the ceiling and wall of the building is made air permeable and moisture absorbing / releasing material is provided on the exterior surface of this interior material, air containing moisture in the room passes through the interior material. Moisture is absorbed by the moisture absorption / release material, and a ventilation path forming material is provided that forms a ventilation path that allows wind to come into contact with the moisture absorption / release material, so that moisture in the moisture absorption / release material evaporates in the ventilation path. In this way, moisture contained in the air in the room can be taken out of the room, so that the room can always be kept in a low humidity state, and condensation occurs on the interior surface of the interior material. Can also be prevented. "
The main point is that moisture in the indoor space is absorbed by the moisture absorption / release material, released to the ventilation path outside the room, moisture inside the room is removed, and the humidity is kept low while preventing condensation. It is. This is the same problem / effect as the content of the literature in the previous section. Furthermore, with regard to the use of energy transfer, the energy contained in the moisture is used to realize energy transfer in cooperation with the phase change of H2O mediated by the heat insulating material, and to achieve the latent heat of solar thermal energy It is not assumed. In other words, moisture in the air permeates through the moisture absorption / release material as moisture, and is only released as moisture, and uses heat transfer during phase change to create heat transfer that is contrary to heat insulation, from indoors. It is not possible to achieve the effects of dehumidification and heat insulation by connecting the cooling energy supply to solar energy absorption. By the way, both of the former are unaware and easy to absorb cold air, and the rate of moisture absorption and desorption is superior to moisture desorption. Therefore, the ratio of the relationship between moisture absorption and desorption and H2O phase change is considered. Absent. Therefore, “the moisture content of the insulation on the north surface remains high”, where solar heat cannot be obtained by direct irradiation. Further, when the humidity in the living room is lowered by using the dehumidifying function of the air conditioner, the normal moisture passes through the moisture absorbing / releasing material from the outside of the living room and flows back into the living room. However, no breakthroughs have been proposed for either. In other words, it is not conceived as an issue and has not been raised. Furthermore, “condensation” is strongly recognized as something that should be avoided, as it is a problem to remove moisture and prevent condensation by utilizing the moisture absorption / release properties of the moisture absorption / release material.
Now, it is important to ensure ventilation through the interior side of the interior material so that moisture can be absorbed from the room, permeated through the interior material and exhausted to the outdoor side.現 実 Actual buildings consist of many elements, and as a result of the increase in relative humidity in the underfloor space due to various factors, there is a problem of dew condensation in the underfloor space due to air retention or backflow of moisture from under the floor to the room. Come out. To come up with the challenge of controlling the direction of moisture conduction and the formation of a heterogeneous moisture discharge path that can utilize solar thermal energy to comprehensively solve new problems arising from natural energy such as geothermal and radiative cooling Not reached. In the end, it is difficult to come up with a new problem that arises unless the idea is to use condensation = liquefaction as an action.

前記の小屋裏排熱方法は、H2Oの相変化によって太陽熱エネルギーを吸収・潜熱化するというこれまでに無い発想に基づくものであり、多様な可能性を内包するものである。
只、発明の発想に「室内の湿度調節という意識が希薄であった」のと「断熱材は気密性と断熱性の面で隔絶するものという過去の呪縛」によって、屋内の湿気を建物外へ排出し、又、屋内で供給された冷気を伝熱し、屋内の除湿効果と遮熱効果を同時に実現できる機能を備えるに至らなかった。
更に付言すれば、H2Oの相変化に伴うエネルギー移転に対する「認識」の違いから来るものである。即ち、H2Oの相変化によって、熱の移転が伴うのであり、相変化を伴わない吸放湿は熱エネルギー移転を伴わない。しかも、吸放湿性を具備する断熱材が湿気を吸収した後に、湿気の状態を保つのか、あるいは、液化した水の状態を保つのかという認識も重要である。断熱材に湿気の状態で保持され、断熱材から湿気として放出されても、エネルギー移転は生じない。その場合、冷却効果は現れない。
冷却効果の現れるエネルギー移転を生じるには、液化の相変化を経ることが必要である。そこで、相変化を促進する上でも、液化の際に生じる凝縮熱の処理の問題が出てくる。
The above-described method for exhausting heat from the hut is based on an unprecedented idea of absorbing solar heat energy and making it latent heat by changing the phase of H2O, and includes various possibilities.
只 According to the idea of the invention, `` the consciousness of indoor humidity control was sparse '' and `` the past spell that heat insulation is isolated in terms of air tightness and heat insulation '', indoor moisture is moved out of the building It has not been possible to provide a function that can exhaust and cool the air supplied indoors to simultaneously achieve the indoor dehumidifying effect and the heat shielding effect.
In addition, it comes from the difference in “recognition” about energy transfer accompanying the phase change of H2O. That is, heat transfer is accompanied by the phase change of H2O, and moisture absorption / release without phase change is not accompanied by thermal energy transfer. In addition, it is also important to recognize whether the heat insulating material having moisture absorption / release properties maintains the moisture state or the liquefied water state after absorbing the moisture. Even if the heat insulating material is held in a moisture state and released from the heat insulating material as moisture, energy transfer does not occur. In that case, the cooling effect does not appear.
In order to generate energy transfer that exhibits a cooling effect, it is necessary to undergo a phase change of liquefaction. Therefore, the problem of the treatment of the heat of condensation generated during liquefaction also appears in promoting phase change.

具体的に言及すると、ファンによる強制換気により、小屋裏空間からの吸湿は効率的に行われても、天井裏空間からの断熱材を通じた吸湿の効率を高めることに繋がっていない。しかも、屋内からの冷却エネルギー供給を通じ吸湿の際に吸冷する潜熱的蓄冷は、湿気の伝導性を利用して断熱性に背反する伝熱性の創出に繋っていない。これは、断熱材は気密断熱性能によって、それを境に隔てられた通気層相互間を断絶するものであるという過去の呪縛からくるものである。
更に、吸湿し相変化する際に生成される凝縮熱に対する対策が考慮されていない。
二つの通気層の補完関係を確保し・機能せしめるには、湿気の吸収を促す要因としての吸放湿材の平衡含水率と含水率の兼ね合い、そこからくる通気層内の相対湿度との関係をH2Oの相変化「液化・気化」によるエネルギー移転の枠内で十分に把握しなければならない。
しかし、その把握が十分でないままに、吸湿し相変化する際に生じる凝縮熱は、知らない内に結果として、放射冷却により温度低下した外気によって冷却され、相対湿度の上昇と相まって、湿気の吸収余力が生じてくる。それで、昼間の太陽熱により生じる輻射熱を抑制する為に必要な水分の補給は行われ、水の水蒸気に相変化する際に奪われる気化熱によって室温の上昇は抑えられ、不十分ながら、初期の目的・効果は得られる。
以上を裏付けるごとく、吸放湿材が湿気を吸収し、相変化する際に生ずる凝縮熱について並びにその対策について言及している文面は見当たらない。凝縮熱についての認識が十分でなければ、冷却エネルギーを活用した湿気の吸収促進並びに「液化の促進」という発想は出てこない。更に、屋内から供給・吸収される冷却エネルギーを、背反する伝熱性と断熱性を止揚して、屋外側から日射取得する太陽熱エネルギーを吸収し、屋外へ湿気の形での排熱に利用する発想は出てこない。又、冷却エネルギーの影響を避けながら、湿気の吸収を促進し、かつ「液化を抑制」すると言う発想も出てこない。
只、液化は所謂結露と同義語であり、日本の気候の特性に由来する結露に対する忌避・嫌悪からすれば、液化を作用として利用することが無意識の内に避けられたのは当然である。
更に、吸放湿は液化・気化と結び付けられる場合、吸放湿と液化・気化は同一視され易い。即ち、吸放湿とエネルギー移転とを未分離の状況の元で把握する傾向が強い。前記記載でも露呈しているけれども、「水」と言う言葉で気体状のH2Oと液体状のH2Oは混同して用いられている。これに限らず、これまでの技術では大半が混同したまま、あるいは明確に区別されずに論じられている。そして、何処からか生成・供給された液体状のH2Oは、蒸発する際に周囲から奪われる気化熱の利用に繋げられる。いずれにしろ、気体状のH2Oと液体状のH2Oとの区別を明確に出来ない段階では、屋内からの冷気供給を通じた液化及び屋外からの運動エネルギー取得を通じた気化を経たH2Oの相変化に伴うエネルギー移転を、背反する断熱性と伝熱性を止揚したエネルギー移動に利用する発想には至らない。更に言及すれば、断熱性に背反する伝熱性の創出を抑制もしくは促進する形で制御すると言う発想に繋がらない。
Specifically, even though moisture absorption from the cabin space is efficiently performed by forced ventilation by the fan, it does not lead to an increase in the efficiency of moisture absorption through the heat insulating material from the ceiling space. Moreover, the latent heat storage that absorbs moisture when supplying moisture through the supply of cooling energy from the interior does not lead to the creation of heat transfer that is contrary to heat insulation by utilizing the conductivity of moisture. This is because of the past spell that heat insulating material cuts between the air-permeable layers separated by the airtight heat insulating performance.
Furthermore, no countermeasure is taken into account for the heat of condensation that is generated when the phase changes due to moisture absorption.
In order to ensure and function the complementary relationship between the two ventilation layers, the balance between the moisture content of the moisture absorbing / releasing material as a factor that promotes moisture absorption and the relative humidity in the ventilation layer coming from there Must be fully understood within the framework of energy transfer by H2O phase change "liquefaction / vaporization".
However, the heat of condensation that occurs when moisture is absorbed and undergoes a phase change without knowing that is insufficiently absorbed as a result, is cooled by the outside air that has fallen in temperature due to radiative cooling, and combined with the increase in relative humidity, absorbs moisture. Surplus power is generated. Therefore, the replenishment of water necessary to suppress the radiant heat generated by the solar heat in the daytime is performed, and the rise in room temperature is suppressed by the heat of vaporization that is lost when the phase changes to water vapor, which is insufficient, but the initial purpose・ Effects can be obtained.
As evidenced by the above, there is no text referring to the heat of condensation that occurs when the moisture-absorbing / releasing material absorbs moisture and undergoes a phase change, as well as countermeasures. If the heat of condensation is not sufficiently recognized, the idea of promoting moisture absorption and “accelerating liquefaction” using cooling energy will not come out. Furthermore, the cooling energy supplied / absorbed from the inside is lifted by the opposite heat transfer and heat insulation properties, and the solar heat energy acquired by the sun is absorbed from the outside to be used for exhaust heat in the form of moisture to the outside. Will not come out. Further, the idea of promoting moisture absorption and “suppressing liquefaction” while avoiding the influence of cooling energy does not appear.
只 Liquefaction is synonymous with so-called dew condensation, and it is natural that the use of liquefaction as an action has been avoided unconsciously from the viewpoint of aversion and aversion to dew condensation due to the characteristics of Japanese climate.
Further, when moisture absorption / release is combined with liquefaction / vaporization, moisture absorption / release and liquefaction / vaporization are easily identified. That is, there is a strong tendency to grasp moisture absorption / release and energy transfer under unseparated conditions. Although it is also exposed in the above description, gaseous H2O and liquid H2O are confused and used in the term “water”. Not limited to this, most of the conventional techniques are confused or discussed without being clearly distinguished. The liquid H 2 O generated and supplied from somewhere is connected to the use of the heat of vaporization taken away from the surroundings when evaporating. In any case, at the stage where the distinction between gaseous H2O and liquid H2O cannot be made clear, it accompanies the phase change of H2O through liquefaction through cold air supply from the inside and vaporization through kinetic energy acquisition from the outside. There is no idea to use energy transfer for energy transfer that has a contradictory effect on heat insulation and heat transfer. If it mentions further, it will not lead to the idea of controlling in the form which controls or promotes the creation of heat conductivity contrary to heat insulation.

従来、湿気・化学物質等は珪藻土等の壁等の仕上げ材の機能を活かして、吸湿し、吸着させることで、室内の空気環境を良好に保つ工夫がされてきた。只、無限に吸収できるものではなく、更に、壁等が吸収したものの一部は再び居室に放出され、室内の空気は汚染されるので、必ずしも空気浄化に繋がらない。   Conventionally, it has been devised to keep the indoor air environment good by absorbing moisture and adsorbing moisture, chemical substances, etc., by utilizing the function of finishing materials such as walls of diatomaceous earth. It is not something that can be absorbed indefinitely, and some of the material absorbed by the wall and the like is released again into the living room, and the indoor air is contaminated, so it does not necessarily lead to air purification.

国内の電力需給の現状について。発電の面では、そのエネルギーを原子力に依存する割合が高まっている。原子力に発電のエネルギーを依存するメリットとしては、化石エネルギーを燃焼する際に発生する二酸化炭素の抑制に繋がることである。それで、地域によっては、その割合は50%を超えている。
需給面では、民需全般に一日の内での使用量に偏りがある。又、季節的な要因によって、一日の内での電力消費量の偏りは一層大きくなる。具体的には、夏季の冷房・除湿の必要な時期・時間帯に消費量は増加する。
以上の様な事情により、昼間に比較すると夜間の時間帯に、発電に必要なエネルギーは余剰となっている。それで、余剰のエネルギーの利用を促進する為の工夫として、多額の費用を要する揚水発電所を設置し、電力の再利用が図られている。結局、消費量の少ない深夜電力の使用を促すことは、社会的レベルで見れば、電力消費の平準化に繋がるのみならず、余剰のエネルギーの効率的利用に繋がる。
About the current state of power supply and demand in Japan. In terms of power generation, the proportion of energy that depends on nuclear power is increasing. The merit of relying on the energy of power generation for nuclear power is that it leads to suppression of carbon dioxide generated when burning fossil energy. So in some areas, the percentage is over 50%.
In terms of supply and demand, there is a bias in daily consumption in general private demand. Also, due to seasonal factors, the bias of power consumption within a day becomes even larger. Specifically, consumption will increase during the summer when cooling and dehumidification are needed.
Due to the circumstances as described above, the energy required for power generation is surplus during the night time compared to the daytime. Therefore, as a device to promote the use of surplus energy, a pumped-storage power plant that requires a large amount of money has been installed, and the reuse of electric power has been attempted. After all, encouraging the use of midnight power with low consumption not only leads to leveling of power consumption, but also to the efficient use of surplus energy from a social level.

建物の空調システムにおける深夜電力の利用は、冬季の暖房に関しては多様な手段が提供されており、実用化されている。ところが、夏季の冷房・除湿に関しては氷蓄冷システム以外に特段の手段は提供されていない。
氷蓄冷システムは住宅への普及は進んでいない。それは、費用対効果の面で実用性に乏しいし、又、除湿の手段を別途必要とするという事情が重なっている。更に、氷蓄冷システムを冬季の暖房システムに応用することは難しく、夏と冬とで別個の空調設備を必要とする難点を抱えている。
ところで、深夜電力の利用料金は、季節別時間帯別契約の普及により、夏季の昼間の利用については超割高に設定されて、深夜に比較して粗5倍に達する。それで、この発明により深夜電力の利用を主体に夏季の温湿度調節を図ることが出来れば、家計の面でも大きな貢献をもたらす。
The use of late-night power in air conditioning systems in buildings has been put to practical use because it provides various means for heating in winter. However, no special means are provided for cooling and dehumidification in summer other than the ice storage system.
Ice cold storage systems are not widely used in houses. This is not practical in terms of cost-effectiveness, and the fact that a dehumidifying means is additionally required overlaps. Furthermore, it is difficult to apply the ice cold storage system to the winter heating system, and there is a problem that separate air conditioning facilities are required in summer and winter.
By the way, due to the widespread use of seasonal contracts by time of day, the late-night power usage fee is set to be extremely high for daytime use in the summer, and reaches five times as much as compared to midnight. Therefore, if it is possible to adjust the temperature and humidity in summer mainly by using late-night power according to the present invention, it will greatly contribute to the household budget.

湿度調節に関しては、特開平8−193744号(特許文献11)において、深夜電力を利用する室内の湿度調節方法が提供された。
それは、深夜電力を利用できる時間帯に、設定湿度50%で除湿装置を稼動し、経済モードでは、昼間は設定湿度90%に達すると除湿装置は再稼動し、快適モードでは、昼間は設定湿度70%に室内の湿度が達すると除湿装置は再稼動する。
上記方法では、経済モードでは昼間の電気使用は避けられ、当初の深夜電力利用の目的は達成される。しかし、湿度90%では過ごしづらい。それに対して、快適モードでは、湿度70%を保持されるので過ごしやすいが、昼間に頻繁に除湿装置を稼動することとなり、深夜電力利用で経済的に快適な室内湿度を達成することが出来ない。
その原因は、吸放湿材の特性及び吸放湿とH2Oの相変化との連携及びその比率についての概念としての理解並びにその比率の違いのもたらす影響の違いについての適切な理解が無いので、その理解を基にした適切な手段を実施することが出来ないからである。具体的には、吸放湿材の特性によって、あるいは吸放湿材に冷気を供給できる環境・手段を備えているか否かによって、吸放湿とH2Oの相変化との連携の比率は制約される。そして、吸放湿材の湿気吸収余力の回復できる範囲(相対湿度に投影される)の違いへと繋がってくる。
さて、上記文献では、調湿板として「水硬性組成物にゼオライト等の吸湿性フィラーを混入して板状に成形したもの、或は、無機質繊維内にアルカリ金属塩化合物を添加保持させて板状に成形したもの、或は、疎水性合成樹脂の空孔内部に親水性無機物を充填して板状に成形したもの」が例示されている。
例示された調湿板には、吸湿の際の液化との連携の比率の高いものが含まれる。しかし、調湿板の吸放湿特性については、湿気の吸収・放出の観点から記載されているのみで、吸放湿に伴う液化・気化についての記載は見られない。結局、吸放湿に際して、液化・気化を伴うか否かはその周囲の環境(温度・湿度)に左右されるものの、吸放湿材の特性によって、その作用は異なってくるのである。しかも、吸放湿に伴う液化・気化をエネルギー移転という観点から、換言すると、液化・気化のエネルギー移転のもたらす吸放湿の態様に及ぼす影響について、どの様な問題があるのかということが取り上げられてはいない。
単純に、液化・気化の相変化を勘案せずに吸放湿に伴う湿度調節の効果を最大限に狙うのであれば、液化・気化を作用特性として保持しないものを調湿板として用いなければならない。技術水準の問題であるが、そこらあたりが十分把握されていない。
更に、新たな問題点を指摘すれば、一般に内外を隔てる内壁材を吸放湿材とし、室内空間に除湿装置を設置し室内空間の湿度を調節する場合、相対湿度との関係で吸放湿を捉える限り、吸放湿の方向性は含水率・平衡含水率・相対湿度の範囲で定まるので方向性を十分に制御できず、結果的に、効果を有する工夫を加えられず、屋外から吸湿し・屋内へ放湿すると言う吸放湿の逆転が起こり、除湿装置は余分に稼動し、余分なエネルギーを消費するのみならず、不要な凝縮熱の生成・排出に繋がる。それを避ける方法として、気密断熱層を二層構造に構成し、その屋内側に吸放湿性を具備する断熱材を用い、屋外側に吸放湿性を具備しない断熱材等を用いられている。それで、吸放湿に伴う屋外からの湿気の浸入を防止し、除湿装置に余分な負担を強いることは無くなる。しかも、工夫次第では深夜電力利用の効率的な除湿システムに進化することができる。只、従来は、技術水準としては、屋内外の相対湿度との関係及び相対湿度と平衡含水率との関係で吸放湿の方向性を捉える域を出るものではない。その限りでは、吸放湿の方向性を制御しつつ、除湿効果と遮熱効果を併せて実現できるシステムへの進化は困難である。換言すると、屋内外の相対湿度の高低差の影響を縮減(抑制)しながら、エネルギー移動の方向性を制御し、且つ、吸放湿の方向性を制御することを課題として想到できず、又、その課題を解決する手段を想到し、提示するに至らない。縮減には、湿気の伝導を遅らせる、あるいは、吸湿もしくは放湿の平衡含水率との関係を一定限度でずらす等が考えられる。只、湿気伝導性の抑制は促進と背反するものであり、断熱層の中で背反するものを時に応じて促進したり・抑制したりという具合に制御できなければならない。
更に具体的に記せば、屋内外の相対湿度の高低によって吸放湿材を境として吸放湿の方向は定まる。つまり、屋外側の相対湿度が屋内側の相対湿度より高ければ、平衡含水率に則る形で吸放湿材は屋外から吸湿し屋内へ放湿する方向に働く。それで、相対湿度の低い屋内側から吸湿し、吸放湿材を透過して屋外に放湿すること、あるいは、屋内への放湿を止めて屋外から屋内へという湿気の流れを停止することは想到されない。これが、従来の技術水準である。只、この技術水準に留まる限り、人為的に相対湿度の低下した屋内側への屋外側からの湿気の浸入は避けられず、浸入した湿気を人為的に余分に除湿することで、エネルギーのロスと凝縮熱の無駄な生成に終わらざるを得ない。
そこで、ロスを避けるには、相対湿度の低い屋内側から吸放湿材に吸湿し、相対湿度の高い屋外側へ放湿するという方向性の促進(制御)、あるいは、屋外側から屋内側への湿気伝導の遅延を新たな課題として想到することが重要となる。かかる新規な課題を提起し、その課題を解決する手段を想到し、提示しなければならない。
突破口は、液化・気化の相変化を伴うエネルギー移転を活用することにより見出せるが、液化は結露として歴史的・文化的に忌み嫌われてきたものであり、結露を作用として利用するには長く想到出来なかったことについての明らかな理由がある。即ち、結露のもたらす弊害についての技術常識が液化=結露を作用として利用することを阻んできた。(逆論理付け)
Regarding humidity control, Japanese Patent Application Laid-Open No. 8-193744 (Patent Document 11) provided a method for adjusting humidity in a room using midnight power.
It operates the dehumidifier at a set humidity of 50% during the time when midnight power can be used. In the economic mode, the dehumidifier restarts when the set humidity reaches 90% in the daytime, and in the comfortable mode, the set humidity is set in the daytime. When the humidity in the room reaches 70%, the dehumidifier is restarted.
In the above method, in the economic mode, the use of electricity in the daytime is avoided, and the original purpose of using midnight power is achieved. However, it is difficult to spend at 90% humidity. On the other hand, in the comfortable mode, it is easy to spend because the humidity is maintained at 70%, but the dehumidifier is operated frequently in the daytime, and economically comfortable indoor humidity cannot be achieved by using midnight power. .
The cause is that there is no proper understanding of the characteristics of the moisture absorbing / releasing material and the relationship between moisture absorption / release and H2O phase change and the concept of the ratio, and the difference in the effects of the ratio difference, This is because appropriate means based on the understanding cannot be implemented. Specifically, the ratio of the linkage between moisture absorption / release and the phase change of H2O is limited by the characteristics of the moisture absorption / release material or whether or not it has an environment / means that can supply cold air to the moisture absorption / release material. The And it leads to the difference of the range (projected on relative humidity) which can recover the moisture absorption capacity of a moisture absorption / release material.
In the above document, the humidity control plate is “a hydraulic composition mixed with a hygroscopic filler such as zeolite into a plate shape, or an inorganic metal fiber added with an alkali metal salt compound and held in a plate. Examples thereof include those formed into a plate shape, or those formed into a plate shape by filling a hydrophilic synthetic material in the pores of a hydrophobic synthetic resin.
Examples of the humidity control plate include those having a high ratio of cooperation with liquefaction during moisture absorption. However, the moisture absorption / release characteristics of the humidity control plate are described only from the viewpoint of moisture absorption / release, and no description of liquefaction / vaporization associated with moisture absorption / release is found. Eventually, whether moisture is absorbed or released depends on the surrounding environment (temperature and humidity), but its action varies depending on the characteristics of the moisture absorbing and releasing material. In addition, from the viewpoint of energy transfer, liquefaction and vaporization associated with moisture absorption and desorption are addressed in terms of the effects of liquefaction and vaporization on the mode of moisture absorption and release caused by energy transfer. Not.
If you want to maximize the effect of humidity adjustment due to moisture absorption and release without taking into account the phase change of liquefaction / vaporization, you must use a humidity control plate that does not retain liquefaction / vaporization as an operational characteristic. Don't be. Although it is a matter of technical level, it is not well understood.
Furthermore, if a new problem is pointed out, in general, when the inner wall material separating the inside and outside is used as a moisture absorbing / releasing material and a dehumidifying device is installed in the indoor space to adjust the humidity of the indoor space, the moisture absorbing / releasing humidity is related to the relative humidity. Therefore, the direction of moisture absorption / release is determined within the range of moisture content, equilibrium moisture content, and relative humidity, so the orientation cannot be controlled sufficiently. However, the reversal of moisture absorption and release, which means that the moisture is released indoors, causes the dehumidifier to operate excessively and not only consumes excess energy, but also leads to generation and discharge of unnecessary condensation heat. As a method for avoiding this, an airtight heat insulating layer is formed in a two-layer structure, a heat insulating material having moisture absorbing / releasing properties is used on the indoor side, and a heat insulating material having no moisture absorbing / releasing properties is used on the outdoor side. Therefore, the intrusion of moisture from outside due to moisture absorption / release is prevented, and an extra burden is not imposed on the dehumidifier. Moreover, depending on the device, it can evolve into an efficient dehumidification system that uses midnight power. In the past, as a technical level, the relationship between the relative humidity inside and outside, and the relationship between the relative humidity and the equilibrium moisture content, does not leave the area that captures the direction of moisture absorption and desorption. As long as that is the case, it is difficult to evolve into a system that can realize both a dehumidifying effect and a heat shielding effect while controlling the direction of moisture absorption and release. In other words, it is impossible to conceive as a problem to control the direction of energy transfer and to control the direction of moisture absorption / release while reducing (suppressing) the influence of the difference in relative humidity between indoor and outdoor. , I have not come up with a means to solve the problem. Reduction can be thought of as delaying the conduction of moisture or shifting the relationship between the moisture content of moisture absorption or moisture release within a certain limit. Suppression of moisture conductivity is contradictory to promotion, and it is necessary to be able to control what is contradictory in the heat insulation layer to be accelerated or suppressed depending on the situation.
More specifically, the direction of moisture absorption / release is determined by the moisture absorption / release material as a boundary depending on the relative humidity level inside and outside the room. That is, if the outdoor side relative humidity is higher than the indoor side relative humidity, the moisture absorbing / releasing material works in the direction of absorbing moisture from the outside and releasing it indoors in accordance with the equilibrium moisture content. Therefore, it is possible to absorb moisture from the indoor side where the relative humidity is low and permeate the moisture absorbing / releasing material to release moisture outdoors, or to stop the moisture flow from outdoors to indoors by stopping moisture release to the inside. I ca n’t think of it. This is the state of the art.限 り As long as we stay at this technical level, it is inevitable that moisture from the outdoor side will intrude into the indoor side where the relative humidity has been artificially reduced. And there is no end to wasted heat generation.
Therefore, in order to avoid loss, the direction of promoting (control) the direction of moisture absorption from the indoor side where the relative humidity is low to the moisture absorbing / releasing material and releasing the moisture to the outdoor side where the relative humidity is high, or from the outdoor side to the indoor side. It is important to consider the delay of moisture conduction as a new issue. It is necessary to devise and present a means for solving such a new problem and solving the problem.
The breakthrough can be found by utilizing energy transfer accompanied by phase change of liquefaction and vaporization, but liquefaction has been hated historically and culturally as dew condensation, and it is long thought to use dew condensation as an action. There is an obvious reason for not. In other words, common technical knowledge about the harmful effects of condensation has prevented the use of liquefaction = condensation as an action. (Inverse logic)

凝固・融解の相変化による潜熱式蓄熱の方法は、熱伝導の効率・熱損失の抑制等を考慮して床暖房のエネルギー供給手段として実用化されている。具体的には、特開2000−240958号公報に記載の内容に提供されている。それは、深夜電力を利用して蓄熱し、昼間の通電しない時間帯に放熱し、暖房のエネルギーに利用するものである。社会的に余剰のエネルギーを安価に有効活用できる点では、社会的にも個人的にもメリットは大きい。
只、これまでの利用の方法では、エネルギー消費効率は良くない。それは、潜熱式の採用で蓄熱容量は増大するものの、空調システムとしてのエネルギー消費効率を向上させる意図・手段の構成に繋がっていないからである。
また、太陽熱の集熱・蓄熱に利用したものとして特開2002−195587号公報に記載の内容に提供されている。何れも、暖房専用である。冷房への利用が出来ないと、機器・装置の効率的な利用に繋がらず、最終的にはイニシャルコスト低減に繋げることが出来ない。
更に、夏季の冷房・除湿に必要な冷却エネルギーの安定した供給を深夜電力から確保する手段のシステム的構成は未だ提供されていない。又、氷蓄冷システムとの比較で言及すると、冷房の効果は得られるものの、本発明の除湿効果および遮熱効果による二重の意味でのヒートアイランド化抑制効果には及ばない。結局、エアコン・蓄熱体のいずれも、単なる「置換」によっては、際立って優れた効果・異質の効果を奏することは出来ない。
A latent heat type heat storage method using a phase change of solidification / melting has been put to practical use as an energy supply means for floor heating in consideration of heat conduction efficiency, suppression of heat loss, and the like. Specifically, it is provided in the contents described in Japanese Patent Application Laid-Open No. 2000-240958. It uses midnight power to store heat, dissipates heat during the daytime when it is not energized, and uses it for heating energy. There is a great merit for both socially and personally in that socially surplus energy can be effectively used at low cost.
只 The energy consumption efficiency is not good with the conventional methods of use. This is because, although the heat storage capacity is increased by adopting the latent heat method, it is not connected to the structure of the intention / means for improving the energy consumption efficiency as the air conditioning system.
Moreover, it is provided to the content of Unexamined-Japanese-Patent No. 2002-195589 as what was utilized for the solar heat collection and thermal storage. Both are for heating only. If it cannot be used for cooling, it will not lead to efficient use of equipment and devices, and ultimately it will not be possible to reduce initial costs.
Furthermore, a system configuration of means for ensuring a stable supply of cooling energy necessary for cooling and dehumidification in summer from midnight power has not yet been provided. Further, when compared with the ice cold storage system, although the cooling effect can be obtained, it does not reach the heat island suppression effect in the dual sense by the dehumidifying effect and the heat shielding effect of the present invention. After all, neither air conditioners nor heat accumulators can produce outstanding effects or extraordinary effects by mere “replacement”.

エネルギーの蓄暖・蓄冷及び蓄熱容量の確保の面で改善が見られる。特許第3049536号(特許文献12)の記載によれば、「床面からの放射熱により部屋を暖める床暖房構造であって、スラブ床と地表面との間に砂層が形成され、砂層に電気抵抗加熱パネルが、地表面に直接または地表面の近くで埋設されて所定個数敷設、さらに、電気抵抗加熱パネルと地表面との間に積極的な断熱層を形成させないで、砂層及び地表面下の地層に蓄熱層を形成可能」とするものである。
この手段の優れた点は、冬季は暖房の蓄熱・放熱の手段として地中を含めた容量の大きい蓄熱層を利用できるところにある。
この手段の問題点は、蓄熱層とスラブ床面との間に空間を設けることなく、砂層で埋め尽くされているので、建物の管理上に課題を残すものとなっている。
一つには、床下の点検が簡単に出来ないので、建物基礎内に含まれる砂層の状態を把握できない。床下での害虫の発生等の発見の遅れに繋がり、被害を未然に防止することが難しい。この点での、消費者への不安解消は難しい。一つには、水道・下水道の配管の保守・点検の問題である。漏水が生じても、簡単には発見できない。しかも、漏水が生じると、蓄熱層の作用・効果に影響するのみならず、発熱体の耐久性にも影響してくる。
更に大きな問題であるが、暖房時の電気使用に伴うエネルギー消費効率が極端に悪い。今日の省エネルギー追及の時代にあっては、好適な手段とは言えない。また、スラブ床面からの室内空間へのエネルギー移動の手段が伝熱を利用した放暖・放冷によるもので、そこから、そのエネルギー移動の量的制御あるいはエネルギー移動の有無の制御あるいは時間帯による制御の困難さを招き、大きな問題となる。
上記手段は暖房の手段としてしか把握されず、冷房のエネルギー供給・蓄熱の手段としての可能性に乏しい。本来、地中の冷気を利用できるのであるが、それを室内の冷房に好適に利用する手段が伴わない。更に、蓄熱層への冷却エネルギー供給手段が地熱に限られ、深夜電力利用のシステムへの進化が困難である。それは、エネルギー消費効率の改善以前の問題である。
Improvements are seen in terms of energy storage and storage and securing of heat storage capacity. According to the description of Japanese Patent No. 3049536 (Patent Document 12), “a floor heating structure that warms a room by radiant heat from the floor surface, a sand layer is formed between the slab floor and the ground surface, and the sand layer is electrically Resistive heating panels are laid directly on or near the ground surface and laid a predetermined number of times, and without forming a positive heat insulation layer between the electrical resistance heating panel and the ground surface, It is possible to form a heat storage layer in the geological formation.
The advantage of this means is that a large-capacity heat storage layer including the underground can be used as a means of heat storage and heat dissipation for heating in winter.
The problem of this means is that it is filled with a sand layer without providing a space between the heat storage layer and the slab floor surface, so that there remains a problem in building management.
For one thing, underfloor inspection is not easy, so the state of the sand layer contained in the building foundation cannot be determined. It will lead to delays in the discovery of the occurrence of pests under the floor, making it difficult to prevent damage. In this respect, it is difficult to eliminate consumer anxiety. One problem is the maintenance and inspection of water and sewer piping. Even if water leaks, it cannot be detected easily. Moreover, when water leaks, it not only affects the action and effect of the heat storage layer, but also affects the durability of the heating element.
Even more serious, the energy consumption efficiency associated with the use of electricity during heating is extremely poor. In today's pursuit of energy conservation, it is not a suitable means. In addition, the means of energy transfer from the slab floor surface to the indoor space is by heating / cooling using heat transfer. This causes the difficulty of control due to the problem and becomes a big problem.
The above means can only be grasped as a heating means, and has little possibility as a cooling energy supply / storage means. Originally, the underground cool air can be used, but there is no means for suitably using it for indoor cooling. Furthermore, the means for supplying cooling energy to the heat storage layer is limited to geothermal heat, and it is difficult to evolve into a system using midnight power. It is a problem before the improvement of energy consumption efficiency.

特許第3251000号公報Japanese Patent No. 3251000 特開2003−328464号JP 2003-328464 A 特開2000−54518号JP 2000-54518 A 特許第2980883号公報Japanese Patent No. 2998083 特開平6−3000386号JP-A-6-3000386 特許第2905417号公報Japanese Patent No. 2905417 特許第2935942号公報Japanese Patent No. 2935942 特開2003−120957号JP 2003-120957 A 特許第2585458号公報Japanese Patent No. 2585458 実用新案出願公開昭63−58103号Utility Model Application Publication No. Sho 63-58103 特開平8−193744号JP-A-8-193744 特許第3049536号公報Japanese Patent No. 3049536

吸放湿材を用いる場合、その吸湿の特性の違いによる吸放湿材の選別を適切に行えないと、狙いとする吸放湿性を利用した室内空間の湿度調節を好適に行うことが出来ない。
吸放湿材が液化を伴う場合、放湿の機能は様変わりする。具体的に示すと、湿気を吸収する際の相対湿度と平衡含水率の関係と湿気を放出する際の相対湿度と平衡含水率との関係とは本来一致すべきものである。ところが、液化・気化という現象が伴う場合は、事情が変わってくる。つまり、エネルギー移転とは無縁の概念である吸放湿にH2Oの相変化に伴うエネルギー移転が繋がり・連携してくるので、エネルギー移転の概念を抜きにして吸放湿の事象を正しく把握することは出来なくなる。その上で、エネルギー移転との関係が強くなる程に大きくなる吸湿の際の平衡含水率と放湿の際の平衡含水率との乖離を小さくしなければ、吸放湿特性を利用した湿度調節を好適に行うことが出来ない。それで、同じ相対湿度・同じ温度の条件の下、吸湿の際の平衡含水率と放湿の際の平衡含水率との間に生じる乖離を出来るだけ小さく(少なく)することを課題とする。更に、乖離を大きくすることを課題とする。
吸湿の際の平衡含水率と放湿の際の平衡含水率との間に生じる乖離を出来るだけ小さくして、吸放湿材の吸放湿特性を利用した湿度調節を好適に実施できることを課題とする。それを具体的に記すと、
先の新規な課題を基礎に、吸放湿材に吸湿と液化との連携の比率の低いものを用いることで、狙いとする吸放湿性を利用した室内空間の湿度調節を好適に行い、具体的には夏季も湿度70%を確保できることを課題とする。
更に、先の新規な課題を基礎に、深夜電力の利用できる夜間のみに除湿装置の稼動を限定しながらも、除湿装置を稼動しない夏季の昼間に室内空間の相対湿度を60%近辺に保持することを課題とする。
When using moisture absorbing / releasing materials, it is not possible to properly adjust the humidity of the indoor space using the targeted moisture absorbing / releasing properties unless the moisture absorbing / releasing material can be properly selected based on the difference in moisture absorption characteristics. .
When the moisture absorbing / releasing material is accompanied by liquefaction, the function of moisture desorption changes. Specifically, the relationship between the relative humidity when absorbing moisture and the equilibrium moisture content and the relationship between the relative humidity when releasing moisture and the equilibrium moisture content should be essentially the same. However, when the phenomenon of liquefaction / vaporization is accompanied, the situation changes. In other words, since moisture transfer, which is a concept unrelated to energy transfer, is linked and linked to energy transfer associated with the phase change of H2O, it is necessary to correctly grasp the phenomenon of moisture absorption / release without the concept of energy transfer. Can no longer do. In addition, if the difference between the equilibrium moisture content at the time of moisture absorption and the equilibrium moisture content at the time of moisture release, which increases as the relationship with energy transfer becomes stronger, humidity control using moisture absorption / release characteristics is required. Cannot be suitably performed. Therefore, an object of the present invention is to minimize (decrease) the divergence between the equilibrium moisture content at the time of moisture absorption and the equilibrium moisture content at the time of moisture release under the conditions of the same relative humidity and the same temperature. Furthermore, the problem is to increase the deviation.
The problem is that the divergence between the equilibrium moisture content at the time of moisture absorption and the equilibrium moisture content at the time of moisture release can be made as small as possible, and the humidity adjustment using the moisture absorption / release characteristics of the moisture absorption / release material can be suitably performed. And Specifically,
Based on the above-mentioned new issues, by using a moisture absorbing / releasing material that has a low ratio of coordination between moisture absorption and liquefaction, it is possible to suitably adjust the humidity of the indoor space using the targeted moisture absorbing / releasing property. Specifically, it is an issue that a humidity of 70% can be secured even in summer.
Furthermore, based on the above-mentioned new problem, while limiting the operation of the dehumidifier only to the night when midnight power can be used, the relative humidity of the indoor space is kept around 60% during the daytime in summer when the dehumidifier is not operated. This is the issue.

太陽熱を日射取得できない北側の気密断熱層に吸放湿性を具備する断熱材を用いながら、含水率管理を好適に実施でき、その上、屋内からの吸湿・吸冷を断熱性に背反する伝熱性の創出により屋外から得られる太陽熱エネルギー等の顕熱の潜熱化に繋げて遮熱の作用効果を得られ、更に、室内の除湿効果を得られることを課題とする。
含水率管理の面で効率を上げ、しかも、冷気・湿気の供給を屋内だけでなく屋外からも受けて、遮熱の効率を向上することを課題とする。
屋内からの冷エネルギー供給の増加に対応して、夜間の屋外からの吸湿・吸冷を抑制することで、屋内からの吸湿・吸冷及び屋内から屋外へのH2Oの移動の効率を向上し、屋内の除湿効果を上げることを課題とする。
夏季は所定の除湿効果及び遮熱効果を上げられ、その上、冬季にそのリスクとして想定されている気密断熱層を通じた屋外から屋内への冷気の移動による熱損失を抑え、その上更に、夜間屋外からの吸冷によって液化したH2Oの移動を制御し、かつ、昼間の太陽熱エネルギーの日射取得によって気化・放湿し、断熱材の性能を具体的に表す熱還流率の数値以上の断熱性能を実現し、床下輻射暖房効果を実現することを課題とする。
含水率管理を好適に実施しながら、夏季は屋内からの冷エネルギーの供給増に対応して、屋内からの吸冷・吸湿の効率を向上し、及び屋内から屋外へのH2O移動の効率を向上し、及び昼間の屋外への気化・放湿の効率を向上して、屋内の除湿効果及び遮熱効果を更に高めることを課題とする。
While using a heat-insulating material with moisture absorption / release properties in the airtight heat insulation layer on the north side where solar heat cannot be acquired by solar radiation, the moisture content can be controlled appropriately, and in addition, moisture absorption / cooling from the inside is contrary to heat insulation It is an object of the present invention to obtain the effect of heat shielding by connecting to the latent heat of sensible heat such as solar thermal energy obtained from the outdoors, and to obtain the indoor dehumidifying effect.
The task is to improve efficiency in terms of moisture content management, and to improve the heat shielding efficiency by receiving cold and moisture supply not only indoors but also outdoors.
In response to the increase in cold energy supply from indoors, by suppressing moisture absorption / cooling from the outside at night, the efficiency of moisture absorption / cooling from indoors and the movement of H2O from indoors to the outdoors is improved. The challenge is to increase the dehumidifying effect indoors.
In summer, the prescribed dehumidifying effect and heat-shielding effect can be improved. Control the movement of liquefied H2O by cooling from outside, and vaporize and dehumidify by obtaining solar heat energy in the daytime. Realize and realize the effect of underfloor radiant heating.
While implementing water content management appropriately, in the summer, in response to the increase in the supply of cold energy from the indoor, improve the efficiency of cooling and moisture absorption from the indoor, and improve the efficiency of H2O movement from indoor to outdoor It is an object of the present invention to further improve the indoor dehumidifying effect and heat shielding effect by improving the efficiency of vaporization and moisture release to the outdoors in the daytime.

請求項12以降の課題について。季節間の地域の気候特性を加味しながら、風土の特徴を取り入れて空調システムの一部とする自然志向の空調システムから、設備機器を効率的に利用しながら環境と共生する形で輻射冷房・輻射暖房の効果を実現できる空調システムまで、住む人の好みに応じて多様な空調システムを選択できる、換気機能を備えた高気密・高断熱住宅を提供できることを課題とする。
各請求項の構成要素の課題を記すと。
1 夏季の含水率管理と冬季の結露防止及び熱損失の防止を両立。
2 含水率管理に日射取得する太陽熱エネルギーを活用。
3 夏季の遮熱機能の向上と冬季の断熱性能の向上を両立。具体的には、断熱材の属性である熱貫流率の数値以上の断熱性能を実現する。
4 気密断熱層を通じた冬季の熱損失を軽減。
5 含水率管理と屋内からの冷却エネルギー吸収の効率向上を両立。
6 含水率管理と屋内の除湿及びH2O移動の効率向上を両立。
7 昼間の遮熱及び夜間の除湿に必要な冷却エネルギー源に深夜電力を利用し、ランニングコストの低減及び省エネルギー効果を実現。
8 含水率管理と安価なエネルギーの安定供給を両立し、更に、夏季の輻射冷房効果及び冬季の輻射暖房効果を、エネルギー消費効率を高めて実現。
About the subject after Claim 12. While taking into account the regional climate characteristics of the season, the natural air conditioning system that incorporates the features of the climate and is part of the air conditioning system, radiation cooling and symbiosis with the environment while using equipment efficiently It is an object of the present invention to provide a highly airtight and highly insulated house with a ventilation function in which various air conditioning systems can be selected according to the preference of residents, up to an air conditioning system capable of realizing the effect of radiant heating.
If the subject of the component of each claim is described.
1. Both water content management in summer and prevention of condensation and heat loss in winter.
2 Use solar thermal energy acquired by solar radiation for moisture content management.
3 Improved heat insulation function in summer and heat insulation performance in winter. Specifically, it achieves heat insulation performance that is equal to or higher than the value of the heat transmissivity that is an attribute of the heat insulating material.
4 Reduces heat loss in winter through an airtight insulation layer.
5. Both moisture content management and efficiency improvement of cooling energy absorption from indoors.
6 Both moisture content management, indoor dehumidification and H2O transfer efficiency improvement.
7 Uses midnight power as a cooling energy source necessary for daytime heat insulation and nighttime dehumidification, reducing running costs and saving energy.
8. Achieves both water content management and stable supply of inexpensive energy, and further achieves a radiant cooling effect in summer and a radiant heating effect in winter with improved energy consumption efficiency.

気密断熱層を境に隔絶した二つの空間相互間で断熱性を保持しながら、必要なエネルギー移動を円滑に行うことを課題とする。具体的には、断熱性と伝熱性という背反的性能を、吸放湿機能とH2Oの相変化「液化・気化」に伴うエネルギー移転との連携を活用することで止揚し、太陽熱エネルギーを遮熱する手段を提供することを課題とする。更に、吸湿に伴う含水率の上昇を抑えながら、遮熱に利用できるエネルギー移動の量を増加することを課題とする。   It is an object to smoothly perform necessary energy transfer while maintaining heat insulation between two spaces separated by an airtight heat insulating layer. Specifically, the reverse performance of heat insulation and heat transfer is stopped by utilizing the function of moisture absorption and release and energy transfer associated with the phase change “liquefaction / vaporization” of H2O to shield solar heat energy. It is an object to provide a means to do this. It is another object of the present invention to increase the amount of energy transfer that can be used for heat insulation while suppressing an increase in moisture content accompanying moisture absorption.

前記高気密・高断熱住宅の気密断熱層において、屋根・壁に日射取得され・蓄熱される太陽熱エネルギーを、地熱・放射冷却をエネルギー源とするH2Oの液化・気化の相変化によって吸収し、湿気という潜熱の形で屋外へ排熱し、更に、太陽熱エネルギーによって生じる内外の相対湿度の高低差並びに気密断熱層の平衡含水率と含水率との乖離を利用して屋内の湿気を屋外へ排出し、気密断熱層との間の湿気・冷気のやり取りを制御「促進・抑制」することで屋内の空気環境を改善することを課題とする。
更に、建築的工夫を通じ断熱材の属性である湿気伝導率を超えて湿気移動の効率を高め、屋内側での吸湿・吸冷の効率向上と呼応して、含水率上昇を抑制しながら除湿・遮熱の効率向上を実現することを課題とする。
In the airtight heat insulation layer of the high airtightness and high heat insulation house, solar heat energy acquired and stored on the roof and walls is absorbed by the phase change of liquefaction and vaporization of H2O using geothermal and radiative cooling as the energy source. In the form of latent heat, the heat is exhausted to the outside, and the indoor moisture is discharged to the outside by using the difference between the relative humidity inside and outside caused by solar thermal energy and the difference between the equilibrium moisture content and moisture content of the hermetic insulation layer. It is an object to improve indoor air environment by controlling “promoting / suppressing” the exchange of moisture and cold air with the airtight heat insulating layer.
Furthermore, through architectural ingenuity, the moisture transfer efficiency that exceeds the moisture conductivity, which is an attribute of heat insulation, is improved, and in response to the improvement of the efficiency of moisture absorption and cooling on the indoor side, dehumidification and It is an object to improve the efficiency of heat shielding.

寒冷地でも地域によっては冬季の積雪により屋根面に太陽熱を日射取得することが難しい。その上、外気温は氷点下にまで低下するので、吸放湿材が吸湿する際に氷結する恐れがある。氷結すると、断熱性能は果たせるか否か以前の問題として、断熱材の組織が破壊される恐れがある。以上の問題点を解消しながら、寒冷地に相応しい工夫により断熱性能の向上を実現し、その上、夏季の除湿・遮熱機構の働きを低下させないことを課題とする。   Even in cold regions, it is difficult to obtain solar heat on the roof surface due to snow in winter depending on the region. In addition, since the outside air temperature falls below the freezing point, there is a risk of icing when the moisture absorbing / releasing material absorbs moisture. When frozen, the structure of the heat insulating material may be destroyed as a previous problem as to whether or not the heat insulating performance can be achieved. While solving the above problems, we aim to improve heat insulation performance by ingenuity suitable for cold regions, and not to reduce the function of the dehumidification / heat insulation mechanism in summer.

太陽熱エネルギーを日射取得できない北側の気密断熱層に吸放湿性を具備する断熱材を用いる際、含水率の好適な管理を実施しながら、屋内で吸湿し屋外へ放湿する吸放湿の方向性を制御出来、屋外から屋内への吸放湿の逆流を阻止できることを課題とする。
更に、屋内の相対湿度を屋外の相対湿度に比較して低く維持することが出来、しかも、簡単な工夫でその低い相対湿度の条件の下で屋内から吸湿し、屋外へ放湿する方向性を維持できることを課題とする。
The direction of moisture absorption and desorption that absorbs moisture indoors and releases moisture outdoors while implementing appropriate management of moisture content when using a heat-insulating material with moisture absorption and desorption properties on the airtight thermal insulation layer on the north side where solar thermal energy cannot be obtained. It is an object to be able to control the reverse flow of moisture absorption and release from the outside to the inside.
Furthermore, the indoor relative humidity can be kept low compared to the outdoor relative humidity. The problem is that it can be maintained.

前項に記載の湿気・冷気のやり取りの制御・促進にCOPの高いエアコンの供給する冷エネルギーを利用し、且、深夜電力主体で昼間の電気使用量を抑制しながら、遮熱・除湿効果及びエアコンの生成する凝縮熱削減効果と併せてヒートアイランド化抑制効果を上げ、その上で、顕熱的蓄冷の効果でエネルギー変換に繋げ、輻射冷房効果を実現する。更に、深夜電力に限定してランニングコストを軽減しながら、輻射冷房効果を24時間・安定的に実現することを課題とする。
24時間給湯に利用できる熱エネルギーを生成する際に付随して生じる冷却エネルギーを屋内への冷気の供給に利用することで、屋内の冷房・除湿の際に生成・廃棄する熱エネルギーを削減し、ヒートアイランド化抑制の一助とすることを課題とする。
Heat control / dehumidification effect and air conditioner while using cold energy supplied by air conditioner with high COP to control / promote the exchange of moisture / cold air as described in the previous section, and controlling electricity usage in the daytime mainly by midnight power In addition to the effect of reducing the heat of condensation generated by the heat island, the effect of suppressing the formation of heat islands is raised, and then the effect of sensible heat storage is linked to energy conversion to achieve a radiant cooling effect. Further, it is an object to stably realize a radiant cooling effect for 24 hours while reducing running costs by limiting to midnight power.
By using the cooling energy that accompanies the generation of thermal energy that can be used for 24 hour hot water supply for the supply of cold air indoors, the thermal energy generated and discarded during indoor cooling and dehumidification is reduced, It is an object to help to prevent the heat island.

屋根体の遮熱システム(潜熱利用)の好適な実施には十分な断熱性及び伝熱性によって吸収できる十分な冷却エネルギーを必要とする。しかも、その効果を実現するには、図2に示す様に構造上並びにエネルギー使用の面でコストアップ要因となる。図1に記載のごとく構造的に簡易な手段を採用すると建築コストは削減できるが、遮熱システムから漏れて断熱材を透過する太陽熱エネルギーは増加し、屋内の冷房負荷も増大する。その様な状況の下、遮熱システムと換気システムとの組み合わせの工夫によって、潜熱式の排熱を実施しながら先の透過する太陽熱エネルギーを顕熱の形で効率的に建物外に排出し、昼間の冷房負荷の増大を抑えることを課題とする。只、換気の主たる目的は新鮮な空気を取入れ、室内の酸素濃度を保つことに在る。この目的を効率よく果たし、その上で、蓄熱システムとの連携及び壁体の遮熱・除湿システムとの連携を好適に実施し、地熱・放射冷却の自然エネルギーに加えて深夜電力を利用して屋内の空気環境(温度・湿度・酸素濃度等)の改善を冬夏を通じて低コストで実現でき、更に、屋内の除湿の際に生成する凝縮熱を縮減して、ヒートアイランド化抑制の一助とすることを課題とする。   A suitable implementation of a roof insulation system (utilization of latent heat) requires sufficient cooling energy that can be absorbed by sufficient insulation and heat transfer. Moreover, in order to realize the effect, as shown in FIG. 2, it becomes a cost increase factor in terms of structure and energy use. Although the construction cost can be reduced by adopting a structurally simple means as shown in FIG. 1, the solar thermal energy leaking from the heat shielding system and passing through the heat insulating material increases, and the indoor cooling load also increases. Under such circumstances, by devising a combination of a heat shield system and a ventilation system, the solar heat energy that has passed through is efficiently discharged outside the building in the form of sensible heat while carrying out latent heat exhaust heat, It is an object to suppress an increase in daytime cooling load.只 The main purpose of ventilation is to take in fresh air and maintain the oxygen concentration in the room. This purpose is achieved efficiently, and in addition, cooperation with the heat storage system and cooperation with the heat insulation and dehumidification system of the wall are suitably implemented, and in addition to natural energy of geothermal and radiative cooling, midnight power is used. The indoor air environment (temperature, humidity, oxygen concentration, etc.) can be improved at low cost throughout winter and summer, and the heat of condensation generated during indoor dehumidification can be reduced to help reduce heat islands. Let it be an issue.

夏季における気密断熱層の除湿・遮熱機能を利用した高効率の輻射冷房システムを実現するに当たり、冬季に期待される輻射暖房効果の効率的実現を見据えたリスク管理をバランスよく行なうことを課題とする。   In realizing a high-efficiency radiant cooling system that utilizes the dehumidifying and heat-insulating functions of the airtight heat insulating layer in summer, the challenge is to balance risk management with an eye toward efficient realization of the radiant heating effect expected in winter To do.

エアコン等の空調機器の省エネルギー性能は高まり、それに伴い住宅にも高い省エネルギー性能を求められる。高気密高断熱住宅はその流れに沿うものである。只、地熱・放射冷却・太陽熱等の自然エネルギーの有効利用を図りながら、補完的に空調機器を用いる場合、必ずしも省エネルギーに繋がらず、冷房負荷・除湿負荷の増大する場合がある。それは、凝縮熱の生成の増大に繋がり、ヒートアイランド化の助長に繋がる。そこで、自然エネルギーを有効活用しながら、冷房負荷・除湿負荷の増大を招かず、凝縮熱生成の増大に繋がらず、建築的工夫を最大限追及してエアコン等の空調機器を活用でき、省エネルギーを追求・実践できる新規な課題を提起する。更に、深夜電力の活用を図ることを課題とする。
その課題を解決するために更なる新規な課題を提起する。それは、相対湿度の低い側から吸湿し、吸放湿材を介して相対湿度の高い側に湿気を移動(伝導)し、放湿できることを課題とする。逆も真なりで、相対湿度の高い屋外側から相対湿度の低い屋内側への湿気の逆流(浸入)を阻止できることを課題とする。
地熱の影響で相対湿度は高止まりし、結露発生のリスクの高い床下空間での結露の発生を抑制することを課題とする。
その課題を達成するため、通風による湿気の排出路、吸放湿を利用した湿気の排出路、エアコンの除湿機能を利用した排出路を形成することを課題とする
Energy-saving performance of air-conditioning equipment such as air conditioners is increasing, and accordingly, high energy-saving performance is required for houses. Highly airtight and highly insulated houses follow that trend.空調 If air conditioning equipment is used complementarily while effectively utilizing natural energy such as geothermal, radiant cooling, solar heat, etc., it does not necessarily lead to energy saving, and the cooling load and dehumidification load may increase. This leads to an increase in the generation of condensation heat, which leads to the promotion of heat island formation. Therefore, while effectively utilizing natural energy, it does not increase the cooling load or dehumidification load, does not lead to an increase in the generation of condensation heat, and can make use of air conditioning equipment such as air conditioners by pursuing architectural ingenuity to the maximum. Raise new challenges that can be pursued and practiced. Furthermore, it aims at the utilization of late-night power.
In order to solve the problem, we propose a new problem. It is an object to absorb moisture from a side with a low relative humidity, move (conduct) moisture to a side with a high relative humidity via a moisture absorbing / releasing material, and release the moisture. The reverse is also true, and it is an object to prevent reverse flow (intrusion) of moisture from the outdoor side having a high relative humidity to the indoor side having a low relative humidity.
The problem is to suppress the occurrence of condensation in the underfloor space where the relative humidity remains high due to the influence of geothermal heat and there is a high risk of condensation.
In order to achieve the task, it is an object to form a moisture discharge path by ventilation, a moisture discharge path using moisture absorption and release, and a discharge path using the dehumidification function of the air conditioner.

先の課題を解決する手段として、本発明は次の構成を行なう。
第一に、吸放湿性を具備する断熱材から構成され、構造耐力性を具備し、建物の図5から8に示す屋根体もしくは図9から12に示す壁体を構成する断熱パネルであって、吸放湿とH2Oの相変化との連携の比率の低い断熱材と透湿防風防水シートと吸放湿とH2Oの相変化との連携の比率の高い断熱材とを重ね合わせた三層構造を特徴とする断熱パネル。
As means for solving the above problems, the present invention has the following configuration.
First, it is a heat insulating panel that is composed of a heat insulating material having moisture absorption and desorption properties, has structural strength, and constitutes a roof body shown in FIGS. 5 to 8 or a wall body shown in FIGS. , A three-layer structure in which a heat insulating material with a low ratio of moisture absorption / release and H2O phase change, a moisture-permeable windproof waterproof sheet, and a heat insulating material with a high ratio of moisture absorption / release and H2O phase change Insulation panel characterized by.

第二の構成は、吸放湿とH2Oの相変化との連携の比率の高い断熱材と透湿防風防水シートと吸放湿とH2Oの相変化との連携の比率の高い断熱材とを重ね合わせた三層構造を特徴とする請求項1に記載の断熱パネル。 In the second configuration, a heat insulating material having a high ratio of moisture absorption / release and H2O phase change, a moisture-permeable windproof waterproof sheet, and a heat insulating material having a high ratio of moisture absorption / release and H2O phase change are stacked. The heat insulation panel according to claim 1, characterized by a combined three-layer structure.

第三の構成は、図1に示す建物を構造的に支える基礎・土台・柱・桁・梁の構造部材並びに屋根・外壁・断熱層を具備する屋根体・壁体から構成され、内壁・床・天井により室内空間を構成し、構造耐力を備え、壁体を構成する断熱層は、吸放湿性を具備する断熱材から成る断熱層もしくは吸放湿性を具備しない断熱材から成る断熱層あるいは吸放湿性を具備する断熱材と吸放湿性を具備しない断熱材とを重ね合わせた断熱層の一つの種類の断熱層もしくは複数の種類の断熱層の組み合わせにより構成され、屋根体を構成する断熱層は、吸放湿性を具備する断熱材から構成され、棟換気口及び屋根通気層及び屋根通気層及び外側通気層を備え、建物外から外気を導入し、室内を循環した空気を建物外に排出する通風を含めた換気する手段を備え、防水性を備え、地熱・放射冷却のエネルギー、夏季の暖気、冬季の冷気、太陽熱エネルギーの日射に曝される建物であって、透湿性の断熱層は、請求項1に記載の断熱パネルから構成され、屋内側に吸放湿とH2Oの相変化との連携の比率の低い断熱材を用い、断熱層の内、屋外側に吸放湿性を具備し、吸放湿とH2Oとの連携の比率の高い断熱材で構成する断熱層は、吸放湿性を具備する断熱材もしくは吸放湿性を具備しない断熱材と透湿防風防水シートと吸放湿性を具備する断熱材との三層構造とし、冬季に液化の際に生成する凝縮熱により屋外からの夜間の冷気を吸収し、断熱層の内、吸放湿性を具備する断熱層は、H2Oの相変化(液化・気化)を媒介する断熱材の吸放湿機能により吸湿・吸冷し、夏季の昼間の常温で気化・蒸発し、屋外に排出し、その上、北側を除いた断熱層は、日射取得される太陽熱エネルギーを吸収し、湿気という潜熱の形に閉じ込めて屋外に排出し、床材に吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を用い、床下空間から吸湿し、床材を透過し、室内空間に放湿し、室内空間から断熱層を経由して屋外に排出できる湿気の排出路を形成することを特徴とするエコ住宅。 The third configuration consists of the structural members of the foundation, foundation, columns, girders, and beams that structurally support the building shown in FIG. 1 and the roof body / wall body with the roof, outer wall, and heat insulation layer. -The heat insulation layer that constitutes the indoor space with the ceiling, has structural strength, and constitutes the wall body is a heat insulation layer made of a heat insulation material having moisture absorption / release properties or a heat insulation layer made of heat insulation material not having moisture absorption / release properties, or an absorption layer. A heat insulating layer that is composed of one type of heat insulating layer or a combination of a plurality of types of heat insulating layers in which a heat insulating material having moisture releasing properties and a heat insulating material not having moisture absorbing / releasing properties are superimposed, and constitutes a roof body. Is composed of heat-insulating material with moisture absorption and desorption, and has a building ventilation opening, roof ventilation layer, roof ventilation layer and outside ventilation layer, introduces outside air from outside the building, and discharges air circulated inside the building outside the building Provide ventilation means including ventilation The building has a waterproof property, is exposed to geothermal / radiant cooling energy, summer warm air, winter cold air, solar thermal energy solar radiation, and a moisture-permeable heat insulating layer is formed from the heat insulating panel according to claim 1. Constructed, using a heat insulating material having a low ratio of moisture absorption / release and phase change of H2O on the indoor side, and having moisture absorption / release properties on the outdoor side of the heat insulation layer, the relationship between moisture absorption / release and H2O The heat insulating layer composed of a heat insulating material having a high ratio has a three-layer structure of a heat insulating material having moisture absorption / release properties or a heat insulating material not having moisture absorption / release properties, a moisture-permeable windproof waterproof sheet, and a heat insulating material having moisture absorption / release properties. In the winter, the heat of condensation generated during liquefaction absorbs cold air from the outside at night, and among the heat insulation layer, the heat insulation layer with moisture absorption and desorption is heat insulation that mediates the phase change (liquefaction / vaporization) of H2O. Moisture absorption and cooling by the moisture absorption and release function of the material, vaporization and steaming at room temperature in the daytime in summer In addition, the heat insulation layer excluding the north side absorbs solar heat energy acquired by solar radiation, traps it in the form of latent heat called moisture, discharges it outdoors, and absorbs and releases moisture and H2O on the flooring. Using moisture absorption / release material that has a low ratio of coordination with phase change, absorbs moisture from the underfloor space, permeates the floor material, releases moisture to the indoor space, and releases moisture from the indoor space to the outside via the heat insulating layer. An eco house characterized by forming a discharge channel.

第四の構成は、透湿性の断熱層は、請求項2に記載の断熱パネルから構成されることを特徴とする請求項3に記載のエコ住宅。 The ecological house according to claim 3, wherein the fourth configuration is that the moisture-permeable heat insulating layer is formed of the heat insulating panel according to claim 2.

第五の構成は、
透湿性の断熱層は、請求項1及び2に記載の断熱パネルから構成されることを特徴とする請求項3に記載のエコ住宅。
The fifth configuration is
The eco-housing according to claim 3, wherein the moisture-permeable heat insulating layer is constituted by the heat insulating panel according to claim 1.

第六の構成は、北側に面し太陽熱エネルギーを日射取得できない断熱層は、吸放湿とH2Oの相変化との連携の比率の低い断熱材、もしくは、吸放湿性を具備しない断熱材から成ることを特徴とする請求項3から5の内の何れかの項に記載のエコ住宅。 In the sixth configuration, the heat insulating layer facing the north side where solar thermal energy cannot be obtained by solar radiation is composed of a heat insulating material having a low ratio of coexistence between moisture absorption / release and H2O phase change, or a heat insulating material not having moisture absorption / release properties. The eco-housing according to any one of claims 3 to 5, wherein

第七の構成は、前記断熱層は、気密性能を備えることを特徴とする請求項3から6の内の何れかの項に記載のエコ住宅。 The ecological house according to any one of claims 3 to 6, wherein in the seventh configuration, the heat insulating layer has an airtight performance.

第八の構成は、前記空間に送風ファン及び連通口を設け、外気に開放され、
送風ファンは昼夜稼動することを特徴とする請求項3から7の内の何れかの項に記載のエコ住宅。
The eighth configuration provides a blower fan and a communication port in the space, and is open to the outside air.
The eco-housing according to any one of claims 3 to 7, wherein the blower fan operates day and night.

第九の構成は、図1に記載の、床下空間と内側通気層は連通して空気の流路を形成し、内側通気層と各居室は内壁部の連通口を介して連通し、建物外と各居室とを、開閉可能な吸気口に連結する排気用連通管により連通し、建物外と床下空間とを給気用連通管により連通し、前記排気用連通管及び給気用連通管は送風機能を具備する熱交換式換気扇に連通し、前記給気用連通管を通じて床下空間に外気を取入れ、内側通気層及び連通口を経由して各居室に流入した空気を、冬と夏とで室内の空気循環を変更して夏は暖気を屋内の吹抜け部の最上部の吸気口に連結する排気用連通管を通じて建物外に排出できる換気通気手段を備えることを特徴とする請求項3から8の内の何れかの項に記載のエコ住宅。 In the ninth configuration shown in FIG. 1, the underfloor space and the inner ventilation layer communicate with each other to form an air flow path, and the inner ventilation layer and each living room communicate with each other via a communication port on the inner wall. And the living room are connected to each other by an exhaust communication pipe connected to an openable / closable intake port, and the outside of the building and the underfloor space are connected to each other by an air supply communication pipe. The exhaust communication pipe and the air supply communication pipe are It communicates with a heat exchange type ventilation fan equipped with an air blowing function, takes outside air into the underfloor space through the air supply communication pipe, and flows the air flowing into each room through the inner ventilation layer and the communication port in winter and summer. 9. Ventilation ventilation means for changing the air circulation in the room and exhausting the air outside the building through an exhaust communication pipe that connects warm air to the uppermost air inlet of the indoor atrium in the summer. The eco-housing according to any one of the items.

第十の構成は、前記給気用連通管を通じて外気を取り入れる際に、屋根通気層もしくは屋根棟下空間を通じて集めた熱エネルギーを併せて床下空間に取り入れることを特徴とする請求項3から9の内の何れかの項に記載のエコ住宅。 The tenth configuration is characterized in that when the outside air is taken in through the air supply communication pipe, the heat energy collected through the roof ventilation layer or the space under the roof ridge is also taken into the underfloor space. Eco-housing according to any of the items.

第拾壱の構成は、除湿機能付空気調和機(HP式エアコン)を床下空間及び室内空間に設置することを特徴とする請求項3から10の内の何れかの項に記載のエコ住宅。 The eco-housing according to any one of claims 3 to 10, wherein the structure of the first pick-up is that an air conditioner with a dehumidifying function (HP air conditioner) is installed in the under-floor space and the indoor space.

第拾弐の構成は、図2に示す建物を囲む気密断熱層を境に、建物外と密閉状態のもと、前記建物の床下空間と内側通気層と天井裏空間とを連通し、前記内側通気層もしくは天井裏空間の何れかと室内空間とを連通口により連通し、連通口は夏冬で開閉可能とし、前記建物の室内側から、内壁、内側通気層、壁下地材、気密断熱層、外壁下地材、外側通気層、外壁で構成され、前記建物の屋根棟下空間と屋根通気層と外側通気層を連通し、屋根棟下空間の上端は棟換気口を通じて常時外気に開放され、外側通気層の下端は常時外気に開放され、前記建物の室内側から、天井、天井裏空間、天井下地材、気密断熱層、屋根下地材、屋根棟下空間及び屋根通気層、屋根材で構成され、壁体は、構造耐力を備え、壁体を構成する気密断熱層は、吸放湿性を具備する断熱材から成る断熱層もしくは吸放湿性を具備しない断熱材から成る断熱層あるいは吸放湿性を具備する断熱材と吸放湿性を具備しない断熱材とを重ね合わせた断熱層の一つの種類の断熱層もしくは複数の種類の断熱層の組み合わせにより構成され、屋根体を構成する気密断熱層は、吸放湿性を具備する断熱材から構成され、前記建物外と室内空間とを排気用連通管により連通し、前記建物外と床下空間とを給気用連通管により連通し、前記排気用連通管及び給気用連通管は送風機能を具備する全熱交換式換気扇に連通し、前記排気用連通管の一端を便所・浴室・押入を含む各居室に連結して建物外に排気し、前記給気用連通管を通じて外気を取入れ、地熱・放射冷却のエネルギー、夏季の暖気、冬季の冷気、太陽熱エネルギーの日射に曝される建物であって、透湿性の気密断熱層は、請求項1に記載の断熱パネルから構成され、屋内側に吸放湿とH2Oの相変化との連携の比率の低い断熱材を用い、気密断熱層の内、屋外側に吸放湿性を具備し、吸放湿とH2Oとの連携の比率の高い断熱材で構成する断熱層は、吸放湿性を具備する断熱材もしくは吸放湿性を具備しない断熱材と透湿防風防水シートと吸放湿性を具備する断熱材との三層構造とし、冬季に液化の際に生成する凝縮熱により屋外からの夜間の冷気を吸収し、前記気密断熱層の内、太陽熱エネルギーを日射取得できない北側の壁体の気密断熱層は、吸放湿とH2Oの相変化との連携の比率の低い断熱材、もしくは、吸放湿性を具備しない断熱材を用い、前記気密断熱層の内、吸放湿性を具備する気密断熱層は、H2Oの相変化(液化・気化)を媒介する断熱材の吸放湿機能により吸湿・吸冷し、夏季の昼間の常温で気化・蒸発し、屋外に排出し、その上、北側の壁体を除いた気密断熱層は、日射取得される太陽熱エネルギーを吸収し、湿気という潜熱の形に閉じ込めて屋外に排出し、併せて夏季の夜間に放射冷却により温度低下した冷気を取入れ、床・内壁・天井の内装材の内の、用いる吸放湿とH2Oの相変化との連携の比率の低い吸放湿材の働きにより、床下空間から吸湿し、床材を透過し、室内空間に放湿し、室内空間から内装材及び天井裏空間・内側通気層及び断熱層を経由して屋外に排出できる湿気の排出路を形成することを特徴とするエコ住宅。 The structure of the first picker is that the underfloor space of the building, the inner ventilation layer, and the ceiling space are communicated with each other inside and outside the building, with the airtight heat insulating layer surrounding the building shown in FIG. Either the ventilation layer or the space behind the ceiling and the indoor space are communicated by a communication port, the communication port can be opened and closed in summer and winter, from the indoor side of the building, the inner wall, the inner ventilation layer, the wall base material, the airtight insulation layer, It consists of an outer wall base material, an outer ventilation layer, and an outer wall, and communicates the space under the roof of the building with the roof ventilation layer and the outer ventilation layer, and the upper end of the space under the roof is always open to the outside air through the building ventilation port. The lower end of the ventilation layer is always open to the outside air, and is composed of the ceiling, the ceiling space, the ceiling foundation material, the airtight insulation layer, the roof foundation material, the space under the roof ridge, the roof ventilation layer, and the roof material from the indoor side of the building. The wall body has structural strength, and the airtight heat insulation layer that constitutes the wall body absorbs and releases moisture. One of a heat insulating layer comprising a heat insulating material comprising a heat insulating material comprising a heat insulating material comprising no heat absorbing / releasing properties or a heat insulating layer comprising a heat insulating material comprising moisture absorbing / releasing properties and a heat insulating material not comprising moisture absorbing / releasing properties. The airtight heat insulating layer, which is composed of a kind of heat insulating layer or a combination of a plurality of types of heat insulating layers and constitutes a roof body, is made of a heat insulating material having moisture absorption / release properties, and communicates the outside of the building and the indoor space for exhaust. Communicating with the outside of the building and the underfloor space with a communication pipe for air supply, the communication pipe for exhaust and the communication pipe for air supply communicate with a total heat exchange type exhaust fan having a blowing function, One end of the communication pipe is connected to each room including toilets, bathrooms and closets, exhausted outside the building, outside air is taken in through the air supply pipe, geothermal / radiant cooling energy, warm air in summer, cold air in winter , Solar thermal energy A building exposed to solar radiation, wherein the moisture-permeable airtight heat insulating layer is formed of the heat insulating panel according to claim 1 and has a low ratio of moisture absorption / release and H2O phase change on the indoor side. Among the airtight heat insulating layers, the heat insulating layer having moisture absorption / release properties on the outdoor side and composed of a heat insulating material having a high ratio of cooperation between moisture absorption / release and H2O is a heat insulation material or moisture absorption property having moisture absorption / release properties. It has a three-layer structure of a heat insulating material that does not have moisture release, a moisture-permeable windproof waterproof sheet, and a heat insulating material that has moisture absorption / release properties, and absorbs cold air from the outside due to condensation heat generated during liquefaction in winter, Among the airtight heat insulating layers, the airtight heat insulating layer of the north wall which cannot acquire solar thermal energy is a heat insulating material with a low ratio of moisture absorption / release and H2O phase change, or heat insulation without moisture absorption / release properties. Airtight heat insulating layer having moisture absorption / release properties among the above airtight heat insulating layers Absorbs and cools by the moisture absorbing and releasing function of the heat-insulating material that mediates the phase change (liquefaction / vaporization) of H2O, vaporizes and evaporates at room temperature during the daytime in summer, and discharges it to the outside. The airtight insulation layer excluding the body absorbs solar thermal energy acquired by solar radiation, confines it in the form of latent heat called moisture, discharges it outdoors, and also incorporates cold air whose temperature has been lowered by radiative cooling at night in the summer. Of the interior materials on the inner walls and ceilings, the moisture absorption and desorption material, which has a low ratio between the moisture absorption and release used and the phase change of H2O, absorbs moisture from the underfloor space, permeates the floor material, and releases it to the indoor space. An eco house characterized by dampening and forming a moisture discharge path that can be discharged from the interior space to the outside through the interior material, the ceiling space, the inner ventilation layer and the heat insulation layer.

第拾参の構成は、透湿性の気密断熱層は、請求項2に記載の断熱パネルから構成されることを特徴とする請求項12に記載のエコ住宅。 The eco house according to claim 12, wherein the structure of the first introduction is such that the moisture-permeable airtight heat insulating layer is formed of the heat insulating panel according to claim 2.

第壱四の構成は、前記屋根通気層の上端は、送風ファンと連通管とから構成される送風設備に連結する屋根棟下空間を通じて外気に開放され、屋根棟下換気口を閉じることを特徴とする請求項12から13の内の何れかの項に記載のエコ住宅。 The fourth structure is characterized in that the upper end of the roof ventilation layer is opened to the outside air through the space under the roof ridge connected to the blower facility composed of the blower fan and the communication pipe, and the ventilation hole under the roof ridge is closed. The eco house according to any one of claims 12 to 13.

第壱五の構成は、前記の送風ファンは夏季の昼間に限定して稼動し、日没後は稼動しないことを特徴とする請求項14に記載のエコ住宅。 15. The eco house according to claim 14, wherein the fifth fan is configured such that the blower fan operates only during summer daytime and does not operate after sunset.

第壱六の構成は、連通する前記床下空間・内側通気層・天井裏空間で構成する流路内に、除湿機能付空気調和機(HP式エアコン)を用いることを特徴とする請求項12から15に記載のエコ住宅。 The configuration of No. 6 is that an air conditioner with a dehumidifying function (HP type air conditioner) is used in a flow path constituted by the underfloor space, the inner ventilation layer, and the ceiling back space. 15. Eco house according to 15.

第壱七の構成は、図3に示す建物を構造的に支える基礎・土台・柱・桁・梁の構造部材並びに屋根・外壁・断熱層を具備する屋根体・壁体から構成され、内壁・床・天井により室内空間を構成し、構造耐力を備え、棟換気口及び屋根通気層及び外側通気層を備え、内壁・天井の内装材と断熱層との間に内側通気層を備え、
内側通気層は、断熱層を介して屋根通気層・外側通気層と独立した通気層に形成し、棟換気口・第二棟下換気口(開閉式)を通じて外気に開放され、床下空間・床下換気口(開閉式)を通じて外気に開放され、建物外から外気を導入し、室内を循環した空気を建物外に排出する通風を含めた換気する手段を備え、地熱・放射冷却のエネルギー、夏季の暖気、冬季の冷気、太陽熱エネルギーの日射に曝される建物であって、内壁・天井の内装材の内、断熱層から輻射熱を受けられる部位に用いる吸放湿材は、吸放湿とH2Oの相変化との連携の比率の高い板材を用い、面積に関して床の内装材よりも広く施工し、床の内装材は、吸放湿とH2Oの相変化との連携の比率の低い板材を用い、湿気の建物外への排出路として、床下空間から内側通気層・天井裏空間・第二棟下換気口を通じた排出路及び床下空間から室内空間を経て内側通気層・天井裏空間・第二棟下換気口を通じた排出路の二つの排出路を形成することを特徴とするエコ住宅。
The structure of No. 7 is composed of the structural members of the foundation, foundation, pillars, girders and beams that structurally support the building shown in FIG. 3 and the roof / wall body with the roof / outer wall / insulation layer. The interior space is composed of floors and ceilings, structural strength is provided, building vents and roof ventilation layers and outer ventilation layers are provided, and inner ventilation layers are provided between interior materials and heat insulation layers of inner walls and ceilings.
The inner ventilation layer is formed as a ventilation layer independent of the roof ventilation layer and the outer ventilation layer through the heat insulation layer, and is opened to the outside air through the building ventilation opening and the second building ventilation opening (opening and closing type). It is open to the open air through a ventilation opening (opening and closing type), introduces the outside air from outside the building, and has ventilation means including ventilation that exhausts the air circulating inside the building to the outside of the building. For buildings exposed to warm air, cold in winter, and solar heat solar radiation, the moisture absorption and desorption materials used in the interior wall and ceiling interior materials that can receive radiant heat from the heat insulation layer are moisture absorption and desorption and H2O. Using a plate material with a high ratio of cooperation with phase change, and constructing wider than floor interior materials in terms of area, the floor interior material uses a plate material with a low ratio of cooperation between moisture absorption and release and H2O phase change, Internal ventilation from the underfloor space as a drain for moisture out of the building -Form a two-way exhaust path, the exhaust passage through the ceiling back space, the second building under the ventilation opening, and the inner ventilation layer from the under floor space through the indoor space, the ceiling back space, the exhaust passage through the second building under the ventilation opening. An eco house characterized by

第壱八の構成は、前記内側通気層は、第二棟下換気口付近で第二送風ファンと第二連通口により外気に直接開放され、第二棟下換気口は閉じることを特徴とする請求項17に記載のエコ住宅。 The configuration of No. 8 is characterized in that the inner ventilation layer is directly opened to the outside air by the second ventilation fan and the second communication port in the vicinity of the second building lower ventilation port, and the second building lower ventilation port is closed. The eco-housing according to claim 17.

第壱九の構成は、前記断熱層は、気密性能を備えることを特徴とする請求項17から18の内の何れかに記載のエコ住宅。 The eco house according to any one of claims 17 to 18, wherein the heat insulation layer has an airtight performance.

第弐拾の構成は、前記内壁及び天井に用いる内装材は、室内側に吸放湿とH2Oの相変化の連携の比率の低い板材、内装下地材として吸放湿とH2Oの相変化の連携の比率の高い板材を用い、重ねて張ることを特徴とする請求項17から19の内の何れかに記載のエコ住宅。 The construction of the No. 1 pick-up is that the interior material used for the inner wall and ceiling is a plate material with a low ratio of moisture absorption / release and phase change of H2O on the indoor side, and the relationship between moisture absorption / release and phase change of H2O as the interior base material. The eco-house according to any one of claims 17 to 19, characterized by using a plate material having a high ratio and stretching it.

第弐拾壱の構成は、前記第二送風ファンは夏季の昼間稼動し、夜間は停止することを特徴とする請求項17から20の内の何れかに記載のエコ住宅。 21. The eco house according to any one of claims 17 to 20, wherein the second fan is configured such that the second blower fan operates in the daytime in summer and stops in the nighttime.

第弐拾弐の構成は、除湿機能付空気調和機(HP式エアコン)を室内に設置、床下空間に滞留する湿気の排出路として、床下空間から室内空間を経てエアコンで建物外に排出される排出路を加え、三つの排出路を形成することを特徴とする請求項17から21の内の何れかに記載のエコ住宅。 The configuration of the No. 1 picking up is an air conditioner with a dehumidifying function (HP type air conditioner) installed indoors, as a discharge path for moisture staying in the underfloor space, exhausted from the underfloor space through the indoor space by the air conditioner to the outside of the building The eco-house according to any one of claims 17 to 21, wherein a road is added to form three discharge paths.

第弐拾参の構成は、前記除湿機能付空気調和機(HP式エアコン)の稼動は、深夜電力の利用できる時間帯に行うことを特徴とする請求項22に記載のエコ住宅。 23. The eco house according to claim 22, wherein the operation of the air conditioner with a dehumidifying function (HP air conditioner) is performed in a time zone in which midnight power can be used.

壁下地材は、柱・土台・桁・間柱の構造材から構成され、壁仕上げ材及び気密断熱層によって内側通気層を構成する。壁仕上げ材は両面ともに吸放湿性を備える杉板・檜板もしくはプラスターボード下地に珪藻土塗り仕上げ・プラスターボード下地に紙クロス等を用いる。全ての内壁面を吸放湿材で施工する必要は無いものの、出来るだけ多くの面積に渡り施工し、室内と内側通気層との間に湿気のやり取りの可能な構成とする。
気密断熱層は、断熱材の一部を柱と柱との間に配置し、残りの部分を柱の外側に配置し、断熱材相互の繋ぎ目は気密テープを用いて気密を確保する。断熱材を柱の内外の位置に配分すると、外壁の荷重を支えるのに好適である。もしくは、断熱性能と外壁の加重の支えを両立できれば、柱の外側のみに配置することも出来る。
気密断熱層の断熱材を二層とする場合、一層目の断熱材は柱と柱との間に配置し、断熱材と柱・土台・桁との間は気密テープを用いて気密を確保する。その上、透湿防風防水シートで全体を囲み、気密性の向上を図る。最後に、二層目の断熱材を柱の外側に配置する。更に、二層目の断熱材相互の繋ぎ目を気密テープで塞ぐ。二層目の断熱材は、一層目の気密シートを外からの暑さ・寒さから保護する役割を果たし、耐久性を増すことで、長期間の性能の維持に貢献する。
さて、木造軸組工法では、古くから尺貫法により寸法取りが行われてきた。それに伴い、内装材のボード類・外装材のボード類・断熱材等は工場出荷時に910mm単位に加工・切断されている。そして、その寸法取りを採用することで、個別の施工現場における施工時の手間及び資材のロスを最小限に抑えることが出来る。
ところで、図9に示す様に壁体の二層の断熱材は施工時の寸法が異なる。それで、柱と柱との間の寸法にメーターモジュールを採用するにしろ、尺貫法の910mmモジュールを採用するにしろ、現場にて切断・加工しなければ、施工時に使用することが出来ない。
切断・加工に当たっては、合成樹脂系のボード状の断熱材は現場で比較的簡単に出来る。それに対して、珪酸カルシュウム系のボード状の断熱材は、現場での切断・加工時の扱いが比較的難しい。それに伴い、資材のロス及び手間のロスも増大する。施工効率を追求する上での障害となる。
さて、図9に示す、隣接する柱間の寸法をメーターモジュールにより1000mm確保する。そして、柱の隅を15mm分切り欠き、柱と柱との間の切り欠き部分に断熱材の両縁部をはめ込んで貼設するとすれば、その寸法は910mmとなり、尺貫法の910mmモジュールにより工場出荷された資材は現場で加工することなくそのまま使用・施工できる。しかも、柱の外側に貼設する断熱材は、メーターモジュールにより工場出荷された資材を現場で加工することなく、そのまま使用できる。その分、現場で作業工程は減少し、施工の効率は向上する。ちなみに、ボード類の寸法は1000×2000・910×1820の二種類となる。
天井裏空間と屋根通気層もしくは小屋裏空間とを隔てる気密断熱層についても、断熱材を二層にする場合、透湿防風防水シートを間に挟み、三層構造に構成すると好適に実施できる。
外壁下地材は竪胴縁からなり、気密断熱層及び外壁によって外側通気層を構成する。
The wall base material is composed of structural materials such as pillars, foundations, girders, and studs. For the wall finishing material, use cedar board, siding board or plasterboard base with diatomaceous earth finish on both sides, and paper cloth etc. on the plasterboard base. Although it is not necessary to construct all the inner wall surfaces with moisture absorbing / releasing material, it is constructed over as much area as possible so that moisture can be exchanged between the room and the inner ventilation layer.
An airtight heat insulation layer arrange | positions a part of heat insulating material between pillars, and arrange | positions the remaining part on the outer side of a pillar, and uses the airtight tape for the joint of heat insulating materials to ensure airtightness. Distributing the heat insulating material to the positions inside and outside the column is suitable for supporting the load on the outer wall. Alternatively, it can be arranged only on the outside of the column as long as the heat insulating performance and the support of the weight of the outer wall can be achieved at the same time.
When the heat insulating material of the airtight heat insulating layer is made into two layers, the first heat insulating material is arranged between the pillars and the pillars, and the airtight tape is used to secure the airtightness between the heat insulating material and the pillars, foundations and girders. . In addition, the whole is surrounded by a moisture permeable windproof waterproof sheet to improve airtightness. Finally, the second layer of insulation is placed outside the column. Further, the joint between the second layers of heat insulating materials is sealed with an airtight tape. The second-layer insulation serves to protect the first-layer airtight sheet from the heat and cold from the outside, and contributes to maintaining long-term performance by increasing durability.
Now, in the wooden frame construction method, dimensioning has been carried out by the penetrating method for a long time. Accordingly, boards for interior materials, boards for exterior materials, heat insulating materials, etc. are processed and cut in units of 910 mm at the time of factory shipment. And by adopting the dimensioning, it is possible to minimize labor and material loss during construction at individual construction sites.
By the way, as shown in FIG. 9, the two-layer heat insulating material of the wall body has different dimensions at the time of construction. Therefore, even if a meter module is adopted for the dimension between the pillars or a 910 mm module of the shank method is adopted, it cannot be used during construction unless it is cut and processed on site.
When cutting and processing, synthetic resin board-like heat insulating material can be made relatively easy on site. On the other hand, calcium silicate-based board-like insulation is relatively difficult to handle at the time of cutting and processing on site. Along with this, material loss and labor loss also increase. It becomes an obstacle in pursuing construction efficiency.
Now, the dimension between adjacent pillars shown in FIG. Then, if the corner of the pillar is cut out by 15 mm, and both edges of the heat insulating material are fitted and pasted into the notched portion between the pillars, the dimension will be 910 mm, and the factory will be shipped by the 910 mm module of the shank method The used materials can be used and constructed as they are without being processed on site. And the heat insulating material stuck on the outer side of a pillar can be used as it is, without processing the material shipped to the factory by the meter module on the spot. Accordingly, the number of work processes is reduced on site, and the construction efficiency is improved. By the way, there are two types of board sizes, 1000 × 2000 and 910 × 1820.
The airtight heat insulating layer separating the ceiling back space and the roof ventilation layer or the shed space can be suitably implemented by forming a three-layer structure with a moisture permeable windproof waterproof sheet sandwiched between the two layers of the heat insulating material.
The outer wall base material is composed of a rim body edge, and an outer ventilation layer is constituted by an airtight heat insulating layer and an outer wall.

天井下地材は、桁・垂木等の構造材から構成され、天井材及び気密断熱層によって天井裏空間を構成する。請求項12から16に記載の天井材は両面とも吸放湿性を備える桐板等の自然素材もしくは同様の吸放湿性を備える素材を用いる。全ての天井面を吸放湿材で施工する必要は無いものの、出来るだけ多くの面積に渡り施工し、室内と天井裏空間との間に湿気のやり取りの可能な構成とする。
除湿負荷の好適な管理を断熱パネルで構成する断熱層の機能に依存する場合、内壁・天井に用いる内装材は0126項に記載の様な制限を受けない。具体的には、含水率管理及び除湿負荷管理の両面から0126項で吸放湿性を具備しない内装材を用いるとされる部位に、吸放湿性を具備し・吸放湿とH2Oの相変化との連携の比率の低い内装材を用いても良い。尚、吸放湿とH2Oの相変化との連携の比率の低い内装材は、吸放湿の方向性・湿気伝導の方向性の制御に関しては、相対湿度・含水率・平衡含水率の従来の技術により実施できる。
床材には、吸放湿とH2Oの相変化との連携の比率の低いものを用いる。具体的には、杉厚板材・檜材等の無垢板材、或いは、合板等の積層されたもので、厚さは25から30mmを確保すると重量物への耐力性から好都合である。
The ceiling base material is composed of structural materials such as girders and rafters, and the ceiling back space is constituted by the ceiling material and the airtight heat insulating layer. The ceiling material according to claims 12 to 16 uses a natural material such as a paulownia board having moisture absorption / release properties on both sides or a material having similar moisture absorption / release properties. Although it is not necessary to construct all ceiling surfaces with moisture absorbing / releasing material, it will be constructed over as much area as possible so that moisture can be exchanged between the room and the ceiling space.
When suitable management of the dehumidifying load depends on the function of the heat insulating layer constituted by the heat insulating panel, the interior material used for the inner wall and ceiling is not restricted as described in the paragraph 0126. Specifically, from the viewpoint of moisture content management and dehumidification load management, the part that uses the interior material that does not have moisture absorption / release characteristics in Item 0126 has moisture absorption / release characteristics, and the phase change of moisture absorption / release and H2O. Interior materials with a low ratio of cooperation may be used. It should be noted that the interior material with a low ratio between the moisture absorption / release and the phase change of H2O has the conventional relative humidity, moisture content, and equilibrium moisture content for controlling the direction of moisture absorption / release and the direction of moisture conduction. Can be implemented by technology.
As the flooring material, a flooring material having a low ratio of cooperation between moisture absorption / release and H2O phase change is used. Specifically, it is a solid plate material such as cedar thick plate material / wooden material, or a laminated material such as plywood, and it is advantageous from the standpoint of resistance to heavy objects that a thickness of 25 to 30 mm is secured.

それらの建材の性能を総合した熱損失係数(Q値)は、次世代型省エネルギー住宅の基準を上回るものとする。更に、隙間相当面積(C値)は1.0未満とする。   The heat loss coefficient (Q value) that combines the performance of these building materials exceeds the standards for next-generation energy-saving houses. Furthermore, the gap equivalent area (C value) is less than 1.0.

請求項1から2に記載の断熱パネル及び請求項3から16に記載の断熱層・気密断熱層に用いる断熱材の機能・特性を表す具体的資材、構成等を次に示す。
A:吸放湿機能を具備する断熱材
−1 珪酸カルシュウム主成分(ヒューミライト等)の一層又は二層構造
−2 インシュレーションボード+透湿性の気密断熱ボードの二層構造
−3 セルロースファイバー +透湿性の気密断熱ボードの二層構造
B:吸放湿機能を具備しない断熱材+吸放湿機能を具備する断熱材
−1 プラスチック系断熱材 +インシュレーションボードの二層構造
C:吸放湿機能を具備しない断熱材
−1 プラスチック系断熱材 +プラスチック系断熱材の二層構造
同等の性能を備えるものであれば、上記の資材に限定されるものではない。
Specific materials, configurations, and the like representing the functions and characteristics of the heat insulating material used for the heat insulating panel according to claims 1 to 2 and the heat insulating layer / airtight heat insulating layer according to claims 3 to 16 are shown below.
A: Heat insulation material with moisture absorption / release function -1 Single or double layer structure of calcium silicate main component (Humilite etc.)-2 Double layer structure of insulation board + moisture-permeable airtight heat insulation board-3 Cellulose fiber + Permeability Two-layer structure B of wet airtight heat insulation board: heat insulation material without moisture absorption / release function + heat insulation material with moisture absorption / release function -1 plastic heat insulation material + two-layer structure of insulation board C: moisture absorption / release function Insulating material that does not include -1 Plastic-based heat insulating material + Two-layer structure of plastic-based heat insulating material As long as they have equivalent performance, they are not limited to the above materials.

次に、部位別・地域の気候特性・目的別に好適な断熱材の組合せを例示する。
壁(北側) 壁(その他) 天井裏
(イ) C C A
(ロ) C B A
(ハ) C A A
(二) A A A
Next, examples of suitable combinations of heat insulating materials by region, regional climatic characteristics, and purpose will be described.
Wall (north side) Wall (others) Ceiling (I) C CA
(B) C B A
(C) C A A
(2) A A A

A:吸放湿機能を具備する断熱材の内、機能の違いにより二種類に分類し、
X :気体状のH2O、液体状のH2Oのいずれをも吸収できる断熱材
代表例 ケイ酸カルシュウム主成分(ヒューミライト等)、土壁材
Y : 気体状のH2Oのみ吸収できる断熱材
代表例 杉無垢板
透湿防風防水シートとしては、湿気は透過するが、防水性を備えるという具合に、異質の機能を有する極細ポリエチレン繊維質のタイベック(商品名)が広く使用されている。しかも、顕熱を反射する遮熱の機能を備える透湿防風防水シート(商品名、タイベック・ハウスラップ)も販売・使用されている。これを用いると、シートを境にして熱エネルギーの浸透は阻まれ、気化に必要な運動エネルギーの供給に影響(減少)する。それで、遮熱性を活用すれば、気化・放湿を制御でき、そこから湿気移動の方向を制御することが可能となる。それは、除湿負荷の管理を効率よく行う上で効果を表す。対して、遮熱性能の低い透湿防風防水シートを吸放湿とH2Oの相変化との連携の比率の高い吸放湿材との積層の三層構造の断熱パネルに使用する場合、断熱性に背反する伝熱性の創出を促進し、更に、除湿負荷の好適な管理に繋げられる機能を得られる。
上記の組み合わせの内、気密断熱層を透湿防風防水シートの併用により積層の三層構造にする場合、断熱材AはX+X、X+Y、Y+Yの3通りの重ね合わせから選択する。しかも、透湿防風防水シートに遮熱機能を求めるか否かの違いによって、6種類の積層構造が可能。只、屋内外の別を考慮に入れれば、8種類の積層構造が可能。尚、上記の代表例に限定するものではなく、同等の性能を持つものであれば各種の断熱材・透湿防風防水シートを使用できる。
選択の際、地域の気候条件を考慮することは重要である。X+Xの重ね合わせは、断熱材の属性によって屋内外からの吸湿・吸冷の効率を高めることが出来るので、夏季の遮熱・除湿の効率を高める上では貢献する。只、冬季氷点下の気候条件のもとでは、先のXを用いると結露を通り過ぎて氷結する可能性がある。そのマイナス面は、氷結の際のH2Oの膨張の影響が懸念される。氷結と融解を繰り返す内に、耐久性の阻害される恐れがある。それで、屋内側にX、屋外側にYの重ねあわせを採用すると互いの長所を活かし、短所を縮減することが出来る。
A−3に記載のセルロースファイバーは、一般に吸湿した状態で液化を生じにくい断熱材として知られている。それで、通常の使用例ではYの特性を有する断熱材に含められる。只、親水性も備えているので、X・Yの何れの特性を有するかは不明。尚、古くから建物に使用されてきた土壁類はXの特性を有する資材として扱うことが出来る。但し、単独での使用には断熱性能の面から難があるが、工夫を加えることで断熱性能を改善し、潜熱式の蓄熱性能を活かすことができる。
A: Among the heat insulating materials having moisture absorption / release functions, they are classified into two types according to the difference in function.
X: heat insulating material capable of absorbing both gaseous H2O and liquid H2O
Representative examples: Main component of calcium silicate (humilite, etc.), earth wall material Y: heat insulating material that can absorb only gaseous H2O
Representative example Cedar solid board As a moisture permeable windproof waterproof sheet, tyvek (trade name) made of ultrafine polyethylene fiber having a different function is widely used, although moisture is permeated but waterproof. Moreover, a moisture-permeable windproof waterproof sheet (trade name, Tyvek / House Wrap) having a heat-shielding function that reflects sensible heat is also sold and used. If this is used, the penetration of thermal energy at the sheet will be blocked, and the supply of kinetic energy necessary for vaporization will be affected (decreased). Therefore, if the heat shielding property is utilized, vaporization / moisture release can be controlled, and the direction of moisture movement can be controlled therefrom. This represents an effect in efficiently managing the dehumidifying load. On the other hand, when using a moisture-permeable windproof waterproof sheet with low heat-shielding performance for a three-layer insulation panel with a moisture-absorbing / releasing material that has a high ratio of moisture absorption / release and H2O phase change, It is possible to promote the creation of heat conductivity contrary to the above, and to obtain a function that can lead to suitable management of the dehumidifying load.
Among the above combinations, when the airtight heat insulating layer is formed into a laminated three-layer structure by using a moisture permeable windproof waterproof sheet, the heat insulating material A is selected from three types of superpositions of X + X, X + Y, and Y + Y. Moreover, six types of laminated structures are possible depending on whether or not a heat-insulating function is required for the moisture-permeable and wind-proof waterproof sheet. 8 Eight types of laminated structures are possible, taking into account indoors and outdoors. In addition, it is not limited to said representative example, If it has the equivalent performance, various heat insulating materials and a moisture-permeable windproof waterproof sheet can be used.
It is important to consider local climatic conditions when choosing. The superposition of X + X contributes to increasing the efficiency of heat insulation and dehumidification in summer, because the efficiency of moisture absorption / cooling from the inside and outside can be increased by the property of the heat insulating material.只 Under the climatic conditions below the freezing point in winter, if X is used, there is a possibility of passing through condensation and freezing. On the downside, there is concern about the effect of H2O expansion during freezing. Durability may be hindered during repeated freezing and thawing. Therefore, if the superposition of X on the indoor side and Y on the outdoor side is adopted, the mutual advantages can be utilized and the disadvantages can be reduced.
The cellulose fiber described in A-3 is generally known as a heat insulating material that hardly causes liquefaction in a moisture-absorbed state. Therefore, in a normal use example, it is included in a heat insulating material having Y characteristics. It is unclear whether it has X or Y characteristics because it has hydrophilic properties. Note that earthen walls that have been used in buildings for a long time can be handled as materials having X characteristics. However, although it is difficult to use alone, it is difficult to improve the heat insulation performance by taking advantage of it, and the latent heat type heat storage performance can be utilized.

熱貫流率で表される断熱性能は、暖かい空間から冷たい空間への熱エネルギーの移動に関するもので、冬季の寒さ対策を構築する上で重要で、その断熱性能を数値的に表わす上で役に立つものである。
さて、夏季の暑さ対策を構築する上では、冬季の貢献に比較すると一様ではない。それは、夏季に日射取得する太陽熱エネルギーの大きさから来るものである。具体的には、熱貫流率で表わされる断熱性能が高くても、一部は反射もせず、伝熱もせず、断熱材内に滞留する。夏季の日射取得される太陽熱エネルギーの量は膨大で、その一部が断熱材内で滞留するのみでも、その影響は大きい。具体的には、断熱材内に滞留し、蓄積された熱エネルギーは放射熱エネルギーの形で屋内の温熱環境に影響する。所謂輻射熱は対流熱エネルギーに比較すると、その影響は異なる。熱源である太陽の日没後も断熱材からの輻射熱の影響は持続し、更に、エアコンにより冷却エネルギーを対流熱エネルギーの形で供給しても、伝熱しにくい断熱材を対象とするので、冷却効果が出るには時間がかかる。つまり、断熱性能が高くても、放射熱エネルギーの発生を阻止できないので、日没後も屋内の温熱環境への影響は持続する。
結局、夏季の暑さ対策の構築に当たっては、熱還流率で表わされる断熱性能にのみ依存しても夏季に求められる性能を確保できないので、太陽熱エネルギーを吸収するか、反射するかの手段を備える必要がある。つまり、太陽熱エネルギーを吸収・反射して放射熱エネルギーの発生・影響を抑制し、断熱する方法である。以後、この方法を遮熱と呼ぶ。
The heat insulation performance expressed by the heat transmissibility is related to the transfer of thermal energy from the warm space to the cold space, and is important for constructing countermeasures against the cold in winter, and is useful for expressing the heat insulation performance numerically. It is.
Now, in terms of constructing countermeasures for summer heat, it is not uniform compared to the contribution of winter. It comes from the amount of solar thermal energy that is acquired during the summer. Specifically, even if the heat insulation performance expressed by the heat transmissivity is high, a part of the heat insulation performance is not reflected, heat is not transferred, and the heat stays in the heat insulating material. The amount of solar thermal energy acquired by solar radiation in the summer is enormous, and even if some of it stays in the heat insulating material, the effect is great. Specifically, the heat energy accumulated and accumulated in the heat insulating material affects the indoor thermal environment in the form of radiant heat energy. The effect of so-called radiant heat differs compared to convective heat energy. The effect of radiant heat from heat insulation continues even after sunset of the sun, which is the heat source, and even if cooling energy is supplied in the form of convection heat energy by an air conditioner, it is intended for heat insulation that is difficult to transfer heat, so the cooling effect It takes time to get out. In other words, even if the heat insulation performance is high, the generation of radiant heat energy cannot be prevented, so that the influence on the indoor thermal environment continues even after sunset.
After all, in the construction of summer heat countermeasures, even if it depends only on the heat insulation performance represented by the heat return rate, it can not secure the performance required in the summer, so it has means to absorb or reflect solar thermal energy There is a need. In other words, it is a method of heat insulation by absorbing and reflecting solar thermal energy to suppress the generation and influence of radiant thermal energy. Hereinafter, this method is referred to as heat insulation.

従来の技術では、断熱層に吸放湿性を具備する断熱材を用いるにしろ、吸放湿性を具備しない断熱材を用いるにしろ、概ね日射取得する太陽熱エネルギーを如何に効率よく排熱するかを課題としている。それも、顕熱の形での排熱である。
それに対して、顕熱の形での排熱を否定するものではないが、逆に、太陽熱エネルギーを作用の一部として活用を図る。同様に、壁体等で生じる結露に関して、従来は防止すべきものとして大きな課題と見做されてきた。ここでは、逆に結露を作用の一部として活用を図る。しかも、この結露と潜熱的排熱とはそれぞれ独立した作用でありながら、気密断熱層によって隔絶される二つの空間の補完的連携、並びに、常温・通常気圧の下での吸放湿とH2Oの相変化との連携、この二つの連携の交差に結びつけ、しかも、断熱性と伝熱性という背反するものを止揚する契機を見出すところに、この発明の発想の独自性がある。更に、従来相変化によるエネルギー移転は、常温での液体状のH2Oから気体状のH2Oへの変化及び気化熱の利用について注目されてきた。ここでは更に進んで、太陽熱エネルギーから放射熱エネルギーとして運動エネルギーを取得し、相変化(気化)のエネルギーとし、太陽熱エネルギーを湿気という潜熱の形に閉じ込めることが、伝熱性による冷却エネルギー供給の制御の可能性により、制御(促進)出来る点、並びに、屋内側での液化を経て屋内の湿度調節に繋げられる点で画期的である。
さて、日射取得する太陽熱エネルギーを屋外で吸収する冷却エネルギーを気密断熱層を介して屋内から供給するには、断熱材に伝熱性を確保しなければならない。只、伝熱性は冬季に求められる断熱性とは背反し・矛盾するものである。この発明は、冬季に求められる断熱性能によって太陽熱エネルギーを遮り、且つ、伝熱性能によって太陽熱エネルギーを吸収し、断熱性と伝熱性という背反する機能を止揚して、遮熱機能を高めるものである。
太陽熱エネルギーを作用の一部として活用を図る上で、気密断熱層によって隔絶された二つの空間の補完的連携は不可欠である。更に、気密断熱層で起こる湿気移動の方向性及びエネルギー移動の方向性を制御できなければ、好適な温湿度を実現できず、それらが逆転するとエネルギー損失を招く。具体的には、屋内の湿気を取り除いても、屋外から気密断熱層を通じて湿気の浸入を招き、屋内湿度の顕著な改善に支障が出る。又、冬季は屋内を暖房中に屋外の冷気を誘引し、エネルギー損失を招く。
湿気移動に関する補完的連携の制御(促進・抑制)をまとめると、
「相変化を媒介する吸放湿を意図する方向に促進する補完的連携」は、屋内側で冷却エネルギーを供給され、相対湿度上昇及び相変化(液化)促進による吸湿促進、且つ、屋外側で日射取得する太陽熱エネルギー及びファン稼動により、相対湿度低下・相変化(気化)促進による放湿(平衡含水率との乖離・運動エネルギーの供給)及び気圧上昇の抑制もしくは気圧低下の誘引による放湿(気圧と沸点の関係)を促し、気密断熱層内でのH2O移動の圧力を方向付け、保持される。尚、吸放湿機能とH2Oの相変化との連携により断熱性に背反する伝熱性を生み、太陽熱エネルギーを湿気という潜熱の形で吸収し、屋外から建物外へ排出できる。
「相変化を媒介する吸放湿を意図しない方向を抑制する補完的連携」は、屋内側で冷却エネルギーを供給され、且つ、屋外側でファン停止により、保持される。
さて、冷房に利用するエネルギーを冷(却)エネルギーと言い、蓄冷・放冷・冷気と言う言葉を用いる。暖房に利用するエネルギーを暖エネルギーと言い、蓄暖・放暖・暖気という言葉を用いる。尚、蓄熱には蓄暖・蓄冷の両方、放熱には放暖・放冷の両方の意味をもつ。
In the conventional technology, whether the heat insulating material having moisture absorption / release properties is used for the heat insulation layer or the heat insulation material not having moisture absorption / release properties is used, it is determined how efficiently the solar thermal energy acquired by solar radiation is efficiently exhausted. It is an issue. It is also exhaust heat in the form of sensible heat.
In contrast, the exhaust heat in the form of sensible heat is not denied, but conversely, solar thermal energy is utilized as part of the action. Similarly, with respect to the dew condensation that occurs on the wall or the like, it has conventionally been regarded as a major problem to be prevented. Here, conversely, condensation is utilized as part of the action. Moreover, while this condensation and latent heat exhaust heat are independent of each other, the complementary cooperation of the two spaces separated by the airtight heat insulating layer, as well as moisture absorption and desorption at normal temperature and normal pressure, and H2O The idea of the present invention is unique in that it is linked to the phase change, the intersection of the two linkages, and the opportunity to find the contradiction between heat insulation and heat transfer. Furthermore, the energy transfer by the conventional phase change has attracted attention for the change from liquid H2O to gaseous H2O at room temperature and the use of heat of vaporization. Here, we can go further, acquire kinetic energy from solar thermal energy as radiant thermal energy, use it as phase change (vaporization) energy, and confine solar thermal energy in the form of latent heat called moisture. It is epoch-making in that it can be controlled (promoted) depending on the possibility, and can be connected to indoor humidity control through liquefaction on the indoor side.
Now, in order to supply the cooling energy which absorbs the solar thermal energy acquired by solar radiation from the indoor through an airtight heat insulation layer, heat insulation must be ensured for the heat insulating material.只 The heat conductivity is contrary to and inconsistent with the thermal insulation required in winter. This invention blocks solar thermal energy by heat insulation performance required in winter, absorbs solar thermal energy by heat transfer performance, lifts the contradictory functions of heat insulation and heat transfer, and enhances the heat shield function. .
Complementary cooperation between two spaces separated by an airtight thermal insulation layer is indispensable for utilizing solar thermal energy as part of the action. Furthermore, if the direction of moisture transfer and the direction of energy transfer that occur in the hermetic heat insulating layer cannot be controlled, a suitable temperature and humidity cannot be realized, and if they are reversed, energy loss is caused. Specifically, even if the indoor humidity is removed, moisture intrudes from the outside through an airtight heat insulating layer, which causes a significant improvement in indoor humidity. In winter, the indoor air is heated while the outdoor air is attracted, resulting in energy loss.
To summarize the control (promotion and suppression) of complementary cooperation on moisture transfer,
“Complementary cooperation that promotes moisture absorption and release that mediates phase change in the intended direction” is provided with cooling energy on the indoor side, promotes moisture absorption by increasing relative humidity and promoting phase change (liquefaction), and on the outdoor side. Solar thermal energy acquired by solar radiation and fan operation, moisture release (relative to equilibrium moisture content, supply of kinetic energy) and relative humidity reduction, phase change (vaporization) promotion, and moisture release by suppressing atmospheric pressure rise or inducing atmospheric pressure drop ( The relationship between the atmospheric pressure and the boiling point is promoted, and the pressure of H2O movement in the hermetic heat insulating layer is directed and maintained. It is to be noted that the heat absorption and release function and the phase change of H2O produce heat transfer that is contrary to heat insulation, so that solar thermal energy can be absorbed in the form of latent heat called moisture and discharged outside the building.
The “complementary cooperation that suppresses the direction not intended to absorb and release moisture that mediates phase change” is maintained by supplying cooling energy on the indoor side and stopping the fan on the outdoor side.
Now, the energy used for cooling is called cold energy, and the words cold storage, cooling, and cold are used. The energy used for heating is called warm energy, and the terms heat storage, warming and warming are used. Note that heat storage means both heat storage and cold storage, and heat dissipation means both warming and cooling.

さて、内側通気層・天井裏空間の流路を通じて冷却エネルギーを屋内側から気密断熱層に供給する。その冷却エネルギーを屋内側でのH2Oの液化の制御・吸湿の制御に活用し、太陽熱エネルギーを屋外側でのH2Oの気化の制御・放湿の制御に活用する。そして、吸放湿とH2Oの相変化に伴うエネルギー移転との連携によって、気密断熱層における伝熱性を確保する。その伝熱性によって、屋内側で供給する冷却エネルギーを、気密断熱層を通じたエネルギー移動を可能にし、その上で、屋外側での太陽熱エネルギーの吸収に活用する。更に、太陽熱エネルギーの効率的排熱という課題に対し、湿気という潜熱の形で排熱する新規な手段により応える。
ところで、以上に見られる様に、冷却エネルギーの屋内での供給による、エネルギー伝熱の方向並びに吸放湿の方向は、屋外での太陽熱エネルギーの日射取得も合わさり、同一方向に促進される。それで、H2Oの相変化に伴うエネルギー移転と吸放湿機能との連携は好適に保持され、吸放湿を利用した気密断熱層内でのエネルギー移動が可能となる。
Now, cooling energy is supplied from the indoor side to the airtight heat insulating layer through the flow path of the inner ventilation layer / ceiling space. The cooling energy is used to control the liquefaction and moisture absorption of H2O on the indoor side, and the solar thermal energy is used to control the evaporation and moisture release of H2O on the outdoor side. And the heat transfer property in an airtight heat insulation layer is ensured by cooperation with moisture absorption / release and energy transfer accompanying the phase change of H2O. Due to its thermal conductivity, the cooling energy supplied indoors can be transferred through the airtight insulation layer, and then used to absorb solar thermal energy on the outdoor side. Furthermore, the problem of efficient exhaust heat of solar thermal energy is addressed by a novel means for exhausting heat in the form of latent heat of moisture.
By the way, as can be seen from the above, the direction of energy heat transfer and the direction of moisture absorption / release due to the indoor supply of cooling energy are promoted in the same direction together with the solar radiation acquisition of solar heat outdoors. Therefore, the cooperation between the energy transfer associated with the phase change of H 2 O and the moisture absorption / release function is suitably maintained, and the energy transfer in the airtight heat insulating layer utilizing the moisture absorption / release becomes possible.

吸放湿性を具備する断熱材は、その吸湿の特徴から二つに別けることが出来る。一つは、H2Oの液体の状態で吸収し、且、湿気の状態でも吸収出来る。一つは、H2Oの液体の状態では吸収できないが、H2Oの気化した状態では吸収できる。前者の例は、ケイ酸カルシュウムを主成分とする断熱材である。後者の例は、自然素材の代表格である杉板等である。
エネルギー移転である潜熱的蓄冷との関連で言及すると、前者の例では、H2Oの液体の状態で吸収できるので、吸湿直前に冷気の吸収の効率を高めて飽和状態に至れば、液化を促し、液体の状態のまま吸収される。潜熱的蓄冷の一例である。又、湿気の状態での吸湿・放湿には、空気中の相対湿度と素材の含水率との関係が影響する。それは、空気中の温度を下げれば相対湿度は上昇し、平衡含水率との乖離が生じ、その分吸湿は促される。逆に、空気中の温度が上昇すれば相対湿度は下降し、平衡含水率との乖離が生じ、その分放湿は促される。この吸放湿の過程で液化という相変化を生じると、併せて凝縮熱を生じる。この凝縮熱を吸収することで、潜熱的蓄冷を行なうことが出来る。潜熱的蓄冷は、湿気を液化するために冷却エネルギーを投入し、相変化を伴う。
前者の例に示されるように、H2Oの液体の状態でも吸収出来る素材から作られる断熱材を用いると、前記二種類の潜熱的蓄冷手段を冷却エネルギー移転に利用する上では好適である。
さて、一般にH2Oの沸点は1気圧のもとでは100℃である。只、多孔質の物質の介在により運動エネルギー吸収の効率を高めると、1気圧のもと30℃前後の常温で、液体から気体への相変化である気化を生じる。具体的には、30℃の水1リットルが気化する際、周囲から588キロカロリーを奪う。これが気化熱の冷却エネルギーである。
これを吸放湿の見地から表現すれば、相変化を伴なう放湿である。前記二種類の潜熱的蓄冷手段と合わさり、H2Oの相変化を媒介する吸放湿性を具備する断熱材は、吸放湿に当たり、液化により液体状の水と凝縮熱を生成し、気化により水蒸気(湿気)と気化熱を生成する。しかし、吸放湿速度に関しては相変化を伴う場合、吸湿に比較して放湿速度は劣る。それで、太陽熱エネルギーの日射取得がないと、含水率は高止まりする。それで、含水率管理に太陽熱は不可欠である。
相変化を伴わない放湿では、湿気の状態を保持されて、そのまま放出される。通常、相対湿度の変化による放湿の一部がこれに当たる。尚、相変化を経る場合でも、断熱材の内部で必要量の運動エネルギーを供給されて気化を生じる場合は、吸放湿材の表面では相対湿度の変化に応じて放湿できる。
尚、上記の通り、1気圧・30℃の下、太陽熱エネルギーの日射取得を得られない場合でも、吸放湿材の媒介によってH2Oの相変化(気化)による冷却エネルギーの利用は可能である。只、気化熱の影響で周囲に冷却効果が現れ、温度低下すれば、そのままの状態では相変化は持続しなくなる。それに対し、太陽熱エネルギーを日射取得できれば、放射熱エネルギーの効果により、気密断熱層に運動エネルギーを直接・持続的に供給できる。それで、相変化は持続する。かかる効果の有無を考慮のうえで、北側の気密断熱層は仕様を変更する。
The heat insulating material having moisture absorption / release properties can be divided into two according to the characteristics of moisture absorption. One absorbs in the H2O liquid state and can also be absorbed in the moisture state. One is not able to absorb in the H2O liquid state, but can be absorbed in the H2O vaporized state. The former example is a heat insulating material mainly composed of calcium silicate. An example of the latter is cedar board, which is a typical natural material.
When referring to the relationship with latent heat storage, which is energy transfer, in the former example, it can be absorbed in the H2O liquid state, so if the efficiency of cold air absorption is increased immediately before moisture absorption and saturation is reached, liquefaction is promoted, Absorbed in a liquid state. It is an example of latent heat cold storage. Moreover, the relationship between the relative humidity in the air and the moisture content of the material affects the moisture absorption / release in the moisture state. That is, if the temperature in the air is lowered, the relative humidity increases and a deviation from the equilibrium moisture content occurs, and moisture absorption is promoted accordingly. On the other hand, if the temperature in the air rises, the relative humidity decreases, causing a deviation from the equilibrium moisture content, and the moisture release is promoted accordingly. When a phase change called liquefaction occurs during this moisture absorption / release process, heat of condensation is also generated. By absorbing this heat of condensation, latent heat can be stored. In latent heat storage, cooling energy is input to liquefy moisture, and phase change is accompanied.
As shown in the former example, the use of a heat insulating material made of a material that can be absorbed even in a liquid state of H2O is suitable for using the two types of latent heat storage means for cooling energy transfer.
Now, in general, the boiling point of H2O is 100 ° C. under 1 atm. If the efficiency of kinetic energy absorption is increased by the inclusion of a porous substance, vaporization, which is a phase change from a liquid to a gas, occurs at a room temperature of about 30 ° C. under 1 atm. Specifically, when 1 liter of 30 ° C. water vaporizes, it takes 588 kilocalories from the surroundings. This is the cooling energy of the heat of vaporization.
Expressing this from the perspective of moisture absorption and desorption, it is moisture desorption with phase change. The heat insulating material having moisture absorption / release properties that mediates the phase change of H2O, combined with the two types of latent heat storage means, generates liquid water and condensation heat by liquefaction and generates water vapor ( Moisture) and heat of vaporization. However, when the moisture absorption / release rate is accompanied by a phase change, the moisture release rate is inferior to moisture absorption. Therefore, the moisture content stays high without solar radiation acquisition. So solar heat is indispensable for moisture content management.
In the case of moisture release without phase change, the moisture state is maintained and released as it is. Usually, this is part of the moisture release due to changes in relative humidity. Even when the phase changes, if the required amount of kinetic energy is supplied inside the heat insulating material to cause vaporization, the surface of the moisture absorbing / releasing material can be dehumidified according to the change in relative humidity.
Note that, as described above, even when solar radiation cannot be obtained at 1 atm and 30 ° C., the cooling energy can be used by the phase change (vaporization) of H 2 O through the moisture absorbing / releasing material. In the meantime, a cooling effect appears around under the influence of the heat of vaporization, and if the temperature drops, the phase change will not continue as it is. On the other hand, if solar heat energy can be obtained by solar radiation, kinetic energy can be directly and continuously supplied to the airtight heat insulating layer due to the effect of radiant heat energy. So the phase change persists. Considering the presence or absence of such effects, the specifications for the airtight heat insulation layer on the north side will be changed.

断熱されていながら「吸放湿とH2Oの相変化の連携による伝熱手段」を確保し、屋内への冷却エネルギー供給によって隔絶された領域での太陽熱エネルギーの吸収・排熱を方法的・量的に制御することが出来る。
ところで、二種類の吸湿を促進すると、断熱材内の含水率は高まる。又、気密断熱層を移動する圧力を保つ上では、屋内側の含水率は高止まりせざるを得ない。只、含水率は高すぎると弊害を生む可能性がある。そこで、出来るだけ含水率の上昇を避けながら断熱性に背反する伝熱性を保持するには、吸放湿とH2Oの相変化との連携の比率を高く維持することが重要である。「連携の比率」を高く維持するには、一つには、相変化を伴わない吸湿を抑えることが大切で、課題となり、一つには、吸湿の際に効率よく冷却エネルギーを供給・吸収し、液化を促進する。それで、液体状のH2Oを吸収でき、結露を起こさない断熱材を用いる。更に、湿気の吸収後に冷却エネルギー吸収等により液化を経れば、連携の比率は高まる。
さて、隔絶性を構成する気密性と断熱性の内、気密性を高めると屋内への湿気の浸入を阻止できる。それは、吸湿すべき湿気の量の削減に繋がり、冷却エネルギー供給に対して吸放湿とH2Oの相変化の「連携の比率」を高める効果を表わす。それで、含水率上昇の抑制を視野に入れながら、潜熱的蓄冷手段を効果的に利用することが出来る。尚、含水率の計算上、吸放湿材の保持する気体状・液体状のH2Oの割合は考慮されず、保持するH2Oの重量比で算出される。
Insulate and absorb heat and exhaust heat in areas isolated by indoor cooling energy supply while ensuring heat transfer means by linking moisture absorption / release and H2O phase change Can be controlled.
By the way, when two types of moisture absorption are promoted, the moisture content in the heat insulating material increases. Further, in order to maintain the pressure for moving the hermetic heat insulating layer, the moisture content on the indoor side has to remain high.只 If the moisture content is too high, it may cause harmful effects. Therefore, in order to maintain the heat transfer property contrary to the heat insulating property while avoiding an increase in the water content as much as possible, it is important to maintain a high ratio of the moisture absorption / release and the phase change of H2O. In order to maintain a high “cooperation ratio”, it is important to suppress moisture absorption without phase change, which is an important issue. First, cooling energy can be efficiently supplied and absorbed during moisture absorption. And promote liquefaction. Therefore, a heat insulating material that can absorb liquid H 2 O and does not cause condensation is used. Furthermore, if the liquid is liquefied by absorbing cooling energy after absorbing moisture, the cooperation ratio increases.
Now, if the airtightness is enhanced among the airtightness and heat insulating properties constituting the isolation, it is possible to prevent the intrusion of moisture into the room. This leads to a reduction in the amount of moisture to be absorbed, and represents an effect of increasing the “cooperation ratio” between moisture absorption / release and H 2 O phase change with respect to the cooling energy supply. Therefore, the latent heat cold storage means can be effectively used while considering the suppression of the moisture content increase. In the calculation of the moisture content, the ratio of gaseous / liquid H 2 O retained by the moisture absorbing / releasing material is not taken into consideration, and it is calculated by the weight ratio of retained H 2 O.

さて、相対湿度と平衡含水率との乖離により吸湿を促し含水率を上げたとしても、直ちに断熱材内での相変化(液化)の促進に繋がるわけではない。液化の促進は液化に伴い生成する凝縮熱を処理できる冷却エネルギーの吸収促進に依存する。ところが、断熱材はその断熱性により内部に冷却エネルギーを伝導する能力は低い。つまり、冷却エネルギーの伝導が緩慢な分、液化も緩慢である。潜熱的蓄冷を図るにしても、効率はよくない。それでは、たとえ冷却エネルギーの供給を増加したとしても、吸冷を促進することが難しい。それで、効率的な潜熱的蓄冷を図ることが課題となる。
以上を潜熱的蓄冷の過程との関係で把握すれば、気密断熱層の表面で液化したH2Oを吸収できる特性を備える断熱材を用いると、空気中の湿気を吸収する際に凝縮熱を吸収し・液化を促進し、かつ、液体状のH2Oを吸引・吸収することで、吸放湿とH2Oの相変化の「連携の比率」を高く維持することに貢献する。それで、昼間含水率の低下した場合でも、冷却エネルギーの吸収・保持に繋げて、効率的なエネルギー移動を継続し、遮熱・除湿効果の維持に繋げることができる。尚余談ながら、潜熱的蓄冷が顕熱的蓄冷に比較して周囲の温度低下を招かないのは、冷却エネルギーが凝縮熱の吸収に用いられるからである。
さて、液体状のH2Oを吸収・吸引できる断熱材は、表面に多孔質の形質を保持している。しかも、湿気伝導率との関係で連続した空隙は多い。それで、円滑なH2Oの移動に乗ってエネルギーの移動も可能となる。ところが、断熱材内の空隙の連続性が増すと気密性に問題が出てくる。具体的に記すと、断熱材に液体状のH2Oを含水する量の多い夏季と液体状のH2Oを含水する量の少ない冬季とを比較すると、エネルギーの伝導性とともに気密性能に差が出てくる。その差の生じる源は断熱材内の空隙にある。しかも、空隙の連続性を保持された断熱材ほど湿気伝導率は高い。只、湿気伝導率が高いと気密性の保持が困難で、湿気の浸入を制御することが難しくなる。その意味から、湿気の移動は断熱材の属性である湿気伝導率に依存してその効率を向上させる試みは限界を持っている。
それで、素材と素材以外の要素の組み合わせの中で、湿気移動の効率を向上することが求められる。あるいは、湿気伝導率の異なる断熱材の重ね併せにより課題を解決する。
Now, even if moisture absorption is promoted by the difference between the relative humidity and the equilibrium moisture content and the moisture content is increased, it does not immediately lead to the promotion of phase change (liquefaction) in the heat insulating material. The promotion of liquefaction depends on the promotion of absorption of cooling energy capable of treating the heat of condensation generated with liquefaction. However, the heat insulating material has a low ability to conduct cooling energy inside due to its heat insulating property. That is, liquefaction is slow as the conduction of cooling energy is slow. Even if latent heat storage is attempted, the efficiency is not good. Then, even if the supply of cooling energy is increased, it is difficult to promote cooling. Therefore, it is a challenge to achieve efficient latent heat storage.
If we understand the above in relation to the process of latent heat storage, using a heat insulating material with the characteristic of absorbing H2O liquefied on the surface of the airtight heat insulating layer will absorb the heat of condensation when absorbing moisture in the air. -It contributes to maintaining a high "cooperation ratio" between moisture absorption / release and H2O phase change by promoting liquefaction and sucking / absorbing liquid H2O. Therefore, even when the moisture content in the daytime is reduced, the cooling energy can be absorbed and retained, the efficient energy transfer can be continued, and the heat shielding and dehumidifying effect can be maintained. It should be noted that the reason why latent heat storage does not cause a decrease in ambient temperature compared to sensible heat storage is that cooling energy is used to absorb condensation heat.
Now, the heat insulating material capable of absorbing and sucking liquid H2O retains a porous character on the surface. Moreover, there are many continuous voids in relation to moisture conductivity. Therefore, the energy can be transferred along with the smooth movement of H2O. However, when the continuity of the voids in the heat insulating material increases, a problem arises in airtightness. Specifically, when comparing the summer season when the amount of water containing water H2O is high and the time when the amount of water containing liquid H2O is low, there is a difference in airtightness as well as energy conductivity. . The source of the difference is in the voids in the insulation. In addition, the moisture conductivity is higher as the heat insulating material that maintains the continuity of the voids. If the moisture conductivity is high, it is difficult to maintain airtightness, and it becomes difficult to control moisture intrusion. In that sense, the movement of moisture depends on the moisture conductivity, which is an attribute of the heat insulating material, and there is a limit to the attempt to improve its efficiency.
Therefore, it is required to improve the efficiency of moisture transfer in the combination of materials and elements other than materials. Alternatively, the problem is solved by combining heat insulating materials having different moisture conductivity.

そこに送風ファンの力を借りると、昼間断熱材の屋外側で含水率の著しい低下を招く。それは、H2Oの移動の圧力となり、先の空隙の浸透をより促進することとなり、同時に、空隙内の気圧の低下を通じ更なるH2Oの気化を促進する。つまり、H2Oの相変化に伴い生じる気圧の上昇の結果である湿気の浸透との相乗効果により、太陽熱エネルギー吸収を伴うH2O移動の圧力を創出・保持することが出来る。このH2O移動の圧力を活用することで、エネルギー移動及び太陽熱エネルギー吸収(遮熱)の効率の向上を図れる。又、湿気の移動によって、断熱材内の気圧の低下を促された分、空隙内で更なるH2Oの気化を促進することが出来る。
具体的には、連通する外側通気層・屋根通気層を通じて排熱・排湿を促進する送風ファンの働きを利用します。つまり、日没後も送風ファンを稼動すると、逆に屋外からの吸湿・吸冷を促す。それを阻止する為に、日没後は停止します。停止によって屋外からの湿気の吸収を抑制し、創出・保持されたH2O移動の圧力を日没後も保つことが出来ます。しかも、内側通気層・天井裏空間でのエアコンを通じた大量の冷却エネルギーの供給と連携して別種の作用を促進します。即ち、断熱材に液体状のH2Oを吸収できれば、吸冷には液化の際に吸湿が伴うので、屋内の除湿効果は高まります。吸湿とH2Oの相変化との連携の比率が高いので、断熱材内でのH2O移動の効率向上は屋内からの吸湿・吸冷の効率の向上に直結し、含水率の高低に係り無く除湿効率を高めます。
結局、送風ファンの活用によって、含水率管理の上では、吸湿とH2Oの相変化との連携を高め、太陽熱エネルギーの日射取得等を活用し、断熱材の属性の改良にのみ依存せずに、屋内から大量に供給された冷却エネルギーを効率的に吸収し、効率的なエネルギー移動に繋げながら、遮熱・除湿の効果を高めて課題を解決するものです。エアコンの冷却エネルギー生成・供給能力を活かし、断熱材の伝熱性能を飛躍する上で、構成する要素の組み合わせの妙といえます。この組み合わせによって、際立って優れた効果・異質の効果を奏する。
If the power of a blower fan is borrowed there, the water content will be significantly reduced on the outdoor side of the daytime insulation. It becomes the pressure of the movement of H2O, which further promotes the penetration of the previous voids, and at the same time promotes further vaporization of H2O through a decrease in the atmospheric pressure in the voids. That is, the pressure of H2O movement accompanied by solar thermal energy absorption can be created and maintained by a synergistic effect with moisture penetration, which is the result of the increase in atmospheric pressure caused by the phase change of H2O. By utilizing the pressure of this H 2 O movement, the efficiency of energy transfer and solar thermal energy absorption (heat insulation) can be improved. Further, the vaporization of H 2 O can be further promoted in the voids as the pressure of the pressure inside the heat insulating material is urged by the movement of moisture.
Specifically, it uses the function of a blower fan that promotes exhaust heat and moisture exhaust through the outer ventilation layer and the roof ventilation layer. In other words, if the blower fan is operated even after sunset, it will encourage moisture absorption and cooling from the outside. To stop it, it stops after sunset. By stopping the absorption of moisture from the outside, the pressure of H2O movement created and maintained can be maintained even after sunset. In addition, it promotes other types of action in conjunction with the supply of a large amount of cooling energy through the air conditioner in the inner ventilation layer and ceiling space. In other words, if liquid H2O can be absorbed by the heat insulating material, the absorption of moisture is accompanied by the absorption of moisture during liquefaction. Since the ratio of the relationship between moisture absorption and H2O phase change is high, the improvement in the efficiency of H2O movement in the heat insulating material directly leads to the improvement of the moisture absorption / cooling efficiency from the inside, and the dehumidification efficiency regardless of the moisture content. To increase.
After all, by using the blower fan, in terms of moisture content management, the cooperation between moisture absorption and H2O phase change is enhanced, solar radiation acquisition of solar heat energy is used, etc. It efficiently absorbs the cooling energy supplied in large quantities from indoors and leads to efficient energy transfer while enhancing the effect of heat insulation and dehumidification to solve the problem. Taking advantage of the cooling energy generation and supply capacity of the air conditioner, it can be said that the combination of the constituent elements is remarkable in order to leap the heat transfer performance of the insulation. By this combination, outstanding effects and extraordinary effects can be achieved.

問題点の着目(問題の指摘)
除湿装置を利用して、吸放湿材の吸湿能力を強制的に回復し、除湿装置を稼動しない昼間の時間帯に吸放湿材の吸湿能力に依存する形で室内空間の湿度を所定の範囲に収める試みが成功するか否かは、吸放湿材それぞれに備わった特性を正しく認識し、その上で、吸放湿材内で起こり得る液化現象に対する対応を適切に行わなければならない。
しかし、現実には背景技術の項(0027)で指摘した通り、吸放湿材内で起こる液化現象に対して正しく認識されず、液化現象を起こしやすい吸放湿材を選別することなく選択・使用する例が示されている。それがどの様な結果を招くのかについて、つまり液化現象を起こし易い吸放湿材を用いた場合にどの様な事態が起こり得るのかについて、具体的に例示したい。
技術水準
吸湿に液化が伴うことについては、ぼんやりではあるが知られている。一つの例として、吸放湿材の吸放湿機能に着目して室内空間の湿度調節を行う場合、室内温度は無視されがちである。これは、純粋に吸放湿現象のみを取り出して、そこに起こり得る液化現象を無視し、凝縮熱の生成をも無視する姿勢に繋がる。
事例で述べた現象についての認識が不十分で、またその対処の工夫も実施されていない。例えば、
1:吸湿とH2Oの相変化との連携の比率の低い(弱い)材料を選別して使用する。その上で、吸放湿の必要量を確保する。
2:吸放湿材にその機能を求める範囲で実現できる環境を整える。
イ:冷気の供給を抑制する。
ロ:太陽熱エネルギーを利用した気化・放湿によるエネルギー移転に繋げて、
元の吸湿能力の回復を図れる工夫を加える、等の工夫は実施されていない。
具体的に説明すると、木材の相対湿度と平衡含水率との関係は相対湿度60%に対し概ね11%で、75%に対し概ね15%見当である。それで、吸放湿材内で液化が進行していなければ、含水率15%の吸放湿材は相対湿度60%の環境の下、11%近辺にまで含水率は低下する。しかし、液化が進行し、吸湿とH2Oの相変化との連携の比率が高くなると、相対湿度60%に対する平衡含水率は15%近辺まで上昇し、相対湿度60%の環境の下でも含水率は15%から低下しなくなる。つまり、液化の進行の影響によって吸放湿材の吸湿能力は回復することが出来ないのである。その結果、先の15%の含水率の吸放湿材は概ね85%以上の相対湿度の環境の下でのみ吸湿することが出来るようになる。
つまり、上記の例で考えれば、相対湿度60%未満の環境の下吸放湿材から放湿でき、また、相対湿度85%以上の環境の下吸放湿材は吸湿できる。結局、相対湿度60%から85%の範囲の環境の下では、吸放湿材の機能は吸湿面で作用効果を得られなくなる。尚、上記の例は潜熱的蓄冷を進行できるという前提のもとでの数字である。現実には、木材を吸放湿材として選択した場合、冷気の吸収は効率よく進行せず、吸湿と液化との連携の比率を高めることは難しい。それで、問題を明示する為の数字的な例である。
Focus on the problem (pointing out the problem)
Using a dehumidifier, the moisture absorption capacity of the moisture absorbent material is forcibly restored, and the humidity of the indoor space is determined in a manner that depends on the moisture absorption capacity of the moisture absorbent material during the daytime when the dehumidifier is not operating. Whether or not the attempt to fall within the range is successful must correctly recognize the characteristics of each moisture absorbent material, and then appropriately cope with the liquefaction phenomenon that can occur in the moisture absorbent material.
However, in reality, as pointed out in the background section (0027), the liquefaction phenomenon that occurs in the moisture absorption / release material is not correctly recognized, and the moisture absorption / release material that easily causes the liquefaction phenomenon can be selected without selection. An example to use is shown. I would like to exemplify what kind of result it will cause, that is, what kind of situation can occur when using a moisture absorbing / releasing material that easily causes liquefaction.
It is well known that the technical level of moisture absorption is accompanied by liquefaction. As one example, when the humidity of an indoor space is adjusted by paying attention to the moisture absorbing / releasing function of the moisture absorbing / releasing material, the room temperature tends to be ignored. This leads to a posture in which only the moisture absorption and desorption phenomenon is taken out, the liquefaction phenomenon that can occur there is ignored, and the generation of condensation heat is also ignored.
The phenomenon described in the case is not fully recognized, and no measures have been taken to deal with it. For example,
1: Select and use a material with a low (weak) ratio of cooperation between moisture absorption and H2O phase change. In addition, the necessary amount of moisture absorption and release is secured.
2: Prepare an environment that can be realized in the range where the moisture absorbing / releasing material requires its function.
B: Suppresses the supply of cold air.
B: Leading to energy transfer by vaporization and moisture release using solar thermal energy,
There has been no contrivance such as adding ingenuity to restore the original moisture absorption capacity.
Specifically, the relationship between the relative humidity of wood and the equilibrium moisture content is approximately 11% for 60% relative humidity and approximately 15% for 75%. Therefore, if liquefaction does not proceed in the moisture absorbing / releasing material, the moisture content of the moisture absorbing / releasing material having a moisture content of 15% is reduced to around 11% in an environment having a relative humidity of 60%. However, as liquefaction progresses and the ratio of moisture absorption to H2O phase change increases, the equilibrium moisture content with respect to 60% relative humidity rises to around 15%, and the moisture content under an environment with a relative humidity of 60% It will not drop from 15%. That is, the moisture absorption capacity of the moisture absorbing / releasing material cannot be recovered due to the influence of the progress of liquefaction. As a result, the moisture absorbing / releasing material having a moisture content of 15% can absorb moisture only in an environment having a relative humidity of approximately 85% or more.
In other words, considering the above example, moisture can be released from the moisture absorbing / releasing material under an environment where the relative humidity is less than 60%, and the moisture absorbing / releasing material can be absorbed under an environment where the relative humidity is 85% or more. Eventually, under the environment where the relative humidity is in the range of 60% to 85%, the function of the moisture absorbing / releasing material cannot obtain the function and effect on the moisture absorbing surface. The above example is based on the premise that latent heat storage can proceed. In reality, when wood is selected as the moisture absorbing / releasing material, the absorption of cold air does not proceed efficiently, and it is difficult to increase the ratio of cooperation between moisture absorption and liquefaction. So it is a numerical example to clarify the problem.

この技術水準では、吸湿の際の平衡含水率と放湿の際の平衡含水率との乖離を小さくすることを課題としながら、吸放湿材の機能を利用して除湿装置を使用しない状況下において、室内の湿度を快適の目安とされる70%に調節することには想到出来ない。それで、課題として提示することに想到できない。
この場合、湿度70%に調節できる為には、吸湿とH2Oの相変化との連携の比率の低い吸放湿材を用い、更に、液化によって生成する凝縮熱を吸収する冷気の供給を抑える必要がある。別の表現をすれば、潜熱的蓄冷の作用を抑制する必要がある。
吸放湿材内部で生じる液化に伴い生成される凝縮熱を吸収する上で必要な冷エネルギーを含む冷気を供給することで生じる現象は、作用面では潜熱的蓄冷の一形態である。
夏季は室内の除湿を行うだけでは快適な温熱環境を維持できない。冷房も必要になる。只、冷房によって冷エネルギーの供給が増加すれば、液化を伴う吸湿の割合は高くなるだけでなく、潜熱的蓄冷の量も増大する。それは、放湿の面から言えば、相変化を伴わない放湿は減縮することを意味する。それで、太陽熱の日射取得による熱エネルギーの取得でもない限り、気化・放湿は十分に機能せず、含水率は下がらない。
結局、ものの特性としての平衡含水率自体が、先の連携の比率或は用いる環境によって大きく影響され、上下する。それで、除湿機の機能アップにより室内の湿度を十分下げても、吸放湿材から放湿できず、含水率は必要な水準まで下降しない。それで、昼間の吸湿能力を回復するに足るまで、夜間に放湿することが出来ない。
以上のような理由によって、快適とされる70%を確保するには、昼間も除湿装置を稼動せざるを得なくなる。しかし、気密性能を向上し、吸放湿材を適材のものに代えれば、夜間の除湿のみで昼間は除湿せずとも、昼間の湿度を70%以下に維持することは可能である。
ところで、吸放湿に液化・気化が伴うか否か、あるいは、液化・気化をどの様に活用するかは、重要ではあるものの、ここでは問題の核心といえるものではない。要は、液化・気化を促進したり・抑制したりという形で制御すると言う発想及び制御する手段を如何に応用して、成果に繋げられるか否かに在る。具体的には、含水率管理の好適な実施・湿度調節の好適な実施・エネルギー移動の制御(背反する断熱性と伝熱性とを止揚し、創出された伝熱機能を増幅もしくは抑制する形で制御する)及びエネルギー移動を伴わないH2O移動の制御及び屋内外の相対湿度の高低差に依存しない吸放湿の方向性の制御の好適な実施に繋げられるか否かにあります。そこが、課題の新規性の核心部分です。
In this technical level, the problem is to reduce the difference between the equilibrium moisture content at the time of moisture absorption and the equilibrium moisture content at the time of moisture release. However, it cannot be conceived to adjust the indoor humidity to 70%, which is a standard for comfort. So I can't imagine presenting it as an issue.
In this case, in order to be able to adjust the humidity to 70%, it is necessary to use a moisture absorbing / releasing material having a low ratio between the moisture absorption and the phase change of H2O, and further suppress the supply of cold air that absorbs the heat of condensation generated by liquefaction. There is. In other words, it is necessary to suppress the action of latent heat storage.
The phenomenon caused by supplying cold air containing cold energy necessary to absorb the heat of condensation generated along with the liquefaction generated inside the moisture absorbing / releasing material is a form of latent heat storage in terms of operation.
In summer, a comfortable thermal environment cannot be maintained just by dehumidifying the room. Air conditioning is also required. If the supply of cold energy is increased by cooling, not only will the rate of moisture absorption accompanying liquefaction increase, but the amount of latent heat cold storage will also increase. In terms of moisture release, it means that moisture release without phase change is reduced. So, unless it is also the acquisition of solar energy by solar radiation, vaporization and moisture release will not function sufficiently and the moisture content will not decrease.
Eventually, the equilibrium moisture content itself as a characteristic of the object is greatly influenced by the ratio of the previous cooperation or the environment used, and goes up and down. Therefore, even if the humidity in the room is sufficiently lowered by improving the function of the dehumidifier, moisture cannot be released from the moisture absorbing / releasing material, and the moisture content does not drop to the required level. Therefore, it is not possible to release moisture at night until it is sufficient to restore moisture absorption capacity during the daytime.
For the above reasons, the dehumidifying device must be operated during the daytime to secure 70%, which is considered to be comfortable. However, if the airtight performance is improved and the moisture absorbing / releasing material is replaced with an appropriate material, it is possible to maintain the daytime humidity at 70% or less without dehumidifying only during nighttime dehumidification.
By the way, whether or not moisture absorption and desorption is accompanied by liquefaction / vaporization or how to utilize liquefaction / vaporization is important, but is not the core of the problem here. In essence, the idea is to control in the form of promoting / suppressing liquefaction / vaporization and how to apply the control means to achieve results. Specifically, it is preferable to manage moisture content, to control humidity, and to control energy transfer (in the form of stopping heat insulation and heat transfer, which are contradictory, and amplifying or suppressing the created heat transfer function. Control) and control of H2O movement without energy transfer and control of the direction of moisture absorption / desorption that does not depend on the difference in relative humidity between indoor and outdoor. That is the core of the novelty of the issue.

寒冷地では、夏季の夜間の外気温の低下は著しく、20℃前後の日が続く。昼夜の温度差は10度を超え、夜間の放射冷却エネルギーの利用は期待できる。
それに対し、温暖地では、夏季の夜間の外気温の低下は鈍く、25℃を超える熱帯夜が連日続く。その場合、夜間の放射冷却の利用は期待できない。むしろ逆に、夜間でも外側通気層・屋根通気層内の気圧上昇を制御できれば、屋外への気化・放湿を持続することが可能である。
吸放湿とH2Oの相変化との連携の比率の低い吸放湿材(断熱材を含む)は、液化・気化を伴わない純粋に吸放湿のみを行っているわけではなく、若干の液化・気化を伴っている。只、それは含水率の高止まりを招くに至っていないのである。一つの例として、構造材に杉材は広く用いられている。北側に面する位置にも用いられるが、太陽熱エネルギーを日射取得できないからと言って、直ちに杉材等の構造材の含水率は高く止まるわけではない。
先に記した様に、温暖地では熱帯夜が続き、昼夜を問わず、気密断熱層からの気化・放湿は持続する。それで、太陽熱エネルギーを日射取得できない北側の気密断熱層においては、その気化・放湿の能力の範囲に収まっている限り、屋内から吸湿・吸冷を継続したとしても、含水率の高止まりの要因とはならない。
天井裏空間・床下空間の流路内でエアコンを稼動する場合に比較すると、生活するうえでの快適温度との兼ね合いもあり、エアコンを室内に設置した場合、室温を大きく下げるわけにはいかない。
温暖地では、北側の気密断熱層の内側に吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を用い、室内空間でエアコンから冷却エネルギーを供給すれば、室内空間の温度は下降し、外気温に比較して低くなる。その場合、相対湿度は屋内側が屋外側より高くなり、屋内側から吸湿し・屋外側へ放湿する吸放湿の方向性は堅持される。
更に、屋内側で吸湿・吸冷により液化が進行すれば、吸湿時の平衡含水率と放湿時の平衡含水率との間に乖離が生じ、その分屋内側への放湿は阻止され、屋内側から吸湿し・屋外側へ放湿する吸放湿の方向性は更に堅持される。
つまり、H2Oの移動に太陽熱エネルギーの日射取得を必ずしも必要としないので、温暖地では条件が整えば太陽の日射しない夜間でも、又、東西南北に関係無く、屋内側から吸湿し・屋外側へ放湿する吸放湿の方向性を堅持することが出来る。
ところで、冬季の断熱性能及びH2Oの移動に伴うエネルギー損失の発生を防止するには、吸放湿性を具備する断熱材を二層に分け、その間に透湿防風防水シートを張設し、気密断熱層を三層構造に構成するのが望ましい。ところが、透湿防風防水シートは夏季には冬季と逆方向への働きを現す可能性がある。それは、以下のよう事情による。
北側の気密断熱層は太陽熱エネルギーを日射取得できない。それで、北側の気密断熱層の気化・放湿の能力は屋外の気圧・温度に影響される。一般に、温暖地・寒冷地を問わず夏季の昼間の外気温は30℃を越えるので、北側の気密断熱層を通じた気化・放湿は起こりえるものである。しかし、先に記した様に屋内側から屋外側への液化したH2Oの移動は、透湿防風防水シートの介在によって阻止される。それで、屋外側での気化・放湿は持続せず、気密断熱層内の含水率を低下させる機能はこの面では働かない。
さて、液化したH2Oの移動は難しくとも、気体状のH2O(湿気)は移動する。そこで、気密断熱層の屋内側に吸放湿とH2Oの相変化との連携の比率の低い断熱材を用いれば、適度の含水率管理を実施しながら、屋内側から吸湿し、屋外側に放湿する吸放湿の方向性を維持しながら、しかも、屋外側から屋内側への吸放湿の逆転現象を阻止する上で貢献する。
構造材に用いる杉材等は吸放湿性を備えているが、温暖湿潤な地域で用いても含水率管理上問題は無い。それで、吸放湿とH2Oの相変化との連携の比率の低い水準の目安は杉材等に表される。
In cold regions, the drop in the outside air temperature during the summer is remarkable, and the days around 20 ° C continue. The temperature difference between day and night exceeds 10 degrees, and the use of radiant cooling energy at night can be expected.
On the other hand, in warm regions, the decrease in outside temperature during the summertime is slow, and tropical nights exceeding 25 ° C continue every day. In that case, the use of radiant cooling at night cannot be expected. On the contrary, if the pressure increase in the outer ventilation layer and the roof ventilation layer can be controlled even at night, it is possible to continue the evaporation and moisture release to the outdoors.
Moisture absorption / release materials (including heat insulating materials) with a low ratio of moisture absorption / release and H2O phase change are not purely moisture absorption / release without liquefaction / vaporization.・ It is accompanied by vaporization.只 It has not led to a high water content. As an example, cedar is widely used as a structural material. Although it is also used for the position facing the north side, just because solar heat energy cannot be obtained by solar radiation does not mean that the moisture content of structural materials such as cedar is immediately high.
As mentioned earlier, tropical nights continue in warm regions, and vaporization and moisture release from the airtight heat insulating layer continues regardless of day or night. Therefore, in the airtight thermal insulation layer on the north side where solar thermal energy cannot be obtained by solar radiation, even if moisture absorption / cooling is continued from the inside as long as it is within the range of its vaporization / moisture release capacity, it is a cause of high moisture content. It will not be.
Compared to operating the air conditioner in the flow path of the space behind the ceiling and under the floor, there is also a balance with the comfortable temperature for living, and when the air conditioner is installed indoors, the room temperature cannot be lowered greatly.
In warm regions, if moisture absorption / release material with a low ratio of moisture absorption / release and H2O phase change is used inside the airtight heat insulation layer on the north side, and cooling energy is supplied from the air conditioner in the indoor space, the temperature of the indoor space Falls and becomes lower than the outside temperature. In this case, the relative humidity is higher on the indoor side than on the outdoor side, and the direction of moisture absorption and desorption that absorbs moisture from the indoor side and releases moisture to the outdoor side is maintained.
Furthermore, if liquefaction progresses by moisture absorption / cooling on the indoor side, a difference occurs between the equilibrium moisture content at the time of moisture absorption and the equilibrium moisture content at the time of moisture release, and moisture release to the indoor side is prevented accordingly. The direction of moisture absorption and desorption that absorbs moisture from the indoor side and releases to the outdoor side is further maintained.
In other words, solar heat energy solar radiation is not necessarily required for the movement of H2O, so it can absorb moisture from the indoor side and release it to the outdoor side, regardless of the east, west, north and south, even if the sun is not exposed to the sun in warm conditions. The direction of moisture absorption and desorption can be maintained.
By the way, in order to prevent the heat insulation performance in winter and the generation of energy loss due to the movement of H2O, the heat insulating material having moisture absorption / release properties is divided into two layers, and a moisture permeable windproof waterproof sheet is stretched between them, and airtight insulation It is desirable to configure the layers in a three-layer structure. However, the breathable windproof tarpaulin may work in the opposite direction to the winter in the summer. This is due to the following circumstances.
The northern air-tight insulation layer cannot acquire solar heat. Therefore, the ability to vaporize and release moisture from the airtight insulation layer on the north side is affected by the outdoor pressure and temperature. In general, the outdoor temperature in the daytime in summer exceeds 30 ° C regardless of whether it is warm or cold, and vaporization and moisture release through the airtight heat insulation layer on the north side can occur. However, as described above, the movement of the liquefied H2O from the indoor side to the outdoor side is prevented by the interposition of the moisture-permeable windproof waterproof sheet. Therefore, vaporization and moisture release on the outdoor side do not continue, and the function of reducing the moisture content in the airtight heat insulating layer does not work in this aspect.
Now, even if it is difficult to move liquefied H 2 O, gaseous H 2 O (humidity) moves. Therefore, if a heat insulating material having a low ratio of moisture absorption / release and H2O phase change is used on the indoor side of the hermetic heat insulating layer, moisture is absorbed from the indoor side and released to the outdoor side while performing appropriate moisture content control. This contributes to preventing the reversal phenomenon of moisture absorption / release from the outdoor side to the indoor side while maintaining the direction of moisture absorption / release.
Cedar wood and the like used for the structural material has moisture absorption / release properties, but there is no problem in water content management even when used in a warm and humid area. Therefore, an indication of a low level of the ratio of the relationship between moisture absorption and release and H2O phase change is expressed in cedar wood and the like.

さて、エアコンを用いて冷却エネルギーを生成・供給する場合に、屋内の除湿効果及び昼間の太陽熱の遮熱効果を現すのは、以下の様な次第である。
北側の気密断熱層の屋内側に吸放湿とH2Oの相変化との連携の比率の低い断熱材を用いた場合、連携の比率が低い材料でも液化を生じないわけではない。それで、液化を生じた分、吸湿時の平衡含水率と放湿時の平衡含水率との間に乖離が発生する。それが、吸放湿の方向性を堅持できる要因である。更に、先に記した様に気密断熱層を透湿防風防水シート利用の三層構造とした場合、屋内側で吸湿・吸冷により液化したH2Oを吸収しても、屋外側への移動は阻止され、屋外側から気化・放湿されない。只、気体状のH2Oは屋外側へ放湿可能であるから、含水率が上昇すれば、屋外の相対湿度との関係で屋外へ放湿される。適度に含水率管理の実施される所以である。
さて、気密断熱層内の透湿防風防水シートを境に屋内側では気体状のH2Oの割合は低くなり、液体状のH2Oの割合は高くなる傾向にある。それで、屋内側からの吸湿時の平衡含水率と放湿時の平衡含水率との間に生じる乖離は更に拡大する。それで、北面を除いた東西南面の気密断熱層は昼間の太陽熱の日射取得による含水率低下で、夜間に屋内からの吸湿は促され、室内の湿度は低下するものの、一方、北側の気密断熱層では、先の乖離の拡大により屋内側への放湿は抑制され、屋外側から屋内側への湿気の逆流は阻止される。その結果、屋内の湿度を好適に維持することが出来る。以上の要因に加えて、温暖地では以下の要因も加わる。
吸放湿材の吸湿・放湿は主に周囲の相対湿度との関係に規定される。さて、温暖地では夜間の外気温は25℃を越える熱帯夜が続く。それで、エアコンの冷房機能に頼らざるを得ない。そして、冷却エネルギーを生成・供給すれば、屋内の気温は低下し、その気温低下に応じて屋内の相対湿度は上昇する。その結果、気密断熱層を通じて、屋内側から吸湿し・屋外側へ放湿する吸放湿の方向性は堅持されることとなる。
エアコンの生成・供給する冷却エネルギーを気密断熱層にて吸収するメリットは、以上に見られた屋内の除湿効果であり、即ち、夜間に深夜電力を利用して潜熱的に蓄冷して得られる除湿効果に代表されながら、北側以外の気密断熱層を通じて得られる昼間の遮熱効果である。極論すれば、給湯のエネルギーを夜間に蓄える過程で冷却エネルギーを生成・供給できるが、その冷却エネルギーを利用して屋内の除湿・遮熱効果を得ることが出来る。
ところで、吸放湿性を備えている断熱材の中で、羊毛あるいはセルロースファイバーを原料とする断熱材は湿気を吸収しても液化を生じない旨を謳い文句に販売されている。只、使用方法次第では、湿気を吸収後に液化を生じないわけではないものの、通常の使い方では液化を生じにくい。それで、吸湿時の平衡含水率と放湿時の平衡含水率との間に乖離は生じ難く、その乖離を利用して、屋内外の吸放湿の方向性を制御するには工夫を要する。又、気密性能を確保するにも工夫を要する。
Now, when generating and supplying cooling energy using an air conditioner, the effects of indoor dehumidification and daytime solar thermal insulation are manifested as follows.
When a heat insulating material having a low cooperation ratio between moisture absorption / release and H2O phase change is used on the indoor side of the north airtight heat insulating layer, even a material having a low cooperation ratio does not cause liquefaction. Therefore, a difference occurs between the equilibrium moisture content at the time of moisture absorption and the equilibrium moisture content at the time of moisture release by the amount of liquefaction. That is the factor that can maintain the direction of moisture absorption and release. Furthermore, as described above, when the air-tight heat insulating layer has a three-layer structure using a moisture permeable windproof waterproof sheet, even if it absorbs H2O liquefied by moisture absorption and cooling on the indoor side, movement to the outdoor side is prevented. It is not vaporized or released from the outdoor side. In addition, since gaseous H2O can be dehumidified to the outdoor side, if the moisture content increases, it is dehumidified to the outdoors in relation to the outdoor relative humidity. This is the reason why the water content is managed appropriately.
The ratio of gaseous H2O tends to be low and the ratio of liquid H2O tends to be high on the indoor side with the moisture-permeable windproof waterproof sheet in the airtight heat insulating layer as a boundary. Thus, the divergence between the equilibrium moisture content at the time of moisture absorption from the indoor side and the equilibrium moisture content at the time of moisture release further increases. Therefore, the airtight heat insulation layer on the east and west surfaces excluding the north surface is a decrease in the moisture content due to solar solar radiation during the daytime, and moisture absorption from the indoors is promoted at night, and the indoor humidity is reduced. Then, due to the expansion of the previous deviation, moisture release to the indoor side is suppressed, and backflow of moisture from the outdoor side to the indoor side is prevented. As a result, indoor humidity can be suitably maintained. In addition to the above factors, the following factors are also added in warm regions.
The moisture absorption and desorption of the moisture absorbent material is mainly defined by the relationship with the surrounding relative humidity. Now, in warm regions, the nighttime outside air temperature continues to be a tropical night exceeding 25 ° C. So we have to rely on the cooling function of the air conditioner. If the cooling energy is generated and supplied, the indoor temperature decreases, and the indoor relative humidity increases according to the temperature decrease. As a result, the direction of moisture absorption and desorption that absorbs moisture from the indoor side and releases it to the outdoor side through the airtight heat insulating layer is maintained.
The merit of absorbing the cooling energy generated and supplied by the air conditioner in the airtight heat insulating layer is the indoor dehumidification effect seen above, that is, dehumidification obtained by storing the heat latently using midnight power at night It is a daytime heat insulation effect obtained through an airtight heat insulation layer other than the north side, as represented by the effect. In extreme terms, cooling energy can be generated and supplied in the process of storing hot water energy at night, and the indoor dehumidification and heat shielding effect can be obtained by using the cooling energy.
By the way, among the heat insulating materials having moisture absorption / release properties, heat insulating materials made of wool or cellulose fiber as a raw material are sold with a complaint that they do not liquefy even when moisture is absorbed.只 Depending on the method of use, liquefaction will not occur after absorbing moisture, but liquefaction is less likely to occur under normal usage. Therefore, a divergence hardly occurs between the equilibrium moisture content at the time of moisture absorption and the equilibrium moisture content at the time of moisture release, and it is necessary to devise to control the direction of moisture absorption / release indoors and outdoors using this divergence. In addition, it is necessary to devise in order to ensure the airtight performance.

吸湿に伴う液化(エネルギー移転)現象の発生を抑え、凝縮熱の生成を抑制することが出来る。それで、通常の方法による気化を伴わない放湿で吸湿能力を十分に回復することが出来る。その結果、吸湿の際の平衡含水率と放湿の際の平衡含水率との乖離を最小限に抑えることが出来、従前の平衡含水率の下で日々吸放湿を繰り返すことが出来る。また、吸放湿材はエネルギー移転を伴わない純粋に吸湿に伴う室内の湿度調節の効果のみを享受することが出来る。
吸放湿材は液化現象の発生を抑えることで、季節的な相対湿度の変動に敏感に反応して、吸放湿を繰り返すことが出来る。その結果、除湿装置に頼らずとも、屋外の湿度80%超の梅雨時・夏季を通じて、室内の湿度を70%未満に抑えることができる。
夜間深夜電力を利用する除湿装置で除湿して室内の相対湿度を下げることによって、吸放湿材から気化によるエネルギー移転を伴わずに放湿し、吸放湿材の含水率を低下することが出来る。その分、吸放湿材の吸湿余力の回復を図ることが出来る。
夜間深夜電力を利用する除湿装置で除湿して室内の相対湿度を効率よく下げることによって、吸放湿材から温度変化を伴わずに放湿し、効率よく吸放湿材の含水率を低下することが出来る。その分、吸放湿材の吸湿余力の回復を効率よく行うことが出来る。
昼間は、除湿装置を稼動せずとも、建物の隙間からの湿気浸入を阻止し、しかも、吸放湿材は凝縮熱生成による室内の温度上昇(エネルギー移転)を伴わずに効率よく室内の湿気を吸収し、室内の湿度60%近辺を保持することが出来、技術水準から予測できない著効を奏する。
又、除湿装置に頼らずとも、屋外の湿度80%超の梅雨時・夏季を通じて、室内の湿度を70%未満に抑えることができ、技術水準から予測できない著効を奏する。
夏季の酷暑の時期には冷房に頼らざるを得ないが、夜間の冷房による潜熱的蓄冷の効果で吸放湿材の吸湿機能が昼間働かず所定の湿度を保てない場合に、日射取得する太陽熱エネルギーを利用した遮熱手段の実施により屋内の湿気を屋外へ排出する方法を加えて、屋内の除湿効果及び遮熱効果をあげられる。
対流熱エネルギー供給の手段としてエアコンを使用すると、COP6とエネルギー消費効率の非常に高い機器を最大限に有効利用することが出来る。しかも、深夜電力の時間帯に限定して使用しても、蓄熱体・土間コンクリート・地中を蓄熱層として利用できるので、昼間の冷房・暖房に必要なエネルギー量を十分蓄冷・蓄暖することが出来る。
一年を通して、地表下2Mの年間を通して温度の安定した地熱を利用することが出来る。夏季にあっては、18℃前後の地中温度で基礎土間コンクリート及び蓄熱体への熱伝導を経て、冷房のエネルギー供給の補助的手段に活用することが出来る。深夜電力使用量の削減効果を得られる。
冬季にあっては、16℃前後の地中の温度で地中を通じた放熱による熱損失は小さく、効率のよい蓄熱層として地中を利用することが出来る。
巨大な蓄暖層・蓄冷層として機能するのみならず、蓄熱体内の蓄熱材の相変化に伴うエネルギー移転を利用して床下空間の温度変化に応じた効率的な放暖・放冷を可能とし、質的にも量的にも暖房・冷房のエネルギーとして24時間安定した供給を可能とする。
Generation | occurrence | production of the liquefaction (energy transfer) phenomenon accompanying moisture absorption can be suppressed, and the production | generation of condensation heat can be suppressed. Therefore, the moisture absorption ability can be sufficiently recovered by moisture release without vaporization by a normal method. As a result, the difference between the equilibrium moisture content at the time of moisture absorption and the equilibrium moisture content at the time of moisture release can be minimized, and moisture absorption / release can be repeated every day under the conventional equilibrium moisture content. Further, the moisture absorbing / releasing material can enjoy only the effect of adjusting the humidity in the room accompanying pure moisture absorption without energy transfer.
The moisture absorbing / releasing material suppresses the occurrence of the liquefaction phenomenon, so that the moisture absorbing / releasing moisture can be repeatedly reacted in response to the seasonal relative humidity fluctuation. As a result, the indoor humidity can be suppressed to less than 70% during the rainy season and summer when the outdoor humidity exceeds 80% without relying on a dehumidifier.
By dehumidifying with a dehumidifier that uses midnight power at night to lower the relative humidity in the room, moisture can be released from the moisture-absorbing and releasing material without energy transfer due to vaporization, and the moisture content of the moisture-absorbing and releasing material can be reduced. I can do it. Accordingly, the moisture absorption capacity of the moisture absorbing / releasing material can be recovered.
By dehumidifying with a dehumidifier using midnight power at night and efficiently lowering the relative humidity in the room, moisture is released from the moisture absorbent material without temperature change, and the moisture content of the moisture absorbent material is efficiently reduced. I can do it. Accordingly, it is possible to efficiently recover the moisture absorption capacity of the moisture absorbing / releasing material.
In the daytime, it is possible to prevent moisture from entering through the gaps between buildings without operating the dehumidifier. Moreover, the moisture absorption and desorption material can be used to efficiently remove indoor moisture without causing temperature rise (energy transfer) due to condensation heat generation. Can be absorbed and the humidity in the vicinity of 60% can be maintained, and the effect is unpredictable from the technical level.
Also, without relying on a dehumidifier, the indoor humidity can be kept below 70% during the rainy season and summer when the outdoor humidity exceeds 80%.
We have to rely on air conditioning during the heat of summer, but if the moisture absorption function of the moisture absorbing / releasing material does not work during the day due to the effect of latent heat storage due to cooling at night, solar radiation is acquired. By implementing a heat-shielding means using solar thermal energy, a method of discharging indoor moisture to the outdoors can be added to increase the indoor dehumidifying effect and heat-shielding effect.
If an air conditioner is used as a means for supplying convective heat energy, it is possible to make maximum use of COP6 and equipment with very high energy consumption efficiency. Moreover, even if it is used only during the midnight power hours, the heat storage body, soil concrete, and underground can be used as a heat storage layer, so the amount of energy required for daytime cooling and heating must be sufficiently stored and stored. I can do it.
Throughout the year, geothermal with stable temperature can be used throughout the year 2M below the surface. In the summer, it can be utilized as an auxiliary means of energy supply for cooling through heat conduction to the foundation soil concrete and the heat storage body at an underground temperature of around 18 ° C. The effect of reducing midnight power consumption can be obtained.
In the winter, heat loss due to heat radiation through the ground at a temperature of about 16 ° C. is small, and the ground can be used as an efficient heat storage layer.
In addition to functioning as a huge heat storage layer / cold storage layer, it enables efficient heating / cooling according to temperature changes in the underfloor space using energy transfer accompanying the phase change of the heat storage material in the heat storage body. Qualitatively and quantitatively, 24 hours of stable supply is possible as energy for heating and cooling.

太陽熱エネルギーの日射取得により気化放湿出来ない北側の断熱材の含水率上昇の抑制を視野に入れながら、断熱材は室内の湿気を吸収し、屋外に排出することにより除湿効果を上げ、併せて、屋外側で夜間に放射冷却の吸収に伴い吸湿・吸冷し、昼間に常温で気化・放湿する形で、更に、日射取得する太陽熱エネルギーを吸収する形で遮熱効果を上げることが出来る。
太陽熱エネルギーの日射取得に関係なく気化・放湿を促し、全ての断熱材の含水率上昇の抑制を視野に入れながら吸放湿材は室内の湿気の吸収により除湿効果を上げ、併せて、屋外側で夜間に放射冷却の吸収促進に伴い吸湿・吸冷し、昼間に常温で気化放湿する効率を向上する形で、更に、日射取得する太陽熱エネルギーを吸収する形で遮熱効果を上げることが出来る。
地中・土間コンクリート・蓄熱体から成る巨大な蓄熱層から、蓄熱体の有する相変化に伴うエネルギー移転の機能を活用して、床下空間の温度変化に対応してエネルギーの供給が可能で、空気循環手段を経由して室内へ24時間安定したエネルギー供給を継続することが出来る。
冬季は、エネルギー供給手段の源としての地熱・太陽熱・深夜電力利用のエアコンによる暖エネルギーを有効利用し、自然エネルギーの最大限の活用を図ることが出来る。
気密断熱層を三層に構成することで、夏季は除湿・遮熱効果を上げられ、冬季は、屋外からの潜熱的蓄冷による冷気吸収を屋内への気化・放出という形で生じる熱損失を阻止することが出来る。簡単な工夫を加えることで、夏季のみならず冬季も低コストで快適な温熱環境を実現できる。
夏季はエネルギー供給手段の源としての地熱・放射冷却・深夜電力利用のエアコンによる冷エネルギーを有効利用し、自然エネルギーの最大限の活用を図ることが出来る。
屋内側から冷気を継続して供給し、効率的に吸湿・吸冷することで、夜間に気密断熱層内に潜熱的蓄冷を効率的図ることが出来、夜間の湿度調節効果及び昼間の遮熱効果を得られる。昼間も継続的に室内に冷気を供給できるので、室内への気化放湿は避けられ、湿気の屋内から屋外の方向への放出を誘導・維持し、室内の湿度調節効果を得られる。しかも、それが躯体の適切な含水率管理を睨みながら得られる。屋内から屋外への湿気の放出及びエアコンによる除湿負担軽減によるヒートアイランド化抑制効果を得られ、更に、低コストで快適な湿度・温度環境を得られる。
While taking into account the suppression of the moisture content increase of the north side insulation that cannot evaporate and dehumidify by solar radiation acquisition of solar heat, the insulation absorbs moisture inside the room and increases the dehumidification effect by discharging it outdoors. Heat absorption effect can be improved by absorbing and cooling moisture at the outdoor side in the nighttime due to absorption of radiative cooling, and by vaporizing and releasing moisture at room temperature in the daytime, and by absorbing solar thermal energy acquired by solar radiation. .
Vaporization and moisture release are promoted regardless of solar radiation acquisition of solar thermal energy, and moisture absorption and release materials enhance the dehumidification effect by absorbing moisture in the room while keeping in mind the suppression of the moisture content increase of all insulation materials. Increase the heat-shielding effect by absorbing the solar heat energy acquired by solar radiation by improving the efficiency of moisture absorption / cooling at the outside during nighttime with absorption promotion of radiation cooling at the outside, and evaporating and dehumidifying at room temperature in the daytime. I can do it.
Energy can be supplied in response to temperature changes in the underfloor space by utilizing the energy transfer function accompanying the phase change of the heat storage body from a huge heat storage layer composed of underground, soil concrete and heat storage body, A stable energy supply can be continued for 24 hours into the room via the circulation means.
In winter, it is possible to make the most of natural energy by effectively using warm energy from air conditioners that use geothermal, solar and midnight power as a source of energy supply.
By configuring the airtight heat insulation layer in three layers, the dehumidification and heat shielding effect can be improved in the summer, and in winter, the heat loss caused by the vaporization and release of the cold air due to the latent heat storage from the outside is prevented. I can do it. By adding simple ideas, it is possible to realize a comfortable thermal environment at low cost not only in summer but also in winter.
In summer, it is possible to make the best use of natural energy by effectively using the cold energy generated by air conditioners that use geothermal, radiative cooling, and midnight power as a source of energy supply.
By continuously supplying cool air from the indoor side and efficiently absorbing and absorbing moisture, it is possible to efficiently store latent heat in the airtight thermal insulation layer at night, and the humidity control effect at night and heat insulation during the day The effect can be obtained. Since cold air can be continuously supplied indoors during the daytime, vaporization and dehumidification into the room can be avoided, and the release of moisture from the indoor direction to the outdoor direction can be induced and maintained, and an indoor humidity adjustment effect can be obtained. Moreover, it can be obtained while taking into consideration the appropriate moisture content management of the chassis. It is possible to obtain a heat island suppression effect by releasing moisture from the indoor to the outdoor and reducing the dehumidification burden by the air conditioner. Furthermore, it is possible to obtain a comfortable humidity and temperature environment at low cost.

1A:太陽熱エネルギーの日射取得による含水率低下の機能を持たないものの、北面の壁体の断熱材の含水率上昇のもたらす弊害を予め除去することで、液化=結露を作用として活用する道を開く上で必要な他の断熱材の含水率の好適な管理に繋げることが出来る。
B:冬季、寒気により生じる結露の防止に繋がる。冬季の断熱性能の低下並びに熱損失の増加を防止する。
C:循環流路内の暖気の流通のもたらす冬季の熱損失を、夏・冬での流路の変更により軽減する相乗効果を得られる。
2A:前記1の効果をもたらす手段との組み合わせにより、昼間の太陽熱エネルギーの日射取得により断熱材からのH2Oの気化・放出は促進され、昼間・夜間を通して、断熱材内で生じる気圧差により過度の含水率上昇を必要とせずに、H2Oの屋内側から屋外側への移動の適度の圧力を生じ、そこに生じる含水率の乖離を利用して、屋内側からの吸湿・吸冷を促せる。
B:吸放湿とH2Oの相変化の連携の比率を高めることが出来、効率的な蓄冷および効率的なエネルギー移動に繋がる。
3A:冬季、気密断熱層に用いる断熱材の夜間の断熱性能面は熱貫流率で表わされる数値以上の断熱性能を実現する。
B:寒冷地において、冬季に懸念される暖気の流路内の流通を通じた熱損失(H2Oの相変化を利用した冷却エネルギーの屋外から屋内への逆移動に因る)を避けることが出来る。また、除湿・遮熱システムを温暖地から寒冷地まで熱損失を増加せずに活用できる。
C:寒冷地において、夏季の昼夜の温度差を利用して、夜間の放射冷却エネルギーを相変化により断熱材に蓄冷し、昼間の放冷のエネルギー源とし、液化・気化・放湿による遮熱効果を得られる。
4:夏季は、冷気・湿気の供給に好適な循環流路を確保し、冬季は流路を変更することで熱損失を軽減する。
夏季は除湿・遮熱機能により調湿・輻射冷房、冬季は顕熱的蓄熱により輻射暖房の実現に貢献する。
冬季の外側通気層を断熱空気層として利用して壁体全体の断熱性能を向上し、気密断熱層からの熱損失を軽減。輻射暖房の実現に貢献する。
5A:気密断熱層を構成する断熱材の含水率の上昇を伴わず、遮熱のエネルギー源である潜熱的蓄冷つまり吸冷を促進できる。液化したH2Oは空隙内で湿気浸透の壁となり、気化の際の気圧上昇によるH2O移動の効率向上及び屋内から屋外への方向性の保持に貢献する。
B:その上、断熱材を除く躯体のその他の部位の含水率を抑える含水率管理を好適に行なうことが出来る。
6A:昼間は送風ファン稼動により気密断熱層における屋外への湿気の放湿を促し、液体状のH2Oの気化・膨張により生じる圧力との相乗効果により、断熱材内での屋内側から屋外側へのH2O移動の圧力は高まり、断熱材の吸湿・吸冷の高い効率と併せて屋内の除湿の効率を向上することが出来る。
夜間は送風ファンを停止し、屋外からの吸湿・吸冷を抑制する。抑制できた量を屋内からの吸湿・吸冷により余分に補充し、その分屋内からの除湿の効果は高まる。
昼間・夜間の何れも、素材(断熱材)の備える湿気伝導率を越えて屋内側から屋外側へのH2O移動の圧力を創出・保持し、内側通気層・天井裏空間を通じた吸湿の促進並びに含水率回復を促すことを通じて、含水率の上昇を抑えながら屋内側での吸湿・吸冷の効率を向上し、屋内の除湿の効率を向上させることが出来る。
B:夏季に限定せず、屋内の湿気の吸収を促し、屋外へ排出する機構の働きを利用して屋内の空気中に浮遊する揮発性の化学物質を除去することが出来る。低い含水率でも湿気の移動の効率を保持できるので、屋内の相対湿度を必ずしも高く維持する必要は無い。それで、屋内の空気浄化の機能は夏季以外の湿度の高くない時期にも活用できる。
1A: Although it does not have the function of lowering the moisture content by solar radiation acquisition of solar heat energy, by removing in advance the harmful effects caused by the increased moisture content of the north wall insulation, paving the way to utilize liquefaction = dew condensation as an action It can lead to the suitable management of the moisture content of the other heat insulating material required above.
B: It leads to prevention of dew condensation caused by cold in winter. Prevents deterioration of thermal insulation performance and increase of heat loss in winter.
C: A synergistic effect of reducing the heat loss in winter caused by the circulation of warm air in the circulation channel by changing the channel in summer and winter can be obtained.
2A: By combining with the means for providing the effect 1 described above, the evaporation and release of H2O from the heat insulating material is promoted by solar radiation acquisition during the daytime, and excessively due to the pressure difference generated in the heat insulating material throughout the daytime and nighttime. Without requiring an increase in moisture content, an appropriate pressure is generated for the movement of H2O from the indoor side to the outdoor side, and moisture absorption / cooling from the indoor side can be promoted by utilizing the difference in moisture content that occurs there.
B: The rate of cooperation between moisture absorption / release and H2O phase change can be increased, leading to efficient cold storage and efficient energy transfer.
3A: In the winter, the nighttime heat insulation performance surface of the heat insulating material used for the airtight heat insulation layer realizes a heat insulation performance equal to or greater than the value represented by the thermal conductivity.
B: In a cold region, it is possible to avoid heat loss (due to reverse transfer of cooling energy from the outside to the inside using the phase change of H2O) through circulation in the warm air flow path, which is a concern in winter. In addition, the dehumidification / heat shield system can be used from warm to cold regions without increasing heat loss.
C: In cold districts, use the temperature difference between daytime and nighttime in summer to store the nighttime radiant cooling energy in the heat insulating material by phase change, and use it as the energy source for cooling during the daytime. The effect can be obtained.
4: In summer, a circulation channel suitable for supply of cold air and moisture is secured, and in winter the heat loss is reduced by changing the channel.
Humidity control and radiant cooling by dehumidification and heat shielding functions in summer, and radiant heating by sensible heat storage in winter.
The outer ventilation layer in winter is used as a heat insulation air layer to improve the heat insulation performance of the entire wall and reduce heat loss from the airtight heat insulation layer. Contributes to the realization of radiant heating.
5A: It is possible to promote latent heat storage, that is, absorption of heat, which is an energy source for heat insulation, without increasing the moisture content of the heat insulating material constituting the airtight heat insulating layer. The liquefied H 2 O becomes a wall for moisture permeation in the gap, and contributes to improving the efficiency of H 2 O movement due to an increase in atmospheric pressure during vaporization and maintaining the direction from indoor to outdoor.
B: In addition, it is possible to suitably perform water content management that suppresses the water content of other parts of the casing excluding the heat insulating material.
6A: In the daytime, the ventilation fan is operated to promote moisture release to the outside in the airtight heat insulating layer, and from the indoor side to the outdoor side in the heat insulating material due to the synergistic effect with the pressure generated by the vaporization and expansion of liquid H2O The H2O transfer pressure increases, and the efficiency of dehumidification indoors can be improved in combination with the high efficiency of moisture absorption and cooling of the heat insulating material.
Stop the blower fan at night to suppress moisture absorption and cooling from the outside. The amount that can be suppressed is replenished by moisture absorption and cooling from the inside, and the effect of dehumidification from the inside is increased accordingly.
In both daytime and nighttime, it creates and maintains the pressure of H2O movement from the indoor side to the outdoor side, exceeding the moisture conductivity of the material (heat insulating material), promoting moisture absorption through the inner ventilation layer and ceiling space By promoting the recovery of moisture content, the efficiency of moisture absorption and cooling on the indoor side can be improved while suppressing the increase in moisture content, and the efficiency of dehumidification indoors can be improved.
B: Not limited to the summer season, it is possible to remove the volatile chemical substances floating in the indoor air by promoting the absorption of indoor moisture and utilizing the function of the mechanism for discharging to the outdoors. Since the efficiency of moisture transfer can be maintained even at a low water content, it is not always necessary to maintain the indoor relative humidity high. Therefore, the function of indoor air purification can be used during periods of low humidity other than summer.

7A:エアコンの稼動に当たり、放射冷却により温度低下した夜間の外気を利用でき、深夜電力利用の少ないエネルギー消費で昼間の遮熱に必要な冷却エネルギーを循環流路に供給でき、省エネルギー効果を得られる。
B:循環流路への冷気の継続的供給を通じ、低い含水率の場合でもH2Oの相変化を利用した冷却エネルギーの移動を好適に確保できる。
C:昼間エアコンから冷却エネルギーを供給することで、昼間の吸放湿の方向性を制御でき、24時間を通じて屋内の除湿効果を得られる。
D:気密断熱層の低い含水率にも係わらず、吸湿とH2Oの液化の連携の比率を高く維持することで、上記効果並びに5・6の効果に加え、室内の湿度管理を睨みながら、併せて、背反する躯体の含水率管理と潜熱的蓄冷とを好適に行い、更に、冷却エネルギーの供給能力の向上に相応しい効率的吸冷能力並びに効率的エネルギー移動の能力を得て、それらの相乗効果により一層の遮熱効果・除湿効果及びヒートアイランド化抑制の効果を得られる。
そして、エアコンの除湿機能への依存の低下した度合いに応じて、除湿の際にエアコンから放出する凝縮熱を削減できる。しかも、この削減は、エアコンの生成・供給する冷却エネルギーで太陽熱エネルギーを潜熱的に吸収することによって担保される。つまり、凝縮熱という新たな熱の発生量を削減し、その上、建物外へ顕熱のまま放出する太陽熱のエネルギー量を削減し、二重の意味でヒートアイランド化抑制を実践しながら、快適な屋内環境を実現できる。
7A: When operating the air conditioner, it is possible to use the outside air at night when the temperature is reduced by radiant cooling, and to supply cooling energy necessary for heat insulation during the daytime to the circulation channel with low energy consumption by using late-night power, resulting in energy saving effect .
B: Through the continuous supply of cold air to the circulation channel, it is possible to suitably ensure the transfer of cooling energy using the phase change of H 2 O even in the case of a low water content.
C: By supplying cooling energy from the daytime air conditioner, the direction of moisture absorption / release during the daytime can be controlled, and the indoor dehumidifying effect can be obtained over 24 hours.
D: Despite the low moisture content of the hermetic insulation layer, maintaining a high ratio of moisture absorption and H2O liquefaction, in addition to the above effects and the effects of 5-6, Therefore, the moisture content management and latent heat storage of the opposite body are suitably performed, and furthermore, the efficient cooling capacity and the efficient energy transfer capacity suitable for the improvement of the cooling energy supply capacity are obtained, and their synergistic effects are obtained. As a result, a further heat shielding effect, dehumidifying effect and heat island suppression effect can be obtained.
And according to the degree to which the dependence on the dehumidifying function of the air conditioner is reduced, the heat of condensation released from the air conditioner during dehumidification can be reduced. In addition, this reduction is secured by latently absorbing solar thermal energy with the cooling energy generated and supplied by the air conditioner. In other words, it reduces the amount of new heat generated by condensation heat, and also reduces the amount of solar heat released as sensible heat outside the building. An indoor environment can be realized.

8A:深夜電力を利用して生成する冷却エネルギーの蓄冷手段を躯体と蓄熱体・基礎コンクリート・地中から構成される蓄熱層に分散でき、躯体(木質系の構造材・断熱材等)から吸湿・吸冷の負担に伴う悪影響(カビ・腐朽菌等の繁殖、断熱性能の低下)を軽減できる。更に、安価な繊維質の断熱材の利用に道が広がる。
B:エネルギー消費効率の高いエアコンと蓄熱体との組み合わせで深夜電力のみを利用しても、24時間継続的に安定して安価な冷却エネルギーを対流熱の形で直接循環流路に供給出来る。同じく、暖房のエネルギーを一日中継続して安定して安価に対流熱の形で直接循環流路に供給できる。更に、省エネルギー効果を得られる。
C:深夜電力のみを冷房のエネルギー源としながらも、冷気の24時間を通しての継続的供給を通じて昼間の吸放湿の方向性を制御でき、低コストで24時間を通じて屋内の除湿効果を高められる。
D:冷気の継続的供給を通じ、低い含水率の場合でもH2Oの相変化を利用した冷却エネルギーの移動を好適に確保できる。更に、連携の比率と背理関係にあるH2Oの移動の効率を向上し、屋内の除湿効果を高められる。
E:蓄熱体に蓄冷する際、寒冷地程放射冷却により温度低下した夜間の外気を利用でき、COPの数値を超えて少ないエネルギー消費で昼夜の冷房・除湿・遮熱に必要な冷却エネルギーをエアコンから循環流路に供給でき、結局、機器の性能と使用する環境の両面から一層の省エネルギー効果を得られる。また、蓄熱層を介して地中から冷却エネルギーは常時供給され、しかも、蓄熱材の特性を活用して好適な温度で放熱・供給される。その面で、省エネルギー効果は大きい。
F:蓄熱材の融解時に利用できる対流熱エネルギーのままでは、23℃の冷気は特に夜間は直接人肌に触れるには低すぎる。循環流路を流通する過程で、躯体に吸冷・蓄冷され、輻射冷房のエネルギー源として人肌に優しい空調のエネルギーを供給する。
21℃乃至23℃に限定された温度領域での相変化を利用したエネルギーの放出を、循環流路内での躯体との顕熱的エネルギー移転により吸収し、冬季の輻射暖房と夏季の輻射冷房とを、夏季の遮熱・除湿効果と冬季のエネルギー損失軽減効果とを両立しながら安価なエネルギーを利用して24時間安定して好適に実現する。又、地熱・放射冷却・深夜電力の融合された更なる有効活用を通じ、尚一層の省エネルギー効果・エネルギーコストの低下および好適な含水率管理のもと一層のヒートアイランド化抑制効果を得られる。
9:屋根の断熱層を透過する太陽熱エネルギーを、遮熱システムと換気システムとの組み合わせの工夫によって潜熱的・顕熱的に効率的に建物外へ排出し、昼間の冷房負荷の増大を抑えることが出来る。しかも、換気の目的を効率よく果たしながら、その上更に、地熱・放射冷却に加えて深夜電力の効率的な利用を可能として屋内の環境(温度・湿度・酸素濃度等)を年間を通して低コスト(建築コスト・ランニングコスト)で改善することが出来る。
東西南側の気密断熱層では、太陽熱エネルギーの日射取得は屋内側から吸湿液化し・屋外側へ気化放湿する吸放湿の方向性を担保するものの、北側の気密断熱層では、屋外側への気化放湿に頼らずに、屋内側から吸湿し屋外側へ放湿する吸放湿の方向性を堅持することが出来る。その結果、除湿効果を実現できる。
冬季は、気密住宅の閉鎖性を活かし、暖房効果を高めて省エネを追求しながら、夏季は、通気住宅の開放性を活かせる建築的工夫を最大限に追求しながら、地熱・放射冷却等の自然エネルギーを有効利用して、人為的なエネルギーの省エネ化を図りながら、冷房負荷の増大・除湿負荷の増大及びヒートアイランド化の助長を避けられるシステムの構築を図れる。
相対湿度の低い側から吸湿し、吸放湿材を介して相対湿度の高い側に湿気を移動(伝導)し、放湿できる。逆も真なりで、相対湿度の高い屋外側から相対湿度の低い屋内側への湿気の逆流(浸入)を阻止できる。
床下空間の湿気の建物外への排出路として二つの排出路を形成し、排出の効率を改善することにより、床下空間での結露の発生を抑制できる。
8A: Cooling energy storage means using midnight power can be dispersed in the heat storage layer composed of the frame and the heat storage body / foundation concrete / underground, and absorbs moisture from the frame (woody structural material, heat insulating material, etc.)・ Reduces adverse effects associated with the burden of cooling (propagation of molds, decaying fungi, etc., reduced insulation performance). In addition, the use of inexpensive fibrous insulation is widened.
B: Even if only midnight power is used in combination of an air conditioner and a heat storage body having high energy consumption efficiency, stable and inexpensive cooling energy can be supplied directly to the circulation channel in the form of convection heat for 24 hours. Similarly, heating energy can be continuously supplied throughout the day and supplied to the circulation channel directly in the form of convection heat at a low cost. Furthermore, an energy saving effect can be obtained.
C: While only midnight power is used as a cooling energy source, the direction of moisture absorption during the day can be controlled through continuous supply of cold air for 24 hours, and the indoor dehumidification effect can be enhanced for 24 hours at low cost.
D: Through continuous supply of cold air, it is possible to suitably ensure the transfer of cooling energy using the phase change of H 2 O even in the case of a low water content. Furthermore, it is possible to improve the efficiency of movement of H2O, which is in contradiction with the ratio of cooperation, and enhance the indoor dehumidifying effect.
E: When storing heat in a heat storage body, it is possible to use nighttime outside air whose temperature has dropped due to radiative cooling in the cold region, and air conditioning that provides cooling energy necessary for daytime cooling, dehumidification, and heat insulation with less energy consumption exceeding the COP value. Can be supplied to the circulation flow path, and as a result, further energy saving effects can be obtained from both the performance of the equipment and the environment in which it is used. Further, cooling energy is constantly supplied from the ground through the heat storage layer, and furthermore, heat is radiated and supplied at a suitable temperature by utilizing the characteristics of the heat storage material. In that respect, the energy saving effect is great.
F: With the convective heat energy available at the time of melting the heat storage material, the cold air at 23 ° C. is too low to directly touch the human skin, especially at night. In the process of circulating through the circulation channel, it is cooled and stored in the housing and supplies air conditioning energy that is friendly to human skin as an energy source for radiation cooling.
The release of energy using the phase change in the temperature range limited to 21 ° C to 23 ° C is absorbed by the sensible heat transfer with the enclosure in the circulation flow path, radiant heating in winter and radiant cooling in summer Are realized stably and preferably for 24 hours using inexpensive energy while achieving both heat insulation / dehumidification effect in summer and energy loss mitigation effect in winter. In addition, through further effective utilization of the fusion of geothermal, radiative cooling, and late-night power, it is possible to obtain a further heat-saving effect by further reducing energy costs, lowering energy costs, and appropriately controlling moisture content.
9: Solar heat energy that permeates the heat insulation layer of the roof is effectively discharged latently and sensiblely outside the building by devising a combination of a heat shield system and a ventilation system to suppress an increase in daytime cooling load I can do it. Moreover, while efficiently fulfilling the purpose of ventilation, in addition to geothermal and radiative cooling, it is possible to use midnight power more efficiently, reducing the indoor environment (temperature, humidity, oxygen concentration, etc.) throughout the year at low cost ( Building cost and running cost).
In the airtight heat insulation layer on the east and west side, solar radiation acquisition of solar thermal energy is converted to moisture absorption from the indoor side, and the direction of moisture absorption and release to vaporize and release to the outdoor side is ensured. Without relying on vaporization and moisture release, it is possible to maintain the direction of moisture absorption and release by absorbing moisture from the indoor side and releasing it to the outdoor side. As a result, a dehumidifying effect can be realized.
In winter, we take advantage of the closeness of hermetic houses to improve the heating effect and pursue energy savings, and in summer, to maximize the architectural ingenuity that makes use of the openness of ventilated houses, It is possible to construct a system that avoids the increase of cooling load / dehumidification load and the promotion of heat island while effectively utilizing natural energy to save human energy.
Moisture is absorbed from the low relative humidity side, and moisture can be transferred (conducted) to the high relative humidity side through the moisture absorbing / releasing material to release moisture. The reverse is also true, and it is possible to prevent the reverse flow (intrusion) of moisture from the outdoor side where the relative humidity is high to the indoor side where the relative humidity is low.
By forming two discharge paths as moisture discharge paths outside the building in the underfloor space and improving the discharge efficiency, the occurrence of condensation in the underfloor space can be suppressed.

以下、本発明の実施の形態を、図面を用いて説明する。
図1及び図2及び図3は、本発明の実施の形態を示す概略断面図。図4は、図1又は2又は図3に示す建物の壁体の斜断面図である。図5は、屋根体・壁体の概略断面図である。図6は、屋根体の概略断面図である。図7は、屋根体の概略断面図である。図8は、屋根体の概略断面図である。図9から12は、壁体の概略断面図である。図13は、本発明の実施例を示す概略断面図である。
これらの図において、1は棟換気口、2は屋根、3は屋根通気層、4は野地板、5は垂木、6は垂木受け、7は断熱材A、8は気密断熱層、9は外側通気層、10は気密材、11は基礎、12は桁、13は柱、14は土台、15は内壁、16は杉厚板材、17は実、18は断熱材B、19は胴縁受け、20は、連通管21は胴縁、22は外壁、23は基礎天端、24は結合金物、25は接合金物、26は吸気口、27は熱交換式換気扇、28は透湿防風防水シート、29は内側通気層、30は床、31は床下空間、32は1000MM、33は15MM、34は910MM、35は切り欠き部、36は地中、37は天井裏空間、38は棟下換気口、39は屋根棟下空間、40は棟下連通口、41は送付ファン、42は給気用連通管、43は第二棟下連通管、44は床下換気口、45は蓄熱体、46は第二棟下連通口、47は第二送風ファン、48はエアコン、49は室内空間、50は天井、51は排気用連通管、52は基礎土間コンクリート、53は小屋裏空間を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1, 2, and 3 are schematic cross-sectional views showing an embodiment of the present invention. 4 is an oblique sectional view of the wall of the building shown in FIG. 1 or 2 or FIG. FIG. 5 is a schematic cross-sectional view of a roof body / wall body. FIG. 6 is a schematic cross-sectional view of the roof body. FIG. 7 is a schematic cross-sectional view of the roof body. FIG. 8 is a schematic cross-sectional view of the roof body. 9 to 12 are schematic cross-sectional views of the wall body. FIG. 13 is a schematic sectional view showing an embodiment of the present invention.
In these figures, 1 is a ridge ventilation opening, 2 is a roof, 3 is a roof ventilation layer, 4 is a base plate, 5 is a rafter, 6 is a rafter receptacle, 7 is a heat insulating material A, 8 is an airtight heat insulating layer, and 9 is an outside. Ventilation layer, 10 is an airtight material, 11 is a foundation, 12 is a girder, 13 is a pillar, 14 is a base, 15 is an inner wall, 16 is a cedar plank, 17 is a fruit, 18 is a heat insulating material B, 19 is a torso, 20 is a communication pipe 21 is a trunk edge, 22 is an outer wall, 23 is a base ceiling, 24 is a joint hardware, 25 is a joint hardware, 26 is an air inlet, 27 is a heat exchange type ventilation fan, 28 is a moisture permeable windproof tarpaulin, 29 is an inner ventilation layer, 30 is a floor, 31 is an underfloor space, 32 is 1000MM, 33 is 15MM, 34 is 910MM, 35 is a notch, 36 is underground, 37 is a ceiling space, 38 is a ventilator under the ridge 39 is a space under the roof ridge, 40 is a communication port under the ridge, 41 is a sending fan, 42 is a communication pipe for air supply, and 43 is the first A communication pipe under the building, 44 is an underfloor ventilation port, 45 is a heat storage body, 46 is a communication port under the second building, 47 is a second blower fan, 48 is an air conditioner, 49 is an indoor space, 50 is a ceiling, 51 is an exhaust communication The pipe, 52 is the foundation soil concrete, 53 shows the shed space.

夏季の温暖湿潤の気候の下、特に温暖化の進行している時代にあっては、冷房・除湿は不可欠のものとなっている。只、背景技術のところで記している様に、冷房と除湿を比較するとエネルギー消費或は環境へ及ぼす影響の両面で、除湿時の負担は冷房時よりも大きい。そこから、先ず除湿の負担を軽減することが社会的にも有意義・有用なものとなってくる。
本願発明の新規なところは断熱材を兼用する吸放湿材の特性を把握し、取捨選択して用いるところにある。その選別の基準は、吸湿時に液化を伴う比率の高いか低いかにある。つまり、比率の低い吸放湿材を用いる。その代表例として杉板を上げることが出来る。
図1に示された気密断熱層の室内側に杉板・桐板等を用いる。その外側に合成樹脂系に代表される吸放湿性を具備しない断熱材もしくは吸放湿とH2Oの相変化との連携の比率の高い断熱材を用い、二つの断熱材の間に透湿防風防湿シートを挟み設する。それだけの僅かの工夫で、吸湿時の平衡含水率と放湿時の平衡含水率との乖離を小さく維持でき、室内の湿度を吸放湿材の吸放湿によって調節することが出来る。尚、二層から成る断熱層の外側に配置される断熱材の特性によって、潜熱的遮熱機能の有無に関わり、遮熱機能に連動する除湿機能の有無に関わる。以下は、遮熱機能に連動する除湿機能の無い場合の具体的な作用・効果についての説明である。
構造材・仕上げ材・断熱材の具備する吸放湿機能は、一日の内の温度の変化、相対湿度の変化によって左右される短期的なサイクルのものから、夏季の湿度の高い時期にもっぱら吸湿し、冬季の湿度の低い時期にもっぱら放湿する四季を通じての含水率増減の長期的なサイクルのものまで見られる。
夏季の一日で見ると、夜間、室内側では壁体は概ね吸湿活動に励み、含水率は高まる。昼間、室温の上昇に伴い相対湿度は低下するので、壁体から放湿する。只、吸湿量と放湿量とを比較すれば、吸湿量が多い。それは、四季を通じての長期的な変動からも言える。
具体的に説明すると、梅雨から夏季にかけては放湿量よりも吸湿量が多く、壁体・屋根体へのH2Oの蓄積は増大する。それは、相対湿度の上昇に応じて壁体等の平衡含水率も上昇するからである。しかも、一日の内での相対湿度の変化に対応して壁体等の平衡含水率も上下する。平衡含水率が高くなれば、含水率との乖離は大きくなり、その分湿気を吸収する圧力は大きくなる。
その上、建物の気密性能をC値0.5以下に保持することで、吸放湿材の季節変動を利用した室内の湿度調節機能は向上し、除湿装置を使用しない場合でも梅雨・夏季を通して一般に快適な湿度とされる70%近辺の湿度を保持することが出来る。
Cooling and dehumidification are indispensable under the warm and humid climate of summer, especially in an era of warming.只 As described in the background art, when cooling and dehumidification are compared, the burden on dehumidification is greater than that on cooling in terms of both energy consumption and environmental impact. From there, it becomes socially meaningful and useful to reduce the burden of dehumidification.
The novel place of this invention exists in the place which grasps | ascertains the characteristic of the moisture absorption / release material which also serves as a heat insulating material, selects and uses it. The standard of the selection is whether the ratio with liquefaction is high or low at the time of moisture absorption. That is, a moisture absorbing / releasing material having a low ratio is used. A typical example is a cedar board.
A cedar board, a paulownia board, etc. are used for the indoor side of the airtight heat insulation layer shown in FIG. On the outside, use a heat insulating material that does not have moisture absorption / release characteristics such as synthetic resin or a heat insulating material with a high coordination ratio between moisture absorption / release and H2O phase change. Insert the sheet. With only a few contrivances, the difference between the equilibrium moisture content at the time of moisture absorption and the equilibrium moisture content at the time of moisture release can be kept small, and the indoor humidity can be adjusted by the moisture absorption / release moisture of the moisture absorbent / release material. In addition, it is related with the presence or absence of a latent heat insulation function by the characteristic of the heat insulating material arrange | positioned on the outer side of the heat insulation layer which consists of two layers, and is concerned with the presence or absence of the dehumidification function linked with a heat insulation function. The following is a description of specific actions and effects when there is no dehumidifying function linked to the heat shielding function.
The moisture absorption / release function of structural materials, finishing materials, and heat insulating materials is based on short-term cycles that are affected by changes in temperature and relative humidity within the day, and only in summer when the humidity is high. Even long-term cycles of moisture content increase / decrease throughout the four seasons, which absorb moisture and dehumidify only during low humidity periods in winter.
Looking at the day in the summer, at night, the walls are mostly moisturized and the moisture content increases indoors. In the daytime, as the room temperature rises, the relative humidity decreases, so the walls are released.只 If we compare the amount of moisture absorption and the amount of moisture release, the amount of moisture absorption is large. This is also true from long-term fluctuations throughout the seasons.
More specifically, the amount of moisture absorption is greater than the amount of moisture released from the rainy season to the summer, and the accumulation of H2O on the wall and roof increases. This is because the equilibrium moisture content of the wall and the like increases as the relative humidity increases. In addition, the equilibrium moisture content of the wall and the like also rises and falls according to the change of the relative humidity within the day. If the equilibrium moisture content increases, the difference from the moisture content increases, and the pressure for absorbing moisture increases accordingly.
In addition, by maintaining the airtightness of the building at a C value of 0.5 or less, the indoor humidity control function using seasonal fluctuations of the moisture absorbing and releasing materials is improved, and even when no dehumidifier is used, it can be used throughout the rainy season and summer. It is possible to maintain a humidity around 70%, which is generally considered a comfortable humidity.

壁体・屋根体の外側では、夏季の昼間の太陽の日射取得により、外壁は60℃〜70℃の温度に達する。それで、外側通気層内・屋根通気層内の相対湿度は極端に下降する。その分湿気を放出する圧力は高くなる。しかも、多孔質の建材から構成される壁体は、昼間の太陽の日射取得によりH2Oの蒸発に必要な運動エネルギーの供給を受ける。その結果、夜間に蓄えられたH2Oは多孔質の建材から容易に気化・放湿し、蒸発する。外壁材に吸放湿材を付加する形をとれば、この冷却効果は大きくなり、気密断熱層への蓄熱を防止する効果がある。
更に進んで、社会的に余剰の深夜電力を利用して、室内の湿度調節を実施する。その技術については、アイデアとして既に提供されていることを先に記した。只そのアイデアでは室内の湿度を快適とされる70%に維持するには、昼間も頻繁に除湿装置を稼動せざるを得ず、深夜電力の使用を目的とする除湿システムとしては、未完成の段階である。もっとも、本発明では除湿装置を用いずとも夏季の昼間の湿度を80%(気密性能性能を高めた場合、70%近辺)に抑えることができる。これからすれば、先のアイデアでは、吸放湿材の昼間の吸湿の作用効果は殆んど機能していないといえる。
さて、快適とされる湿度60%を維持するには、深夜電力を利用できる時間帯に限定して除湿装置を稼動する。設定湿度を50%に確保すれば、室内の相対湿度は当然低下する。それに伴い吸放湿材からは放湿するが、相対湿度に対する平衡含水率9%の近辺まで放湿は継続する。只、一日のうちで吸放湿によって移動するのは表面から2〜3mm程度である。
そして、夜間の内に含水率の低下した吸放湿材は、昼間は一転して室内空間の湿気を吸収することが出来る。それで、除湿装置を昼間稼動しなくとも、室内空間の湿度を60%に維持することが出来る。
室内空間の湿度調節の効率を向上するには、気密性能の向上は不可欠である。気密性能が向上すれば、湿気の漏れは少なくなり、除湿装置或は吸放湿材を用いた湿度調節はより効果を挙げられる。その結果、昼間除湿装置を稼動しなくとも、驚異的ともいえる湿度60%近辺を維持することが出来る。
南側の屋根体の気密断熱層を吸放湿性を具備する断熱材のみで構成し、その上、屋根体に屋根通気層を設けると、夏季の昼間は太陽熱エネルギーの日射取得によって蓄熱したエネルギーを屋外へ排出する手段となり、夜間は屋外からの放射冷却を吸収する手段となる。しかも、屋内からの冷気の吸収及び屋外からの冷気の吸収により液化を生じれば、それは昼間の太陽熱エネルギーの日射取得を通じての顕熱を湿気という潜熱の形に変えた排熱に繋がる。それは、顕熱の潜熱化による遮熱効果を生むのみならず、屋内からの吸湿を通じて屋内の除湿を実施することで、室内空間の湿度調節を行うことが出来る。つまり、夜間に室内空間を冷房したとしても、冷気の供給による液化の影響(吸湿時の平衡含水率と放湿時の平衡含水率との乖離)を昼間の太陽熱エネルギーの吸収を通じた気化・放湿(顕熱の潜熱化による)により抑えることに繋がる。尚、普及しているHP式エアコンは、除湿機能稼動時に併せて冷房機能も働き、冷気の生成・供給が行われる。
Outside the wall / roof body, the outer wall reaches a temperature of 60 ° C. to 70 ° C. due to solar radiation in the daytime in summer. Therefore, the relative humidity in the outer ventilation layer and the roof ventilation layer falls extremely. Correspondingly, the pressure for releasing moisture is increased. And the wall comprised from a porous building material receives supply of the kinetic energy required for the evaporation of H2O by the solar radiation acquisition of the daytime. As a result, the H2O stored at night easily evaporates and dehumidifies from the porous building material and evaporates. If a moisture absorbing / releasing material is added to the outer wall material, this cooling effect is increased, and there is an effect of preventing heat accumulation in the airtight heat insulating layer.
Going further, we will adjust the humidity in the room using socially surplus midnight power. I mentioned earlier that the technology is already provided as an idea.只 In order to maintain the indoor humidity at 70%, which is considered to be comfortable, the dehumidifier must be operated frequently during the daytime. It is a stage. However, in the present invention, the humidity in the daytime in summer can be suppressed to 80% (in the case of improving the airtight performance), without using a dehumidifier. From this, it can be said that the effect of daytime moisture absorption of the moisture absorbing / releasing material is hardly functioning in the previous idea.
Now, in order to maintain a comfortable humidity of 60%, the dehumidifier is operated only during the time when midnight power can be used. If the set humidity is secured at 50%, the indoor relative humidity naturally decreases. As a result, moisture is released from the moisture absorbing / releasing material, but moisture is released to the vicinity of an equilibrium water content of 9% relative humidity. In the day, it is about 2 to 3 mm from the surface that moves due to moisture absorption and desorption.
The moisture absorbing / releasing material having a reduced moisture content during the night can turn around in the daytime to absorb moisture in the indoor space. Therefore, the humidity of the indoor space can be maintained at 60% without operating the dehumidifier during the day.
In order to improve the humidity control efficiency of the indoor space, it is essential to improve the airtight performance. If the airtight performance is improved, moisture leakage is reduced, and humidity control using a dehumidifying device or a moisture absorbing / releasing material is more effective. As a result, even if the dehumidifying device is not operated during the daytime, it is possible to maintain a surprising humidity of around 60%.
If the airtight heat insulation layer of the south roof is composed only of a heat-absorbing material with moisture absorption and desorption, and if a roof ventilation layer is provided on the roof, the energy stored by solar radiation acquisition in the daytime in the summer will be outdoor. It becomes a means for discharging to the outside, and a means for absorbing radiant cooling from outside at night. Moreover, if liquefaction occurs due to the absorption of cold air from the inside and the absorption of cold air from the outside, it leads to exhaust heat that changes the sensible heat through solar radiation acquisition of solar heat energy in the daytime into the form of latent heat called moisture. It not only produces a heat shielding effect due to the latent heat of sensible heat, but also can adjust the humidity of the indoor space by performing dehumidification indoors through moisture absorption from the indoors. In other words, even if the indoor space is cooled at night, the effect of liquefaction due to the supply of cold air (divergence between the equilibrium moisture content during moisture absorption and the equilibrium moisture content during moisture release) can be vaporized and released through absorption of solar thermal energy during the day. It leads to suppression by moisture (due to latent heat of sensible heat). In addition, the popular HP air conditioner also functions as a cooling function when the dehumidifying function is operated, and cold air is generated and supplied.

以下、前項の作用・効果に加えて、遮熱機能に連動する除湿機能の有る場合の具体的な作用・効果及び断熱性能向上の作用・効果の説明が加わる。
断熱材は、物質固有の断熱性能を有し、それは熱還流率という数値で表される。それを簡単な工夫によって、当該断熱材の断熱性能を向上し、本来有する熱還流率の数値の改善を図れる。その簡単な工夫は、同一種類もしくは異なる種類の断熱材の重ね合わせの方法による。
吸放湿性を具備する断熱材は、湿気を吸収・放出できる性質を有するので利用価値は高いが、実験的に検出された熱還流率の数値は総体的に低く、製造コストが高いこともあり、費用対効果の面では割高感が強い。そこに、簡単な工夫で熱還流率を改善できれば、その特性を活用する上での費用対効果は改善し、価格的な障害は小さくなり、普及に道が開ける。
具体的には、透湿防風防水シートを二枚の断熱ボードの間に挟むように重ね、三層構造とする。それだけの工夫である。気体状のH2Oは透湿防風防水シートを透過するものの、液体状のH2Oは透過しない。液体状のH2Oを透過するか否かで、エネルギーの伝導の態様に差異が生じる。
熱還流率で表される断熱性能は、暖かい空間から冷たい空間への熱エネルギーの移動に関するものである。
さて、A面が冷たい空間に接し、B面が暖かい空間に接しているとする。吸放湿性を具備するので、A面で吸冷と吸湿が併行して生じれば、液化によって凝縮熱と液体状のH2Oを生成する。B面で吸収される熱エネルギーによって気化が生じれば、気化熱によって先の凝縮熱は相殺され、断熱性能は本来の数値と変わらない。只、B面で熱エネルギーの供給が継続されれば気化・放湿は更に促進され、熱還流率の低下に繋がるだけでなく、現実の熱損失は大きくなり、特に輻射暖房効果の実現を図る場合に影響が出やすい。これは、断熱性に背反する伝熱性の創出を抑制できない場合の例である。
さて、液体状のH2Oは透湿防風防水シートを透過しない。それで、透湿防風防水シートを境にして熱エネルギーの移動に差異が生じる。A面から太陽熱エネルギーの日射取得を得られる場合は、B面側の液体状のH2Oに放射エネルギーとして影響し、気化が生じる。これは、夏季の断熱性に背反する伝熱性の創出の態様を表す。ところで、断熱材に対して熱エネルギーを供給される実際の環境においては、冬季の場合、屋外側のA面で太陽熱エネルギーを日射取得するか、屋内側のB面で暖房の熱エネルギーを吸収するかの何れかである。前者では、冷たいものを吸収し液化したH2Oを保持する側と同じA面側で太陽熱エネルギーを吸収し、気化・放湿するので、透湿防風防水シートの働きも加わり、冷たいものはB面側に伝導しない。後者では、暖房の温度は概ね20度位であるから、B面側に液体状のH2Oが移動していれば気化・放湿する。しかし、透湿防風防水シートを境にして、A面側の液体状のH2OはB面側への移動を阻止されている。少なくとも、B面側は断熱性能を有するので、境まで暖気を伝導して気化放湿することは極稀と考えられる。それで、熱損失の拡大は阻止できる。断熱性に背反する伝熱性の創出を抑制する例である。実際の住宅に用いる場合は、前者と後者との合わさったものと成る。つまり、昼間A面側で日射取得する太陽熱エネルギーで、夜間にA面側で吸収する冷気を相殺できる分、冷気はB面側に到達せず、熱還流率は改善する。
用いる吸放湿材は、冬季の場合、屋内側に配置するB面の属性が吸放湿とH2Oの相変化との連携の比率が高いか低いかの違いによって、その熱還流率の改善の程度に差異は生じない。但し、屋内外の配置を逆にして屋外側にB面を配置すれば、請求項1の断熱パネルは吸放湿とH2Oの相変化との連携の比率が低く、夜間に吸収される冷気は大半顕熱の形をとり、室内側に浸透する。又、昼間は屋根通気層・外側通気層に日射取得された太陽熱エネルギーの断熱層に吸収される量は潜熱の形での吸収に比較して多くなく、しかも、顕熱の形での排出量は少なくない。それで、太陽熱エネルギーを活用した熱還流率の改善効果は大きくない。つまり、差異は大きい。
ところで、差異は夏季に現れる。夏季は、B面で屋内から冷気が供給されても断熱性に背反する伝熱性の創出によってエネルギー移動は生じる。現実には、夜間にA面で放射冷却のエネルギーを吸収して、昼間に太陽熱エネルギーを日射取得して気化・放出する。それで、夜間に潜熱的に蓄冷した量に応じて昼間に太陽熱エネルギーを吸収できる。つまり、昼間の遮熱能力の大小及び夜間の屋内の除湿効果の大小に影響する。それで、請求項1及び2に記載の断熱パネルの何れも遮熱能力は大きい。
請求項1に記載の断熱パネルは、B面からの潜熱的蓄冷の能力は低く、その分遮熱に連動する除湿の能力は高くない。A面から透湿防風防水シートを超えて太陽熱エネルギーを透過する必要性は乏しく、遮熱性能の高い透湿防風防水シートを選択するとシート面で顕熱を反射し、B面への顕熱の透過は更に減少する。顕熱の透過を阻止し、顕熱を潜熱化する効率を高めることに貢献できる。対する請求項2に記載の断熱パネルは、B面からの潜熱的蓄冷の能力は高く、その分遮熱に連動する除湿の能力も高い。除湿・遮熱の能力は高いので、エアコンを用いて大量の冷気を生成・供給できる場合に最適である。断熱性に背反する伝熱性の創出を促進する上で、A面から透湿防風防水シートを超えて太陽熱エネルギーを透過する必要性は高く、遮熱性能の低い透湿防風防水シートを選択すると顕熱はシート面を透過し、液体状のH2Oの気化に貢献する。尚、気化したH2Oが何れの方向に向かって透過するかは色々な要素が絡み合う。物質の本来備える湿気伝導率を超えて伝導の効率を高める工夫が重要であり、遡って、その工夫は気圧低下による気化の生じる環境整備に影響する。
請求項4の実施例では、屋内から吸湿・吸冷する潜熱的蓄冷の例である。屋外から太陽熱エネルギーを日射取得すれば、シートの屋外側から気化・放湿される。この相変化が進行すれば、輻射熱の形でシートの屋内側のH2Oに直接働きかけ、気化を促す。その際、気化膨張による圧力と送風ファンの働きによる外側通気層内の気圧低下により、大半のH2Oは屋外側に放湿される。しかも、この間に屋内から冷気の供給が継続されれば、湿気移動の方向はそのまま維持される。
冷気の供給は、地熱・放射冷却・エアコンの生成する冷気による。
エアコンを用いて生成する冷気を、遮熱のエネルギーとして活用しない場合、請求項3の実施例に従い実施する。但し、室内の除湿負荷は縮減できないので、エアコンの除湿能力に依存せざるをえない。その分、凝縮熱の生成・放出量は増加する。但し、先の0078−79、0089項に記した様に、深夜電力利用の除湿システムの好適な実施に繋げられる。
屋外側で吸湿・吸冷が促され、断熱層は液化したH2Oを保持できる。液化したH2Oは、湿気の伝導を阻止する働きを示し、又、シートは液化したH2Oの伝導を阻止する。それで、液化したH2Oを保持している間は、断熱層の内外の相対湿度の高低に関係なく、湿気の逆流を阻止することができる。
通風による冷気の利用を促すために、外側通気層・屋根通気層を設け、吸放湿とH2Oの相変化との連携の比率の高い断熱層への吸湿・吸冷を促し、放射冷却の利用を図る。夏季は、夜間に潜熱的に蓄冷したエネルギーを昼間の遮熱のエネルギーとして利用できる。
送風ファンを利用すると、外側通気層・屋根通気層内の通風量を高められる。それは、夜間は放射冷却を源とする冷気と湿気の供給を促す。潜熱的蓄冷の効率を高められるので、昼間利用できる遮熱のエネルギー源も大きくなる。その効果を狙えるので、送風ファンは昼夜稼動する。但し、エアコンを用いて屋内から大量の冷気を生成・供給できる場合は、送風ファンを夜間停止し、屋内からの液化したH2Oの移動の効率を高めるのも有力である。その場合、屋内の除湿効果は高まる。0076−77項参照。
請求項3の実施例では、夜間の放射冷却のエネルギーは、屋外側での利用は潜熱的蓄冷の形で促されるが、屋内側では促されない。それは、屋内側でエアコンを使用した場合に顕著に現れる。つまり、エアコンの生成する冷却エネルギーを使用した潜熱的蓄冷は促されず、その結果、エネルギー移動は促されず、湿気の移動をエネルギー移動と分離して図ることができる。
吸放湿とH2Oの相変化との連携の比率の低い吸放湿材として杉板等の無垢板を内壁材に用いる場合、天井及び内壁の吸放湿機能とエアコンを併用した湿度調節を好適に実施できる。具体的には、深夜電力を利用してエアコンを稼動し、室内を冷房・除湿する場合、湿気の逆流を阻止しながら効率的に除湿できるのみならず、昼間はエアコンで除湿しなくとも、内装材に吸湿して室内から除湿し、室内の相対湿度を60%以下に保つことができる。つまり、深夜電力を利用した昼間の湿度調節をシステムとして実施できる。
尚、遮熱機能の実施に当たっては、屋内から吸湿し断熱層を介して屋外に排湿する除湿効果を併せて見込める。
湿気の逆流については、前項を参照。
結局、機能としては、B面から吸湿し、B面へ放湿する作用・効果(含水率と平衡含水率)。B面から吸湿し、湿気の伝導後A面から放湿する作用・効果(断熱性に背反する伝熱性の創出)。A面から吸湿し、A面から放湿する作用・効果(防水シートを利用したエネルギー移動抑制による冬季の断熱性能改善)。以上三つの作用・効果を実現でき、更に、A面から吸湿し、湿気の伝導後B面から放湿する作用を抑制することが出来る。
Hereinafter, in addition to the actions and effects of the preceding paragraph, explanations of specific actions and effects in the case of having a dehumidifying function linked to the heat shielding function and actions and effects for improving heat insulation performance will be added.
The heat insulating material has a heat insulating performance specific to the substance, which is expressed by a numerical value called a heat reflux rate. By simple contrivance, the heat insulation performance of the heat insulating material can be improved, and the numerical value of the heat reflux rate inherently can be improved. The simple idea is based on the method of superposing the same type or different types of heat insulating materials.
Heat-insulating materials with moisture absorption and desorption properties are highly useful because they have the property of absorbing and releasing moisture, but the experimentally detected values of the heat reflux rate are generally low and the manufacturing cost may be high. In terms of cost effectiveness, there is a strong sense of value. If the heat reflux rate can be improved with a simple device, the cost-effectiveness of utilizing the characteristics will be improved, the price obstacle will be reduced, and the road will be opened.
Specifically, a moisture permeable windproof waterproof sheet is stacked so as to be sandwiched between two heat insulating boards to form a three-layer structure. It ’s just that. Although gaseous H2O permeates the moisture permeable windproof waterproof sheet, liquid H2O does not permeate. Depending on whether or not the liquid H2O permeates, there is a difference in the mode of energy conduction.
The heat insulation performance expressed by the heat reflux rate relates to the transfer of thermal energy from a warm space to a cold space.
Now, it is assumed that the A surface is in contact with a cold space and the B surface is in contact with a warm space. Since it has moisture absorption / release properties, if cooling and moisture absorption occur simultaneously on the A surface, condensation heat and liquid H2O are generated by liquefaction. If vaporization occurs due to the thermal energy absorbed on the B surface, the heat of vaporization cancels out the previous heat of condensation, and the heat insulation performance remains the same as the original value.只 If the supply of thermal energy is continued on side B, vaporization and moisture release will be further promoted, which not only leads to a decrease in the heat reflux rate, but also increases the actual heat loss, and in particular aims to realize a radiant heating effect. The case is likely to be affected. This is an example in the case where the creation of heat transfer that contradicts heat insulation cannot be suppressed.
Now, liquid H2O does not permeate | transmit a moisture-permeable windproof waterproof sheet. Therefore, there is a difference in the transfer of thermal energy with the moisture permeable windproof waterproof sheet as a boundary. When solar radiation acquisition of solar thermal energy can be obtained from the A surface, the liquid H2O on the B surface side is affected as radiant energy and vaporization occurs. This represents a mode of creation of heat transfer that is contrary to the heat insulation in summer. By the way, in the actual environment where heat energy is supplied to the heat insulating material, in the winter season, solar heat energy is acquired by solar radiation on the A side on the outdoor side or the thermal energy of heating is absorbed on the B side on the indoor side. It is either. In the former, the solar heat energy is absorbed on the same side of the A side as the side that holds the liquefied H2O by absorbing the cold and vaporizes and dehumidifies, so the function of the moisture permeable windproof waterproof sheet is also added. Does not conduct. In the latter, since the heating temperature is about 20 degrees, if the liquid H2O moves to the B side, it is vaporized and dehumidified. However, the liquid H2O on the A side is prevented from moving to the B side with the moisture-permeable windproof waterproof sheet as a boundary. At least the B side has heat insulating performance, so it is considered extremely rare to conduct warm air to the boundary to vaporize and dehumidify. Therefore, the expansion of heat loss can be prevented. This is an example of suppressing the creation of heat transfer that is contrary to heat insulation. When used in an actual house, the former and the latter are combined. That is, the amount of cool air that is absorbed by the A-side at night can be offset by solar thermal energy acquired by solar radiation on the A-side in the daytime, so that the cool air does not reach the B-side and the heat reflux rate is improved.
In the winter season, the moisture absorption / release material used has an improvement in its heat reflux rate depending on whether the attribute of the B surface placed on the indoor side is high or low in the ratio of coordination between moisture absorption / release and H2O phase change. There is no difference in degree. However, if the indoor and outdoor arrangements are reversed and the B-side is arranged on the outdoor side, the heat insulation panel of claim 1 has a low ratio of cooperation between moisture absorption and desorption and H2O phase change, and the cold air absorbed at night is It takes the form of sensible heat and penetrates indoors. In addition, the amount of solar thermal energy obtained by solar radiation in the roof ventilation layer and outer ventilation layer during the daytime is less than the absorption in the form of latent heat, and the emission amount in the form of sensible heat. There are many. Therefore, the effect of improving the heat reflux rate utilizing solar thermal energy is not great. In other words, the difference is large.
By the way, the difference appears in summer. In summer, energy transfer occurs due to the creation of heat transfer that is contrary to heat insulation even if cold air is supplied from the inside on the B side. In reality, the radiation cooling energy is absorbed on the A surface at night, and solar thermal energy is acquired by the solar radiation in the daytime to be vaporized and released. Therefore, solar energy can be absorbed during the day according to the amount of latent heat stored at night. In other words, it affects the size of the heat insulation capability during the daytime and the size of the indoor dehumidifying effect at night. Therefore, both of the heat insulation panels according to claims 1 and 2 have a large heat shielding ability.
The heat insulation panel according to claim 1 has a low latent heat storage capacity from the B surface, and the dehumidification capacity linked to heat insulation is not high. There is little need to transmit solar heat energy from the A side beyond the moisture permeable windproof waterproof sheet, and if a moisture permeable windproof waterproof sheet with high heat insulation performance is selected, the sensible heat is reflected on the sheet surface and the sensible heat on the B surface Transmission is further reduced. It can contribute to increasing the efficiency of blocking sensible heat and making sensible heat latent. On the other hand, the heat insulation panel according to claim 2 has a high capability of latent heat cold storage from the B surface, and accordingly has a high dehumidification capability in conjunction with heat shielding. The ability of dehumidification and heat insulation is high, so it is optimal when a large amount of cold air can be generated and supplied using an air conditioner. In order to promote the creation of heat transfer that is contrary to heat insulation, it is highly necessary to transmit solar thermal energy from the A side beyond the moisture permeable windproof waterproof sheet, and it is obvious when a moisture permeable windproof waterproof sheet with low heat shielding performance is selected. Heat permeates the sheet surface and contributes to vaporization of liquid H 2 O. In addition, various elements are entangled in which direction vaporized H2O permeates. It is important to improve the efficiency of conduction beyond the inherent moisture conductivity of the substance. Retrospectively, the idea affects the environmental maintenance in which vaporization occurs due to a decrease in atmospheric pressure.
The embodiment of claim 4 is an example of latent heat storage that absorbs moisture and cools indoors. If solar thermal energy is acquired by solar radiation from the outside, it is vaporized and dehumidified from the outdoor side of the seat. If this phase change progresses, it directly acts on H2O on the indoor side of the sheet in the form of radiant heat to promote vaporization. At that time, most of the H 2 O is dehumidified to the outdoor side due to the pressure due to vaporization expansion and the pressure drop in the outer ventilation layer due to the action of the blower fan. In addition, if the supply of cool air from the indoor is continued during this period, the direction of moisture movement is maintained as it is.
The supply of cool air depends on the cool air generated by geothermal, radiant cooling and air conditioning.
When the cool air generated by using the air conditioner is not used as heat shielding energy, it is carried out according to the embodiment of claim 3. However, since the indoor dehumidifying load cannot be reduced, it must depend on the dehumidifying capacity of the air conditioner. As a result, the amount of heat generated and released increases. However, as described in the previous paragraphs 0078-79 and 0089, it can lead to a suitable implementation of a dehumidification system using midnight power.
Moisture absorption and cooling are promoted on the outdoor side, and the heat insulating layer can hold liquefied H2O. The liquefied H2O functions to block moisture conduction, and the sheet blocks liquefied H2O conduction. Therefore, while the liquefied H 2 O is held, the backflow of moisture can be prevented regardless of the relative humidity level inside and outside the heat insulating layer.
In order to promote the use of cool air by ventilation, an outer ventilation layer and a roof ventilation layer are provided, and moisture absorption / cooling is promoted to the heat insulation layer that has a high ratio of coordination between moisture absorption / release and H2O phase change. Plan. In summer, the energy stored in the latent heat at night can be used as heat insulation energy during the daytime.
By using the blower fan, the air flow rate in the outer ventilation layer and the roof ventilation layer can be increased. It encourages the supply of cold and moisture from radiant cooling at night. Since the efficiency of latent heat cold storage can be increased, the energy source for heat insulation that can be used in the daytime is also increased. Since the effect can be aimed at, the blower fan operates day and night. However, if a large amount of cold air can be generated and supplied from the indoor using an air conditioner, it is also effective to stop the blower fan at night and increase the efficiency of movement of liquefied H2O from the indoor. In that case, the indoor dehumidifying effect is enhanced. See paragraphs 0076-77.
In the embodiment of claim 3, the energy of nighttime radiative cooling is encouraged in the form of latent heat storage for outdoor use but not indoors. This is noticeable when the air conditioner is used indoors. That is, latent heat storage using the cooling energy generated by the air conditioner is not promoted, and as a result, energy transfer is not promoted, and moisture transfer can be separated from energy transfer.
When solid board such as cedar board is used for inner wall material as moisture absorbing / releasing material with a low ratio of moisture absorption / release and phase change of H2O, humidity adjustment using air conditioner combined with moisture absorption / release function of ceiling and inner wall is suitable Can be implemented. Specifically, when operating an air conditioner using midnight power to cool or dehumidify a room, not only can it be efficiently dehumidified while preventing the reverse flow of moisture, but it can also be used without being dehumidified by an air conditioner in the daytime. The material can absorb moisture and dehumidify from the room, and the relative humidity in the room can be kept at 60% or less. In other words, daytime humidity control using midnight power can be implemented as a system.
In carrying out the heat shielding function, it is possible to expect a dehumidifying effect that absorbs moisture from the inside and exhausts it to the outside through the heat insulating layer.
See the previous section for information on moisture backflow.
After all, as a function, the action and effect of absorbing moisture from the B surface and releasing it to the B surface (moisture content and equilibrium moisture content). Action and effect of absorbing moisture from side B and releasing moisture from side A after conduction of moisture (creation of heat conductivity contrary to heat insulation). Action and effect of absorbing moisture from surface A and releasing moisture from surface A (improvement of heat insulation performance in winter by suppressing energy transfer using a waterproof sheet). The above three actions and effects can be realized, and further, the action of absorbing moisture from the A surface and releasing moisture from the B surface after the conduction of moisture can be suppressed.

請求項9に記載の換気通気の手段について。
給気用連通管を通じて床下空間に取り入れられた新鮮な空気は、床下空間の蓄熱・放熱手段により暖気もしくは冷気の供給を受けることが出来る。その為、床下空間は正圧に保たれる。一方、室内空間は負圧に保たれているので、床下空間から内側通気層を経由した空気は連通口を通じて連通する室内空間に流入することが出来る。その際、床下空間で供給された暖エネルギーもしくは冷エネルギーは、通気層内を空気の流れに乗って対流式のエネルギーとして移動する。只、通気層内を移動する際に躯体としての壁へのエネルギー移動が生じ、壁体を暖めもしくは冷やすこととなる。それは、輻射式の暖房もしくは冷房の一要素となる。床面からの輻射エネルギーと併せて、輻射暖房もしくは輻射冷房のシステムの形成に繋げることが出来る。
ところで、輻射暖冷房を好適に実施するには、熱損失を最小にしなければならない。壁を通じての熱損失には、施工時の気密性能に設計段階の断熱性能が影響する。寒冷地では、付加断熱の方法により断熱性能を高めることも必要となる。
屋根体の構造を簡素にする場合、太陽熱エネルギーの大きさとの比較で、遮熱の手段は機能したとしても少なからずエネルギーは透過する。そこで、遮熱にプラスして効率的なエネルギーの排出を併せて実施する。その場合、換気と室内の空気循環とを効率的なエネルギー排出に繋げることが肝要である。
夏は、屋内の最上部に設置の吸気口を開放する。屋根体の断熱層を透過した太陽熱は室内の空気を暖めるが、暖められた空気は軽く、上昇して屋内の最上部に集中する。そこで、吸気口から排気用連通管を通じて、暖気は効率よく建物外に排出される。言わば、屋根体の構造及び暖気の性質を利用して、暖気を効率よく集め、排出するものである。
冬は、屋内の最上部に設置の吸気口を閉鎖して、排気を不可能とする。それで、床面近辺もしくは中間地点に設置の吸気口のみから排気することになり、暖められ上昇した空気は室内を循環した後に、吸気口から排気用連通管を通じて建物外に排出される。結果として、室内へのエネルギー供給及び酸素を豊富に含んだ新鮮な空気の供給と言う役割を果たしながら、換気することが出来る。
通常の換気システムは、1階用・2階用の換気扇をそれぞれ設置する。それに対し、壁体内空間を通気層として換気システムに組み込んだ場合、換気扇は一台で賄うことが可能である。その場合、新鮮な空気を室内に流入し、室内を循環した後に吸気口から建物外に排出するのは気密性能を確保できれば実施できるが、部屋割りされた小さな居室内で夏季の昼間に、暖気と冷気を分離して排気するのは簡単ではない。
建物の居住スペースの中で、位置的にも面積的にも重要な要素である居間もしくはリビングダイニングルームにおいて、1階から2階及び小屋裏に通じる吹抜け部を設ける。
暖かくて軽い空気は上昇し、冷たくて重い空気は下降する性質を持つ。それで、吹抜け部を通じては暖められて軽くなった空気は上昇し易く、しかも、換気システムを利用することで吹抜け部の最上部に設けた吸気口から建物外に排気できるので、その部分の気圧は低下する。それで、暖められて軽くなった空気は一層上昇し易く、冷気と分離し易くなる。
さて換気システムは、建物外に排気する為に排気用連通管を設ける。排気用連通管に連結する吸気口を吹抜け部の最上部に設ける。それで、最上部から吸気口を通じて建物外に排気することが出来る。一方、建物外と床下空間は給気用連通管によって連通し、壁体内の内側通気層に連通して流路を形成し、壁部の連通口を通じて室内空間に連通する。それで、建物外から取り入れた新鮮な空気は床下空間を経る過程で、夏であれば冷やされ、流路を流通して室内空間に流入する際は未だ冷たくて重い。全体としては、室内空間の内人間の体に接する箇所を新鮮で冷えた空気は流通する。尚、床下空間から流路を経て室内空間へ流入できるのは、床下空間と室内空間との間に生じる気圧差によるものである。この気圧差が無ければ、冷えた空気は内側通気層を上昇して室内空間に流入することは無い。
尚、床下空間から内側通気層を経由する過程で内壁部を冷やす。それは、輻射冷房効果を現す。その一方、内壁部近辺の室内空間の空気は中心部分に比較すれば冷たい。そして、冷えた空気は対流冷気として室内空間を流通する過程で酸素・冷気を消費されるが、その一方暖められ軽くなる。暖められ軽くなった空気は、吹抜け部の負圧の要因と合わさり上昇するので、最上部の吸気口を通じて建物外に排出される。結局、上昇する過程で対流式の冷気と暖気が混合するとしても、輻射冷房効果により涼房効果は持続する。
以上の簡単な工夫によって、輻射冷房効果を得ながら、暖かい空気と冷たい空気を分離し、暖かくて酸素を消費された空気を優先的に排気することが出来る。
The ventilation ventilation means according to claim 9.
Fresh air taken into the underfloor space through the air supply communication pipe can be supplied with warm air or cold air by means of heat storage / heat radiation in the underfloor space. Therefore, the underfloor space is kept at a positive pressure. On the other hand, since the indoor space is maintained at a negative pressure, air passing through the inner ventilation layer from the underfloor space can flow into the indoor space communicating through the communication port. At that time, the warm energy or cold energy supplied in the underfloor space travels as a convective energy on the air flow in the ventilation layer. When moving through the ventilation layer, energy transfer to the wall as the casing occurs, and the wall body is heated or cooled. It becomes an element of radiant heating or cooling. Together with the radiant energy from the floor, it can lead to the formation of a radiant heating or radiant cooling system.
By the way, in order to carry out radiation heating and cooling appropriately, heat loss must be minimized. The heat loss through the wall is affected by the heat insulation performance at the design stage on the airtight performance during construction. In cold regions, it is also necessary to improve the heat insulation performance by the method of additional heat insulation.
In the case of simplifying the structure of the roof body, compared with the solar thermal energy, even if the means for heat shielding function, the energy is transmitted. Therefore, we will implement efficient energy discharge in addition to heat insulation. In that case, it is important to link ventilation and indoor air circulation to efficient energy discharge.
In summer, open the air intake at the top of the indoor. The solar heat that has passed through the heat insulation layer of the roof warms the indoor air, but the warmed air is light and rises and concentrates at the top of the interior. Therefore, warm air is efficiently discharged outside the building from the intake port through the exhaust communication pipe. In other words, warm air is efficiently collected and discharged using the structure of the roof body and the nature of warm air.
In winter, the air intake installed at the top of the indoors is closed to make exhausting impossible. Therefore, the air is exhausted only from the air intake installed near the floor or in the middle, and the heated and raised air circulates in the room and is then discharged from the air intake through the exhaust communication pipe. As a result, it is possible to ventilate while serving as an energy supply to the room and a supply of fresh air rich in oxygen.
A normal ventilation system will be equipped with ventilation fans for the first and second floors. On the other hand, when the wall space is incorporated in the ventilation system as a ventilation layer, a single ventilation fan can be provided. In that case, fresh air can flow into the room, circulate through the room, and then be discharged outside the building if the airtightness can be secured. It is not easy to separate and exhaust the cool air.
In the living space of the building, in the living room or living / dining room, which is an important element both in terms of position and area, an atrium is provided from the first floor to the second floor and the back of the hut.
Warm and light air rises and cold and heavy air descends. Therefore, the air that has been warmed and lightened through the vents is easy to rise, and by using the ventilation system, the air can be exhausted outside the building through the air inlet provided at the top of the vents, so the pressure at that part is descend. Therefore, the warmed and lighter air is more likely to rise and separate from cold air.
The ventilation system is provided with an exhaust communication pipe for exhausting air outside the building. An intake port connected to the exhaust communication pipe is provided at the uppermost portion of the blowout portion. Therefore, it can be exhausted outside the building through the air inlet from the top. On the other hand, the outside of the building and the underfloor space communicate with each other through an air supply communication pipe, communicate with the inner ventilation layer in the wall body to form a flow path, and communicate with the indoor space through the communication port of the wall portion. Therefore, fresh air taken from outside the building is chilled in summer in the process of passing through the underfloor space, and is still cold and heavy when flowing through the flow path into the indoor space. As a whole, fresh and chilled air circulates in places in the indoor space that touch the human body. In addition, what can flow into the indoor space through the flow path from the underfloor space is due to a pressure difference generated between the underfloor space and the indoor space. Without this pressure difference, the cooled air will not rise up the inner ventilation layer and flow into the indoor space.
The inner wall is cooled from the underfloor space through the inner ventilation layer. It exhibits a radiant cooling effect. On the other hand, the air in the indoor space near the inner wall is colder than the central part. The chilled air consumes oxygen and cold air as it flows through the indoor space as convection cold air. On the other hand, it is warmed and lightened. The warmed and light air rises together with the negative pressure factor in the blow-off area, and is thus discharged outside the building through the top inlet. Eventually, even if convection-type cold air and warm air are mixed in the ascending process, the cooling effect is sustained by the radiation cooling effect.
By the above simple device, it is possible to separate warm air and cold air while obtaining a radiation cooling effect, and to preferentially exhaust warm and oxygen-consuming air.

湿度調節に関しては、床下空間において放射冷却・地熱・エアコンから冷却エネルギーを供給された後、流路内を流通する過程で冷却エネルギーは吸放湿性を具備する断熱材に吸冷・吸湿される形で湿気を失う。その結果、相対湿度の低下した空気が流路から室内に流入し、室内の温湿度環境を改善する。
吸放湿性を具備する断熱層は、屋外側で放射冷却の冷却エネルギーを吸冷・吸収する一方、屋内で吸収し液化したH2Oと合わせて昼間日射取得する太陽熱エネルギーの吸収に貢献する。即ち、遮熱である。
遮熱の効果は、屋内の温度上昇を抑制できるだけに止まらない。太陽熱を吸収する形で断熱層内の湿気を安定して屋外に気化・放湿出来るので、屋外の相対湿度の高さに関係なく、相対湿度の低い屋内側から湿気を吸収し屋外側に移動することができ、屋外から屋内への湿気の逆流を阻止できる。
さて、床材はその性質上・用いる環境上、その吸放湿・湿気伝導の方向は相対湿度・含水率・平衡含水率との関係により定まる。そして、床下空間の空気は、地熱・放射冷却もしくはエアコンの生成・供給する冷気により冷やされ、相体湿度は上昇する。それで、相対湿度の上昇する床下空間から湿気を吸収し、床材を透過して相対湿度の低い室内空間に放湿できる。床材の含水率管理の上からも、床下空間における結露発生のリスクを縮減する上からも、課題は解決される。更に、室内の湿気は太陽熱エネルギーを待って、室内に接する断熱層を透過して屋外に排出される。結局、除湿負荷を好適に管理する上でも、課題は解決される。
換気システム稼動により外気を床下に導入する場合、夏季の相対湿度の高い空気に含まれる多量の湿気は、床下空間に連通する内側通気層を経由し、壁体の断熱層を透過して屋外に排出される。それで、床下空間に接する床材を透過して室内に放湿される排出路と合わせて、二つの異質の排出路を形成される。
二つの異質の排出路の役割は補完性を持っている。一つは、通風により、即ち、対流熱によるエネルギー移動と同様の方法により湿気を移動する。この方式の欠点は、床下空間全体の通風を満遍なく好適に維持することが難しいところにある。しかも、空気汚染を引き起こす撹拌等の手段を特別に用いることは難しい。その様な状況の下では、床下の一部に偏って滞留する湿気を吸放湿材によって吸収する効果は大きく、相対湿度の高止まりを未然に防止し、結露発生のリスクを無くすことができる。換言すると、吸放湿に伴う排出路は、夏季に相対湿度の高止まりを未然に防止し、結露発生のリスクを無くせる限りにおいて形成されるのであり、つまり、必要なときに形成されるのであり、冬季の様に外気の相対湿度が低い時期には排出路は形成されない。
床下空間内及び室内に設置のエアコンを稼動する場合、湿気は直接屋外に排出される。この三つ目の排出路が形成され、現実に作用・効果を及ぼした場合、先の二つの排出路はエアコンの除湿負荷を増大することなく、好適に稼動し、湿気の屋外への排出に貢献する。即ち、三つの排出路はその機能の及ぶ範囲で好適に実施する限り、併せて屋内の除湿効果の実現に貢献でき、快適な屋内環境を実現できる。
最終的には、太陽熱エネルギーの活用を図ることにより、湿気を屋外に好適に排出でき、しかも、それぞれの部材(床・壁・天井の仕上げ材、土台・柱・梁等の構造材)の含水率管理を好適に実施できる。
Regarding humidity control, after cooling energy is supplied from the radiant cooling, geothermal, and air conditioner in the underfloor space, the cooling energy is absorbed and absorbed by a heat-insulating material that absorbs and releases moisture in the flow through the channel. Loses moisture. As a result, air with a reduced relative humidity flows into the room from the flow path, improving the indoor temperature and humidity environment.
The heat insulating layer having moisture absorption and desorption properties absorbs and absorbs the cooling energy of radiation cooling on the outdoor side, and contributes to the absorption of solar thermal energy acquired by daytime solar radiation together with H2O absorbed and liquefied indoors. That is, heat insulation.
The effect of heat insulation does not stop only to suppress indoor temperature rise. Absorbs moisture from the indoor side where the relative humidity is low and moves to the outdoor side, regardless of the outdoor relative humidity level, because the moisture in the heat insulation layer can be stably vaporized and released outside by absorbing solar heat. It is possible to prevent the backflow of moisture from the outside to the inside.
By the way, the flooring is determined by the relationship between the relative humidity, the moisture content, and the equilibrium moisture content, depending on the nature and environment of use. Then, the air in the underfloor space is cooled by geothermal / radiative cooling or cold air generated / supplied by the air conditioner, and the relative humidity increases. Therefore, moisture can be absorbed from the underfloor space where the relative humidity is increased, and can pass through the flooring and be released into the indoor space where the relative humidity is low. The problem is solved both from the management of the moisture content of the flooring material and from the reduction of the risk of condensation in the underfloor space. Furthermore, the indoor humidity waits for solar thermal energy, passes through the heat insulating layer in contact with the room, and is discharged outdoors. Eventually, the problem can be solved even in suitably managing the dehumidifying load.
When outside air is introduced under the floor by operating the ventilation system, a large amount of moisture contained in the air with high relative humidity in summer passes through the inner ventilation layer communicating with the under-floor space and passes through the heat insulation layer of the wall to the outside. Discharged. Therefore, two different discharge paths are formed together with the discharge path that passes through the floor material in contact with the underfloor space and is released into the room.
The roles of the two dissimilar discharge channels are complementary. One is to move moisture by ventilation, that is, in a manner similar to energy transfer by convection heat. The disadvantage of this method is that it is difficult to maintain a favorable ventilation throughout the underfloor space. Moreover, it is difficult to specially use means such as stirring that causes air pollution. Under such circumstances, the moisture that is concentrated in a part of the floor is absorbed by the moisture absorbent material, preventing the relative humidity from staying high and eliminating the risk of condensation. . In other words, the discharge path due to moisture absorption / release is formed as long as it prevents the high relative humidity from stopping in summer and eliminates the risk of condensation, that is, it is formed when necessary. There is no discharge channel when the relative humidity of the outside air is low as in winter.
When operating an air conditioner installed in an underfloor space or indoors, moisture is discharged directly to the outdoors. When this third discharge path is formed and acts and effects in reality, the previous two discharge paths operate favorably without increasing the dehumidification load of the air conditioner, and discharge moisture to the outdoors. To contribute. In other words, as long as the three discharge paths are suitably implemented within the range of their functions, they can contribute to the realization of an indoor dehumidifying effect and can realize a comfortable indoor environment.
Ultimately, by utilizing solar thermal energy, moisture can be suitably discharged outdoors, and the water content of each member (finishing material for floors, walls, ceilings, structural materials such as foundations, columns, beams, etc.) Rate management can be suitably implemented.

地熱・放射冷却・太陽熱等の自然エネルギーは全てが常時利用できるわけではない。夜間のみとか昼間のみとかで、直接利用できる時間帯に制約を受ける場合がある。その場合でも、余剰のエネルギーを蓄熱に回して、本来利用できない時間帯に有効利用できれば、その蓄熱システムは価値あるものとなる。
さて、自然エネルギーを効果的に利用する上では、補完的に利用できるエネルギーを準備することが大切である。しかも、蓄熱システムは同じものを兼用できることが、コスト削減の上からも望ましい。そうなると、エネルギー消費効率の高さから言っても、第一の候補はエアコンによるエネルギー供給である。しかも、社会的に余剰の深夜電力を有効利用できれば、イニシャルコスト・ランニングコストの両面からも有益となる。なお、空気循環手段及び蓄熱手段への対流熱によるエネルギー供給の効率を考慮すると、エアコンは床下空間に設置するのが好適である。
エネルギー供給手段が対流熱によるエネルギー供給を旨とする場合、蓄熱・放熱の効率の面から蓄熱の方法は限られてくる。基礎土間コンクリートへの直接の蓄熱は十分にその効果を得ることは出来ず、必要な蓄熱量を確保できない。只、蓄熱容量は、地中への蓄熱をも併せると膨大となり、十分な容量を確保することが出来る。
さて、凝固・融解の相変化に伴うエネルギー移転を利用した蓄熱・放熱は効率の面からは優れたものがある。但し、蓄熱材の蓄熱容量が大きくは無いので、建物全体の冷暖房の必要量を確保するとなると、施工上並びにイニシャルコストの面から制約が出てくる。
Natural energy such as geothermal, radiant cooling and solar heat is not always available. There may be restrictions on the time zone that can be used directly at night or only in the daytime. Even in that case, if the surplus energy is turned into heat storage and can be effectively used in a time zone that cannot be used originally, the heat storage system becomes valuable.
Now, in order to effectively use natural energy, it is important to prepare energy that can be used complementarily. In addition, it is desirable from the viewpoint of cost reduction that the same heat storage system can be used. Then, even if it says from the high energy consumption efficiency, the first candidate is the energy supply by an air conditioner. In addition, if socially surplus midnight power can be used effectively, it will be beneficial both in terms of initial cost and running cost. In consideration of the efficiency of energy supply by convection heat to the air circulation means and the heat storage means, the air conditioner is preferably installed in the underfloor space.
When the energy supply means intends to supply energy by convection heat, the heat storage method is limited in terms of the efficiency of heat storage and heat dissipation. The direct heat storage on the foundation soil concrete cannot obtain the effect sufficiently, and the necessary amount of heat storage cannot be secured.只 The heat storage capacity becomes enormous when combined with the heat storage in the ground, and a sufficient capacity can be secured.
In terms of efficiency, heat storage and heat dissipation using energy transfer accompanying the phase change of solidification / melting are excellent. However, since the heat storage capacity of the heat storage material is not large, if the necessary amount of air conditioning for the entire building is secured, there will be restrictions in terms of construction and initial cost.

そこで、図1に記載の様に、蓄熱材から構成される蓄熱体及び基礎土間コンクリート及び地中を一つの蓄熱層と考える。蓄熱体と基礎土間コンクリートは直接接しているので伝熱の方法で熱を伝導することが出来、同じく基礎土間コンクリートから地中へも伝熱の方法で熱を伝導することが出来るので、エネルギーの移動が効率的である。また、気密断熱性能の高い建物内での直接のエネルギー移動であるから、エネルギー損失は生じず、この面でも非常に効率の高い蓄熱手段だといえる。
地中は地表下5M位で年間を通して温度が安定している。只、そこから大量にエネルギーを安定的に供給できる為には、設備・装置が大掛かりになり、イニシャルコストの面で不利になる。それで、地表下2Mの環境を蓄熱に利用する。その為の工夫の一つとして、建物周囲の布基礎部から2M乃至3Mの部分は基礎土間コンクリ−トの下面に断熱材を敷き置きする。それだけの工夫で、地表の温度変化による影響を軽減することが出来、断熱材を敷き置きしない部分では、地表下2乃至3Mの環境を実現でき、その環境を有効に利用したエネルギー供給手段を兼ねた蓄熱層として、その分熱損失を防止することが出来る。また、基礎土間コンクリートの下面に防湿シートを貼設することで、地中からの湿気の浸入を阻止でき、同時に、熱損失の防止にも効果を表す。なお、建物の利用に不可欠の配管設備は建物周囲の基礎近辺に集中するので、例え、漏水が発生しても蓄熱層への影響は小さい。また、管理・補修も簡単に行えるメリットがある。
蓄熱の効率だけでなく、放熱に関しても効率が高い。冷房時に例をとれば、蓄熱体からは床下空間の温度変化に対応する形で融解しながら放熱(冷)する。しかも、直接接する基礎土間コンクリートに蓄えられたエネルギーは伝熱式により蓄熱体に補充されるので、蓄熱体の蓄熱容量を超えて放熱しても床下空間へのエネルギー供給を継続することが出来る。
床下空間及び蓄熱層へのエネルギー供給は、太陽熱・エアコンにエネルギー源を求める場合対流熱の形で直接床下空間に供給され、それを、一方で床下空間から室内空間への空気循環手段を経由して室内空間へ供給され、他方で床下空間から蓄熱体を経由して蓄熱体と基礎土間コンクリートと地中で構成される蓄熱層にエネルギーを蓄熱することができる。更に、地熱は地中から伝熱によって蓄熱層に直接供給されるが、特に冷房のエネルギー源としての冷気の利用効率を高める点で効率的である。蓄熱体を経由して放熱する工夫を加えることで、冷気としての使い勝手がよくなり、床下空間と室内空間との空気循環手段を経由した冷気の供給は、供給する時間帯をも制御することが出来る。また、連通管に備わった送風ファンの方向を変更することで、冷房用・暖房用の循環路の変更が簡単に出来る。なお、太陽熱の集熱は屋根通気層を通じて実施し、床下空間への供給は連通管を用いた公知の手段を用いる。
Therefore, as shown in FIG. 1, the heat storage body composed of the heat storage material, the foundation soil concrete, and the ground are considered as one heat storage layer. Since the heat storage body and the concrete between the foundation soil are in direct contact, heat can be conducted by the heat transfer method, and heat can be conducted from the foundation soil concrete to the ground by the heat transfer method as well. The movement is efficient. In addition, since it is a direct energy transfer in a building with high airtight insulation performance, no energy loss occurs, and it can be said that this is a very efficient heat storage means.
The underground is about 5M below the surface, and the temperature is stable throughout the year.只 In order to stably supply a large amount of energy from there, facilities and equipment become large, which is disadvantageous in terms of initial cost. Therefore, the 2M environment below the earth's surface is used for heat storage. As one of the contrivances, heat insulation is laid on the lower surface of the foundation soil concrete for the 2M to 3M portion from the fabric foundation around the building. With just that ingenuity, the effects of temperature changes on the surface of the earth can be mitigated, and in areas where insulation is not laid down, an environment of 2 to 3M below the surface of the earth can be realized, which also serves as an energy supply means that effectively uses that environment. As a heat storage layer, heat loss can be prevented accordingly. In addition, by attaching a moisture-proof sheet to the lower surface of the foundation soil concrete, it is possible to prevent moisture from entering the ground, and at the same time, it is effective in preventing heat loss. In addition, since the piping facilities indispensable for the use of the building are concentrated near the foundation around the building, even if water leakage occurs, the effect on the heat storage layer is small. In addition, there is an advantage that management and repair can be easily performed.
Not only heat storage efficiency but also heat dissipation is high. Taking an example during cooling, the heat storage body radiates (cools) heat while melting in a form corresponding to the temperature change in the underfloor space. Moreover, since the energy stored in the concrete directly in contact with the foundation is replenished to the heat storage body by a heat transfer method, the energy supply to the underfloor space can be continued even if the heat storage capacity of the heat storage body is exceeded.
The energy supply to the underfloor space and the heat storage layer is supplied directly to the underfloor space in the form of convection heat when seeking an energy source from the solar heat / air conditioner, on the other hand, via the air circulation means from the underfloor space to the indoor space. The energy can be stored in the indoor space, and on the other hand, energy can be stored in the heat storage layer composed of the heat storage body, the concrete between the foundation soil and the ground through the heat storage body from the underfloor space. Furthermore, although geothermal heat is directly supplied from the ground to the heat storage layer by heat transfer, it is particularly efficient in increasing the utilization efficiency of cold air as an energy source for cooling. By adding heat dissipation via the heat storage body, it becomes easier to use as cold air, and the supply of cold air via the air circulation means between the underfloor space and the indoor space can also control the time period of supply. I can do it. Further, by changing the direction of the blower fan provided in the communication pipe, it is possible to easily change the cooling and heating circulation paths. Note that solar heat collection is performed through the roof ventilation layer, and supply to the underfloor space is performed using a known means using a communication pipe.

さて、先の「液化」は所謂結露の意味です。結露は、昔から建物に被害をもたらすものとして、忌避されてきました。それだけに、結露を「作用」として利用することには精神的な葛藤・飛躍が必要です。只、精神的葛藤・飛躍だけで済むものではありません。具体的には、断熱材を含めた躯体の含水率の上昇は避けられず、含水率上昇に伴う弊害に留意が必要です。
ところで、躯体の含水率上昇は、カビ・腐朽菌の繁殖を招きやすい環境を醸成し勝ちです。その意味で、含水率の上昇は必ずしも好ましいものではありません。しかし、遮熱・除湿機構の効率的運用・稼動を図るには、含水率は高く維持せざるを得ません。言わば、二律背反性を内包しています。それで、躯体の含水率の上昇を抑えながら、つまり、躯体の含水率を好適に管理しながら、吸湿・吸冷の効率向上及び放湿・吸熱の効率向上とを連携し、遮熱・除湿機構の効率的運用・稼動を図ることは大きな課題となっています。
The previous “liquefaction” means so-called condensation. Condensation has long been avoided as it causes damage to buildings. For that reason, the use of dew condensation as an “action” requires spiritual conflict and leap. Samurai, mental struggles / leaps are not enough. Specifically, an increase in the moisture content of the frame including the heat insulating material is inevitable, and it is necessary to pay attention to the harmful effects associated with the increase in the moisture content.
By the way, an increase in the moisture content of the skeleton tends to foster an environment in which mold and decaying fungi are likely to grow. In that sense, an increase in moisture content is not always desirable. However, the water content must be maintained at a high level for efficient operation and operation of the heat shield and dehumidification mechanism. In other words, it has a contradictory nature. Therefore, while suppressing the increase in the moisture content of the housing, that is, while appropriately controlling the moisture content of the housing, it cooperates with improving the efficiency of moisture absorption / cooling and improving the efficiency of moisture release / heat absorption, thereby providing a heat shielding / dehumidification mechanism. Efficient operation and operation of the system has become a major issue.

ところで、夜間に壁体に吸湿する際の相対湿度は周囲の温度低下により上昇し、吸湿の圧力は高まるが、その際、H2Oの相変化によって液化を生じると、同時に生成する凝縮熱により温度上昇要因を生むこととなる。結局、液化を生むだけの冷却エネルギーの供給が持続しなければ、相変化も持続しない。
H2Oが相変化して蒸発する際には、周囲から気化熱が奪われる。この気化熱の発生が持続すると、気化熱の蓄積によって太陽熱の日射取得に因る壁体の温度上昇は抑えられる。
ところで、壁体に液体状の「水」を直接供給・吸収させれば、それが気化・蒸発する際に周囲から気化熱を奪うので、継続して昼間太陽熱を吸収し、気化・蒸発することが可能である。只、水を直接吸収させる方法を採用していないので、これまでの方法では周囲から継続して気化熱を奪うことはない。
それで、「水」の供給・吸収に代わるものとして、湿気の吸収並びに冷却エネルギーの吸収を連携して行い、壁体での凝縮熱及び水の生成に繋がる相変化である潜熱式蓄冷が重要となる。しかも、相変化を経て液化する際に生じる凝縮熱を吸収する為に投じられた冷却エネルギーの総量(放射冷却・地熱)の範囲内で、潜熱を利用した遮熱の効果を得られる。
尚、特許査定を得た先願特2004−360560号で示した、三層に構成される断熱層の内、外側の吸放湿性を具備する断熱材については、吸放湿とH2Oの相変化との連携の比率に関して高いか低いかの特定を行っていない。それに対し、後願では、吸放湿とH2Oの相変化との連携の比率の高い断熱材で構成し、下位概念化を図る。
By the way, the relative humidity when moisture is absorbed into the wall at night increases due to a decrease in ambient temperature, and the pressure of moisture absorption increases. At that time, if liquefaction occurs due to the phase change of H2O, the temperature rises due to condensation heat generated at the same time. It will be a factor. After all, if the supply of cooling energy sufficient to generate liquefaction does not continue, the phase change will not continue.
When H 2 O changes phase and evaporates, heat of vaporization is taken away from the surroundings. If the generation of this heat of vaporization continues, the temperature rise of the wall body due to solar solar radiation acquisition is suppressed by the accumulation of heat of vaporization.
By the way, if liquid "water" is directly supplied to and absorbed by the wall, it will take away heat of vaporization when it vaporizes and evaporates, so it continuously absorbs daytime solar heat and vaporizes and evaporates. Is possible.只 Since the method of directly absorbing water is not adopted, the conventional method does not continuously take away the heat of vaporization from the surroundings.
Therefore, as an alternative to the supply and absorption of “water”, the absorption of moisture and the absorption of cooling energy are performed in cooperation, and latent heat-type cold storage, which is a phase change that leads to condensation heat and water generation in the wall, is important. Become. In addition, a heat shielding effect using latent heat can be obtained within the range of the total amount of cooling energy (radiation cooling / geothermal energy) invested in order to absorb the condensation heat generated when liquefying through phase change.
As for the heat insulating material having moisture absorption / release properties on the outer side of the three layers of heat insulation layers shown in Japanese Patent Application No. 2004-360560, which has been granted a patent, the phase change between moisture absorption / release and H2O. It is not specified whether the ratio of cooperation with is high or low. On the other hand, in the later application, it is composed of a heat insulating material having a high ratio of the moisture absorption and desorption and the phase change of H 2 O, and a lower conceptualization is achieved.

壁体への湿気の供給、並びに、冷却エネルギーの供給を制御できない場合でも、吸放湿とH2Oの相変化との連携は見られる。
その連携を具体的に記すと、土壁から形造られる古来の住宅は、通風を旨とし、しかも、真壁造りとなっている。それで、通風によって湿気並びに放射冷却エネルギーの供給が行なわれる。そして、土壁への湿気の吸収及び放射冷却吸収の連携により、夜間潜熱式の蓄冷は可能である。只、湿気を吸収することと液体状のH2Oを吸収することとの相違について、手段・効果の面で曖昧なまま区別されることも無く処理されてきた。それが、従来の技術水準である。
そして、昼間の太陽の日射取得の際に、放湿並びに相変化による気化熱の発生は起こる。これが、湿気の吸収・放出と放射冷却の吸収・放出との連携の中で、遮熱に繋がる機構の原始的なものである。但し、湿気の吸収の方向付け並びに湿気の放出の方向付けの制御が行われていないので、昼間屋内の湿度調節の効果は小さい。又、結露(液化)を作用としてエネルギー移転から見直し、伝熱性のエネルギー移動の一部として捉え、太陽熱エネルギーの日射取得の有無を含水率管理に利用しながら、除湿・遮熱の効果を高めることも無かった。結局、吸放湿とH2Oの相変化との連携を、その方向等に関して制御できる高度の遮熱・除湿機構への展開には繋がらない。更に、伝熱性の制御が出来ないので、冬季にエネルギー損失の発生を抑える手段を持たない。
Even when the supply of moisture to the wall body and the supply of cooling energy cannot be controlled, the association between moisture absorption / release and the phase change of H 2 O can be seen.
In concrete terms, the old houses built from earthen walls are designed for ventilation and are made with true walls. Therefore, moisture and radiant cooling energy are supplied by ventilation. And the night latent heat type cold storage is possible by cooperation of moisture absorption to the earth wall and radiation cooling absorption. The difference between absorbing moisture and absorbing liquid H 2 O has been processed without being vaguely distinguished in terms of means and effects. That is the state of the art.
And in the daytime solar radiation acquisition, generation of vaporization heat due to moisture release and phase change occurs. This is the primitive mechanism that leads to heat insulation in the linkage between moisture absorption / release and radiation cooling absorption / release. However, since the direction of moisture absorption and the direction of moisture release are not controlled, the effect of humidity adjustment in the daytime is small. Also, reviewing energy transfer as a function of dew condensation (liquefaction), taking it as part of heat transfer energy transfer, and enhancing the effect of dehumidification and heat insulation while using solar water solar radiation acquisition for moisture content management There was also no. Eventually, it does not lead to the development of an advanced heat shielding / dehumidifying mechanism that can control the cooperation between moisture absorption / release and the phase change of H 2 O with respect to its direction and the like. Furthermore, since the heat transfer cannot be controlled, there is no means for suppressing the occurrence of energy loss in winter.

それに対し新しい技術では、放射冷却・地熱・深夜電力利用のエアコンのもたらす冷却エネルギーを蓄熱しながら、一方で、室内空間へ供給して気密断熱層における吸湿・吸冷を促進し、室内の湿度調節を行い、しかも、太陽の日射取得を利用した湿気という潜熱の形での排出に繋げながら、昼間の遮熱機能を好適に実施することができる。
含水率管理に関しては、吸放湿性を具備する断熱材の潜熱的蓄冷の態様の違いを利用して好適に実施する。具体的には、太陽熱の日射取得を得られない北側の気密断熱層は、吸湿と液化との連携の比率の低い断熱材を用い、もしくは、吸放湿性を具備しない断熱材を用いて構成する。その簡単な工夫によって、気密断熱層の含水率上昇を抑えながら、液化を伴った潜熱的蓄冷を促進し、一方で室内の湿度調節の効果を上げながら、他方で昼間の遮熱効果をも上げることができる。
詳しく説明すると、気密断熱層を吸湿と液化との連携の比率の低い断熱材を用いて構成すると、吸収された湿気は大半が湿気のまま保持され、外側通気層・屋根通気層を通じて屋外へ排出される。潜熱のエネルギーを多く含まないので、太陽熱の日射取得を必要とせず、昼間の常温の気体から気化に必要な運動エネルギーの供給を受けることができる。それで、太陽の日射しない北側の気密断熱層は、吸湿と液化との連携の比率の低い断熱材を用いて構成しても、必要な放湿を実施することが出来、結果として含水率の高止まりを避けることができる。
但し、上記の手段では室内の湿度調節は限界点が早く訪れ、快適とされる湿度調節を好適に行う迄には至らない。快適とされる湿度調節を実現できるためには、簡単ではあるが一工夫が必要である。それは、吸放湿性を具備する断熱材を二層に分け、その間に透湿防風防水シートを挟み、三層構造に構成する。その簡単な工夫によってより快適とされる湿度環境を実現することが出来る。それは、温暖地で室内に除湿装置を用いて除湿する場合、あるいは、エアコンを用いて冷却エネルギーを供給して除湿する場合に顕著にその効果は現れる。(詳細は、0075−76の項を参照のこと。)
昼間、屋根棟下換気口に通じる送風ファンを駆動し、屋根通気層及び屋根棟下空間の空気を強制的に建物外に排出する。すると、気圧の関係で、屋根通気層に連通する外側通気層を通じた外気の流量は増大する。空気の流れが活発化すれば、相対湿度の上昇並びに気圧上昇は阻止され、むしろ、相対湿度の低下並びに気圧低下のもたらす沸点の低下により断熱材からの放湿は持続的に促進される。つまり、放湿の効率向上である。そして、外気の流入を制御し、棟換気口からの逆流を防止する為に、開閉式の棟換気口は閉じる。
気密断熱層の断熱材からの放湿が継続・強化されれば、断熱材の含水率は表面ほど急激に低下する。それで、H2Oの補充が必要になる。
夜間、送風ファンを駆動すると、昼間の放湿によって断熱材の含水率の低下した分の補充を、外側通気層を通じて取り入れる外気に含まれる湿気から積極的に行なう結果となる。そこでは、湿気の吸収及び相変化に伴い生じる凝縮熱に対しても、放射冷却による温度低下によって、前記の外側通気層の下端から取り入れる外気は冷却され、その冷却エネルギーの効果で、前記の凝縮熱は処理される。断熱材に熱は籠らないので、湿気の吸収は効率よく継続・維持される。
そして、夜間に液化によって蓄冷されたエネルギーは、昼間に日射取得する太陽熱エネルギーを吸収し、顕熱を湿気という潜熱の形での気化・放湿のエネルギー源へと変化する。それは、昼間の遮熱効果に繋がる。
尚、送風ファンを夜間は稼動しない場合、外側通気層と屋根通気層を通じた放射冷却の取得は抑制され、結果として屋外からの吸湿も抑制される。その分、気密断熱層における昼間の含水率低下を要因とする屋内からの吸湿は促進され、室内の除湿効果を高めることができる。
On the other hand, the new technology stores the cooling energy provided by air conditioners using radiant cooling, geothermal heat, and midnight power, while at the same time supplying it to the indoor space to promote moisture absorption and cooling in the airtight insulation layer, thereby adjusting indoor humidity. In addition, the heat insulation function during the daytime can be suitably implemented while leading to the discharge in the form of latent heat of moisture utilizing solar solar radiation acquisition.
The water content management is preferably carried out by utilizing the difference in the latent heat storage mode of the heat insulating material having moisture absorption / release properties. Specifically, the airtight heat insulating layer on the north side where solar thermal solar radiation cannot be obtained is formed using a heat insulating material with a low ratio of cooperation between moisture absorption and liquefaction, or a heat insulating material that does not have moisture absorption / release properties. . With this simple device, while suppressing the increase in the moisture content of the airtight heat insulating layer, it promotes latent heat storage with liquefaction, while increasing the effect of adjusting the humidity in the room, while also increasing the heat insulation effect during the day. be able to.
Explaining in detail, when the airtight heat insulating layer is configured with a heat insulating material with a low ratio of moisture absorption and liquefaction, most of the absorbed moisture is retained as moisture and discharged to the outside through the outer ventilation layer and roof ventilation layer. Is done. Since it does not contain much latent heat energy, it is not necessary to acquire solar heat solar radiation, and can be supplied with kinetic energy necessary for vaporization from a room temperature gas in the daytime. Therefore, even if the airtight heat insulation layer on the north side where the sun does not radiate is constructed using a heat insulating material with a low ratio of moisture absorption and liquefaction, the necessary moisture can be released, resulting in a high moisture content. Stop can be avoided.
However, in the above-mentioned means, the limit of humidity control in the room comes early, and it is not possible to suitably perform the humidity control that is comfortable. In order to realize comfortable humidity control, it is necessary to devise a simple method. It has a three-layer structure in which a heat insulating material having moisture absorption / release properties is divided into two layers, and a moisture-permeable windproof waterproof sheet is sandwiched between them. This simple device can realize a more comfortable humidity environment. The effect appears remarkably when dehumidifying indoors using a dehumidifier in a warm region, or when cooling energy is supplied and dehumidified using an air conditioner. (Refer to section 0075-76 for details.)
During the daytime, the fan that leads to the ventilation hole under the roof ridge is driven, and the air in the roof ventilation layer and the space under the roof ridge is forcibly discharged outside the building. Then, the flow rate of the outside air through the outer ventilation layer communicating with the roof ventilation layer increases due to the atmospheric pressure. When the air flow is activated, the increase in relative humidity and the increase in atmospheric pressure are prevented, but rather the moisture release from the heat insulating material is continuously promoted by the decrease in relative humidity and the decrease in boiling point resulting from the decrease in atmospheric pressure. That is, the efficiency of moisture release is improved. And in order to control the inflow of outside air and to prevent the backflow from the building ventilation opening, the openable building ventilation opening is closed.
If moisture release from the heat insulating material of the airtight heat insulating layer is continued and strengthened, the moisture content of the heat insulating material decreases more rapidly as the surface. Therefore, it is necessary to replenish H2O.
When the blower fan is driven at night, replenishment of the reduced moisture content of the heat insulating material due to daytime moisture release is actively performed from the moisture contained in the outside air taken in through the outer ventilation layer. In this case, even with respect to the heat of condensation caused by moisture absorption and phase change, the outside air taken in from the lower end of the outer ventilation layer is cooled by the temperature drop due to radiative cooling, and the condensation energy is used to cool the condensation. Heat is processed. Since heat is not applied to the heat insulating material, moisture absorption is continued and maintained efficiently.
The energy stored by liquefaction at night absorbs solar thermal energy acquired by solar radiation in the daytime, and changes sensible heat into an energy source for vaporization and moisture release in the form of latent heat called moisture. This leads to a daytime heat insulation effect.
When the blower fan is not operated at night, acquisition of radiative cooling through the outer ventilation layer and the roof ventilation layer is suppressed, and as a result, moisture absorption from the outside is also suppressed. Accordingly, moisture absorption from the indoor due to a decrease in the moisture content in the daytime in the airtight heat insulating layer is promoted, and the dehumidifying effect in the room can be enhanced.

新しい技術では、確保された流路を空気が流通する中で、放射冷却・地熱のもたらす冷却エネルギーを供給する。同時に流路の確保によって、湿気の供給及び吸湿活動を制御し、促進することが出来る。しかも、吸湿に液化の相変化を伴う場合、冷却エネルギーを気密断熱層に移転した後の空気は温度上昇する。それで、湿気を吸収された後の相対湿度の低下した空気及び温度の上昇した空気の流通及び室内への流入が可能である。同時に、新たな冷却エネルギーの流通・供給が継続的に必要かつ可能である。それで、吸湿と液化の連携の比率を制御することが出来、断熱性に背反する伝熱性を保持し、エネルギー移動の量の制御に繋がる。これは、壁体内二重通気システムと建物内の換気システムとの連携した24時間換気システムによって可能になる。
更に、相変化の有無に関わらず、壁体からの湿気の放出及び通気層を通じた排湿活動を促進することが出来る。又、屋外から取得する運動エネルギーの量に制約されるが、屋内からのエネルギー移動を可能にする。この湿気の形での排熱システムと、先の24時間換気システムの備える給湿・給冷システムとの補完的な連携によって、補完的連携による制御(促進・抑制)を通じた屋内の調湿効果と温度上昇抑制効果が繋がる高度の遮熱・除湿機構へと発展することが出来る。
In the new technology, the cooling energy provided by radiant cooling and geothermal heat is supplied while air flows through the secured channel. At the same time, the supply of moisture and moisture absorption activity can be controlled and promoted by securing the flow path. In addition, when the moisture absorption is accompanied by a liquefaction phase change, the temperature of the air after the cooling energy is transferred to the airtight heat insulating layer increases. Therefore, it is possible to distribute the air having a decreased relative humidity and the air having an increased temperature after the moisture is absorbed and to flow into the room. At the same time, it is necessary and possible to continuously distribute and supply new cooling energy. Therefore, it is possible to control the ratio of cooperation between moisture absorption and liquefaction, maintain heat conductivity contrary to heat insulation, and lead to control of the amount of energy transfer. This is made possible by a 24-hour ventilation system in conjunction with a double wall ventilation system and a ventilation system in the building.
Furthermore, it is possible to promote the release of moisture from the wall body and the moisture exhausting activity through the ventilation layer regardless of the presence or absence of a phase change. Moreover, although it is restricted by the amount of kinetic energy acquired from the outdoors, it enables energy transfer from the inside. Indoor humidity control effect through control (promotion / suppression) through complementary cooperation through complementary cooperation between the exhaust heat system in the form of moisture and the humidification / cooling system provided in the previous 24-hour ventilation system It can be developed into an advanced heat shielding / dehumidifying mechanism that can be connected to the temperature rise suppression effect.

前記の屋内の吸放湿機能とH2Oの相変化とを連携する機構の働きを意図する方向に導き、より快適な室内環境をもたらすには、それぞれの役割を担う機能が更に効率を高めなければならない。
前記の屋内の吸放湿機能とH2Oの相変化とを連携するには、断熱材によって互いに隔てられる外側通気層と内側通気層並びに屋根通気層と天井裏空間が互いの補完関係を意図し、強化し、それぞれの機能の効率を追求する中で、吸放湿性を具備する断熱材の表面並びに内部で起こる「H2Oの相変化」に伴うエネルギー移転を迅速に実現しなければならない。
In order to bring the indoor moisture absorption / release function and the phase change of H2O into the intended direction and bring about a more comfortable indoor environment, the functions of the respective roles must further increase the efficiency. Don't be.
In order to link the indoor moisture absorption / release function and the phase change of H2O, the outer ventilation layer and the inner ventilation layer and the roof ventilation layer and the ceiling space separated from each other by the heat insulating material are intended to complement each other, In pursuit of the efficiency of each function, it is necessary to quickly realize the energy transfer accompanying the “phase change of H 2 O” occurring on the surface of the heat insulating material having moisture absorption / release properties and inside.

屋根通気層と外側通気層は連通し、通常、その下端から外気を導入し、外壁を通じて太陽熱で熱せられて膨張すると、自然に上昇し、連通する屋根棟下空間・棟換気口を通じて建物外へ放出される。熱を吸収した空気の相対湿度は低下し、断熱材の平衡含水率も低下する。その分従前の含水率との乖離は大きくなり、放湿の圧力は大きくなる。又、日射取得により断熱材自身は熱を蓄え、断熱材内での運動エネルギーの移転は容易となり、気化による膨張で空隙内の気圧上昇し、H2Oの相変化(気化)に伴う湿気の伝導および放湿の圧力は更に高まる。それで、導入された外気は断熱材から放出された湿気(相変化を伴う湿気・相変化を伴わない湿気)を大量に含み、湿気を運び出す役割を担う。
日射取得される太陽熱エネルギーを排熱するに当たっては、従来の壁体内二重通気システム並びに吸放湿性の断熱材を用いたシステムでは、顕熱の形で空気と一緒にエネルギーを建物外に排出するのに対して、新しい技術では、湿気という潜熱の形に閉じ込めて空気及び残余の顕熱と一緒にエネルギーを屋外の外側通気層・小屋裏空間・棟下空間を通じて建物外に排出する。
さて、棟換気口と屋根棟下空間を連通する開閉式の屋根棟下換気口を閉じた上で、棟下空間から外気に通じる連通管・送風ファンを駆動し、小屋裏空間の空気を強制的に建物外に排出する。すると、気圧の関係で、屋根通気層に連通する外側通気層を通じた外気の流量は増大する。空気の流れが活発化すれば、相対湿度の上昇並びに気圧上昇は阻止され、むしろ、相対湿度の低下並びに気圧低下のもたらす沸点の低下により断熱材からの放湿は持続的に促進される。つまり、放湿の効率向上である。
気密断熱層の断熱材からの放湿が継続・強化されれば、断熱材の含水率は表面ほど急激に低下する。それで、H2Oの補充が必要になる。
夜間、送風ファンを駆動すると、昼間の放湿によって断熱材の含水率の低下した分の補充を、外側通気層を通じて取り入れる外気に含まれる湿気から積極的に行なう結果となる。そこでは、湿気の吸収及び相変化に伴い生じる凝縮熱に対しても、放射冷却による温度低下によって、前記の外側通気層の下端から取り入れる外気は冷却され、その冷却エネルギーの効果で、前記の凝縮熱は処理される。断熱材に熱は籠らないので、湿気の吸収は効率よく継続・維持される。
The roof ventilation layer communicates with the outside ventilation layer. Normally, when outside air is introduced from the lower end and heated by solar heat through the outer wall and expands, it naturally rises and goes out of the building through the communicating space under the roof building and the building ventilation opening. Released. The relative humidity of the air that has absorbed heat decreases, and the equilibrium moisture content of the heat insulating material also decreases. The divergence from the moisture content before compliance increases, and the pressure of moisture release increases. In addition, the heat insulation itself stores heat by acquiring solar radiation, and the transfer of kinetic energy within the heat insulation becomes easy, the pressure in the void rises due to expansion due to vaporization, and the conduction of moisture accompanying the phase change (vaporization) of H2O and The pressure of moisture release is further increased. Therefore, the introduced outside air contains a large amount of moisture released from the heat insulating material (humidity accompanied by phase change / humidity not accompanied by phase change) and plays a role of carrying out moisture.
In exhausting solar thermal energy acquired by solar radiation, conventional double-wall ventilation systems and systems using moisture-absorbing heat-insulating materials discharge energy together with air in the form of sensible heat. On the other hand, in the new technology, the heat is confined in the form of latent heat called moisture, and the energy is discharged outside the building through the outdoor outer ventilation layer, the attic space, and the space under the building along with the air and the remaining sensible heat.
Now, after closing the openable and closable roof building ventilation port that connects the building ventilation port and the space under the roof building, the communication pipe and blower fan that leads to the outside air from the building space is driven to force the air in the back space To the outside of the building. Then, the flow rate of the outside air through the outer ventilation layer communicating with the roof ventilation layer increases due to the atmospheric pressure. When the air flow is activated, the increase in relative humidity and the increase in atmospheric pressure are prevented, but rather the moisture release from the heat insulating material is continuously promoted by the decrease in relative humidity and the decrease in boiling point resulting from the decrease in atmospheric pressure. That is, the efficiency of moisture release is improved.
If moisture release from the heat insulating material of the airtight heat insulating layer is continued and strengthened, the moisture content of the heat insulating material decreases more rapidly as the surface. Therefore, it is necessary to replenish H2O.
When the blower fan is driven at night, replenishment of the reduced moisture content of the heat insulating material due to daytime moisture release is actively performed from the moisture contained in the outside air taken in through the outer ventilation layer. In this case, even with respect to the heat of condensation caused by moisture absorption and phase change, the outside air taken in from the lower end of the outer ventilation layer is cooled by the temperature drop due to radiative cooling, and the condensation energy is used to cool the condensation. Heat is processed. Since heat is not applied to the heat insulating material, moisture absorption is continued and maintained efficiently.

この発明では、上記の送風ファンの駆動は昼間のみに限定し、放湿の効率の向上の方策として活用する。夜間は、送風ファンを駆動せず、前記の流路での空気の流れを抑制し、外側通気層・屋根通気層を通じた気密断熱層への屋外からの湿気の供給を抑える。
この件を更に詳しく説明する。昼間、送風ファンを駆動して相対湿度並びに気圧を低下させると、断熱材内の平衡含水率並びにH2Oの沸点は低下し、放湿する。その結果、断熱材の含水率は従前より低下する。
夜間、外気温が低下すると相対湿度は上昇し、断熱材内の平衡含水率は上昇し、断熱材内の含水率との乖離が生じ、含水率の回復余力が生じる。
通常、含水率の回復は断熱材内部からの補充及び外側通気層・小屋裏空間を通じた吸湿により行なわれる。昼間、送風ファンを用いた分前記の「乖離」の幅は大きくなり、夜間送風ファンを用いてその「乖離」の幅の増大した分を埋めない限り、断熱材内部からの補充に対する依存度は大きくなる。それは結果として、断熱材内での内側から外側に向かってのH2O移動の圧力となる。それで、夜間送風ファンを停止して用いない場合に、屋外からの吸湿は抑制されるので、屋内側から屋外側へのH2O移動の圧力は大きくなる。
さて、連続した空隙を多く設ける等、素材の属性にのみ依存して湿気伝導率を高めると、気密性能、更に、冬季に必要な断熱性能の維持に支障が出る。それで、素材の性能と素材の性能以外の要素の組み合わせにより性能を高める。
昼間は送風ファン稼動により気密断熱層における屋外への湿気の放湿を促し、液体状のH2Oの気化・膨張により生じる湿気伝導の圧力との相乗効果により、断熱材内での屋内側から屋外側へのH2O移動の圧力は高まり、断熱材の吸湿・吸冷の高い効率と併せて屋内の除湿の効率を向上することが出来る。
夜間は送風ファンを停止し、屋外からの吸湿・吸冷を抑制する。抑制できた量を屋内からの吸湿・吸冷により余分に補充し、その分屋内からの除湿の効果は向上する。
昼間・夜間の何れも、素材の備える湿気伝導率を越えて屋内側から屋外側へのH2O移動の圧力を創出・保持し、内側通気層・天井裏空間を通じた吸湿の促進並びに含水率回復を促すことを通じて、含水率の上昇を抑えながら屋内側での吸湿・吸冷の効率を向上し、屋内の除湿の効率を向上させることが出来る。この作用・効果は、太陽熱の日射取得により担保される。
In the present invention, the driving of the blower fan is limited to daytime and is used as a measure for improving the efficiency of moisture release. At night, the blower fan is not driven, the air flow in the flow path is suppressed, and the moisture supply from the outside to the airtight heat insulating layer through the outer ventilation layer and the roof ventilation layer is suppressed.
This will be described in more detail. In the daytime, when the blower fan is driven to lower the relative humidity and the atmospheric pressure, the equilibrium moisture content in the heat insulating material and the boiling point of H 2 O are lowered and moisture is released. As a result, the moisture content of the heat insulating material is lower than before.
When the outside air temperature decreases at night, the relative humidity increases, the equilibrium moisture content in the heat insulating material increases, and a deviation from the water content in the heat insulating material occurs, resulting in a recovery capacity of the water content.
Usually, the moisture content is restored by replenishment from the inside of the heat insulating material and moisture absorption through the outer ventilation layer and the attic space. In the daytime, the width of the "deviation" is increased by using the blower fan, and the dependency on the replenishment from the inside of the heat insulating material is as long as the increased width of the "deviation" is filled by using the night blower fan. growing. This results in a pressure of H 2 O movement from the inside to the outside in the insulation. Therefore, when the night blower fan is stopped and not used, moisture absorption from the outside is suppressed, so that the pressure of H2O movement from the indoor side to the outdoor side increases.
Now, if the moisture conductivity is increased depending only on the properties of the material, such as providing many continuous voids, it will hinder the maintenance of the airtight performance and further the heat insulation performance required in winter. Therefore, the performance is improved by combining the performance of the material and other factors than the performance of the material.
In the daytime, the ventilation fan is operated to promote moisture release to the outside in the airtight heat insulation layer, and due to the synergistic effect with the pressure of moisture conduction caused by the vaporization and expansion of liquid H2O, the indoor side to the outdoor side in the heat insulating material The pressure of H2O movement to the water increases, and the efficiency of indoor dehumidification can be improved together with the high efficiency of moisture absorption and cooling of the heat insulating material.
Stop the blower fan at night to suppress moisture absorption and cooling from the outside. The amount that can be suppressed is replenished by moisture absorption and cooling from the inside, and the effect of dehumidification from the inside is improved accordingly.
In both daytime and nighttime, create and maintain the pressure of H2O movement from the indoor side to the outdoor side exceeding the moisture conductivity of the material, promote moisture absorption through the inner ventilation layer and ceiling space, and restore moisture content Through the promotion, it is possible to improve the efficiency of moisture absorption / cooling on the indoor side while suppressing the increase of the moisture content, and to improve the efficiency of dehumidification in the indoor. This action / effect is ensured by solar solar radiation acquisition.

湿気の供給サイドである内側通気層・天井裏空間の働きを中心に、湿気の供給並びに吸湿の高い効率を如何にして実現するか。
一方、昼間の太陽熱エネルギーの日射取得によるH2Oの放出による気密断熱層における含水率低下は、夜間の内での吸湿余力の回復を創出する。それは、結果として室内空間の湿気の吸収による、室内空間の湿度調節機能へと繋がっていく。只、先にも記した通り、送風ファンを夜間も稼動すると、屋外からの湿気及び冷気の供給を促すこととなり、その分、屋内からの湿気の吸収・移動は縮減することとなる。
温暖地に比較して極寒地に近い気候の下では、暖房の結果、冬季は屋内と屋外との温度差は激しい。それで、気密断熱層を通じた湿気の出入り、並びにH2Oの相変化に伴う熱エネルギーの移動については、夏季と逆方向の動きをリスクとして対処することが肝要である。連通口を開閉する手段によって、冬季と夏季とで空気循環の流路を変更する。それによって、気密断熱層によって隔絶される天井裏空間と小屋裏空間の連携を好適に制御することが出来る。
冬季の熱損失対策について。冬季は、室内と天井裏空間を連通する連通口を閉じることで、天井裏空間から室内への空気の流れはなくなる。それで、天井裏空間への流路は空気循環路から外れ、空気の供給は促進されない。それで、気密断熱層によって隔絶される二つの空間の連携は絶たれる。その結果、気密断熱層を通じた天井裏空間と屋根通気層との間の湿気の出入りは促進されず、それを要因とする熱損失は避けられる。
空気循環は、内壁に設けた連通口を通じて内側通気層と室内空間を連通し、給気用連通管により導入された外気は床下空間・内側通気層を通じた流路を経由する形で行なわれる。更に、床下空間で熱エネルギーの供給を受けると、床下空間・内側通気層を通じた流路を経由する過程で、熱エネルギーを移転し、顕熱的に効率よく蓄熱する。そこで、前項に記したエアコン等のエネルギー供給手段及びエネルギー蓄熱手段から床下空間に熱エネルギーを供給すると、十分なエネルギー量が循環流路を経由して躯体に顕熱として蓄熱され、輻射熱としての暖房効果を好適に得られる。
夏季は、内壁に設けた連通口の一部を閉じ、天井に設けた連通口を開放して天井裏空間と室内空間並びに内側通気層と室内空間を連通し、床下空間・内側通気層・天井裏空間を通じた流路を確保する。そこで、給気用連通管により導入された外気は、床下空間・内側通気層・天井裏空間を通じた流路を経由する。それで、気密断熱層によって隔絶される天井裏空間と屋根通気層との連携は確保・促進される。そして、隔絶された二つの空間の連携を促進する機構の働きにより、流路を流通する湿気は気密断熱層を通じて屋根通気層に放出される。
How to achieve high efficiency of moisture supply and moisture absorption, focusing on the work of the inner ventilation layer and the ceiling space that is the moisture supply side.
On the other hand, a decrease in the moisture content in the airtight heat insulating layer due to the release of H2O due to solar radiation acquisition during the daytime creates a recovery of the moisture absorption capacity at night. As a result, it leads to a humidity control function of the indoor space due to moisture absorption in the indoor space. As described above, if the blower fan is operated even at night, the supply of moisture and cold from outside is urged, and the absorption and movement of moisture from the inside is reduced accordingly.
Under a climate close to a very cold region compared to a warm region, as a result of heating, the temperature difference between indoors and outdoors is severe in winter. Therefore, it is important to deal with the movement in the opposite direction to that of summer as a risk for the entry and exit of moisture through the hermetic insulation layer and the transfer of thermal energy accompanying the phase change of H2O. The air circulation path is changed between winter and summer by means of opening and closing the communication port. Thereby, it is possible to suitably control the cooperation between the ceiling space and the cabin space that are isolated by the airtight heat insulating layer.
About measures against heat loss in winter. In winter, air flow from the ceiling space to the room is eliminated by closing the communication port that connects the room and the ceiling space. Therefore, the flow path to the ceiling space is removed from the air circulation path, and the supply of air is not promoted. Therefore, the connection between the two spaces separated by the airtight insulation layer is broken. As a result, the entry and exit of moisture between the ceiling space and the roof ventilation layer through the hermetic heat insulating layer is not promoted, and heat loss due to that is avoided.
The air circulation is performed in such a manner that the inner ventilation layer communicates with the indoor space through a communication port provided in the inner wall, and the outside air introduced by the air supply communication pipe passes through the flow path through the underfloor space and the inner ventilation layer. Furthermore, when heat energy is supplied in the underfloor space, the heat energy is transferred in the process of passing through the flow path through the underfloor space and the inner ventilation layer, and sensible heat is efficiently stored. Therefore, when heat energy is supplied to the underfloor space from the energy supply means such as an air conditioner and energy storage means described in the previous section, a sufficient amount of energy is stored as sensible heat in the enclosure via the circulation channel, and heating as radiant heat is performed. An effect can be suitably obtained.
In the summer, some of the communication openings on the inner wall are closed, the communication openings on the ceiling are opened, and the space behind the ceiling, the indoor space, the inner ventilation layer, and the indoor space are communicated. Ensure a flow path through the back space. Therefore, the outside air introduced by the air supply communication pipe passes through the flow path through the underfloor space, the inner ventilation layer, and the ceiling space. Therefore, the cooperation between the ceiling space isolated by the airtight heat insulating layer and the roof ventilation layer is secured and promoted. And the humidity which distribute | circulates a flow path is discharge | released to a roof ventilation layer through an airtight heat insulation layer by the function of the mechanism which accelerates | stimulates cooperation of two isolated spaces.

液化を促す断熱材及び促さない断熱材について。
相対湿度と平衡含水率との乖離により吸湿を促し含水率を上げたとしても、直ちに断熱材内での相変化(液化)の促進に繋がるわけではない。液化の促進は液化に伴い生成する凝縮熱を処理できる冷却エネルギーの吸収促進に依存する。ところが、断熱材はその断熱性により内部に冷却エネルギーを伝導する能力は低い。つまり、冷却エネルギーの伝導が緩慢な分、液化も緩慢である。潜熱的蓄冷を図るにしても、効率はよくない。それでは、たとえ冷却エネルギーの供給を増加したとしても、その増加に応じて効率よく吸冷出来ない。それで、効率的な潜熱的蓄冷を図ることが課題となる。
以上を潜熱的蓄冷の過程との関係で把握すれば、気密断熱層の表面で液化したH2Oを吸収できる特性を備える断熱材を用いると、空気中の湿気を吸収する際に凝縮熱を吸収し・液化を促進し、かつ、液体状のH2Oを吸引・吸収することで、吸放湿とH2Oの相変化の「連携の比率」を高く維持することに貢献する。それで、昼間含水率の低下した場合でも、冷却エネルギーの吸収・保持に繋げて、効率的なエネルギー移動を継続し、遮熱・除湿効果の維持に繋げることができる。尚余談ながら、潜熱的蓄冷が顕熱的蓄冷に比較して周囲の温度低下を招かないのは、冷却エネルギーが凝縮熱の吸収に用いられるからである。
連携の比率の低い断熱材は、太陽熱エネルギーを日射取得できない北側の気密断熱層に用いると、含水率管理を好適に実施しながら、他の気密断熱層における潜熱的蓄冷を促進することができる。
尚、北側の断熱材に吸放湿性を具備しない断熱材を用いると、含水率管理の上では同様の効果を実現することが出来る。
About the heat insulating material which promotes liquefaction and the heat insulating material which does not promote.
Even if moisture absorption is promoted by the difference between the relative humidity and the equilibrium moisture content and the moisture content is increased, it does not immediately lead to the promotion of phase change (liquefaction) in the heat insulating material. The promotion of liquefaction depends on the promotion of absorption of cooling energy capable of treating the heat of condensation generated with liquefaction. However, the heat insulating material has a low ability to conduct cooling energy inside due to its heat insulating property. That is, liquefaction is slow as the conduction of cooling energy is slow. Even if latent heat storage is attempted, the efficiency is not good. Then, even if the supply of cooling energy is increased, the cooling cannot be efficiently performed according to the increase. Therefore, it is a challenge to achieve efficient latent heat storage.
If we understand the above in relation to the process of latent heat storage, using a heat insulating material with the characteristic of absorbing H2O liquefied on the surface of the airtight heat insulating layer will absorb the heat of condensation when absorbing moisture in the air. -It contributes to maintaining a high "cooperation ratio" between moisture absorption / release and H2O phase change by promoting liquefaction and sucking / absorbing liquid H2O. Therefore, even when the moisture content in the daytime is reduced, the cooling energy can be absorbed and retained, the efficient energy transfer can be continued, and the heat shielding and dehumidifying effect can be maintained. It should be noted that the reason why latent heat storage does not cause a decrease in ambient temperature compared to sensible heat storage is that cooling energy is used to absorb condensation heat.
When the heat insulating material with a low cooperation ratio is used for the airtight heat insulating layer on the north side where solar heat energy cannot be obtained by solar radiation, latent heat storage in other airtight heat insulating layers can be promoted while suitably managing the moisture content.
In addition, if the heat insulating material which does not have moisture absorption / release property is used for the heat insulating material on the north side, the same effect can be realized in terms of water content management.

請求項12以降では、外気は熱交換式換気扇の稼動により、給気用連通管を通じ直接床下空間に放出される。床下空間は内側通気層・天井裏空間に連通し、取り入れた外気は流路内を流通する圧力を生じる。同じく、熱交換式換気扇の稼動により、空気は排気用連通管を通じ建物内の各居室から建物外に排出される。その結果、各居室の空気圧は負圧となり、内側通気層・天井裏空間と連通口を通じて連通し、空気の流入を無理なく可能にする。つまり、熱交換式換気扇の稼動により、居室に負圧を生じ、床下空間に正圧を生じ、その結果、屋内に気圧差を設ける。取り入れた外気の流通は、居室・床下空間と連通する内側通気層・天井裏空間を流路として、その気圧の差によって円滑に行なわれる。しかも、24時間継続する。
夏に例を取れば、床下空間に取り込んだ外気は、湿気が豊富で、湿度も高い。ところで、床下空間では地中・基礎土間コンクリート・蓄熱体で形成される蓄熱層を通じて地熱を取り入れることが出来る。夏は、地熱は20℃以下であるから、取り入れた外気を冷却することが出来る。その結果、温度低下によって、もともと高い相対湿度は更に高くなる。それを、先の空気循環の流路に乗せて、内側通気層・天井裏空間に供給する。
更に詳しく説明する。夜間導入された外気は夏の季節的要因及び放射冷却により相対湿度は高い。それで、吸湿する側の平衡含水率は高く維持され、断熱材内の含水率との乖離は大きく、その分、吸湿のエネルギーは大量に確保されている。
さて、昼間の太陽熱エネルギーの吸収の結果として、北側の壁体の気密断熱層以外の断熱材内でH2O移動の圧力は増大し、しかも、内側通気層・天井裏空間に近い断熱材内の含水率は一層低下している。
以上二つの要因により、夜間断熱材内における含水率と平衡含水率との乖離は更に拡大し、吸湿のエネルギーは増大する。そこに、相対湿度の高い空気が接触するわけである。自然と、内側通気層・天井裏空間を通過する空気中に含まれる湿気は断熱材に吸収される。特に、夜間はその動きは一層促進され、昼間に比較して吸湿の効率は高い。只、北側の壁体を構成する気密断熱層は、吸湿とH2Oの相変化との連携の比率の低い吸放湿材を用いるので、吸湿=液化による含水率の高止まりは避けられる。それで、含水率を管理しながら、除湿・遮熱の効果を実現することが出来る。
In the twelfth and subsequent aspects, the outside air is directly discharged into the underfloor space through the air supply communication pipe by the operation of the heat exchange type ventilation fan. The underfloor space communicates with the inner ventilation layer and the space behind the ceiling, and the outside air taken in creates a pressure that circulates in the flow path. Similarly, by operating the heat exchange type exhaust fan, air is exhausted from each room in the building to the outside through the exhaust pipe. As a result, the air pressure in each room becomes negative and communicates with the inner ventilation layer and the space behind the ceiling through the communication port so that air can flow in without difficulty. In other words, the operation of the heat exchanging ventilation fan creates a negative pressure in the living room and a positive pressure in the underfloor space, resulting in a pressure difference indoors. The flow of the outside air taken in is smoothly performed by the difference in the atmospheric pressure, with the inner ventilation layer and the ceiling space communicating with the living room / underfloor space as a flow path. Moreover, it continues for 24 hours.
Taking summer as an example, the outside air taken into the space under the floor is rich in humidity and high humidity. By the way, in the underfloor space, it is possible to take in geothermal heat through a heat storage layer formed of underground, foundation soil concrete and heat storage body. In summer, the geothermal heat is below 20 ° C, so the outside air taken in can be cooled. As a result, the originally high relative humidity is further increased due to the temperature drop. It is put on the air circulation channel and supplied to the inner ventilation layer / ceiling space.
Further details will be described. The outside air introduced at night has high relative humidity due to summer seasonal factors and radiative cooling. Therefore, the equilibrium moisture content on the moisture-absorbing side is maintained high, and the deviation from the moisture content in the heat insulating material is large, so that a large amount of moisture absorption energy is secured.
As a result of the absorption of solar thermal energy in the daytime, the pressure of H2O movement increases in the heat insulating material other than the airtight heat insulating layer of the north wall, and the water content in the heat insulating material close to the inner ventilation layer / ceiling space The rate is further decreasing.
Due to the above two factors, the divergence between the moisture content and the equilibrium moisture content in the nighttime heat insulating material further increases, and the energy of moisture absorption increases. This is where air with high relative humidity comes into contact. Naturally, moisture contained in the air passing through the inner ventilation layer / ceiling space is absorbed by the heat insulating material. In particular, the movement is further promoted at night, and the efficiency of moisture absorption is higher than in the daytime. The air-tight heat insulating layer constituting the wall on the north side uses a moisture absorbing / releasing material having a low ratio of moisture absorption to the phase change of H 2 O, so that moisture retention due to moisture absorption = liquefaction can be avoided. Therefore, the effect of dehumidification and heat insulation can be realized while controlling the moisture content.

さて、断熱材が湿気を吸収し、相変化で液化する過程で凝縮熱が生成される。その熱によって、吸湿機能は低下する。昼間は通常、外気の温度上昇も加わり吸湿機能は低下する。昼と逆で夜は、外気は放射冷却が加わり温度低下する。更に、温度低下した外気は24時間稼動する空気循環システムで確保される流路を経由する中で、温度の低い地熱との相乗効果により、断熱材・仕上げ材等の吸放湿材の吸湿・相変化し、液化に伴い生成する凝縮熱を吸収する。冷却エネルギーの移転を伴う潜熱的蓄冷により、吸湿は更に促進される。
屋外側では、外側通気層・屋根通気層を通じて夜間の放射冷却のエネルギー及び湿気が同時に供給される。吸放湿性を具備する断熱材は、屋外側に吸放湿とH2Oの相変化との連携の比率の高い性質を備えることで、液化を促されしかも吸収し易い。屋外側から潜熱的に溜められたエネルギーは、屋内側に移動する要因は無く、翌昼間に太陽熱エネルギーを日射取得することで屋外側へ気化・放出し、遮熱のエネルギーに転化する。
只、この段階で活用できる冷却エネルギーは、放射冷却・地熱のもたらすものに限られる。それで、吸湿とH2Oの相変化との連携により生じる伝熱性のもたらすエネルギー移動は量的に限られ、太陽熱エネルギーを吸収し、遮熱する能力は限定的である。そこが、自然志向に止まる場合の屋内環境改善の限界でもある。
又、冬季についても、蓄熱層を通じて得られる地熱は暖エネルギーとして質的に十分ではなく、太陽熱その他の補完的なエネルギー供給手段と併用しない限り、暖房のエネルギーとして快適な室内環境をもたらすことは難しい。但し、蓄熱層の蓄熱容量の大きさ及び蓄熱・放熱の効率の高さは、地熱・放射冷却・太陽熱等の自然エネルギーと深夜電力との併用を好適に実施することを可能とする。それで、夏季の冷房・除湿・遮熱の効果のみならず、冬季の輻射暖房効果の実現に繋がる。
さて、放射冷却・地熱から得られるエネルギー以外に冷却エネルギーを求める場合、同じ効果をより高い水準で得られることが重要である。その点から言えば、吸湿は更に促進され、液化の相変化も更に促進され、その上、吸湿と液化に伴うエネルギー移転の連携の比率は高まり、含水率上昇の抑制を睨みながら連携の比率の上昇を実現できることが重要である。それで、エアコンを利用して新たな冷却エネルギーを供給した場合に、何等エネルギー損失を生じることなく、同じ効果をより高い水準で得られるか否かが問題である。
Now, heat of condensation is generated in the process in which the heat insulating material absorbs moisture and liquefies by phase change. The hygroscopic function is reduced by the heat. In the daytime, the temperature increase of the outside air usually increases and the moisture absorption function decreases. At night, opposite to daytime, the outside air is cooled by radiation cooling. Furthermore, the outside air whose temperature has decreased passes through a flow path secured by an air circulation system that operates for 24 hours. The phase changes and absorbs the heat of condensation generated with liquefaction. Moisture absorption is further promoted by latent heat storage accompanied by transfer of cooling energy.
On the outdoor side, nighttime radiant cooling energy and moisture are simultaneously supplied through the outer ventilation layer and the roof ventilation layer. A heat-insulating material having moisture absorption / release properties is facilitated to absorb liquefaction by being provided with a property having a high cooperation ratio between moisture absorption / release and H2O phase change on the outdoor side. The energy stored latently from the outdoor side has no factor to move to the indoor side, and solar heat energy is acquired by the solar radiation in the next day to evaporate and release to the outdoor side to be converted into heat shielding energy.
冷却 The cooling energy that can be used at this stage is limited to that provided by radiant cooling and geothermal heat. Therefore, the energy transfer caused by heat transfer caused by the cooperation between the moisture absorption and the phase change of H 2 O is limited in quantity, and the ability to absorb solar heat energy and shield it is limited. That is also the limit of improving the indoor environment when nature-oriented.
Also in the winter season, geothermal heat obtained through the heat storage layer is not qualitatively sufficient as warm energy, and it is difficult to provide a comfortable indoor environment as heating energy unless combined with solar heat and other complementary energy supply means. . However, the size of the heat storage capacity of the heat storage layer and the high efficiency of the heat storage / radiation enable the combined use of natural energy such as geothermal / radiant cooling / solar heat and midnight power. Therefore, not only the effect of cooling, dehumidification and heat insulation in summer, but also the effect of radiation heating in winter will be realized.
Now, when calculating | requiring cooling energy other than the energy obtained from radiation cooling and geothermal, it is important that the same effect is acquired at a higher level. In that respect, moisture absorption is further promoted and phase change of liquefaction is further promoted.In addition, the ratio of energy transfer associated with moisture absorption and liquefaction is increased, and the ratio of cooperation is reduced while suppressing the increase in moisture content. It is important to be able to achieve the rise. Therefore, when new cooling energy is supplied using an air conditioner, it is a problem whether the same effect can be obtained at a higher level without causing any energy loss.

断熱材は空気中の湿気を吸収する過程で、同時に、空気中の揮発性の化学物質・汚染物質を吸収する。断熱材の保水力によって、化学物質・汚染物質は溶解し、H2Oの移動とともに断熱材の内部を移動する。それで、最後は断熱材からH2Oが水蒸気として外部に放出される際に、一緒に排出される。肝心なことは、化学物質・汚染物質は吸着材である断熱材に蓄積される一方ではなく、居室を経由せずとも適宜建物外に排出される手段が用意されている。
結局、外気を取り入れた際に含まれる揮発性の化学物質・汚染物質は24時間稼動する空気循環システムの流路を経由する過程で浄化され、室内には浄化された空気が流れ込む。その上、湿度を調節され、温度を調節された空気環境の下で過ごすことが出来る。
Thermal insulation is a process that absorbs moisture in the air and at the same time absorbs volatile chemicals and pollutants in the air. Chemical substances and pollutants are dissolved by the water retention capacity of the heat insulating material, and move inside the heat insulating material as H2O moves. Therefore, finally, when H2O is discharged from the heat insulating material as water vapor, it is discharged together. It is important to understand that chemical substances and pollutants are not accumulated in the heat insulating material, which is an adsorbent, but a means for appropriately discharging them outside the building without going through the living room.
Eventually, volatile chemicals and pollutants contained in the outside air are purified in the process of passing through the air circulation system that operates for 24 hours, and the purified air flows into the room. In addition, it is possible to spend in an air environment with controlled humidity and temperature.

先の発明では、循環流路内で、断熱材が吸湿し、液化の相変化を遂げる際に生じる凝縮熱を抑え、更に、相対湿度の上昇をもたらし、吸湿を促進する手段として、地熱・放射冷却の持つ冷却エネルギーを利用した。
自然志向の空調システムとしては、最適の手段であり、その意図する性能を好適に実現することが出来る。さて、個人の好みは多様である。自然志向の空調システムの意図する性能・操作性に満足しない人も存在する。以下の手段は、その様な人向けの空調システムを簡便に提供する。
先のシステムからもっと吸湿の効率を上げ、潜熱式の蓄冷の効率を上げるには、エアコンを用い、深夜電力の利用できる時間帯に限って、冷却エネルギーを供給する。吸放湿による除湿、並びに、H2Oの相変化に伴うエネルギー移転を利用した空調システムの効率向上に繋がる。
これは、深夜電力を利用した躯体への蓄冷機構として捉えることが出来る。即ち、従来の氷蓄熱(冷)装置に代わり、建物の建築上の工夫によって、躯体を用いた蓄冷装置の役割を果たす。
In the previous invention, as a means for suppressing heat of condensation generated when the heat insulating material absorbs moisture and undergoes a liquefaction phase change in the circulation flow path, and further increases relative humidity and promotes moisture absorption, The cooling energy of cooling was used.
As a natural-oriented air conditioning system, it is an optimum means, and the intended performance can be suitably realized. Now, personal preferences are diverse. Some people are not satisfied with the intended performance and operability of nature-oriented air conditioning systems. The following means provides an air conditioning system for such a person simply.
In order to increase the efficiency of moisture absorption from the previous system and increase the efficiency of the latent heat type cold storage, an air conditioner is used and cooling energy is supplied only during the time when midnight power can be used. It leads to the efficiency improvement of the air-conditioning system using the dehumidification by moisture absorption / release and the energy transfer accompanying the phase change of H2O.
This can be understood as a cold storage mechanism for the enclosure using midnight power. That is, instead of the conventional ice heat storage (cold) device, it plays the role of a cold storage device using a housing by means of architectural construction of the building.

具体的には、夜間、深夜電力を利用してエアコンから冷気を放出し、それを空気の流路に従い循環する過程で、流路内の相対湿度を上げ、建物を構成する吸放湿素材を冷却する。冷却されることで、吸湿を促し・相変化(液化)によって生成される凝縮熱を吸収する。その結果、室内に流入する空気は、湿度を調整され、適温に調整される。
昼間は逆に、太陽熱の日射取得により、躯体は断熱材を含め暖められる。相対湿度との関係で、あるいは、気化に必要な運動エネルギーへと転化して、吸放湿の素材からは放湿し、気化熱により躯体を冷却する方向に働く。さて、二つの通気層の補完関係によって、断熱材に吸収された湿気の一部は断熱材を通過・透過し、H2Oの相変化を経て、外側通気層・屋根通気層を通じ建物外に排出される。それで、室内の湿度は高くならず、又、躯体を通じた伝熱による温度上昇は抑えられ、住みよい環境を形成する。しかも、日射取得された太陽熱は全て顕熱の形で建物外に排出されるのではなく、一部は湿気という潜熱の形で建物外に排出される。但し、窓を通じての太陽熱エネルギーの浸入及び換気時の熱損失は避けられないので、その影響による温度上昇を抑制し、快適な室内の温熱環境を実現するために昼間エアコンから冷却エネルギーを供給する。更に、昼間も輻射冷房の効果を実現するには、エアコンから昼間空気の循環流路内に冷却エネルギーを供給する。何れも、断熱材に蓄熱して発生する輻射熱を抑える為に用いるわけではないので、昼間の電気使用量が著しく増加するわけではない。
ところで、潜熱式の排熱は無限に行なえるわけではない。即ち、断熱材が吸湿・放湿するに当たり、H2Oの相変化の一面である液化により生成する凝縮熱をエアコンの冷却エネルギーによって吸収する量に応じて、気化熱により太陽熱エネルギーを吸収する量が限定される。そして、その限定された範囲ではあるが、輻射熱の影響を軽減し、屋内の温度上昇の抑制に貢献できる。(地熱・放射冷却を考慮しない場合)
Specifically, in the process of discharging cold air from an air conditioner using nighttime and late-night power, and circulating it according to the air flow path, the relative humidity in the flow path is increased, and the moisture absorption and desorption material constituting the building is increased. Cooling. Cooling promotes moisture absorption and absorbs condensation heat generated by phase change (liquefaction). As a result, the air flowing into the room is adjusted in humidity to an appropriate temperature.
Conversely, during the daytime, the enclosure is warmed, including the insulation, by solar radiation. In relation to the relative humidity, or converted into kinetic energy necessary for vaporization, the material absorbs and releases moisture, and works in the direction of cooling the housing by the heat of vaporization. Now, due to the complementary relationship between the two ventilation layers, a part of the moisture absorbed by the insulation material passes through and penetrates the insulation material, passes through the phase change of H2O, and is discharged outside the building through the outer ventilation layer and the roof ventilation layer. The Therefore, the humidity in the room does not increase, and the temperature rise due to heat transfer through the housing is suppressed, and a comfortable environment is formed. Moreover, not all the solar heat acquired by solar radiation is discharged outside the building in the form of sensible heat, but part of it is discharged outside the building in the form of latent heat of moisture. However, the infiltration of solar thermal energy through the windows and the heat loss during ventilation are inevitable, so that the temperature rise due to the influence is suppressed and cooling energy is supplied from the daytime air conditioner to realize a comfortable indoor thermal environment. Further, in order to realize the effect of radiant cooling during the daytime, cooling energy is supplied from the air conditioner into the daytime air circulation passage. None of them are used to suppress radiant heat generated by storing heat in a heat insulating material, so that the amount of electricity used in the daytime does not increase significantly.
By the way, latent heat exhaust heat cannot be done infinitely. In other words, the amount of solar heat energy absorbed by the heat of vaporization is limited according to the amount of heat absorbed by the air conditioning cooling energy when the heat insulating material absorbs and releases moisture, and the amount of condensation heat generated by liquefaction, one aspect of H2O phase change. Is done. And although it is the limited range, the influence of a radiant heat can be reduced and it can contribute to suppression of the indoor temperature rise. (When not considering geothermal and radiative cooling)

結局、深夜電力を利用してエアコンを稼動し、冷却エネルギーを供給することで、そのエネルギーの一部を潜熱的に仕上げ材・構造材・断熱材に蓄冷し、昼間の暖かくなった時点で放冷し、屋内の温度上昇を抑えることが出来る。又、気化熱による太陽熱エネルギーの吸収は、湿気という潜熱の形に変えた熱エネルギーの放出・移転である。その上、冷却エネルギーの一部は夜間・昼間を問わず顕熱的に蓄冷され、エネルギー変換を遂げて輻射冷房の効果を与え、昼間の電気使用量を抑えながら快適な温熱環境の実現に貢献する。
さて、エアコンを流路内の床下空間・天井裏空間の両方に配設すると、冷却エネルギーは流路を好適に流通する。但し、床下空間にのみ配設する場合、流路内の流通に工夫を要する。具体的には、床下空間から送風ファン・連通管を通じて天井裏空間に冷却エネルギーを送ると、流路内での流通並びに部材への供給は好適に行なわれる。
尚、エアコンの生成・供給する冷却エネルギーは地熱・放射冷却の自然エネルギーに比較すると圧倒的に大きい。それで、大きなエネルギー供給能力を活かすには、気密断熱層内における屋内からの吸湿・吸冷及び気密断熱層での屋内から屋外へのエネルギー移動・H2Oの移動及び屋外への潜熱的排熱のそれぞれの機能が効率を向上することが必要である。そして、それらの相乗効果によって最適な除湿・遮熱システムを得られる。
さて、気密断熱層に用いる断熱材は、北側の壁体を除いて吸湿の際に冷却エネルギーの吸収の効率を高めて液化を促し、液体の状態のまま吸収し、結露を生じない断熱材を用いる。エアコンによる冷却エネルギーの生成・供給の増加を遮熱・除湿の効果の向上に繋げるには、気密断熱層における断熱材の属性による吸湿・吸冷の効率向上が不可欠である。それで、気候特性によりX+X、X+Yの断熱材の重ね合わせを採用する場合、吸湿・吸冷する屋内側に必要な機能(X)を設ける。
0100項に記載の通り、断熱材内でH2Oの気化・膨張に伴う湿気移動の圧力は高まる。一方、屋内からの吸湿・吸冷は、エアコンの冷却エネルギーの生成・供給能力及び断熱材の吸湿・吸冷能力の向上により高まり、液化し液体状のH2Oとして空隙内を埋める形で保持される。その分、断熱材の気密性能は向上する。それで、液体状のH2Oが気化・膨張し、湿気として伝導する際は、気密性能を高めて壁として湿気の伝導を阻止する。それで、屋内側への湿気の伝導は進まず、空隙を通じた屋外側への湿気の伝導は進展する。そして、屋外でのファンの働きとの相乗効果で、屋外への湿気伝導の効率は高まる。
ところで、液体状のH2Oの伝熱性を通じて空隙内の気体状のH2Oに冷却エネルギーを供給して液化を促し、あるいは、湿気伝導の効率の向上によって、気圧上昇した空隙内の気圧の低下に繋がり、新たな運動エネルギーを太陽熱エネルギーの日射取得により獲得して、屋内から供給された液体状のH2Oの気化を繰り返すことが出来る。つまり、液体状のH2Oの伝熱性およびH2Oの相変化を活用して断熱性に背反する伝熱性を創出し、屋内から屋外へのエネルギー移動を可能とする。しかも、H2O移動の効率向上にあわせて、冷却エネルギー移動の効率も向上する。結局、含水率の上昇を必要としないで、諸々の機能の効率を高め、又、それら機能の相乗効果によって、除湿・遮熱の効果を一層高めることが出来る。
Eventually, by operating the air conditioner using midnight power and supplying cooling energy, a part of the energy is stored in the finishing material, structural material, and insulation material in a latent heat, and released when it is warm in the daytime. Cooling can suppress the rise in indoor temperature. Absorption of solar heat energy by heat of vaporization is the release and transfer of heat energy converted into the form of latent heat of moisture. In addition, a part of the cooling energy is stored sensible heat at night and daytime, and energy conversion is achieved to give the effect of radiant cooling, contributing to the realization of a comfortable thermal environment while reducing the amount of electricity used in the daytime. To do.
Now, when the air conditioner is disposed in both the underfloor space and the ceiling space in the flow path, the cooling energy suitably flows through the flow path. However, when it is arranged only in the underfloor space, it is necessary to devise the circulation in the flow path. Specifically, when cooling energy is sent from the underfloor space to the space behind the ceiling through the blower fan / communication pipe, distribution in the flow path and supply to the members are preferably performed.
The cooling energy generated and supplied by air conditioners is overwhelmingly larger than the natural energy of geothermal and radiative cooling. Therefore, in order to make use of the large energy supply capacity, moisture absorption / cooling from the inside in the airtight heat insulating layer and energy transfer from the indoor to the outdoor in the airtight heat insulating layer, transfer of H2O, and latent heat exhaust to the outside, respectively. It is necessary for the function to improve efficiency. And the optimal dehumidification and heat insulation system can be obtained by their synergistic effect.
Now, the heat insulating material used for the airtight heat insulating layer is a heat insulating material that increases the efficiency of cooling energy absorption when absorbing moisture and promotes liquefaction, and absorbs it in the liquid state without causing condensation. Use. In order to link the increase in the generation and supply of cooling energy by the air conditioner to the improvement of the heat shielding and dehumidifying effect, it is essential to improve the efficiency of moisture absorption and cooling by the properties of the heat insulating material in the airtight heat insulating layer. Therefore, when the superposition of X + X and X + Y heat insulating materials is adopted due to the climatic characteristics, a necessary function (X) is provided on the indoor side for absorbing and cooling moisture.
As described in item 0100, the pressure of moisture transfer accompanying the vaporization / expansion of H 2 O in the heat insulating material increases. On the other hand, moisture absorption / cooling from indoors is enhanced by improving the generation / supply capability of the cooling energy of the air conditioner and the moisture absorption / cooling capability of the heat insulating material, and is held in the form of liquefied liquid H2O filling the voids. . Accordingly, the airtight performance of the heat insulating material is improved. Therefore, when liquid H2O vaporizes and expands and conducts as moisture, the airtightness is enhanced to prevent moisture conduction as a wall. Therefore, the conduction of moisture to the indoor side does not progress, and the conduction of moisture to the outdoor side through the air gap progresses. And the efficiency of moisture conduction to the outdoors is enhanced by a synergistic effect with the function of the fan outdoors.
By the way, the cooling energy is supplied to the gaseous H2O in the voids through the heat conductivity of the liquid H2O to promote liquefaction, or the improvement in the efficiency of moisture conduction leads to the lowering of the atmospheric pressure in the voids where the atmospheric pressure has increased, New kinetic energy can be obtained by solar radiation solar radiation acquisition, and the vaporization of liquid H2O supplied from indoors can be repeated. In other words, the heat transfer property of liquid H2O and the phase change of H2O are utilized to create heat transfer property that is contrary to heat insulation, and enables energy transfer from indoor to outdoor. Moreover, the efficiency of the cooling energy transfer is improved in accordance with the improvement of the efficiency of the H2O transfer. Eventually, the efficiency of various functions can be increased without requiring an increase in the moisture content, and the effect of dehumidification and heat insulation can be further enhanced by the synergistic effect of these functions.

エアコンはエネルギー消費効率の高く、性能のいいものを使用することで、省エネルギーに貢献する。更に、昼間に比較して夜間は、気温の低下により必要な冷房温度との差が小さくなり、少ないエネルギー消費で必要な冷房温度に達する。結局、機器の性能、あるいは、使用する環境の二つの面から、省エネルギー効果を上げられる。
ところで、給湯システムにも深夜電力の利用が図られている。具体的には、深夜電力を利用して熱湯を作る。深夜に貯湯された熱湯を、昼間から夜間の給湯のエネルギーとして利用する。それで、この熱湯を作る際に必要なエネルギーの一部を、深夜の冷房・除湿の為に稼動するエアコンから排出される凝縮熱等を活用して賄えれば、更にエネルギー消費効率の高い給湯システムを構築できる。
逆に考えると、夜間に給湯のエネルギーを蓄熱しながら、その一方でヒートポンプ式故に生成可能な冷却エネルギーをエアコンを通じて利用できる。省略して記述すれば、深夜電力を利用して貯湯しながら、その一方で、生成分離される冷エネルギーを供給して室内を冷房し、併せて、除湿効果を得られる。更に、昼間は遮熱効果を得ることが出来る。
The use of air conditioners with high energy consumption and good performance contributes to energy saving. Further, at night compared to daytime, the difference from the required cooling temperature is reduced due to a decrease in temperature, and the required cooling temperature is reached with less energy consumption. In the end, the energy saving effect can be improved from the two aspects of the performance of the device or the environment in which it is used.
By the way, the use of late-night power is also planned in the hot water supply system. Specifically, hot water is made using late-night electricity. Hot water stored at midnight is used as energy for hot water supply from daytime to nighttime. Therefore, if a part of the energy required to make this hot water can be covered by using the condensed heat discharged from the air conditioner that operates for cooling and dehumidification at night, the hot water supply system with higher energy consumption efficiency. Can be built.
Conversely, while storing the energy of hot water supply at night, the cooling energy that can be generated due to the heat pump system can be used through the air conditioner. If the description is omitted, while hot water is stored using midnight power, on the other hand, cold energy generated and separated is supplied to cool the room, and at the same time, a dehumidifying effect can be obtained. Furthermore, a heat shielding effect can be obtained in the daytime.

対流熱の形でエネルギーを供給できるエアコンは、対流熱エネルギーの形で空気の流路に供給し、蓄熱体・躯体に対しそのまま潜熱的に蓄冷・放冷し、冷房のエネルギーとして利用できるので、熱交換に伴う熱損失を避けられる好適な機器といえる。又、凝固・融解によって放熱・蓄熱する蓄熱体を循環流路内に配設するのは、対流熱エネルギーの形でエネルギー移動を行なう上では好適である。しかも、蓄熱体に夜間に蓄冷し、昼間に周囲の温度を感知しながら放冷するので、地熱・深夜電力のみをエネルギー源としながら、24時間安定して必要な冷却エネルギーを供給し・利用することが出来る。
尚、エアコンは天井裏空間と床下空間のそれぞれには配設して利用するのが好適である。更に、蓄熱体と併せて用いると好適である。
通常、暖気は軽く上昇し易く、冷気は重く下降し易い。それで、エアコン並びに蓄熱体を床下空間に配設した場合、冷気は床下空間に滞留し易く、流路内を上昇する力は弱い。又、床面は断熱性能の高い杉板等を用いるので、床下空間は四方を断熱材で囲われた状態に等しい。それで、屋外の温度変化の影響を受けにくく、蓄熱体からの放冷は長時間持続でき、冷却エネルギーを安定して供給出来る。その結果、室内の温度が多少上がっても、床面を通じた輻射冷房効果を得られる。
Air conditioners that can supply energy in the form of convection heat are supplied to the air flow path in the form of convection heat energy, and are stored as latent heat in the heat storage body and housing, and can be used as cooling energy. It can be said that the apparatus is suitable for avoiding heat loss due to heat exchange. In addition, it is preferable to dispose a heat storage body that dissipates and stores heat by solidification / melting in the circulation flow path in terms of energy transfer in the form of convective heat energy. Moreover, it cools the heat storage body at night and cools it while sensing the ambient temperature in the daytime, so it supplies and uses the necessary cooling energy stably for 24 hours while using only geothermal energy and midnight power as an energy source. I can do it.
The air conditioner is preferably disposed and used in each of the ceiling space and the underfloor space. Furthermore, it is suitable when used in combination with a heat storage body.
Normally, warm air is light and easy to rise, and cold air is heavy and easy to fall. Therefore, when the air conditioner and the heat storage body are arranged in the underfloor space, the cold air is likely to stay in the underfloor space, and the force to rise in the flow path is weak. Further, since the floor surface is made of cedar board or the like having high heat insulation performance, the underfloor space is equivalent to a state where the four sides are surrounded by a heat insulating material. Therefore, it is hard to be influenced by outdoor temperature change, and the cooling from the heat storage body can be continued for a long time, and cooling energy can be supplied stably. As a result, a radiation cooling effect through the floor surface can be obtained even if the room temperature rises somewhat.

躯体とは別に潜熱式の蓄冷手段を得られると、蓄冷量を躯体と蓄熱体(蓄熱層を含む)の両方に分散することが出来る。それで、躯体への蓄冷の負担を軽減できる。その結果、躯体への潜熱式蓄冷による躯体の含水率の上昇を抑えることが出来る。それで、安価な繊維質の断熱材(インシュレーションボード等)の利用に道が拡がる。
更に、エアコンの機器は冬の間、暖房機器として使用できる。又、先の蓄熱層を控える蓄熱体を併用することで、夜間の内にエアコンから供給された熱エネルギーを蓄え、昼間に周囲の温度を感知しながら放熱することで、一日中暖房のエネルギーとして利用できる。即ち、地熱の自然エネルギーに深夜電力を併用したエネルギー消費効率の高い輻射暖房システムを実現できる。
深夜電力は、社会的に見れば余剰の電力で、昼間の料金に比較して約25%の料金で利用できる。社会的エネルギー需給のバランスの上からも、個人の家計の負担軽減の上からも、選択の余地はある。
If latent heat type cold storage means can be obtained separately from the housing, the amount of cold storage can be distributed to both the housing and the heat storage body (including the heat storage layer). Therefore, the burden of cold storage on the housing can be reduced. As a result, it is possible to suppress an increase in the moisture content of the casing due to latent heat type cold storage in the casing. This opens up the path to the use of inexpensive fibrous insulation (insulation boards, etc.).
Furthermore, the air conditioner equipment can be used as a heating equipment during the winter. In addition, by using a heat storage body that refrains from the previous heat storage layer, the thermal energy supplied from the air conditioner is stored during the night, and it is used as heating energy throughout the day by radiating heat while sensing the ambient temperature during the day. it can. That is, it is possible to realize a radiant heating system with high energy consumption efficiency that uses midnight power together with natural energy of geothermal heat.
Midnight power is surplus from a social point of view and can be used at a rate of about 25% compared to the daytime rate. There is room for choice, both in terms of the balance of social energy supply and demand, as well as in reducing the burden on individual households.

太陽の日射時間が少なく、雨の日が続く湿度の高い梅雨時、あるいは、断熱材の組み合わせによっては、屋内の湿度を快適な状態に保持するには工夫が必要である。
自然志向が強く、快適とされる湿度70%以下の実現を目安とする場合、季節的サイクルに基づく湿度の調節機能によって、目標とする室内環境は実現できる。具体的には、冬季の間、屋内の湿度は恒常的に40〜50%に保たれている。その湿度に対応して、吸放湿性の材料は放湿によって含水率を下げている。それで、梅雨時を迎えるに当たっては、所要の相対湿度との関係では吸湿余力を残している。それで、躯体の吸放湿機能によって、快適とされる室内の湿度を70%以下に保持することが出来る。
只、湿度60%辺りを湿度調節の目安とする場合、深夜電力の利用を検討する。 夜間は、設定湿度50%でエアコンの除湿機能を稼動すると、換気装置を経て床下空間に導入された外気は、循環流路を流通する過程で内装仕上げ材・構造材に含まれる余分な湿気の放湿により、湿度上昇し、更なる、流通過程で気密断熱層への吸放湿により湿度60%辺りに保持出来る。
昼間は、エアコンの除湿機能を稼動しない。同じく、外部から導入された外気は流路を流通する過程で、流路を構成する内装仕上げ材・構造材に調湿され、流路から室内に流入する際には快適な湿度とされる60%辺りを保持することが出来る。尚、床下空間で除湿する際の気温と室内に流入する際の気温の差によって、絶対湿度の上昇にも関わらず、相対湿度の数値は大きく変わらない。
その上更に、気密断熱層の具備する吸放湿機能による屋内から屋外への湿気の排出機能、並びに、建物を構成する構造材・仕上げ材の吸放湿機能を活用することによって、深夜電力を利用できる時間帯に除湿機能を稼動するのみで、24時間湿度60%辺りを保持できる。
結論として、エアコンの除湿機能の稼動は、躯体の季節的サイクルによる調湿効果で室内の湿度を60%に保持できない場合に利用すると、少ないエネルギー消費で狙いとする調湿効果を得られる。又、躯体への吸湿を必要以上に促進しないので、含水率上昇による弊害を予め阻止することが出来る。
In the rainy season when the sun's solar radiation time is short and the rainy day continues, or depending on the combination of heat insulating materials, it is necessary to devise in order to keep indoor humidity in a comfortable state.
In the case where the realization of the humidity of 70% or less, which is highly natural and comfortable, is used as a guideline, the target indoor environment can be realized by the humidity adjustment function based on the seasonal cycle. Specifically, the indoor humidity is constantly kept at 40 to 50% during the winter. Corresponding to the humidity, the moisture-absorbing / releasing material has its moisture content lowered by moisture release. Therefore, when the rainy season is reached, there is a residual capacity for moisture absorption in relation to the required relative humidity. Therefore, the humidity in the room, which is considered to be comfortable, can be maintained at 70% or less by the moisture absorption / release function of the housing.
只 Consider using midnight power when humidity is around 60%. At night, when the dehumidifying function of the air conditioner is activated at a set humidity of 50%, the outside air introduced into the underfloor space via the ventilator is free of excess moisture contained in the interior finishing material and structural material in the process of circulating through the circulation channel. Humidity rises due to moisture release, and the humidity can be kept around 60% by moisture absorption and release to the airtight heat insulating layer in the course of distribution.
The dehumidifying function of the air conditioner is not activated during the daytime. Similarly, the outside air introduced from the outside is conditioned in the interior finishing material / structural material constituting the flow path in the course of flowing through the flow path, and is set to a comfortable humidity when flowing into the room from the flow path. % Can be maintained. Note that the relative humidity value does not change greatly despite the increase in absolute humidity due to the difference between the temperature when dehumidifying in the underfloor space and the temperature when flowing into the room.
Furthermore, by using the moisture absorption / release function of the indoor / outdoor with the moisture absorption / release function of the airtight heat insulation layer, and the moisture absorption / release function of the structural materials and finishing materials that make up the building, midnight power can be reduced. By only operating the dehumidifying function in the available time zone, it is possible to maintain around 60% humidity for 24 hours.
In conclusion, if the dehumidifying function of the air conditioner is used when the humidity in the room cannot be maintained at 60% due to the humidity control effect due to the seasonal cycle of the housing, the target humidity control effect can be obtained with less energy consumption. Moreover, since the moisture absorption to a housing is not accelerated more than necessary, the bad influence by a moisture content rise can be prevented beforehand.

断熱材の組み合わせに(イ)を選択した場合の空気循環の流路について。
温暖地に比較して極寒地に近い気候の下では、暖房の結果、冬季は屋内と屋外との温度差は激しい。それで、気密断熱層を通じた湿気の出入り、並びにH2Oの相変化に伴う熱エネルギーの移動については、夏季と逆方向の動きをリスクとして対処することが肝要である。連通口を開閉する手段によって、冬季と夏季とで空気循環の流路を変更する。それによって、気密断熱層によって隔絶される天井裏空間と屋根通気層との連携を好適に制御することが出来る。
冬季は、室内と天井裏空間を連通する連通口を閉じることで、天井裏空間から室内への空気の流れはなくなる。それで、天井裏空間への流路は空気循環路から外れ、空気の供給は促進されない。それで、気密断熱層によって隔絶される二つの空間の連携は絶たれる。その結果、気密断熱層を通じた天井裏空間と屋根通気層との間の湿気の出入りは促進されず、それを要因とする熱損失は避けられる。
空気循環は、内壁に設けた連通口を通じて内側通気層と室内空間を連通し、給気用連通管により導入された外気は床下空間・内側通気層を通じた流路を経由する形で行なわれる。更に、床下空間で熱エネルギーの供給を受けると、床下空間・内側通気層を通じた流路を経由する過程で、熱エネルギーを移転し、顕熱的に効率よく蓄熱する。そこで、前項に記したエアコンから床下空間に熱エネルギーを供給すると、十分なエネルギー量が蓄熱され、輻射熱としての暖房効果を好適に得られる。
夏季は、内壁に設けた連通口の一部を閉じ、天井に設けた連通口を開放して天井裏空間と室内空間並びに内側通気層と室内空間を連通し、床下空間・内側通気層・天井裏空間を通じた流路を確保する。そこで、給気用連通管により導入された外気は、床下空間・内側通気層・天井裏空間を通じた流路を経由する。それで、気密断熱層によって隔絶される天井裏空間と屋根通気層との連携は確保・促進される。そして、隔絶された二つの空間の連携を促進する機構の働きにより、流路を流通する湿気は気密断熱層を通じて屋根通気層に放出される。
About the air circulation flow path when (I) is selected as the combination of insulation materials.
Under a climate close to a very cold region compared to a warm region, as a result of heating, the temperature difference between indoors and outdoors is severe in winter. Therefore, it is important to deal with the movement in the opposite direction to that of summer as a risk for the entry and exit of moisture through the hermetic insulation layer and the transfer of thermal energy accompanying the phase change of H2O. The air circulation path is changed between winter and summer by means of opening and closing the communication port. Thereby, the cooperation between the ceiling space isolated by the airtight heat insulating layer and the roof ventilation layer can be suitably controlled.
In winter, air flow from the ceiling space to the room is eliminated by closing the communication port that connects the room and the ceiling space. Therefore, the flow path to the ceiling space is removed from the air circulation path, and the supply of air is not promoted. Therefore, the connection between the two spaces separated by the airtight insulation layer is broken. As a result, the entry and exit of moisture between the ceiling space and the roof ventilation layer through the hermetic heat insulating layer is not promoted, and heat loss due to that is avoided.
The air circulation is performed in such a manner that the inner ventilation layer communicates with the indoor space through a communication port provided in the inner wall, and the outside air introduced by the air supply communication pipe passes through the flow path through the underfloor space and the inner ventilation layer. Furthermore, when heat energy is supplied in the underfloor space, the heat energy is transferred in the process of passing through the flow path through the underfloor space and the inner ventilation layer, and sensible heat is efficiently stored. Therefore, when heat energy is supplied from the air conditioner described in the previous section to the underfloor space, a sufficient amount of energy is stored, and a heating effect as radiant heat can be suitably obtained.
In the summer, some of the communication openings on the inner wall are closed, the communication openings on the ceiling are opened, and the space behind the ceiling, the indoor space, the inner ventilation layer, and the indoor space are communicated. Ensure a flow path through the back space. Therefore, the outside air introduced by the air supply communication pipe passes through the flow path through the underfloor space, the inner ventilation layer, and the ceiling space. Therefore, the cooperation between the ceiling space isolated by the airtight heat insulating layer and the roof ventilation layer is secured and promoted. And the humidity which distribute | circulates a flow path is discharge | released to a roof ventilation layer through an airtight heat insulation layer by the function of the mechanism which accelerates | stimulates cooperation of two isolated spaces.

断熱材の組み合わせに(ロ)を選択した場合のリスク管理について。
空気循環に関しては、前項と同様に考え、天井裏空間を流路に編入するか、流路から外すかという季節の変化に伴う選択を行なう。
ところで、北側を除く壁体は断熱材を二層にし、透湿防風防水シートで三層構造に構成し、その外側は吸放湿機能を具備する断熱材とする。この場合、外側の断熱材は冬季の外気のもたらす冷気により冷やされる。只、断熱材の保持するH2Oの相変化によって、この冷気を吸収することが可能である。つまり、液化という相変化の際に生成される凝縮熱の働きを利用して、冷気を吸収する。それで、外気の冷たさは緩和される。
昼間は、太陽熱の日射取得により壁面は暖められ、外側通気層内の相対湿度は低下する。更に、冬季でも気化という相変化に必要な運動エネルギーを日射取得し、断熱材内での気化・膨張及び湿気の伝導を経て壁体からの放湿を促す。昼間のこの働きは、夜間の冷気を吸収する準備であると位置づけられる。
この凝縮熱の働きを勘案すると、断熱材の実際の断熱性能は、熱貫流率という数値で表される数値以上の性能を有することになる。それで、夜間の冷気による外壁を通じた熱損失を軽減することが出来る。更に、屋外の冷気により液化したH2Oは透湿防風防水シートを透過しない。それで、屋内の循環流路に暖気を供給したとしても、内側通気層を通じた熱損失を増幅することはない。輻射暖房効果を実現する場合に、好都合である。但し、これは地域の気候特性を参照しながら、採用しなければならない。
Risk management when (b) is selected for the combination of insulation materials.
The air circulation is considered in the same way as in the previous section, and a selection is made according to the seasonal change of whether the ceiling space is incorporated into the flow path or removed from the flow path.
By the way, the wall body excluding the north side has two layers of heat insulating materials, and is formed into a three-layer structure with a moisture permeable windproof waterproof sheet, and the outside thereof is a heat insulating material having a moisture absorbing / releasing function. In this case, the outer heat insulating material is cooled by the cold air brought by the outside air in winter. It is possible to absorb this cold air by the phase change of H 2 O held by the heat insulating material. In other words, cold air is absorbed by utilizing the action of heat of condensation generated during the phase change of liquefaction. Therefore, the coldness of the outside air is alleviated.
During the daytime, the wall surface is warmed by solar radiation and the relative humidity in the outer ventilation layer decreases. Furthermore, the kinetic energy necessary for the phase change of vaporization is acquired even in the winter, and moisture release from the wall body is promoted through vaporization / expansion and moisture conduction in the heat insulating material. This daytime work is positioned as a preparation to absorb the cool air at night.
Considering the action of this heat of condensation, the actual heat insulation performance of the heat insulating material has a performance equal to or higher than the value represented by the numerical value called the heat transmissivity. Therefore, heat loss through the outer wall due to cold air at night can be reduced. Furthermore, H2O liquefied by outdoor cold does not permeate the moisture permeable windproof waterproof sheet. Therefore, even if warm air is supplied to the indoor circulation flow path, heat loss through the inner ventilation layer is not amplified. This is advantageous when realizing a radiant heating effect. However, this must be adopted with reference to the regional climatic characteristics.

前記(ハ)もしくは(二)の断熱材の組み合わせを選択する場合は、自然志向の住宅選びが基準の一つに上げられる。それで、先の輻射暖房効果を得る為の熱エネルギーの供給源として、太陽熱エネルギー活用の可能性を開拓したい。具体的には、窓を通じて得られる日射取得に関わる太陽熱エネルギーにより昼間に必要な暖房のエネルギーを確保し、あるいは、屋根面に注がれる太陽熱エネルギーを公知の簡単な手段で集熱し、床下空間等の流路に配設された蓄熱体に供給し・蓄熱する。そして、蓄熱体を構成する蓄熱材の凝固・融解の相変化により、日没後の周囲の温度変化に応じて放熱し、日没後の暖房のエネルギーを供給する。
ところで、屋根面に日射する太陽熱は、屋根通気層を通じて屋根棟下空間において集熱する。そして、熱交換式換気扇に直結し、その送風能力によって床下空間に暖められた空気を送る。そして、循環流路を流通する過程で顕熱的効果によって、輻射暖房を実現できる。
この方法の利点は、換気システムの送風設備を活用することが出来るので、装置の上でも、あるいは、駆動エネルギーの上でも、二重の負担を生じないところにある。この時、換気扇の熱交換機能は停止する。そして、屋根面で集熱した暖かい空気は、適宜フィルターを用いて塵・虫等を除去された後、床下空間に導入され循環流路を経由して室内に流入する。
When selecting the combination of the heat insulation materials (2) or (2) above, nature-oriented housing selection is one of the criteria. Therefore, we would like to explore the possibility of utilizing solar thermal energy as a source of thermal energy to obtain the radiant heating effect. Specifically, solar heating energy related to solar radiation acquisition obtained through windows secures heating energy required during the daytime, or solar thermal energy poured into the roof surface is collected by known simple means, such as underfloor space The heat is stored in the heat storage body disposed in the flow path. And by the phase change of solidification and melting of the heat storage material constituting the heat storage body, heat is dissipated in accordance with the temperature change around the sunset, and the heating energy after sunset is supplied.
By the way, solar heat radiated on the roof surface collects heat in the space under the roof ridge through the roof ventilation layer. And it connects directly with a heat exchange type exhaust fan, and sends the air warmed to the underfloor space by the ventilation capability. And radiant heating is realizable by the sensible heat effect in the process which distribute | circulates a circulation flow path.
The advantage of this method is that it does not create a double burden, either on the device or on the drive energy, because the ventilation system of the ventilation system can be utilized. At this time, the heat exchange function of the ventilation fan is stopped. The warm air collected on the roof surface is appropriately filtered to remove dust, insects, etc., and then introduced into the underfloor space and flows into the room via the circulation channel.

凝固・融解の相変化を蓄冷(暖)・放冷(暖)に活用できる蓄熱体は、その相変化の温度の設定によっては、蓄放冷・蓄放熱の両方の手段を提供する。
凝固・融解の温度を21℃から23℃近辺の温度域に設定できれば、深夜電力とエアコンの組み合わせの中で、夏季の輻射冷房並びに冬季の輻射暖房に必要なエネルギーの蓄放冷・蓄放熱の手段を好適に提供できる。蓄熱層を通じ供給される地熱をも有効利用できる。
自然志向から冬季の太陽の日射取得により熱エネルギーを確保する場合、凝固・融解の温度は若干幅を大きくとり、19℃から23℃見当に設定すると太陽熱を好適に蓄熱し・活用できる。具体的には、日没後は周囲の温度に応じて蓄熱体から放熱し、床下空間に熱エネルギーを供給する。そして、循環流路を流通する過程で顕熱的蓄熱効果によって、輻射暖房を実現できる。
A heat storage body that can utilize the phase change of solidification / melting for cold storage (warming) and cooling (warm) provides both means for storing and discharging heat and storing and radiating heat depending on the temperature setting of the phase change.
If the solidification / melting temperature can be set in the temperature range from 21 ° C to around 23 ° C, energy storage / cooling / dissipating / dissipating energy required for radiant cooling in summer and radiant heating in winter will be possible in the combination of midnight power and air conditioner. Means can be suitably provided. The geothermal heat supplied through the heat storage layer can also be used effectively.
When heat energy is secured by solar radiation acquisition in winter from the nature orientation, the temperature of solidification / melting is slightly wider, and if it is set at 19 ° C to 23 ° C, solar heat can be stored and used appropriately. Specifically, after sunset, heat is radiated from the heat storage body according to the ambient temperature, and heat energy is supplied to the underfloor space. And radiant heating is realizable by the sensible heat storage effect in the process which distribute | circulates a circulation flow path.

さて、寒冷地において冬季の間にヒートポンプ式エアコンの高いエネルギー消費効率(COP)を維持するには工夫が必要である。
エアコンのCOPの数値は、暖房時の室内温度20℃・屋外温度7℃の条件下でのエネルギー消費効率を示している。それで、屋外温度が7℃を下回る条件下では、エネルギー消費効率は低下する。換言すると、ヒートポンプ式エアコンの魅力が低下する。そこで、寒冷地でもヒートポンプ式エアコンを魅力あるものとするには、エネルギー消費効率の低下を避け、高い効率を維持できる工夫が求められる。具体的には、24時間換気システムの駆動の際に外部に放出される空気とともに排出される熱エネルギーの回収をエアコンの室外機を利用して行なう。以上の工夫を加えることで、ヒートポンプ式エアコンを寒冷地で使用する際に生じるエネルギー消費効率の低下を緩和することが出来る。
Now, in order to maintain the high energy consumption efficiency (COP) of the heat pump air conditioner during the winter season in a cold region, it is necessary to devise.
The numerical value of COP of the air conditioner indicates the energy consumption efficiency under the conditions of an indoor temperature of 20 ° C. and an outdoor temperature of 7 ° C. during heating. Thus, the energy consumption efficiency decreases under conditions where the outdoor temperature is below 7 ° C. In other words, the attractiveness of the heat pump air conditioner is reduced. Therefore, in order to make a heat pump air conditioner attractive even in cold regions, a device that can maintain high efficiency while avoiding a decrease in energy consumption efficiency is required. Specifically, the heat energy discharged together with the air released to the outside when the 24-hour ventilation system is driven is collected using the outdoor unit of the air conditioner. By adding the above devices, it is possible to mitigate a decrease in energy consumption efficiency that occurs when the heat pump air conditioner is used in a cold region.

請求項1に記載の外壁は、一般にサイディングを用いるが、モルタル下地に吹付け塗装仕上げもしくはタイル張りでも差し支えない。何れの材料も断熱材として使用されるものではないが、吸放湿とH2Oの相変化との連携を利用した遮熱機能を有する。
請求項1及び2に記載の断熱パネルは、構造耐力を備えたパネルとしてもよい。
一般に筋交いを柱と柱との間・土台と桁との間に設置し構造耐力壁を形成するが、構造耐力壁形成に必要な筋交いを省き、構造躯体の見える「現わし」とするのに好適である。
構造耐力壁との兼用の例として、杉板倉造りにより構造耐力(耐震)を備え、且つ、吸放湿性を具備する断熱材を兼ねることが出来る。
更に、板倉造りと透湿防風防水シート及び土壁と併せて三層構造とすることで、夏季の遮熱・除湿性能を高め、その上、冬季の断熱性能を高めることが出来る。
構造耐力パネルとして、構造用合板を用いてもよい。断熱材は合板の屋内側のみ、もしくは、屋内側・屋外側の両側に貼設する。又、付加断熱として屋外側に貼設すると断熱性能は向上する。尚、気密防水シートを構造用合板の外側に張設する。
請求項3に記載の断熱パネルは、仕上げ材として屋根部の天井の内装材を兼ねることができる。例えば、杉厚板材に透湿防風防水シート・珪酸カルシューム材を積層すれば、内装材を兼ねることができる。更に、垂木の構造材を兼ねることも出来る。(図5参照)同様に、断熱パネルは、壁体部について内壁の内装材を兼ねることができる。(図10参照)屋根部・壁体部について、所謂「現わし」の内装方法である。
ところで、断熱パネルを下地材として活用し、柱等の構造材を「現わす」所謂真壁とする場合、断熱パネルに直接紙クロスの積層貼り仕上げ、又は、珪藻土塗り仕上げとすることができる。或いは、プラスターボードを用いた場合、断熱材及び内装下地材を兼ねて、それに紙クロスの積層貼り仕上げ、又は、珪藻土塗り仕上げとすることができる。
請求項6に記載の気密断熱層に関連して、緯度が低く、温暖な地域では、夏季の遮熱・除湿を重視して、北側の屋根体の気密断熱層も吸放湿性を具備する断熱材を用いるといい。
請求項10に記載のエネルギー供給手段は、太陽熱エネルギーの利用に当たっては屋根面で集熱したものを公知の方法で床下空間に放熱する方法を取ることが出来る。それに対し、太陽熱エネルギーから温水を作り、建物外に一時貯湯して必要な時に建物内にエネルギーを供給することが出来る。そして、公知の手段により、床下空間に直接放熱するか或は基礎土間コンクリートに埋め込んだパイプを通じた熱交換により蓄熱するかの方法を取る。尚、貯湯のエネルギー源として、灯油・ガス・深夜電力を用いても良い。
棟換気口に関し。棟換気口と送風ファンとを一体とした構成とすることもできる。その場合、屋根棟下空間及び送風ファン及び屋根棟下換気口を別に設けなくても良い。
請求項12に記載の天井裏の断熱層は、図8及び13に記載の様に桁・梁上に乗せる様に配置してもいい。その場合、断熱層と屋根通気層との間に別途小屋裏空間等の空間を設ける。小屋裏空間内の空気と屋根通気層内の空気とは混合しない様に、互いに隔て、小屋裏空間から直接屋外に排気できる排出口を設ける。又、排気口に送風ファンを連結して、排気の効率を高めることもできる。小屋裏空間と外側通気層とは連通して外気に通じるか、あるいは、それぞれ独立して外気に通じるか、何れも可である。
The outer wall according to claim 1 generally uses siding, but may be spray-coated or tiled on the mortar base. None of the materials is used as a heat insulating material, but has a heat shielding function utilizing the cooperation between moisture absorption / release and the phase change of H 2 O.
The heat insulation panel according to claims 1 and 2 may be a panel having structural strength.
In general, bracing is installed between columns and between columns and girders to form a structural bearing wall, but to eliminate the bracing necessary to form the structural bearing wall and to make the structural body visible Is preferred.
As an example of the combined use with the structural load-bearing wall, it is possible to serve as a heat insulating material that has structural strength (seismic resistance) and has moisture absorption and desorption properties by making a cedar plate.
Furthermore, it is possible to improve the heat insulation / dehumidification performance in summer and further improve the heat insulation performance in winter by using a three-layer structure in combination with itakura structure, moisture permeable windproof waterproof sheet and earth wall.
A structural plywood may be used as the structural load-bearing panel. Insulation is affixed only on the indoor side of the plywood or on both the indoor and outdoor sides. Moreover, if it sticks on the outdoor side as additional heat insulation, heat insulation performance will improve. An airtight waterproof sheet is stretched outside the structural plywood.
The heat insulation panel of Claim 3 can serve as the interior material of the ceiling of a roof part as a finishing material. For example, if a moisture permeable windproof waterproof sheet / calcium silicate material is laminated on a cedar thick plate material, it can also serve as an interior material. It can also serve as a rafter structure. (Refer FIG. 5) Similarly, a heat insulation panel can serve as the interior material of an inner wall about a wall part. (Refer to FIG. 10) This is a so-called “in-place” interior method for the roof and the wall.
By the way, when the heat insulating panel is used as a base material and a structural material such as a pillar is “exposed”, a so-called true wall, a paper cloth can be directly laminated on the heat insulating panel, or a diatomaceous earth finish. Alternatively, when a plaster board is used, it can serve as a heat insulating material and an interior base material, and can be laminated and finished with paper cloth or diatomaceous earth finish.
In relation to the hermetic heat insulating layer according to claim 6, in a low-latitude and warm region, heat insulation and dehumidification in the summer are emphasized, and the airtight heat insulating layer of the northern roof also has moisture absorption and desorption properties. Use wood.
The energy supply means according to claim 10 can take a method of dissipating heat collected on the roof surface to the underfloor space by a known method when using solar thermal energy. On the other hand, hot water can be made from solar thermal energy, temporarily stored outside the building, and supplied to the building when needed. Then, a known method is used to directly radiate heat to the under-floor space or to store heat by heat exchange through a pipe embedded in the foundation soil concrete. In addition, you may use kerosene, gas, and midnight electric power as an energy source of hot water storage.
Concerning the building ventilation opening. The building ventilation port and the blower fan may be integrated. In that case, the space under the roof ridge, the blower fan, and the ventilation hole under the roof ridge need not be provided separately.
You may arrange | position the heat insulation layer of the back of a ceiling of Claim 12 so that it may get on a girder and a beam, as shown in FIG. In that case, a space such as an attic space is provided between the heat insulation layer and the roof ventilation layer. In order not to mix the air in the attic space and the air in the roof ventilation layer, an exhaust port that can be directly exhausted from the attic space to the outside is provided so as to be separated from each other. Further, an exhaust fan can be connected to the exhaust port to increase the exhaust efficiency. The cabin space and the outer ventilation layer can communicate with each other to communicate with the outside air, or can independently communicate with the outside air.

住宅の空調方法として、その快適さ・健康に及ぼす影響・蘇生力等の比較では、輻射冷房・輻射暖房に勝るものはない。それで、地域の気候特性・断熱材の組み合わせ・省エネルギー・ヒートアイランド化抑制・含水率管理・除湿負荷縮減等を勘案しながら、背理的機能である輻射冷房・輻射暖房効果の実現を、夏・冬の太陽熱エネルギー・深夜電力・HP式エアコン・潜熱式蓄熱体・基礎土間コンクリート・地中等エネルギー供給手段・蓄熱手段との好適な組み合わせの中で実施する。
断熱材の組み合わせは、いずれも選択できる。地域の気候特性に関わりなく、先のエネルギー供給手段の運用方法等によって、その違いを吸収する。尚、気密断熱層を通じた冬季の熱損失を避ける為、外側通気層を後記の断熱空気層として活用すると、寒冷地から温暖地まで、右実施例を好適に実施できる。
潜熱式蓄熱体の相変化(凝固・融解)の温度域を21℃から23℃の間を中心に設定する。
夏季は、夜間エアコンから冷却エネルギーを床下空間等の流路に放出する際の温度は凝固点を考慮すると、21℃以下である。昼間は、蓄熱体からのエネルギー移転により、融解点23℃と同程度の温度を床下空間で保持できる。また、蓄熱層を構成する地中から継続して冷却エネルギーは供給されるので、エアコン等のエネルギー供給源に依存する割合は小さい。その分、省エネルギーに繋がる。しかも、地熱のエネルギーは単なる省エネルギー効果をもたらすのみならず、吸放湿性を具備する断熱材の創出する伝熱性を応用した太陽熱エネルギーの潜熱化を図るシステムに活用され、ヒートアイランド化抑制の一助に貢献する。
冬季は、夜間エアコンから融点23℃以上の温度で放出し、同程度の温度を床下空間で保持する。昼間は、蓄熱体からのエネルギー移転により、凝固点21℃程度の温度が床下空間で保持される。
上記の凝固・融解の温度は、冷暖房の方法をもっぱら対流熱エネルギーによる温熱環境の実現に依存する場合、冷房の温度としては低過ぎ、特に夜間の冷房エネルギー供給に関しては不適である。しかし、対流熱エネルギーを放射熱エネルギーに変換し、輻射式の冷暖房方法に依存すると事情は変わる。
There is nothing better than radiant cooling or radiant heating in the comparison of comfort, health effects, resuscitation, etc. Therefore, while taking into account regional climate characteristics, combination of heat insulating materials, energy saving, heat island control, moisture content management, reduction of dehumidification load, etc., we realized the effective functions of radiation cooling and radiation heating in summer and winter. It is implemented in a suitable combination of solar thermal energy, midnight power, HP air conditioner, latent heat type heat storage body, concrete between foundation soil, underground energy supply means, and heat storage means.
Any combination of heat insulating materials can be selected. Regardless of regional climatic characteristics, the difference is absorbed by the operation method of the energy supply means. In order to avoid heat loss in the winter through the airtight heat insulating layer, the right embodiment can be suitably implemented from a cold region to a warm region by utilizing the outer ventilation layer as a heat insulating air layer described later.
The temperature range of phase change (solidification / melting) of the latent heat type heat accumulator is set around 21 ° C to 23 ° C.
In summer, the temperature at which cooling energy is discharged from the nighttime air conditioner into the flow path such as the underfloor space is 21 ° C. or less in consideration of the freezing point. During the daytime, a temperature equivalent to the melting point of 23 ° C. can be maintained in the underfloor space by transferring energy from the heat storage body. Further, since cooling energy is continuously supplied from the ground constituting the heat storage layer, the ratio depending on the energy supply source such as an air conditioner is small. That leads to energy saving. Moreover, geothermal energy not only brings about energy-saving effects, but also contributes to the prevention of heat islands by being used in a system that makes solar heat energy latent heat by applying heat transfer created by heat-insulating materials that absorb and release moisture. To do.
In winter, it is discharged from the air conditioner at night with a melting point of 23 ° C. or higher, and the same temperature is maintained in the space under the floor. During the daytime, a temperature of about 21 ° C. is maintained in the underfloor space due to energy transfer from the heat storage body.
The above-mentioned solidification / melting temperature is too low as a cooling temperature when the cooling / heating method depends solely on the realization of a thermal environment by convection heat energy, and is particularly unsuitable for nighttime cooling energy supply. However, the situation changes if convective heat energy is converted to radiant heat energy and depends on a radiant cooling and heating method.

夏、床下空間等の流路で22℃から23℃の間に保たれた空気は、内側通気層から天井裏空間へ通じる空気の流路を流通する過程で、内壁仕上げ材・柱等の構造材・断熱材の躯体に蓄冷する。エネルギーを躯体に移転した後の対流熱エネルギーは人肌に優しい温度に変わり、暑過ぎず・寒過ぎない好適な温熱環境を実現する。
夏季、建物内の流路を冷気が流通するのを阻害する最大の要因は、昼間の太陽熱の蓄熱効果により発生する輻射熱である。それで、輻射熱の発生を抑制することが大きな課題となる。ところで、遮熱対策として吸放湿機能を具備する断熱材を用い、構造材・仕上げ材等にも吸放湿機能が備わっているので、太陽熱から運動エネルギーを獲得してH2Oが相変化して気化する際に、輻射熱の発生を抑制する。それで、空気の流路は好適な状態を保持できる。
床下空間・天井裏空間でエネルギー供給手段或いは蓄熱手段を介して供給された冷却エネルギーは空気の流路を流通する過程で躯体に蓄冷するが、一方躯体は空気中の湿気を吸収し、相変化で液化する過程で凝縮熱を発生する。つまり、潜熱式の蓄冷効果によって、表面上の温度変化は起こらない。それで、対流熱エネルギーによる温度変化は最小限に抑えられる。しかも、躯体への潜熱的蓄冷を実施する際、一方で循環流路内の湿気を吸収する。それで、連通口を通じて循環流路内から室内空間へ空気の流入する際は、相対湿度は低下する。
建築的な工夫により、床下空間・内側通気層・天井裏空間を連通する流路を確保し並びに流路を流通する過程で躯体に蓄冷(顕熱)し、対流熱エネルギーを放射熱エネルギーに変換する機構を形成する。対流熱エネルギーの一部を放射熱エネルギーに変換することで、室温の面で好適な環境の実現に貢献する。又、吸放湿機能を備える断熱材等の潜熱式の蓄冷により対流熱エネルギーは吸収される。更に、上記流路を流通する過程で熱損失により外部へのエネルギー移転も生じる。結局、床下空間で22℃から23℃に保たれた空気は、空気循環システムにより先の流路を流通する過程で様々な形でエネルギーを移転し、対流熱エネルギーの形で室温を形成する際には25℃から26℃の好適な環境を実現する。
In summer, the air kept between 22 ° C and 23 ° C in the flow path of the underfloor space, etc., flows through the air flow path from the inner ventilation layer to the ceiling space, and the structure of the inner wall finishing material, columns, etc. Cold storage in the frame of materials and insulation. The convective heat energy after the energy is transferred to the housing will change to a temperature that is gentle to human skin, realizing a suitable thermal environment that is neither too hot nor too cold.
In summer, the biggest factor that hinders the flow of cold air through the passages in buildings is radiant heat generated by the heat storage effect of daytime solar heat. Therefore, suppressing generation of radiant heat is a major issue. By the way, as a heat shield measure, heat insulating material with moisture absorption and desorption function is used, and structural materials and finishing materials are also equipped with moisture absorption and desorption function, so that kinetic energy is acquired from solar heat and H2O phase changes. When vaporizing, the generation of radiant heat is suppressed. Therefore, the air flow path can maintain a suitable state.
Cooling energy supplied through the energy supply means or heat storage means in the underfloor space / ceiling space cools the enclosure in the process of flowing through the air flow path, while the enclosure absorbs moisture in the air and changes phase. Condensation heat is generated during the liquefaction process. That is, the temperature change on the surface does not occur due to the latent heat type cold storage effect. Thus, temperature changes due to convective heat energy are minimized. Moreover, when performing latent heat cold storage on the housing, moisture in the circulation channel is absorbed on the other hand. Thus, when air flows from the circulation channel into the indoor space through the communication port, the relative humidity decreases.
Through architectural ingenuity, a channel that communicates with the underfloor space, inner ventilation layer, and ceiling space is secured, and cold storage (sensible heat) is stored in the housing during the flow through the channel to convert convective heat energy to radiant heat energy Forming a mechanism. By converting a part of the convective heat energy into radiant heat energy, it contributes to the realization of a suitable environment in terms of room temperature. Further, convective heat energy is absorbed by latent heat type cold storage such as a heat insulating material having a moisture absorption / release function. Furthermore, energy transfer to the outside also occurs due to heat loss in the process of flowing through the flow path. Eventually, the air kept at 22 ° C to 23 ° C in the underfloor space transfers energy in various ways in the process of flowing through the previous flow path through the air circulation system, and forms room temperature in the form of convective heat energy. Realizes a suitable environment of 25 ° C. to 26 ° C.

輻射暖房の技術は公知の技術であるが、全国的には普及の途上にある。その技術の中核は、施工上の高い技能による高い気密性能の確保にある。設計上の工夫では、断熱材を二層構造とすることで高い気密性能・地域特性に応じた断熱性能を実現できる。施工技能に設計上の工夫を加えて、C値0.5以下、Q値1.8以下の高性能を実現できる。更に、設計段階では、建築的な工夫及び連通口の開閉により、床下空間・内側通気層から室内を連通する流路を確保し並びに流路を流通する過程で躯体に蓄熱し、対流熱エネルギーを放射熱エネルギーに効率的に変換する機構を形成する。対流熱エネルギーの一部を放射熱エネルギーに変換することで、室温の面で好適な環境の実現に貢献する。
昼間の太陽熱エネルギーもしくは深夜電力によりエネルギー消費効率の高いエアコンから供給される熱エネルギーを活かし、24時間を通し、好適な環境を実現する。
前記の手段で確保された熱エネルギーは一部を床下に配設された潜熱式蓄熱体・基礎土間コンクリート・地中から構成される蓄熱層に蓄熱される。それで、熱エネルギーが継続的に供給されなくとも、床下空間の温度が低下すると蓄熱体を通じて放熱し、一定の温度を保持する。ここでは、凝固・融解の温度を21℃から23℃の間に設定された潜熱式蓄熱体は、温度センサーの助けを借りずに、床下空間において蓄熱・放熱を繰り返し、熱エネルギーの安定供給に貢献する。
The technology of radiant heating is a well-known technology, but it is in the process of spreading nationwide. The core of the technology is to ensure high airtightness with high construction skills. In terms of design, it is possible to achieve high airtightness performance and heat insulation performance according to regional characteristics by making the heat insulating material a two-layer structure. By adding design ingenuity to construction skills, high performance with a C value of 0.5 or less and a Q value of 1.8 or less can be realized. Furthermore, at the design stage, through architectural ingenuity and opening and closing of the communication port, a channel that communicates with the interior from the underfloor space and the inner ventilation layer is secured, and heat is stored in the housing during the course of the channel, and convection heat energy is saved. Forms a mechanism to efficiently convert to radiant heat energy. By converting a part of the convective heat energy into radiant heat energy, it contributes to the realization of a suitable environment in terms of room temperature.
Utilizing the thermal energy supplied from air conditioners with high energy consumption efficiency by daytime solar thermal energy or late-night power, a favorable environment is realized through 24 hours.
A part of the thermal energy secured by the above means is stored in a heat storage layer composed of a latent heat type heat storage body, foundation concrete, and underground. Therefore, even if thermal energy is not continuously supplied, when the temperature of the underfloor space decreases, the heat is dissipated through the heat storage body, and a constant temperature is maintained. Here, the latent heat type heat accumulator with the solidification / melting temperature set between 21 ° C and 23 ° C repeats the heat storage and heat release in the underfloor space without the help of the temperature sensor, for the stable supply of heat energy. To contribute.

冬季、床下空間で21℃から23℃の間に保たれた空気は、空気循環システムにより冬季用の流路を流通する。
夜間、床下空間で23℃を保った空気は、前記流路を流通する過程で躯体への蓄熱あるいは外部へのエネルギー移転である熱損失により、連通口より室内に流入する際には、室温20℃前後を保持する。
昼間、床下空間で21℃を保った空気は、前記流路を流通する過程で躯体への蓄熱あるいは外部へのエネルギー移転である熱損失により、連通口より室内に流入する際に温度低下するものの、太陽の日射取得もあり、室温20℃までは低下しない。むしろ、太陽の日射による室温上昇に注意が必要である。
以上の効果で、外気の温度の高低に関わらず、室温は恒常的に20℃前後を確保できる。20℃の室温は対流熱エネルギー主体であれば必ずしも暖かいとは言えない。しかし、輻射暖房の特徴は、対流熱エネルギーの一部を放射熱エネルギーに変換することで、室温に関係なく直接住む人の身体の内部(細胞レベル)に放射熱エネルギーを伝えることにある。条件が整えば、床・壁・天井の六面から輻射熱エネルギーを受けることが出来る。室温20℃で暖かい好適な環境を実現出来るのは、輻射式暖房方法の優位なところと言える。
断熱材の組み合わせは、地域の気候特性を考慮して(ロ)もしくは(ハ)もしくは(二)の何れを選択しても良い。
In winter, air kept between 21 ° C. and 23 ° C. in the underfloor space circulates in the winter passage by the air circulation system.
When the air kept at 23 ° C. in the underfloor space at night flows into the room through the communication port due to heat loss that is stored in the frame or transferred to the outside during the flow through the flow path, Hold around ℃.
During the daytime, the air maintained at 21 ° C in the underfloor space is reduced in temperature when flowing into the room through the communication port due to heat loss in the process of circulating through the flow path due to heat storage in the frame or energy transfer to the outside. There is also solar solar radiation acquisition, and it does not drop to room temperature 20 ° C. Rather, attention should be paid to the rise in room temperature due to solar radiation.
With the above effects, the room temperature can be constantly kept around 20 ° C. regardless of the temperature of the outside air. A room temperature of 20 ° C. is not necessarily warm if it is mainly composed of convection heat energy. However, the feature of radiant heating is that convective heat energy is converted into radiant heat energy, so that the radiant heat energy is transmitted to the interior (cell level) of the person who lives directly regardless of the room temperature. If conditions are in place, radiant heat energy can be received from the six sides of the floor, wall, and ceiling. It can be said that it is an advantage of the radiant heating method that a suitable environment warm at room temperature of 20 ° C. can be realized.
As the combination of the heat insulating materials, either (b), (c) or (b) may be selected in consideration of the local climatic characteristics.

寒冷地において請求項3乃至16に記載のシステムを利用する場合、その気候特性を考慮した利用によりランニングコストを抑えて好適な住環境を得られる。
夏季は、寒冷地といえども昼間の気温は温暖地に比べて目立って変わらない。只、夜間に限れば温暖地に比較すると外気温の低下は著しい。それで、夜間の冷気を昼間に日射取得する太陽熱エネルギーの吸収に利用する。
換気通気システムにより夜間温度低下した外気を取り入れる。放射冷却のエネルギーを取り込んで、循環流路を流通する過程で気密断熱層に冷却エネルギーを供給し、潜熱的に蓄冷する。そして、H2Oの相変化と吸放湿機能との連携を日射取得する太陽熱エネルギーの吸収により促進し、昼間の遮熱・除湿に利用することが出来る。夜間の温度低下の大きさから、地熱と屋外側で供給する放射冷却エネルギーとを併せれば、昼間の遮熱・除湿効果は十分得られる。
冬季は、深夜電力利用による輻射暖房の効果を実現することは可能である。しかし、エアコンは一般に寒冷地ではエネルギー消費効率が低下する。それで、別のエネルギー供給手段を検討する。例えば、灯油を使ったボイラーを利用する。その場合、同じく循環システムを利用する為に床下にボイラーを設置する。床下で温められた空気は冬季用の循環流路を流通し、熱エネルギーを供給し、エネルギー変換を遂げた後の輻射熱の利用が可能である。
冬季の空気循環の流路は、夏季と異なり、連通する空間から天井裏空間を除いて構成する。それで、天井裏空間と屋根通気層とを隔てる気密断熱層を経た熱損失の増加を阻止出来る。
断熱材の組み合わせは、(イ)もしくは(ロ)もしくは(ハ)のいずれを採用するも可能である。尚、外側通気層への下端からの通気は、熱損失を招く冷却エネルギーを継続的に供給する。それで、熱損失を防ぐ手段として、外側通気層に空気流入を阻止する開閉弁を設けると、通気層が断熱空気層の役割を果たし、断熱性能を高める上で効果的である。
尚、寒冷地仕様とする場合、併せて、基礎土間コンクリートの下側全面に断熱材を敷き置きする。冬季の地中への熱損失を避け、床下輻射暖房の効果を上げる場合に効果を表す。只、地熱の利用は不可能である。それで、夏季は放射冷却のエネルギーのみで十分で、地熱の利用を必要としない場合に適する。
When the system according to claims 3 to 16 is used in a cold region, it is possible to obtain a suitable living environment while suppressing running costs by using the system considering its climatic characteristics.
In summer, even in cold regions, daytime temperatures are not as noticeable as in warm regions.れ ば If it is limited to the night, the decrease in the outside air temperature is remarkable compared to the warm area. Therefore, the cold air at night is used to absorb solar thermal energy that is acquired by solar radiation in the daytime.
Incorporate outside air whose temperature has dropped due to a ventilation system. The energy of radiation cooling is taken in, the cooling energy is supplied to the airtight heat insulating layer in the process of circulating through the circulation flow path, and the latent heat is stored. And cooperation with the phase change of H2O and a moisture absorption / release function can be promoted by absorption of solar thermal energy acquired by solar radiation, and can be used for heat insulation and dehumidification in the daytime. The combination of geothermal heat and radiant cooling energy supplied on the outdoor side, due to the magnitude of the temperature drop at night, can provide sufficient heat insulation and dehumidification effects during the day.
In winter, it is possible to achieve the effect of radiant heating using midnight power. However, the energy consumption efficiency of air conditioners generally decreases in cold regions. So consider alternative means of supplying energy. For example, a boiler using kerosene is used. In that case, a boiler is installed under the floor to use the circulation system. The air heated under the floor flows through a circulation channel for winter, supplies heat energy, and can use radiant heat after energy conversion.
Unlike the summer season, the air circulation channel in the winter season is constructed by excluding the ceiling space from the communicating space. Therefore, it is possible to prevent an increase in heat loss through the hermetic heat insulating layer separating the ceiling space and the roof ventilation layer.
Either (A), (B) or (C) can be adopted as the combination of the heat insulating materials. In addition, the ventilation | gas_flowing from the lower end to an outer side ventilation layer supplies the cooling energy which causes a heat loss continuously. Therefore, if an on-off valve for preventing air inflow is provided in the outer ventilation layer as a means for preventing heat loss, the ventilation layer serves as a heat insulating air layer, which is effective in improving the heat insulating performance.
In addition, in the case of cold district specifications, a heat insulating material is laid on the entire lower surface of the foundation soil concrete. The effect is expressed when avoiding heat loss to the ground in winter and increasing the effect of underfloor radiant heating.只, geothermal use is impossible. Therefore, in summer, only radiant cooling energy is sufficient, which is suitable when geothermal use is not required.

請求項17から請求項23について。
断熱層に用いる断熱材としては、合成樹脂系(ポリスチレン・ポリウレタン等)、繊維系(グラスウール・ロックウール)、鉱物系(珪酸カルシューム主成分)のボード状断熱材の中から選択できる。尚、吸放湿性の有無は問わない。断熱材は、一層もしくは二層とし、適宜透湿防風防水シート・防湿シートを併用して断熱層を構成する。あるいは、請求項1・2に記載の断熱パネルを用いて構成する。
内壁・天井に用いる内装材としては、吸放湿とH2Oの相変化との連携の比率の高い材料を用いるが、具体的には珪酸カルシューム主成分の板材(タイライトウッド等)が好適である。あるいは、プラスターボード下地に吸放湿性を具備する紙クロス張り又は珪藻土塗り仕上げとすることが出来る。何れも、厚みは9mmから12mm程度が、費用対効果から好適である。
床に用いる内装材は、吸放湿とH2Oの相変化との連携の比率の低い材料を用いる。具体的には、杉・檜等の無垢板材が好適である。あるいは、湿気を透過できる合板でもいい。厚みは、重量物に耐えられるように、無垢板材では30mm程度、合板では12mm厚板材の二重張りが費用対効果から好適である。
床の面積に比較すると、天井の面積は1.4倍程度、屋外側の断熱層・内側通気層に面する内壁の面積は1.6倍程度に達し、合計すると3倍程度になる。これは断熱層に面する内壁・天井の面積量である。それで、室内からの吸湿は単純に考えれば、床下からの吸湿の3倍に達する。これは、湿気伝導の効率の低い吸放湿材を用いても、結果として室内の除湿効果を得られる所以である。
内壁・天井に用いる内装材の内、吸放湿とH2Oの相変化との連携の比率の高い吸放湿材は、除湿負荷管理の面からは全ての内壁・天井の内装材に用いても支障なく、室内からの湿気排出の効率は高くなる。但し、含水率管理の側面を考慮し、更に、気化・放湿に必要な運動エネルギーを通気以外の手段によって安定して供給されるためには、太陽熱エネルギーを日射取得できる断熱層に面し、そこから輻射熱を得られる天井及び東西南側の内壁に限定される。それらが、用いる面積・範囲の上限である。即ち、含水率管理を優先すれば、輻射熱を得られる東西南側の内壁以外の間仕切り壁を含む内壁は吸放湿性を具備しない内装材を用いる。尚、吸放湿性を具備しない内装材に代えて吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を用いた場合、湿気の排出路形成に貢献せず、除湿負荷管理の上から逆効果を表す。
翻って、請求項17に記載の湿気の排出路を形成する上では、床材に吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を用い、内壁・天井の内装材に吸放湿とH2Oの相変化との連携の比率の高い吸放湿材を用いれば、その目的は果たせる。しかも、内壁・天井の内装材に吸放湿性を具備しない内装材を用いても、内壁・天井の内装材の一部に吸放湿とH2Oの相変化との連携の比率の高い吸放湿材を用いれば、その目的は果たせる。只、屋外への湿気排出の効率を高め、除湿負荷管理の課題に応えるには、床に用いる吸放湿とH2Oの相変化との連携の比率の低い吸放湿材の面積よりも、内壁・天井の内装材に用いる吸放湿とH2Oの相変化との連携の比率の高い吸放湿材の施工面積は広く確保する。
さて、太陽熱を日射取得できない北側の断熱層を通じた輻射熱の影響は乏しく、輻射熱を利用した気化・放湿は期待できない。更に、暖気は東西南北に関係なく利用できるが、通気の際に床下の地熱から冷気を受け取るので、運動エネルギーの供給源としては弱い。それで、北側に用いる内装材は吸放湿性を具備しないものを用いるのがいい。プラスターボード下地にビニルクロスは、室内側に吸放湿性を備えず、内側通気層側に吸放湿性を備えているので、室内側に放湿することは無く、費用対効果を考慮すれば好都合である。尚、部屋と部屋との間の仕切り壁についても同様で、断熱層に面することは無く、輻射熱の影響は期待できない。それで、除湿負荷管理及び含水率管理の上からは、吸放湿性を具備しない内装材を用いる。
図3に記載の天井は、屋根勾配に沿って施工されているが、図13に示す様に桁・梁の下側に施工・配置してもいい。
Claims 17 to 23.
The heat insulating material used for the heat insulating layer can be selected from synthetic resin-based (polystyrene, polyurethane, etc.), fiber-based (glass wool / rock wool), and mineral-based (silicate calcium silicate) board-like heat insulating materials. In addition, the presence or absence of moisture absorption / release is not questioned. The heat insulating material is a single layer or two layers, and a heat insulating layer is formed by appropriately using a moisture permeable windproof waterproof sheet and a moistureproof sheet. Or it comprises using the heat insulation panel of Claim 1 * 2.
As the interior material used for the inner wall / ceiling, a material having a high ratio of the moisture absorption / release and the phase change of H2O is used. Specifically, a plate material mainly composed of calcium silicate (such as tylite wood) is suitable. . Alternatively, a paper cloth stretch or diatomaceous earth finish having moisture absorption / release properties on the plaster board substrate can be used. In any case, a thickness of about 9 mm to 12 mm is preferable from the viewpoint of cost effectiveness.
As the interior material used for the floor, a material having a low ratio of cooperation between moisture absorption / release and H2O phase change is used. Specifically, solid board materials such as cedar and straw are suitable. Alternatively, plywood that can transmit moisture may be used. The thickness is preferably about 30 mm for a solid plate material and 12 mm thick for a plywood sheet so that it can withstand heavy objects.
Compared to the floor area, the ceiling area is about 1.4 times, the area of the inner wall facing the heat insulating layer / inner ventilation layer on the outdoor side is about 1.6 times, and the total is about 3 times. This is the area of the inner wall / ceiling facing the heat insulation layer. Therefore, if the moisture absorption from the room is simply considered, it reaches three times the moisture absorption from under the floor. This is the reason why an indoor dehumidifying effect can be obtained as a result even if a moisture absorbing / releasing material having low moisture conduction efficiency is used.
Of the interior materials used for inner walls and ceilings, moisture absorbent materials that have a high ratio of moisture absorption and release and H2O phase change can be used for all interior walls and ceiling interior materials in terms of dehumidification load management. Without any problem, the efficiency of moisture discharge from the room is increased. However, considering the aspect of moisture content management, in order to stably supply the kinetic energy necessary for vaporization and moisture release by means other than ventilation, facing the heat insulation layer that can acquire solar heat energy, It is limited to the ceiling from which radiant heat can be obtained and the inner wall on the east-west side. These are the upper limits of the area and range to be used. That is, if priority is given to moisture content management, the inner wall including the partition wall other than the inner wall on the east / west / south side where radiant heat can be obtained uses an interior material that does not have moisture absorption / release properties. If moisture absorbing / releasing material with a low ratio of moisture absorption / release and H2O phase change is used instead of interior material that does not have moisture absorbing / releasing properties, it does not contribute to the formation of the moisture discharge path, and dehumidification load management The counter effect is expressed from above.
On the other hand, in forming the moisture discharge path according to claim 17, a moisture absorbing / releasing material having a low ratio of coordination between moisture absorbing / releasing and H 2 O phase change is used for the flooring, and the interior material of the inner wall / ceiling is used. If a moisture absorbing / releasing material having a high ratio of cooperation between moisture absorption / release and H2O phase change is used, the purpose can be achieved. Moreover, even if interior materials that do not absorb moisture are used for the interior materials of the inner walls and ceilings, moisture absorption and desorption with a high ratio of the relationship between moisture absorption and release and phase change of H2O is applied to some of the interior materials of the inner walls and ceilings. The purpose can be fulfilled by using wood.只 In order to increase the efficiency of moisture discharge to the outdoors and respond to the problem of dehumidification load management, the inner wall is more than the area of the moisture absorbing / releasing material with a low ratio of moisture absorption / desorption to the floor and the phase change of H2O. -Ensure a wide construction area for the moisture absorbing / releasing material that has a high ratio of cooperation between the moisture absorbing / releasing material used for ceiling interior materials and the phase change of H2O.
Now, the influence of radiant heat through the heat insulation layer on the north side where solar heat cannot be acquired by solar radiation is scarce, and vaporization and moisture release using radiant heat cannot be expected. In addition, warm air can be used regardless of whether it is east, west, south, or north, but it is a weak source of kinetic energy because it receives cold air from geothermal heat beneath the floor during ventilation. Therefore, it is better to use the interior material used on the north side that does not have moisture absorption and desorption. Vinyl cloth on the base of the plaster board does not have moisture absorption / release properties on the indoor side, and has moisture absorption / release properties on the inner ventilation layer side. is there. The same applies to the partition wall between the rooms, and it does not face the heat insulating layer, and the influence of radiant heat cannot be expected. Therefore, from the viewpoint of dehumidifying load management and moisture content management, interior materials that do not have moisture absorption / release properties are used.
The ceiling shown in FIG. 3 is constructed along the roof slope, but as shown in FIG.

夏季、床下換気口及び第二棟下換気口は開放し、連通する床下空間・内側通気層・天井裏空間・棟下空間で形成される流路内の空気の流通を図る。内壁・天井に用いる内装材は、吸放湿とH2Oの相変化の連携の比率が高いので、放射冷却で冷えた外気から冷エネルギー及び湿気を吸収できる。冷エネルギーと伴に湿気を放出した空気は軽くなり、上昇して第二棟下換気口から屋外に排出される。液化して吸収されたH2Oは室内側に移動することなく、翌昼間内側通気層内に気化放湿される。この気化及び内側通気層内への放湿のエネルギーは、気温30度の空気のもつエネルギーであり、断熱層に日射取得される太陽熱エネルギーに由来し、内装材に至る輻射熱である。
送風ファンを稼動する場合、第二棟下換気口は閉じ、先ずは昼夜ともに稼動する。夜間は、放射冷却の影響から空気の上昇力は弱い。床下空間を経由して地熱の効果で冷やされれば、空気は重くなり、上昇力をもたない。それで、送風ファンの力を借りて上昇力を得れば、内側通気層内を上昇する過程で内装材への吸湿・吸冷により空気は軽くなり、容易に連通口より屋外に排出される。尚、信州等の寒冷地では、夏季の夜間の外気温の低下は著しく、エアコンを用いずとも涼房効果を得られる。それに対し、温暖湿潤の地域では、夜間の温度低下は緩慢で過ぎし辛く、快適に過ごすにはエアコンを必要とする。何れにしろ、夜間の地熱・放射冷却のエネルギーは大半を凝縮熱の吸収に消費され、室内の冷房効果を期待するのは難しい。逆に、昼間は気化・放湿により遮熱効果を期待でき、室内の温度上昇の抑制に多少なりとも効果を期待できる。
In summer, the underfloor ventilation opening and the second building ventilation opening will be opened to allow air to flow in the flow path formed by the communicating underfloor space, inner ventilation layer, ceiling back space, and underbuilding space. Since the interior material used for the inner wall and ceiling has a high ratio of the relationship between moisture absorption and release and H2O phase change, it can absorb cold energy and moisture from the outside air cooled by radiation cooling. The air that released moisture along with the cold energy becomes lighter, rises and is discharged to the outside through the ventilation holes under the second building. The liquefied and absorbed H 2 O is vaporized and dehumidified in the inner ventilation layer during the next day without moving to the indoor side. The energy of this vaporization and moisture release into the inner ventilation layer is the energy of air having an air temperature of 30 degrees, and is the radiant heat that reaches the interior material from solar thermal energy acquired by solar radiation in the heat insulating layer.
When the blower fan is operated, the ventilation opening under the second building is closed, and first it operates both day and night. At night, the rising force of air is weak due to the effect of radiative cooling. If it is cooled by the effect of geothermal heat through the underfloor space, the air becomes heavier and has no ascending power. Therefore, if the lifting force is obtained with the help of the blower fan, the air is lightened by moisture absorption and cooling to the interior material in the process of rising inside the inner ventilation layer, and is easily discharged to the outside from the communication port. In cold districts such as Shinshu, the outdoor temperature at summertime is drastically reduced, and a cooling effect can be obtained without using an air conditioner. On the other hand, in a warm and humid area, the temperature drop at night is too slow and it is difficult to spend comfortably. In any case, most of the energy of nighttime geothermal and radiative cooling is consumed to absorb the condensed heat, and it is difficult to expect an indoor cooling effect. On the other hand, in the daytime, heat shielding effect can be expected by vaporization and moisture release, and it can be expected to be more or less effective in suppressing the rise in indoor temperature.

連通する床下空間・内側通気層から換気口を通じて建物外に湿気を排出する排出路は二つ確保できる。一つ目は、床下空間から床材を透過して室内に流入し、室内から内壁・天井の内装材を透過して内側通気層に流入し、天井裏空間・第二棟下換気口から建物外に排出される排出路である。量的には僅かであるが、床材に吸放湿とH2Oの相変化との連携の比率の低いものを用いることで、含水率・平衡含水率・相対湿度の関係で吸放湿の方向は定まる。二つ目は、床下空間から内側通気層を経て天井裏空間・第二棟下換気口から建物外に排出される排出路である。この二つの排出路の働きは大きい。床下空間に滞留し易い湿気は、通風以外に相対湿度・含水率・平衡含水率の関係によって排出され、床下空間内での結露の発生を抑えられる。しかも、湿気伝導率の高くない吸放湿材(床材)を用いれば、床を通じて室内に透過する湿気の量より多くの湿気が内壁・天井の内装材を通じて内側通気層・天井裏空間・棟下換気口から建物外に排出され、室内の除湿負荷の増大を招かない。尚、二つの排出路の形成は、結露=液化を作用として活用することで可能となる。逆論理付けに止まらず、発明特定事項の構成の困難性にも繋がる。尚、エアコンを用いて室内を除湿する場合、床下空間からの湿気の排出路は増える。
第二送風ファンを稼動する際は、第二棟下換気口を閉じる。それで、排出路は第二棟下換気口から第二棟下連通口に代わる。
床材に用いる杉板材の厚みは30mmに達する。通常、1日の内に吸湿もしくは放湿できる範囲は深さ2mm程度である。それ故、常時一方に湿気が流れたとしても、浸透するには15日を要する。内壁・天井の内装材に見られる浸透の態様に比較すれば著しく緩慢である。それだけ、室内の湿度調節への影響は小さいと言える。それでも、床下空間から吸湿できる働きの効果は、結露防止の観点から大きい。
Two discharge channels can be secured for exhausting moisture from the communicating underfloor space and inner ventilation layer to the outside of the building through the ventilation openings. The first is that the floor material permeates through the floor floor and flows into the room, the interior wall and ceiling interior material from the room flows into the inner ventilation layer, and the building from the ceiling back space and the second building vent This is a discharge path that is discharged outside. Although the amount is small, the floor material used has a low ratio of moisture absorption / release and H2O phase change, and the direction of moisture absorption / release due to the relationship between moisture content, equilibrium moisture content, and relative humidity. Is determined. The second is a discharge path that is discharged from the underfloor space through the inner ventilation layer to the outside of the building from the ceiling back space and the second building lower ventilation opening. The work of these two discharge channels is great. Moisture that tends to stay in the underfloor space is discharged by the relationship of relative humidity, moisture content, and equilibrium moisture content in addition to ventilation, and the occurrence of condensation in the underfloor space can be suppressed. Moreover, if moisture absorbing / releasing material (floor material) with low moisture conductivity is used, more moisture than the amount of moisture that permeates into the room through the floor passes through the inner wall / ceiling interior material to the inner ventilation layer / ceiling space / building. It is discharged from the lower vent to the outside of the building and does not increase the indoor dehumidification load. The two discharge paths can be formed by utilizing condensation = liquefaction as an action. Not only the reverse logic but also the difficulty of configuring the invention specific matters. In addition, when dehumidifying a room using an air conditioner, the moisture discharge path from the underfloor space increases.
When operating the second blower fan, close the second building lower ventilation opening. Therefore, the discharge path is replaced from the second building lower ventilation port to the second building lower communication port.
The thickness of the cedar board used for the flooring reaches 30 mm. Usually, the range in which moisture can be absorbed or released within one day is about 2 mm in depth. Therefore, it takes 15 days to penetrate even if moisture always flows in one side. Compared to the mode of penetration seen in the interior materials of the inner walls and ceiling, it is remarkably slow. It can be said that the influence on the humidity control in the room is small. Nevertheless, the effect of absorbing moisture from the underfloor space is great from the viewpoint of preventing condensation.

室内でエアコンを稼動して除湿・冷房する場合、室内の相対湿度は内側通気層内の相対湿度より低下する。その場合、内装材に吸放湿とH2Oの相変化の連携の比率の低いものを用いると室内から内装材へ吸湿できない。更に、内側通気層内から室内に湿気の逆流が生じる。逆流し室内への湿気の透過を阻むには、湿気の吸収の際に液化を促し、液体の状態で吸収できる吸放湿とH2Oの相変化との連携の比率の高いものを用いる。液体状のH2Oは気体状のH2Oと異なり、相対湿度と含水率と平衡含水率との関係によって移動の方向を規定されるわけではなく、気化を誘引する熱エネルギーの獲得に影響される。具体的には、昼間太陽熱エネルギーを起源とする対流熱・放射熱の形で熱エネルギーを得て、内側通気層に気化・放湿する。最終的に建物外へ湿気を放出することで、室内への湿気の逆流は阻まれる。
結局、エアコンを用いて除湿する場合、機能の上から除湿するのみならず、冷気を生成・供給する。吸放湿材はその冷気を潜熱的に吸収する際に、相対湿度の低い室内から吸湿することが出来る。それで、エアコンの除湿負荷は増大せず、軽減される。つまり、エアコンの除湿負荷を増大することなしに、三つの異なる湿気の排出路を確保し、床下空間の除湿は図られる。
ところで、液化して吸収したH2Oが伝導して内側通気層へ放出されるか否かは、別の観点が加わる。即ち、湿気の伝導効率の問題に関わる問題である。伝導を促す要因としては、太陽熱に由来する輻射熱及び対流熱から運動エネルギーを得て、気化・膨張する力が大きい。しかし、それだけではなく、送風ファンの役割は大きい。
送風ファンは、昼夜稼動しても差し支えないが、昼間のみ稼動し、夜間は稼動しない場合は湿気の伝導効率(室内から内側通気層へ)を高められる。それで、液化を経ることで昼夜相対湿度の低い室内から吸湿し、昼間熱エネルギーを吸収して相対湿度の高い内側通気層に気化・放湿する速度を向上できるだけでなく、H2O移動の効率を固有の湿気伝導率より改善できる。0077の項を参照。それは、室内からの吸(除)湿効率の向上に繋がり、エアコンの除湿負荷を軽減し、結果的に、凝縮熱生成の縮減及びヒートアイランド化の抑制に繋がる。
When the air conditioner is operated indoors for dehumidification and cooling, the indoor relative humidity is lower than the relative humidity in the inner ventilation layer. In that case, if an interior material with a low ratio of moisture absorption / release and H2O phase change is used, moisture cannot be absorbed from the room to the interior material. Further, a backflow of moisture is generated from the inner ventilation layer into the room. In order to prevent moisture permeation into the backflow chamber, a material that promotes liquefaction at the time of moisture absorption and has a high cooperation ratio between moisture absorption and release that can be absorbed in a liquid state and phase change of H 2 O is used. Unlike gaseous H2O, liquid H2O is not limited in the direction of movement by the relationship between relative humidity, moisture content, and equilibrium moisture content, and is affected by the acquisition of thermal energy that induces vaporization. Specifically, thermal energy is obtained in the form of convection heat and radiant heat originating from daytime solar thermal energy, and vaporized and dehumidified in the inner ventilation layer. By finally releasing moisture outside the building, the backflow of moisture into the room is prevented.
After all, when dehumidifying using an air conditioner, it not only dehumidifies in terms of function, but also generates and supplies cold air. The moisture absorbing / releasing material can absorb moisture from the room having a low relative humidity when the cold air is absorbed latently. Therefore, the dehumidifying load of the air conditioner does not increase and is reduced. That is, without increasing the dehumidifying load of the air conditioner, three different moisture discharge paths are secured and dehumidification of the underfloor space is achieved.
By the way, another point of view is added as to whether H 2 O absorbed by liquefaction is conducted and released to the inner ventilation layer. That is, it is a problem related to the problem of moisture conduction efficiency. As a factor that promotes conduction, there is a large force for vaporizing and expanding by obtaining kinetic energy from radiant heat and convective heat derived from solar heat. However, not only that, the role of the blower fan is great.
The blower fan can be operated day and night, but can operate only during the daytime, and when it is not operated at night, the moisture conduction efficiency (from the room to the inner ventilation layer) can be improved. So, through liquefaction, it absorbs moisture from the room where the relative humidity is low day and night, absorbs the heat energy during the day and improves the rate of vaporization and dehumidification to the inner ventilation layer where the relative humidity is high. The moisture conductivity can be improved. See section 0077. This leads to an improvement in the efficiency of moisture absorption (dehumidification) from the room, reduces the dehumidification load of the air conditioner, and as a result, reduces the generation of condensation heat and suppresses the heat island.

吸放湿とH2Oの相変化との連携の比率の低い吸放湿材として杉板等の無垢板を内壁・天井の内装材に用いる場合、下地材に吸放湿とH2Oの相変化との連携の比率の高い吸放湿板材を用い、柱・間柱の構造的下地材の室内側に重ねて張る。下地の板は珪酸カルシューム主成分の板材が好適である。予算が無ければ、プラスターボードで代替するも可。その工夫によって、エアコンを用いて室内を冷房・除湿し、室内の相対湿度が内側通気層内の相対湿度より低くなっても、内壁・天井の内装材を介した内側通気層内から室内への湿気の浸透(逆流)の阻止に貢献できる。
結局、機能としては、B面から吸湿し、B面へ放湿する作用・効果(含水率と平衡含水率との乖離)。B面から吸湿し、湿気の伝導後A面から放湿する作用・効果(断熱性に背反する伝熱性の創出)。A面から吸湿し、A面から放湿する作用・効果(防水シートを利用したエネルギー移動抑制による冬季の断熱性能改善)。以上三つの作用・効果を実現でき、更に、A面から吸湿し、湿気の伝導後B面から放湿する作用を抑制することが出来る。
更に、深夜電力を利用してエアコンを稼動し、室内を冷房・除湿する場合、湿気の逆流を阻止しながら効率的に室内の除湿ができる。それで、表面に張った吸放湿材から放湿するほどに室内の相対湿度を下げる。結果、表面に張った吸放湿材の含水率は低下する。それで、昼間はエアコンで除湿しなくとも、内装材に吸湿して室内から除湿し、室内の相対湿度を70%以下に保つことができる。この効果は、二種類の吸放湿材の間に透湿防風防水シートを挟むと、より効果的に実現できる。つまり、深夜電力を利用した昼間の湿度調節をシステムとして実施できる。しかも、放射冷却を活用した遮熱の効果も同時に得られる。
冬季は、第二棟下換気口及び床下換気口を閉鎖して、気密住宅として活用し、暖房効率を高める。夏季だけに止まらず、冬季も省エネルギーを実践しながら、快適な室内環境を実現できる。
When solid boards such as cedar boards are used for interior and ceiling interior materials as moisture absorbing / releasing material with a low ratio of moisture absorption / release and phase change of H2O, moisture absorption / release and phase change of H2O for the base material Use moisture absorbing / releasing plate material with a high ratio of cooperation, and lay it on the indoor side of the structural base material of columns and studs. The base plate is preferably a plate material composed mainly of silicate calcium. If you don't have a budget, you can replace it with a plasterboard. As a result, the air conditioner is used to cool and dehumidify the room, and even if the relative humidity in the room is lower than the relative humidity in the inner ventilation layer, the interior of the inner ventilation layer through the interior material of the inner wall and ceiling can be used to enter the room. It can contribute to the prevention of moisture penetration (backflow).
After all, as a function, the function and effect of absorbing moisture from the B surface and releasing it to the B surface (divergence between the moisture content and the equilibrium moisture content). Action and effect of absorbing moisture from side B and releasing moisture from side A after conduction of moisture (creation of heat conductivity contrary to heat insulation). Action and effect of absorbing moisture from surface A and releasing moisture from surface A (improvement of heat insulation performance in winter by suppressing energy transfer using a waterproof sheet). The above three actions and effects can be realized, and further, the action of absorbing moisture from the A surface and releasing moisture from the B surface after the conduction of moisture can be suppressed.
Further, when the air conditioner is operated using midnight power to cool and dehumidify the room, the room can be efficiently dehumidified while preventing the reverse flow of moisture. Therefore, the relative humidity in the room is lowered so as to release moisture from the moisture absorbing / releasing material stretched on the surface. As a result, the moisture content of the moisture absorbing / releasing material stretched on the surface decreases. Therefore, even without dehumidification by an air conditioner in the daytime, the interior material can absorb moisture and dehumidify from the room, and the relative humidity in the room can be kept at 70% or less. This effect can be realized more effectively when a moisture-permeable windproof waterproof sheet is sandwiched between two types of moisture-absorbing / releasing materials. In other words, daytime humidity control using midnight power can be implemented as a system. In addition, a heat shielding effect utilizing radiant cooling can be obtained at the same time.
During the winter, the ventilation holes under the second building and under-floor ventilation will be closed and utilized as an airtight house to increase heating efficiency. A comfortable indoor environment can be realized while practicing energy conservation not only in summer but also in winter.

本発明の実施の形態を示す概略断面図である。It is a schematic sectional drawing which shows embodiment of this invention. 本発明の実施の形態を示す概略断面図である。It is a schematic sectional drawing which shows embodiment of this invention. 本発明の実施の形態を示す概略断面図である。It is a schematic sectional drawing which shows embodiment of this invention. 図1・2・3に示す建物の壁体の斜断面詳細図である。FIG. 4 is a detailed oblique sectional view of a wall of the building shown in FIGS. 1, 2, and 3. 屋根体・壁体の概略断面図である。It is a schematic sectional drawing of a roof body and a wall body. 屋根体の概略断面図である。It is a schematic sectional drawing of a roof body. 屋根体の概略断面図である。It is a schematic sectional drawing of a roof body. 屋根体の概略断面図である。It is a schematic sectional drawing of a roof body. 壁体の平面概略断面図である。It is a plane schematic sectional drawing of a wall body. 壁体の現わしを示す平面概略断面図である。It is a plane schematic sectional drawing which shows the appearance of a wall body. 壁体の平面概略断面図である。It is a plane schematic sectional drawing of a wall body. 壁体の平面概略断面図である。It is a plane schematic sectional drawing of a wall body. 本発明の実施例を示す概略断面図である。It is a schematic sectional drawing which shows the Example of this invention.

符号の説明Explanation of symbols

1.棟換気口 2.屋根 3.屋根通気層
4.野地板 5.垂木 6.垂木受け
7.断熱材A 8.気密断熱層 9.外側通気層
10.気密材 11.基礎 12.桁
13.柱 14.土台 15.内壁
16.杉厚板材 17.実 18.断熱材B
19.胴縁受け 20.連通口 21.胴縁
22.外壁 23.基礎天端 24.結合金物
25.接合金物 26.吸気口 27.熱交換式換気扇
28.透湿防風防水シート 29.内側通気層 30. 床
31.床下空間 32.1000MM 33.15MM
34.910MM 35.切り欠き部 36.地中
37.天井裏空間 38.棟下換気口 39.屋根棟下空間
40.棟下連通口 41.送風ファン 42.給気用連通管
43.第二棟下換気口 44.床下換気口 45.蓄熱体
46.第二棟下連通口 47.第二送風ファン 48.エアコン
49.室内空間 50.天井 51.排気用連通管
52.基礎土間コンクリート53.小屋裏空間
1. Ventilation vent 1. Roof 3. 3. Roof ventilation layer Field plate 5. Rafter 6. Rafter holder 7. Heat insulation material A 8. 8. Airtight insulation layer Outer ventilation layer 10. Airtight material 11. Basic 12. Digit 13. Pillar 14 Foundation 15. Inner wall 16. Cedar board material 17. Real 18. Insulation B
19. Trunk edge receiver 20. Communication port 21. Trunk edge 22. Outer wall 23. Basic top 24. Bond hardware 25. Bonding hardware 26. Inlet 27. Heat exchange type ventilation fan 28. Breathable windproof tarpaulin 29. Inner ventilation layer 30. Floor 31. Underfloor space 32.1000MM 33.15MM
34.910MM 35. Notch 36. Underground 37. Ceiling space 38. Ventilation opening under the ridge 39. Space under roof ridge 40. Sub-building communication port 41. Blower fan 42. Air supply communication pipe 43. Ventilation opening under second building 44. Underfloor ventilation 45. Heat storage body 46. Second building lower entrance 47. Second blower fan 48. Air conditioner 49. Indoor space 50. Ceiling 51. Exhaust communication pipe 52. Foundation soil concrete 53. Hut space

第壱の構成は、吸放湿性を具備する断熱材から構成され、構造耐力性を具備し、建物の屋根体もしくは壁体を構成する断熱パネルであって、吸放湿とH2Oの相変化との連携の比率の低い断熱材と透湿防風防水シートと吸放湿とH2Oの相変化との連携の比率の高い断熱材とを重ね合わせた三層構造を特徴とする断熱パネル。 The second configuration is a heat insulating panel that is composed of a heat insulating material having moisture absorption and desorption properties, has structural strength, and constitutes a roof or wall of a building. A heat insulation panel characterized by a three-layer structure in which a heat insulating material with a low cooperation ratio, a moisture-permeable windproof waterproof sheet, and a heat insulating material with a high cooperation ratio between moisture absorption / release and H2O phase change are superimposed.

第参の構成は、図1又は図2に示す建物を構造的に支える基礎・土台・柱・桁・梁の構造部材並びに屋根・外壁・断熱層を具備する屋根体・壁体から構成され、内壁・床・天井により室内空間を構成し、構造耐力を備え、屋根体を構成する断熱層は、吸放湿性を具備する断熱材から構成され、棟換気口及び屋根通気層及び外側通気層を備え、棟換気口、もしくは、送風ファン付棟換気口、もしくは、送風ファン及び棟下連通口により、外気に開放され、建物外から外気を導入し、室内を循環した空気を建物外に排出する通風を含めた換気する手段を備え、防水性を備え、地熱・放射冷却のエネルギー、夏季の暖気太陽熱エネルギーの日射に曝される建物であって、透湿性の断熱層は、請求項1に記載の断熱パネルから構成され、屋内側に吸放湿とH2Oの相変化との連携の比率の低い断熱材を用い断熱層の内、吸放湿性を具備する断熱層は、H2Oの相変化(液化・気化)を媒介する断熱材の吸放湿機能により吸湿・吸冷し、夏季の昼間の常温で気化・蒸発し、屋外に排出し、その上、北側を除いた断熱層は、日射取得される太陽熱エネルギーを吸収し、湿気という潜熱の形に閉じ込めて屋外に排出ることを特徴とするエコ住宅。 The structure of the second reference is composed of the structural members of the foundation, foundation, pillars, girders, beams that structurally support the building shown in FIG . 1 or FIG. 2 and the roof body / wall body provided with the roof / outer wall / insulation layer, The interior walls, floors, and ceilings constitute the interior space, have structural strength, and the heat insulation layer that constitutes the roof body is composed of a heat insulating material with moisture absorption and desorption. It is opened to the outside air by the building ventilation port or the building ventilation port with a blower fan, or the blower fan and the communication port under the building, and the outside air is introduced from outside the building and the air circulated inside the building is discharged outside the building. The building has ventilation means including ventilation, is waterproof, is exposed to geothermal / radiant cooling energy, summer warm air , and solar heat solar radiation. It is composed of the described heat insulation panel and sucked into the indoor side. Wet and using the ratio of low insulation coordination between the phase change of H2O, among the heat insulating layer, heat-insulating layer having a moisture sorption, the sorption insulation mediating phase change in H2O a (liquefaction and vaporization) It absorbs and cools by the moisture function, evaporates and evaporates at room temperature in the daytime in summer, discharges it to the outside, and the heat insulation layer excluding the north side absorbs solar thermal energy acquired by solar radiation and absorbs the latent heat of moisture Eco-housing which is characterized that you exhausted to the outdoors confined to the form.

第五の構成は、床材に吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を用い、床下空間から吸湿し、床材を透過し、室内空間に放湿し、室内空間から断熱層を経由して屋外に排出できる湿気の排出路を形成することを特徴とする請求項3又は4に記載のエコ住宅。 The fifth configuration uses a moisture absorbing / releasing material having a low ratio of moisture absorption / desorption and H2O phase change for the flooring material, absorbs moisture from the space under the floor, permeates the flooring material, and releases moisture to the indoor space. 5. The eco-house according to claim 3 , wherein a moisture discharge path that can be discharged from an indoor space to the outside via a heat insulating layer is formed.

第六の構成は、北側に面し太陽熱エネルギーを日射取得できない断熱層は、吸放湿とH2Oの相変化との連携の比率の低い断熱材及び透湿防風防水シート及び吸放湿とH2Oの相変化との連携の比率の低い断熱材との三層の積層構造、もしくは、吸放湿性を具備しない断熱材から成ることを特徴とする請求項3からの内の何れかの項に記載のエコ住宅。 The sixth configuration is that the heat insulation layer facing the north side where solar thermal energy cannot be obtained by solar radiation is composed of a heat insulating material, a moisture permeable windproof waterproof sheet, and a moisture absorbing / releasing moisture and H2O with a low ratio of moisture absorption / release and H2O phase change . a three-layer structure in the proportion of low insulation coordination between the phase change, or, according to any one of claims of claims 3 to 6, characterized in that of insulating material having no hygroscopicity Eco house.

第七の構成は、壁体の断熱層の内、屋外側に吸放湿性を具備し、吸放湿とH2Oとの連携の比率の高い断熱材で構成する断熱層は、吸放湿性を具備する断熱材もしくは吸放湿性を具備しない断熱材と透湿防風防水シートと吸放湿性を具備する断熱材との三層構造とし、冬季に液化の際に生成する凝縮熱により屋外からの夜間の冷気を吸収することを特徴とする請求項3から5の内の何れかの項に記載のエコ住宅。 In the seventh configuration, the heat insulating layer of the wall body has moisture absorption / release properties on the outdoor side, and the heat insulation layer composed of a heat insulating material having a high ratio of moisture absorption / release and H2O has moisture absorption / release properties. It has a three-layer structure consisting of a heat insulating material that does not absorb or absorb moisture, a moisture-permeable windproof waterproof sheet, and a heat insulating material that absorbs and releases moisture. The eco-housing according to any one of claims 3 to 5, which absorbs cold air.

第八の構成は、壁体の断熱層の内、請求項1又は2の断熱パネルで構成される断熱層は、内壁を兼ね、又は、内壁材に積層し、又は、内壁との間に空隙を有し、内壁の内装材の内の、用いる吸放湿とH2Oの相変化との連携の比率の低い吸放湿材の働きを併せ、室内空間から内壁の内装材及び断熱層を経由して屋外に排出できる湿気の排出路を形成することを特徴とする請求項3からの内の何れかの項に記載のエコ住宅。 In the eighth configuration, the heat insulating layer formed of the heat insulating panel according to claim 1 or 2 serves as the inner wall among the heat insulating layers of the wall body, or is laminated on the inner wall material, or has a gap between the inner wall and the inner wall. In the interior material of the inner wall, the function of the moisture absorption and desorption material with a low ratio of cooperation between the moisture absorption and desorption to be used and the phase change of H2O is combined. The eco-house according to any one of claims 3 to 7, wherein a moisture discharge path that can be discharged outdoors is formed.

第九の構成は用いる断熱パネルを、吸放湿とH2Oの相変化との連携の比率の低い断熱材及び透湿防風防水シート及び吸放湿とH2Oの相変化との連携の比率の低い断熱材との三層の積層構造に置き換えることを特徴とする請求項3から8の内の何れかの項に記載のエコ住宅。 The ninth configuration is a heat insulating panel having a low ratio of cooperation between moisture absorption / release and H2O phase change and a moisture-permeable windproof waterproof sheet and a heat insulation with a low ratio of cooperation between moisture absorption / release and H2O phase change. The eco-house according to any one of claims 3 to 8, wherein the eco-house is replaced with a three-layer laminated structure with a material.

第壱拾の構成は、図1に記載の、床下空間と内側通気層は連通して空気の流路を形成し、内側通気層と各居室は内壁部の連通口を介して連通し、
建物外と各居室とを、開閉可能な吸気口に連結する排気用連通管により連通し、建物外と床下空間とを給気用連通管により連通し、
前記排気用連通管及び給気用連通管は送風機能を具備する熱交換式換気扇に連通し、
前記給気用連通管を通じて床下空間に外気を取入れ、内側通気層及び連通口を経由して各居室に流入した空気を、冬と夏とで室内の空気循環を変更して夏は暖気を屋内の吹抜け部の最上部の吸気口に連結する排気用連通管を通じて建物外に排出できる換気通気手段を備えることを特徴とする請求項3から9の内の何れかの項に記載のエコ住宅。
In the configuration of the first basket, the underfloor space and the inner ventilation layer communicate with each other to form an air flow path, and the inner ventilation layer and each living room communicate with each other through the communication port of the inner wall.
The outside of the building and each room are connected by an exhaust communication pipe connected to an openable and closable inlet, and the outside of the building and the underfloor space are connected by an air supply communication pipe.
The exhaust communication pipe and the supply communication pipe communicate with a heat exchange type exhaust fan having a blowing function,
The outside air is taken into the underfloor space through the air supply communication pipe, and the air flowing into each room through the inner ventilation layer and the communication port is changed in the indoor air circulation in winter and summer, so that warm air is kept indoors in summer. The eco-house according to any one of claims 3 to 9, further comprising a ventilation / ventilating means that can be discharged out of the building through an exhaust communication pipe connected to an uppermost air inlet of the blow-off portion.

第壱拾壱の構成は、除湿機能付空気調和機(HP式エアコン又はHP式給湯エアコン)を床下空間に設置することを特徴とする請求項3から10の内の何れかの項に記載のエコ住宅。 The configuration of the first culvert is characterized in that an air conditioner with a dehumidifying function (HP air conditioner or HP hot water supply air conditioner ) is installed in the underfloor space. Eco house.

第壱拾弐の構成は、前記建物の屋根体の断熱層の屋内側に、或いは、図13に示す建物の小屋裏空間・断熱層の屋内側に、天井によって室内空間と区画される天井裏空間を設け、天井の内装材の内の、用いる吸放湿とH2Oの相変化との連携の比率の低い吸放湿材の働きを併せ、室内空間から天井の内装材天井裏空間及び断熱層を経由して屋外に排出できる湿気の排出路を形成することを特徴とする請求項3から9の内の何れかの項に記載のエコ住宅。 Configuration of the Ichi Jitsu弐is indoors side of the heat insulating layer of the roof of the building, or indoors side of the attic space, a heat insulating layer of a building shown in FIG. 13, the ceiling which is defined between the indoor space by the ceiling A space is provided, and the moisture absorption and desorption material, which has a low ratio of cooperation between the moisture absorption and desorption to be used and the phase change of H2O, is combined with the interior material of the ceiling , the ceiling interior material , the space behind the ceiling, and heat insulation. The eco-housing according to any one of claims 3 to 9, wherein a moisture discharge path that can be discharged to the outside through a layer is formed.

第壱拾参の構成は、前記建物の床下空間と内側通気層と天井裏空間は連通し、前記内側通気層もしくは天井裏空間の何れかと室内空間とを連通口により連通し、前記連通口は夏冬で開閉可能とし、前記建物外と室内空間とを排気用連通管により連通し、前記建物外と床下空間とを給気用連通管により連通し、前記排気用連通管及び給気用連通管は送風機能を具備する全熱交換式換気扇に連通し、前記排気用連通管の一端を便所・浴室・押入を含む各居室に連結して建物外に排気し、前記給気用連通管を通じて外気を取入れ、内壁の内装材の内の、用いる吸放湿とH2Oの相変化との連携の比率の低い吸放湿材の働きにより室内空間から内壁の内装材・内側通気層及び断熱層を経由して屋外に排出できる湿気の排出路を形成することを特徴とする請求項12に記載のエコ住宅。 Configuration of the Ichi Jitsusan is underfloor space and inner ventilation layer and the ceiling space of the building communicates, communicates the communication port and any indoor space of the inner vent layer or ceiling space, the communication port It can be opened and closed in summer and winter, the outside of the building and the indoor space are connected by an exhaust communication pipe, the outside of the building and the underfloor space are connected by an air supply communication pipe, and the exhaust communication pipe and the air supply communication The pipe communicates with a total heat exchange type exhaust fan having a blowing function, and one end of the exhaust communication pipe is connected to each room including a toilet, a bathroom, and a closet to exhaust outside the building, and through the air supply communication pipe By taking in the outside air, the inner wall interior material, the inner ventilation layer and the heat insulation layer from the interior space by the action of the moisture absorption and desorption material of the inner wall interior material, which has a low ratio of cooperation between the moisture absorption and desorption and the phase change of H2O. It is characterized by forming a moisture discharge path that can be discharged outdoors via Eco-housing of claim 12 that.

第壱拾四の構成は、前記床下空間・天井裏空間内に、除湿機能付空気調和機(HP式エアコン又はHP式給湯エアコン)を用いることを特徴とする請求項12に記載のエコ住宅。 The eco-housing according to claim 12 , wherein the configuration of No. 4 is using an air conditioner with a dehumidifying function (HP type air conditioner or HP type hot water supply air conditioner) in the underfloor space / ceiling space .

第壱拾五の構成は、連通する前記床下空間・内側通気層・天井裏空間内により形成される流路内に、除湿機能付空気調和機(HP式エアコン又はHP式給湯エアコン)を用いることを特徴とする請求項13に記載のエコ住宅。 The configuration of the No. 1 picking up uses an air conditioner (HP type air conditioner or HP type hot water supply air conditioner) with a dehumidifying function in a flow path formed by the underfloor space, the inner ventilation layer, and the ceiling back space. The eco-housing according to claim 13 .

第壱拾六の構成は、床下空間・内側通気層・天井裏空間の何れかに、凝固・融解の相変化により蓄放熱する蓄熱材から成る蓄熱体を配置することを特徴とする請求項11又は14又は15に記載のエコ住宅。 12. The structure of the sixth picking iron is characterized in that a heat storage material made of a heat storage material that stores and dissipates heat by phase change of solidification / melting is disposed in any of the underfloor space, the inner ventilation layer, and the ceiling space. Or the eco house of 14 or 15.

第壱拾七の構成は、図3に示す建物を構造的に支える基礎・土台・柱・桁・梁の構造部材並びに屋根・外壁・断熱層を具備する屋根体・壁体から構成され、内壁・床・天井により室内空間を構成し、構造耐力を備え、棟換気口及び屋根通気層及び外側通気層を備え、内壁・天井の内装材と断熱層との間に内側通気層を備え、内側通気層は、断熱層を介して屋根通気層・外側通気層と独立した通気層に形成し、棟換気口・第二棟下換気口(開閉式)・天井裏空間を通じて外気に開放され、もしくは、天井裏空間を通じて第二送風ファンと第二連通口により外気に直接開放され、床下空間・床下換気口(開閉式)を通じて外気に開放され、建物外から外気を導入し、室内を循環した空気を建物外に排出する通風を含めた換気する手段を備え、地熱・放射冷却のエネルギー、夏季の暖気太陽熱エネルギーの日射に曝される建物であって、内壁・天井の内装材の内、断熱層から輻射熱を受けられる部位に用いる吸放湿材は、吸放湿とH2Oの相変化との連携の比率の高い板材を用い、面積に関して床の内装材よりも広く施工することを特徴とするエコ住宅。 The construction of the No. 7 Pickup 7 consists of the structural members of the foundation, foundation, pillars, girders and beams that structurally support the building shown in FIG. 3 and the roof body and wall body with the roof, outer wall and heat insulation layer.・ The interior space is composed of floors and ceilings, structural strength is provided, building vents, roof ventilation layers and outer ventilation layers are provided, and inner ventilation layers are provided between the inner wall and ceiling interior materials and heat insulation layers, and the inside The ventilation layer is formed in the ventilation layer independent of the roof ventilation layer and the outer ventilation layer through the heat insulation layer, and is opened to the outside air through the building ventilation opening, the second building lower ventilation opening (opening and closing type), the ceiling space, or Air that has been directly opened to the outside air by the second blower fan and the second communication port through the ceiling space , opened to the outside air through the underfloor space and the underfloor ventilation port (open / closed), and introduced into the building from outside the building and circulated through the room Equipped with ventilation means including ventilation to discharge outside the building, Energy of the radiation cooling, summer warm, a building which is exposed to solar radiation solar thermal energy, among the inner wall-ceiling interior material, the absorbing Shimezai used at a site can receive radiant heat from the heat insulating layer, Moisture An eco house characterized by using a plate material with a high ratio of cooperation between H2O and the phase change of H2O, and constructing wider than the floor interior material in terms of area.

第壱拾八の構成は、床の内装材は、吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を用い、湿気の建物外への排出路として、床下空間から内側通気層・天井裏空間を通じた排出路及び床下空間から室内空間を経て内側通気層・天井裏空間を通じた排出路の二つの排出路を形成することを特徴とする請求項17に記載のエコ住宅。 The construction of the No. 1 Hachipachi uses a moisture absorbing / releasing material with a low ratio of moisture absorption / release and H2O phase change as the interior material of the floor, and the inside of the space below the floor as a discharge path for moisture outside the building 18. The eco-house according to claim 17, wherein two discharge paths are formed: a discharge path through the ventilation layer / ceiling space and a discharge path through the inner ventilation layer / ceiling space from the under floor space to the interior space. .

第弐拾弐の構成は、除湿機能付空気調和機(HP式エアコン又はHP式給湯エアコン)を室内に設置し、
床下空間に滞留する湿気の排出路として、床下空間から室内空間を経てエアコンで建物外に排出される排出路を加え、複数の排出路を形成することを特徴とする請求項3から11又は17から21の内の何れかの項に記載のエコ住宅。
Configuration of the弐拾Vol.2 has established dehumidification with the air conditioner of the (HP air-conditioning or HP type hot water supply air conditioner) in the room,
As a discharge passage of moisture retained in the underfloor space, the discharge passage from the underfloor space through the interior space is discharged to outside the building air conditioners addition, claim 3 to 11, characterized by forming a plurality of discharge passage or 17 The eco-housing according to any one of items 1 to 21.

第弐拾参の構成は、前記除湿機能付空気調和機(HP式エアコン又はHP式給湯エアコン)の稼動は、深夜電力の利用できる時間帯に行うことを特徴とする請求項11又は14又は15又は16又は22に記載のエコ住宅。


Configuration of the弐拾ginseng, the operation of the dehumidification function with the air conditioner (HP air-conditioning or HP type water air-conditioning) is claim 11 or 14 or 15 or, characterized in that it is carried out in the time period available for midnight electric power Eco house according to 16 or 22.


第壱の構成は、図3に示す建物を構造的に支える基礎・土台・柱・桁・梁の構造部材並びに屋根・外壁・断熱層を具備する屋根体・壁体から構成され、内壁・床・天井により室内空間を構成し、構造耐力を備え内壁・天井の内装材と断熱層との間に内側通気層・天井裏空間を備え、内側通気層は、棟換気口・第二棟下換気口・天井裏空間を通じて外気に開放される手段を備え、床下空間・床下換気口(開閉式)を通じて外気に開放され、建物外から外気を導入し、室内を循環した空気を建物外に排出する通風を含めた換気する手段を備え、地熱・放射冷却のエネルギー、夏季の暖気、太陽熱エネルギーの日射に曝される建物であって、内壁・天井の内装材の内、断熱層から輻射熱を受けられる部位の少なくとも一部に用いる吸放湿材は、H2Oの相変化(液化・気化)を媒介する内装材の吸放湿機能により吸湿・吸冷し、夏季の昼間の常温で気化・蒸発し、屋外に排出し、その上、北側を除いた内装材は、夏季の昼間の日射取得される太陽熱エネルギーを吸収し、気化・蒸発し、湿気という潜熱の形に閉じ込めて屋外に排出することを特徴とするエコ住宅。 The configuration of No. 6 is composed of the structural members of the foundation, foundation, pillars, girders and beams that structurally support the building shown in FIG. 3 and the roof body and wall body provided with the roof, outer wall, and heat insulation layer. ceiling by configure indoor space, comprising a structure strength, an inner ventilation layer, the ceiling space between the inner wall-ceiling interior material and the heat insulating layer, the inner vent layer, ridge vent and second building under comprising means that will be open to the outside air through the air vent, the ceiling space is open to the outside air through the floor space, floor vents (retractable), introducing external air from outside the building, the exhaust air which has circulated through the chamber to outside the building The building is equipped with ventilation means, including ventilation, and is exposed to geothermal / radiant cooling energy, summer warm air, and solar thermal energy. at least in part on using absorbing Shimezai sites for the, H Moisture absorption and cooling by the moisture absorption / release function of the interior material that mediates the phase change (liquefaction / vaporization) of 2O, vaporizes and evaporates at room temperature in the daytime in summer, discharges to the outside, and the interior excluding the north side wood is eco housing to absorb solar energy acquired daytime sunlight in summer, vaporized, evaporated, it characterized that you discharged outdoors trapped in the form of latent heat of moisture.

第弐の構成は、前記内側通気層の外気に開放される手段は、第二棟下換気口付近で第二送風ファンと第二連通口により外気に直接開放され、第二棟下換気口は閉じ、もしくは、送風ファンと一体型の棟換気口を通じて外気に開放されることを特徴とする請求項に記載のエコ住宅。 In the first configuration, the means for opening the inside ventilation layer to the outside air is directly opened to the outside air by the second blower fan and the second communication port in the vicinity of the second building lower ventilation port, closed, or, eco housing according to claim 1 which is open to the outside air through the blower fan and the integral ridges vent, characterized in Rukoto.

第参の構成は、屋根通気層及び外側通気層を備え、棟換気口と屋根通気層は連通することを特徴とする請求項1又は2に記載のエコ住宅。 Configuration of the ginseng has a roof ventilation layer and an outer breathable layer, Eco housing according to claim 1 or 2 ridge vent and the roof ventilation layer is characterized Rukoto through communication.

第四の構成は、前記内側通気層・天井裏空間は、断熱層を介して屋根通気層・外側通気層と独立した通気層に形成し、開閉式の換気口は閉じて気密性を確保することを特徴とする請求項1〜3の何れかの項に記載のエコ住宅。 In the fourth configuration, the inner ventilation layer / ceiling space is formed as a ventilation layer independent of the roof ventilation layer and the outer ventilation layer via a heat insulating layer, and the open / close type ventilation opening is closed to ensure airtightness. The eco-housing according to any one of claims 1 to 3, wherein

第五の構成は、内壁・天井の内装材の内、断熱層から輻射熱を受けられる部位の少なくとも一部に用いる前記吸放湿材は、吸放湿とH2Oの相変化との連携の比率の高い板材を用いることを特徴とする請求項1〜4の何れかの項に記載のエコ住宅。 The fifth configuration is that the moisture absorbing / releasing material used in at least a part of the interior material of the inner wall / ceiling that can receive radiant heat from the heat insulating layer has a ratio of cooperation between moisture absorption / release and H2O phase change. The eco-house according to any one of claims 1 to 4, wherein a high plate material is used.

第六の構成は、内壁・天井の内装材の内の用いる吸放湿とH2Oの相変化との連携の比率の高い吸放湿材は、施工面積に関しては、床の内装材に用いる吸放湿とH2Oの相変化との連携の比率の低い吸放湿材よりも広く施工することを特徴とする請求項1〜5の何れかの項に記載のエコ住宅。 The sixth configuration is that the moisture absorbing / releasing material used in the interior material of the inner wall / ceiling has a high ratio of cooperation between H2O phase change and H2O phase change. The eco-house according to any one of claims 1 to 5, wherein the eco-house is constructed more widely than a moisture-absorbing and releasing material having a low ratio of cooperation between humidity and H2O phase change.

第七の構成は、前記内壁及び天井の内の吸放湿材を用いる内装材は、室内側に吸放湿とH2Oの相変化の連携の比率の低い板材、内装下地材として吸放湿とH2Oの相変化の連携の比率の高い板材を用い、重ねて張ることを特徴とする請求項1〜6の何れかの項に記載のエコ住宅。 In the seventh configuration, the interior material using the moisture absorbing / releasing material in the inner wall and the ceiling is a plate material having a low ratio of moisture absorption / release and phase change of H2O on the indoor side, moisture absorption / release as an interior base material. The eco-house according to any one of claims 1 to 6, wherein a plate material having a high ratio of phase change of H2O is used and stretched.

第八の構成は、床の内装材は、吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を少なくとも一部に用い、湿気の建物外への排出路として、床下空間から内側通気層・天井裏空間を通じた排出路及び床下空間から室内空間を経て内側通気層・天井裏空間を通じた排出路の二つの排出路を形成することを特徴とする請求項1〜6の何れかの項に記載のエコ住宅。 The eighth configuration is that the interior material of the floor uses a moisture absorbing / releasing material having a low ratio between the moisture absorbing / releasing and the phase change of H2O as at least a part thereof, and serves as a discharge path for moisture outside the building. The discharge path through the inner ventilation layer / ceiling space and the discharge path through the inner ventilation layer / ceiling space through the indoor space from the underfloor space is formed. Eco-housing according to any one of the items.

第九の構成は、床の内装材は、吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を少なくとも一部に用い、湿気の建物外への排出路として、床下空間から内側通気層・天井裏空間を通じた排出路及び床下空間から室内空間を経て内側通気層・天井裏空間を通じた排出路の二つの排出路を形成することを特徴とする請求項7に記載のエコ住宅。 In the ninth configuration, the floor interior material uses at least part of a moisture absorbing / releasing material having a low ratio between the moisture absorbing / releasing and the phase change of H2O, and serves as a discharge path for moisture outside the building. The discharge path through the inner ventilation layer / ceiling space and the discharge path through the inner ventilation layer / ceiling space from the under floor space through the indoor space is formed. Eco house.

第拾の構成は、除湿機能付空気調和機(HP式エアコン又はHP式給湯エアコン)を室内に設置し、床下空間に滞留する湿気の排出路として、床下空間から室内空間を経てエアコンで建物外に排出される排出路を加え、三つの排出路を形成することを特徴とする請求項8に記載のエコ住宅。 The first pick-up consists of an air conditioner with a dehumidifying function (HP type air conditioner or HP type hot water supply air conditioner) installed in the room, and as an exhaust path for moisture staying in the underfloor space, the air conditioner outside the building through the indoor space from the underfloor space The discharge path to be discharged is added to form three discharge paths, and the eco-house according to claim 8.

第拾壱の構成は、除湿機能付空気調和機(HP式エアコン又はHP式給湯エアコン)を室内に設置し、床下空間に滞留する湿気の排出路として、床下空間から室内空間を経てエアコンで建物外に排出される排出路を加え、三つの排出路を形成することを特徴とする請求項9の何れかの項に記載のエコ住宅。 The structure of the No. 1 pickup is an air conditioner with a dehumidifying function (HP type air conditioner or HP type hot water supply air conditioner) installed in the room, and as a discharge path for moisture staying in the underfloor space, it is built with air conditioner from the underfloor space through the indoor space The eco-house according to claim 9, wherein three discharge paths are formed by adding a discharge path that is discharged outside.

前記除湿機能付空気調和機(HP式エアコン又はHP式給湯エアコン)の稼動は、深夜電力の利用できる時間帯に行うことを特徴とする請求項11に記載のエコ住宅。 The eco-house according to claim 11 , wherein the air conditioner with a dehumidifying function (HP type air conditioner or HP type hot water supply air conditioner) is operated in a time zone in which midnight power can be used.

断熱層に用いる断熱材としては、合成樹脂系(ポリスチレン・ポリウレタン等)、繊維系(グラスウール・ロックウール)、鉱物系(珪酸カルシューム主成分)のボード状断熱材の中から選択できる。尚、吸放湿性の有無は問わない。断熱材は、一層もしくは二層とし、適宜透湿防風防水シート・防湿シートを併用して断熱層を構成する。あるいは、断熱パネルを用いて構成する。
内壁・天井に用いる内装材としては、吸放湿とH2Oの相変化との連携の比率の高い材料を用いるが、具体的には珪酸カルシューム主成分の板材(タイライトウッド等)が好適である。あるいは、プラスターボード下地に吸放湿性を具備する紙クロス張り又は珪藻土塗り仕上げとすることが出来る。何れも、厚みは9mmから12mm程度が、費用対効果から好適である。
床に用いる内装材は、吸放湿とH2Oの相変化との連携の比率の低い材料を用いる。具体的には、杉・檜等の無垢板材が好適である。あるいは、湿気を透過できる合板でもいい。厚みは、重量物に耐えられるように、無垢板材では30mm程度、合板では12mm厚板材の二重張りが費用対効果から好適である。
床の面積に比較すると、天井の面積は1.4倍程度、屋外側の断熱層・内側通気層に面する内壁の面積は1.6倍程度に達し、合計すると3倍程度になる。これは断熱層に面する内壁・天井の面積量である。それで、室内からの吸湿は単純に考えれば、床下からの吸湿の3倍に達する。これは、湿気伝導の効率の低い吸放湿材を用いても、結果として室内の除湿効果を得られる所以である。
内壁・天井に用いる内装材の内、吸放湿とH2Oの相変化との連携の比率の高い吸放湿材は、除湿負荷管理の面からは全ての内壁・天井の内装材に用いても支障なく、室内からの湿気排出の効率は高くなる。但し、含水率管理の側面を考慮し、更に、気化・放湿に必要な運動エネルギーを通気以外の手段によって安定して供給されるためには、太陽熱エネルギーを日射取得できる断熱層に面し、そこから輻射熱を得られる天井及び東西南側の内壁に限定される。それらが、用いる面積・範囲の上限である。即ち、含水率管理を優先すれば、輻射熱を得られる東西南側の内壁以外の間仕切り壁を含む内壁は吸放湿性を具備しない内装材を用いる。尚、吸放湿性を具備しない内装材に代えて吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を用いた場合、湿気の排出路形成に貢献せず、除湿負荷管理の上から逆効果を表す。
翻って、請求項に記載の湿気の排出路を形成する上では、床材に吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を用い、内壁・天井の内装材に吸放湿とH2Oの相変化との連携の比率の高い吸放湿材を用いれば、その目的は果たせる。しかも、内壁・天井の内装材に吸放湿性を具備しない内装材を用いても、内壁・天井の内装材の一部に吸放湿とH2Oの相変化との連携の比率の高い吸放湿材を用いれば、その目的は果たせる。只、屋外への湿気排出の効率を高め、除湿負荷管理の課題に応えるには、床に用いる吸放湿とH2Oの相変化との連携の比率の低い吸放湿材の面積よりも、内壁・天井の内装材に用いる吸放湿とH2Oの相変化との連携の比率の高い吸放湿材の施工面積は広く確保する。
さて、太陽熱を日射取得できない北側の断熱層を通じた輻射熱の影響は乏しく、輻射熱を利用した気化・放湿は期待できない。更に、暖気は東西南北に関係なく利用できるが、通気の際に床下の地熱から冷気を受け取るので、運動エネルギーの供給源としては弱い。それで、北側に用いる内装材は吸放湿性を具備しないものを用いるのがいい。プラスターボード下地にビニルクロスは、室内側に吸放湿性を備えず、内側通気層側に吸放湿性を備えているので、室内側に放湿することは無く、費用対効果を考慮すれば好都合である。尚、部屋と部屋との間の仕切り壁についても同様で、断熱層に面することは無く、輻射熱の影響は期待できない。それで、除湿負荷管理及び含水率管理の上からは、吸放湿性を具備しない内装材を用いる。
図3に記載の天井は、屋根勾配に沿って施工されているが、図13に示す様に桁・梁の下側に施工・配置してもいい。
The heat insulating material used for the heat insulating layer can be selected from synthetic resin-based (polystyrene, polyurethane, etc.), fiber-based (glass wool / rock wool), and mineral-based (silicate calcium silicate) board-like heat insulating materials. In addition, the presence or absence of moisture absorption / release is not questioned. The heat insulating material is a single layer or two layers, and a heat insulating layer is formed by appropriately using a moisture permeable windproof waterproof sheet and a moistureproof sheet. Or it comprises using a heat insulation panel.
As the interior material used for the inner wall / ceiling, a material having a high ratio of the moisture absorption / release and the phase change of H2O is used. Specifically, a plate material mainly composed of calcium silicate (such as tylite wood) is suitable. . Alternatively, a paper cloth stretch or diatomaceous earth finish having moisture absorption / release properties on the plaster board substrate can be used. In any case, a thickness of about 9 mm to 12 mm is preferable from the viewpoint of cost effectiveness.
As the interior material used for the floor, a material having a low ratio of cooperation between moisture absorption / release and H2O phase change is used. Specifically, solid board materials such as cedar and straw are suitable. Alternatively, plywood that can transmit moisture may be used. The thickness is preferably about 30 mm for a solid plate material and 12 mm thick for a plywood sheet so that it can withstand heavy objects.
Compared to the floor area, the ceiling area is about 1.4 times, the area of the inner wall facing the heat insulating layer / inner ventilation layer on the outdoor side is about 1.6 times, and the total is about 3 times. This is the area of the inner wall / ceiling facing the heat insulation layer. Therefore, if the moisture absorption from the room is simply considered, it reaches three times the moisture absorption from under the floor. This is the reason why an indoor dehumidifying effect can be obtained as a result even if a moisture absorbing / releasing material having low moisture conduction efficiency is used.
Of the interior materials used for inner walls and ceilings, moisture absorbent materials that have a high ratio of moisture absorption and release and H2O phase change can be used for all interior walls and ceiling interior materials in terms of dehumidification load management. Without any problem, the efficiency of moisture discharge from the room is increased. However, considering the aspect of moisture content management, in order to stably supply the kinetic energy necessary for vaporization and moisture release by means other than ventilation, facing the heat insulation layer that can acquire solar heat energy, It is limited to the ceiling from which radiant heat can be obtained and the inner wall on the east-west side. These are the upper limits of the area and range to be used. That is, if priority is given to moisture content management, the inner wall including the partition wall other than the inner wall on the east / west / south side where radiant heat can be obtained uses an interior material that does not have moisture absorption / release properties. If moisture absorbing / releasing material with a low ratio of moisture absorption / release and H2O phase change is used instead of interior material that does not have moisture absorbing / releasing properties, it does not contribute to the formation of the moisture discharge path, and dehumidification load management The counter effect is expressed from above.
On the other hand, in forming the moisture discharge path according to claim 5 , a moisture absorbing / releasing material having a low ratio of the moisture absorbing / releasing and the phase change of H2O is used for the flooring, and the interior material of the inner wall / ceiling is used. If a moisture absorbing / releasing material having a high ratio of cooperation between moisture absorption / release and H2O phase change is used, the purpose can be achieved. Moreover, even if interior materials that do not absorb moisture are used for the interior materials of the inner walls and ceilings, moisture absorption and desorption with a high ratio of the relationship between moisture absorption and release and phase change of H2O is applied to some of the interior materials of the inner walls and ceilings. The purpose can be fulfilled by using wood.只 In order to increase the efficiency of moisture discharge to the outdoors and respond to the problem of dehumidification load management, the inner wall is more than the area of the moisture absorbing / releasing material with a low ratio of moisture absorption / desorption to the floor and the phase change of H2O. -Ensure a wide construction area for the moisture absorbing / releasing material that has a high ratio of cooperation between the moisture absorbing / releasing material used for ceiling interior materials and the phase change of H2O.
Now, the influence of radiant heat through the heat insulation layer on the north side where solar heat cannot be acquired by solar radiation is scarce, and vaporization and moisture release using radiant heat cannot be expected. In addition, warm air can be used regardless of whether it is east, west, south, or north, but it is a weak source of kinetic energy because it receives cold air from geothermal heat beneath the floor during ventilation. Therefore, it is better to use the interior material used on the north side that does not have moisture absorption and desorption. Vinyl cloth on the base of the plaster board does not have moisture absorption / release properties on the indoor side, and has moisture absorption / release properties on the inner ventilation layer side. is there. The same applies to the partition wall between the rooms, and it does not face the heat insulating layer, and the influence of radiant heat cannot be expected. Therefore, from the viewpoint of dehumidifying load management and moisture content management, interior materials that do not have moisture absorption / release properties are used.
The ceiling shown in FIG. 3 is constructed along the roof slope, but as shown in FIG.

第壱の構成は、物を構造的に支える基礎・土台・柱・桁・梁の構造部材並びに屋根・外壁・断熱層を具備する屋根体・壁体から構成され、内壁・床・天井により室内空間を構成し、構造耐力を備え、内壁・天井の内装材と断熱層との間に内側通気層・天井裏空間を備え、内側通気層は、棟換気口・第二棟下換気口・天井裏空間を通じて外気に開放される手段を備え、床下空間・床下換気口(開閉式)を通じて外気に開放され、建物外から外気を導入し、室内を循環した空気を建物外に排出する通風を含めた換気する手段を備え、地熱・放射冷却のエネルギー、夏季の暖気、太陽熱エネルギーの日射に曝される建物であって、内壁・天井の内装材の内、断熱層から輻射熱を受けられる部位の少なくとも一部に用いる吸放湿材は、H2Oの相変化(液化・気化)を媒介する内装材の吸放湿機能により室内側・室外側から吸湿・吸冷し、夏季の昼間の常温で気化・蒸発し、屋外に排出し、その上、北側を除いた内装材は、夏季の昼間の日射取得される太陽熱エネルギーを吸収し、気化・蒸発し、湿気という潜熱の形に閉じ込めて屋外に排出することを特徴とするエコ住宅。 Configuration of the Ichi is composed of the roof body-wall having a structural member as well as a roof-outer wall, a heat insulating layer of the basic and foundation-column-girder and beams supporting the building structurally, by the inner wall, floor, ceiling It constitutes an indoor space, has structural strength, has an inner ventilation layer / ceiling space between the interior material of the inner wall / ceiling and the heat insulation layer, and the inner ventilation layer has the building ventilation port, the second building lower ventilation port, There is a means for opening to the outside air through the space behind the ceiling, opening to the outside air through the underfloor space and underfloor ventilation opening (opening and closing type), introducing outside air from outside the building, and ventilating the air circulating inside the building to the outside of the building The building is equipped with ventilation means, and is exposed to geothermal / radiant cooling energy, summer warm air, and solar heat solar radiation. The moisture absorbing / releasing material used for at least a part is H2O phase change. Moisture - and吸冷from the indoor side and the outdoor side by Hygroscopic function of interior materials to mediate (liquefaction and vaporization), vaporized, evaporated in daytime ambient temperature in summer, and discharged outdoors, thereon, except north The interior material is an eco-house that absorbs solar thermal energy acquired in the daytime in the summer, vaporizes and evaporates, confines it in the form of latent heat of moisture and discharges it outdoors.

第弐の構成は、前記内側通気層の外気に開放される手段は、第二棟下換気口付近で第二送風ファンと第二連通口により外気に直接開放され、第二棟下換気口は閉じ、もしくは、送風ファンと一体型の棟換気口を通じて外気に開放されることを特徴とする請求項1に記載のエコ住宅。 In the second configuration, the means for opening the inside ventilation layer to the outside air is directly opened to the outside air by the second ventilation fan and the second communication port in the vicinity of the second building lower ventilation port, The eco-house according to claim 1, wherein the eco-house is closed or opened to the outside air through a building ventilation port integrated with a blower fan.

第参の構成は、外側通気層及び屋根通気層を備え、棟換気口と屋根通気層は連通することを特徴とする請求項1又は2に記載のエコ住宅。 The eco-house according to claim 1 or 2, wherein the second configuration includes an outer ventilation layer and a roof ventilation layer , and the building ventilation port and the roof ventilation layer communicate with each other.

第四の構成は、前記内側通気層・天井裏空間は、断熱層を介して外側通気層・屋根通気層と独立した通気層に形成し、開閉式の換気口は閉じて気密性を確保することを特徴とする請求項1〜3の何れかの項に記載のエコ住宅。 In the fourth configuration, the inner ventilation layer / ceiling space is formed in a ventilation layer independent of the outer ventilation layer / roof ventilation layer through a heat insulating layer, and the open / close type ventilation opening is closed to ensure airtightness. The eco-housing according to any one of claims 1 to 3, wherein

第五の構成は、内壁・天井の内装材の内、断熱層から輻射熱を受けられる部位の少なくとも一部に用いる前記吸放湿材は、吸放湿とH2Oの相変化との連携の比率の高い板材を用いることを特徴とする請求項1〜4の何れかの項に記載のエコ住宅。 The fifth configuration is that the moisture absorbing / releasing material used in at least a part of the interior material of the inner wall / ceiling that can receive radiant heat from the heat insulating layer has a ratio of cooperation between moisture absorption / release and H2O phase change. The eco-house according to any one of claims 1 to 4, wherein a high plate material is used.

第六の構成は、前記内壁及び天井の内装材の内、断熱層から輻射熱を受けられない内装材は、吸放湿性を具備しない内装材を用いることを特徴とする請求項1〜5の何れかの項に記載のエコ住宅。 The sixth configuration is characterized in that, among the interior materials for the inner wall and the ceiling, an interior material that does not receive radiant heat from the heat insulating layer is an interior material that does not have moisture absorption / release properties. Eco-housing as described in that section.

ところで、高気密・高断熱住宅の開発された寒冷地では、断熱性能の高さのもたらす寒さ対策が優先される地域の気候特性もあり、断熱性能の低下並びに結露の発生に対するリスクを侵してまで、吸放湿性を備える断熱材を使用する必要性が乏しいのが実情である。
それにも拘らず、そのリスクを抑えて、吸放湿性を備える断熱材を採用するメリットをもたらす要因の一つは「強制的に潜熱式の排熱」を行い、屋内での湿気の滞留による吸放湿材の含水率の上昇を抑制できる可能性を孕むところにある。その可能性とは、H2Oに屋内で液化に必要な冷却エネルギーを供給し、相変化を媒介する断熱材を経由すると、日射取得する太陽熱エネルギーをH2Oの気化によって吸収し、その際湿気という潜熱の形に閉じ込めて屋外に排熱することが出来る。結局、太陽熱を顕熱から潜熱の形に閉じ込めながら、屋内の湿気を屋外へ排出する手段を提供できる
、その可能性は、昔から日本の住宅を蝕んできた「結露」を活用するところに開けてくる。そこが、現実の住宅の性能・耐久性の問題に止まらず、人間の意識の上で克服すべき課題を提供している。
By the way, in cold regions where highly airtight and highly insulated houses have been developed, there are also climatic characteristics in areas where priority is given to measures against the cold caused by the high insulation performance. In fact, the necessity of using a heat insulating material having moisture absorption / release properties is scarce.
Nevertheless, one of the factors that brings about the advantage of adopting a heat insulating material that absorbs and absorbs moisture by suppressing the risk is to `` forced latent heat exhaust heat '' and absorb moisture due to moisture retention indoors. There is a possibility of suppressing the increase in the moisture content of the moisture release material. The possibility is that the cooling energy required for liquefaction is supplied indoors to H2O, and when it passes through a heat insulating material that mediates phase change, solar heat energy acquired by solar radiation is absorbed by the evaporation of H2O, and in that case, the latent heat of moisture It can be trapped in a shape and exhausted outdoors. In the end, it is possible to provide a means for exhausting indoor moisture to the outside while confining solar heat from sensible heat to latent heat .
, that possibility opens to the place of utilizing “condensation” that has been eating away Japanese houses since ancient times. This is not only a problem of actual housing performance and durability, but also a challenge that should be overcome in terms of human consciousness.

太陽熱を日射取得できない北側に吸放湿材を用いながら、含水率管理を好適に実施でき、その上、屋内からの吸湿・吸冷を断熱性に背反する伝熱性の創出により屋外から得られる太陽熱エネルギー等の顕熱の潜熱化に繋げて遮熱の作用効果を得られ、更に、室内の除湿効果を得られることを課題とする。
含水率管理の面で効率を上げ、しかも、冷気・湿気の供給を屋内だけでなく屋外からも受けて、遮熱の効率を向上することを課題とする。
屋内からの冷エネルギー供給の増加に対応して、夜間の屋外からの吸湿・吸冷を抑制することで、屋内からの吸湿・吸冷及び屋内から屋外へのH2Oの移動の効率を向上し、屋内の除湿効果を上げることを課題とする。
含水率管理を好適に実施しながら、夏季は屋内からの冷エネルギーの供給増に対応して、屋内からの吸冷・吸湿の効率を向上し、及び屋内から屋外へのH2O移動の効率を向上し、及び昼間の屋外への気化・放湿の効率を向上して、屋内の除湿効果及び遮熱効果を更に高めることを課題とする。
While using the absorbing Shimezai solar north side can not be obtained solar radiation, the water content management can suitably implement and, moreover, is obtained from outdoor through the creation of heat transfer to contradictory moisture-吸冷from indoor heat insulation It is an object of the present invention to obtain a heat-shielding effect by connecting to sensible heat such as solar thermal energy, and to obtain an indoor dehumidifying effect.
The task is to improve efficiency in terms of moisture content management, and to improve the heat shielding efficiency by receiving cold and moisture supply not only indoors but also outdoors.
In response to the increase in cold energy supply from indoors, by suppressing moisture absorption / cooling from the outside at night, the efficiency of moisture absorption / cooling from indoors and the movement of H2O from indoors to the outdoors is improved. The challenge is to increase the dehumidifying effect indoors.
While implementing water content management appropriately, in the summer, in response to the increase in the supply of cold energy from the indoor, improve the efficiency of cooling and moisture absorption from the indoor, and improve the efficiency of H2O movement from indoor to outdoor It is an object of the present invention to further improve the indoor dehumidifying effect and heat shielding effect by improving the efficiency of vaporization and moisture release to the outdoors in the daytime.

換気の主たる目的は新鮮な空気を取入れ、室内の酸素濃度を保つことに在る。この目的を効率よく果たし、その上で、蓄熱システムとの連携及び壁体の遮熱・除湿システムとの連携を好適に実施し、地熱・放射冷却の自然エネルギーに加えて深夜電力を利用して屋内の空気環境(温度・湿度・酸素濃度・揮発性の化学物質等)の改善を冬夏を通じて低コストで実現でき、更に、屋内の除湿の際に生成する凝縮熱を縮減して、ヒートアイランド化抑制の一助とすることを課題とする。 The main purpose of ventilation is to take in fresh air and maintain indoor oxygen levels. This purpose is achieved efficiently, and in addition, cooperation with the heat storage system and cooperation with the heat insulation and dehumidification system of the wall are suitably implemented, and in addition to natural energy of geothermal and radiative cooling, midnight power is used. The indoor air environment (temperature, humidity, oxygen concentration , volatile chemicals, etc.) can be improved at low cost throughout the winter and summer, and the heat of condensation generated during indoor dehumidification is reduced to reduce heat islands. The problem is to help.

次に、部位別・地域の気候特性・目的別に好適な断熱材の組合せを例示する。
壁(北側) 壁(その他) 天井裏
(イ) C C A
(ロ) C B A
(ハ) C A A
(二) A A A
(ホ) C C C
Next, examples of suitable combinations of heat insulating materials by region, regional climatic characteristics, and purpose will be described.
Wall (north side) Wall (others) Ceiling (I) C CA
(B) C B A
(C) C A A
(2) A A A
(E) C CC

却エネルギーの屋内での供給による、エネルギー伝熱の方向並びに吸放湿の方向は、屋外での太陽熱エネルギーの日射取得も合わさり、同一方向に促進される。それで、H2Oの相変化に伴うエネルギー移転と吸放湿機能との連携は好適に保持され、吸放湿を利用した気密断熱層内でのエネルギー移動が可能となる。 By the supply of at indoor cooling energy, the direction of moisture direction and absorbing energy heat transfer, the solar acquisition solar energy in outdoors mate, it is promoted in the same direction. Therefore, the cooperation between the energy transfer associated with the phase change of H 2 O and the moisture absorption / release function is suitably maintained, and the energy transfer in the airtight heat insulating layer utilizing the moisture absorption / release becomes possible.

そこに送風ファンの力を借りると、昼間断熱材の屋外側で含水率の著しい低下を招く。それは、H2Oの移動の圧力となり、先の空隙の浸透をより促進することとなり、同時に、空隙内の気圧の低下を通じ更なるH2Oの気化を促進する。つまり、H2Oの相変化に伴い生じる気圧の上昇の結果である湿気の浸透との相乗効果により、太陽熱エネルギー吸収を伴うH2O移動の圧力を創出・保持することが出来る。このH2O移動の圧力を活用することで、エネルギー移動及び太陽熱エネルギー吸収(遮熱)の効率の向上を図れる。又、湿気の移動によって、断熱材内の気圧の低下を促された分、空隙内で更なるH2Oの気化を促進することが出来る If the power of a blower fan is borrowed there, the water content will be significantly reduced on the outdoor side of the daytime insulation. It becomes the pressure of the movement of H2O, which further promotes the penetration of the previous voids, and at the same time promotes further vaporization of H2O through a decrease in the atmospheric pressure in the voids. That is, the pressure of H2O movement accompanied by solar thermal energy absorption can be created and maintained by a synergistic effect with moisture penetration, which is the result of the increase in atmospheric pressure caused by the phase change of H2O. By utilizing the pressure of this H 2 O movement, the efficiency of energy transfer and solar thermal energy absorption (heat insulation) can be improved. Further, the vaporization of H 2 O can be further promoted in the voids because the pressure of the pressure inside the heat insulating material is urged by the movement of the moisture .

寒冷地では、夏季の夜間の外気温の低下は著しく、20℃前後の日が続く。昼夜の温度差は10度を超え、夜間の放射冷却エネルギーの利用は期待できる
放湿とH2Oの相変化との連携の比率の低い吸放湿材(断熱材を含む)は、液化・気化を伴わない純粋に吸放湿のみを行っているわけではなく、若干の液化・気化を伴っている。只、それは含水率の高止まりを招くに至っていないのである。一つの例として、構造材に杉材は広く用いられている。北側に面する位置にも用いられるが、太陽熱エネルギーを日射取得できないからと言って、直ちに杉材等の構造材の含水率は高く止まるわけではない。
先に記した様に、温暖地では熱帯夜が続き、昼夜を問わず、気密断熱層からの気化・放湿は持続する。それで、太陽熱エネルギーを日射取得できない北側の気密断熱層においては、その気化・放湿の能力の範囲に収まっている限り、屋内から吸湿・吸冷を継続したとしても、含水率の高止まりの要因とはならない。
天井裏空間・床下空間の流路内でエアコンを稼動する場合に比較すると、生活するうえでの快適温度との兼ね合いもあり、エアコンを室内に設置した場合、室温を大きく下げるわけにはいかない
北側の気密断熱層は太陽熱エネルギーを日射取得できない。それで、北側の気密断熱層の気化・放湿の能力は屋外の気圧・温度に影響される。一般に、温暖地・寒冷地を問わず夏季の昼間の外気温は30℃を越えるので、北側の気密断熱層を通じた気化・放湿は起こりえるものである。しかし、先に記した様に屋内側から屋外側への液化したH2Oの移動は、透湿防風防水シートの介在によって阻止される。それで、屋外側での気化・放湿は持続せず、気密断熱層内の含水率を低下させる機能はこの面では働かない。
さて、液化したH2Oの移動は難しくとも、気体状のH2O(湿気)は移動する。そこで、気密断熱層の屋内側に吸放湿とH2Oの相変化との連携の比率の低い断熱材を用いれば、適度の含水率管理を実施しながら、屋内側から吸湿し、屋外側に放湿する吸放湿の方向性を維持しながら、しかも、屋外側から屋内側への吸放湿の逆転現象を阻止する上で貢献する。
構造材に用いる杉材等は吸放湿性を備えているが、温暖湿潤な地域で用いても含水率管理上問題は無い。それで、吸放湿とH2Oの相変化との連携の比率の低い水準の目安は杉材等に表される。
In cold regions, the drop in the outside air temperature during the summer is remarkable, and the days around 20 ° C continue. The temperature difference between day and night exceeds 10 degrees, and the use of radiant cooling energy at night can be expected .
Proportion of low absorbing Shimezai cooperation with the phase change of the intake desorption and H2 O (including insulation) is not necessarily have pure performed only moisture absorption and desorption without liquefaction and vaporization, some liquefied・ It is accompanied by vaporization.只 It has not led to a high water content. As an example, cedar is widely used as a structural material. Although it is also used for the position facing the north side, just because solar heat energy cannot be obtained by solar radiation does not mean that the moisture content of structural materials such as cedar is immediately high.
As mentioned earlier, tropical nights continue in warm regions, and vaporization and moisture release from the airtight heat insulating layer continues regardless of day or night. Therefore, in the airtight thermal insulation layer on the north side where solar thermal energy cannot be obtained by solar radiation, even if moisture absorption / cooling is continued from the inside as long as it is within the range of its vaporization / moisture release capacity, it is a cause of high moisture content. It will not be.
Compared to operating the air conditioner in the flow path of the space behind the ceiling and under the floor, there is also a balance with the comfortable temperature for living, and when the air conditioner is installed indoors, the room temperature cannot be lowered greatly .
The northern air-tight insulation layer cannot acquire solar heat. Therefore, the ability to vaporize and release moisture from the airtight insulation layer on the north side is affected by the outdoor pressure and temperature. In general, the outdoor temperature in the daytime in summer exceeds 30 ° C regardless of whether it is warm or cold, and vaporization and moisture release through the airtight heat insulation layer on the north side can occur. However, as described above, the movement of the liquefied H2O from the indoor side to the outdoor side is prevented by the interposition of the moisture-permeable windproof waterproof sheet. Therefore, vaporization and moisture release on the outdoor side do not continue, and the function of reducing the moisture content in the airtight heat insulating layer does not work in this aspect.
Now, even if it is difficult to move liquefied H 2 O, gaseous H 2 O (humidity) moves. Therefore, if a heat insulating material having a low ratio of moisture absorption / release and H2O phase change is used on the indoor side of the hermetic heat insulating layer, moisture is absorbed from the indoor side and released to the outdoor side while performing appropriate moisture content control. This contributes to preventing the reversal phenomenon of moisture absorption / release from the outdoor side to the indoor side while maintaining the direction of moisture absorption / release.
Cedar wood and the like used for the structural material has moisture absorption / release properties, but there is no problem in water content management even when used in a warm and humid area. Therefore, an indication of a low level of the ratio of the relationship between moisture absorption and release and H2O phase change is expressed in cedar wood and the like.

8A:深夜電力を利用して生成する冷却エネルギーの蓄冷手段を躯体と蓄熱体・基礎コンクリート・地中から構成される蓄熱層に分散でき、躯体(木質系の構造材・断熱材等)から吸湿・吸冷の負担に伴う悪影響(カビ・腐朽菌等の繁殖、断熱性能の低下)を軽減できる。更に、安価な繊維質の断熱材の利用に道が広がる。
B:エネルギー消費効率の高いエアコンと蓄熱体との組み合わせで深夜電力のみを利用しても、24時間継続的に安定して安価な冷却エネルギーを対流熱の形で直接循環流路に供給出来る。同じく、暖房のエネルギーを一日中継続して安定して安価に対流熱の形で直接循環流路に供給できる。更に、省エネルギー効果を得られる。
C:深夜電力のみを冷房のエネルギー源としながらも、冷気の24時間を通しての継続的供給を通じて昼間の吸放湿の方向性を制御でき、低コストで24時間を通じて屋内の除湿効果を高められる。
D:冷気の継続的供給を通じ、低い含水率の場合でもH2Oの相変化を利用した冷却エネルギーの移動を好適に確保できる。更に、連携の比率と背理関係にあるH2Oの移動の効率を向上し、屋内の除湿効果を高められる。

F:21℃乃至23℃に限定された温度領域での相変化を利用したエネルギーの放出を、循環流路内での躯体との顕熱的エネルギー移転により吸収し、冬季の輻射暖房と夏季の輻射冷房とを、夏季の遮熱・除湿効果と冬季のエネルギー損失軽減効果とを両立しながら安価なエネルギーを利用して24時間安定して好適に実現する。又、地熱・放射冷却・深夜電力の融合された更なる有効活用を通じ、尚一層の省エネルギー効果・エネルギーコストの低下および好適な含水率管理のもと一層のヒートアイランド化抑制効果を得られる。
9:屋根の断熱層を透過する太陽熱エネルギーを、遮熱システムと換気システムとの組み合わせの工夫によって潜熱的・顕熱的に効率的に建物外へ排出し、昼間の冷房負荷の増大を抑えることが出来る。しかも、換気の目的を効率よく果たしながら、その上更に、地熱・放射冷却に加えて深夜電力の効率的な利用を可能として屋内の環境(温度・湿度・酸素濃度・揮発性の化学物質等)を年間を通して低コスト(建築コスト・ランニングコスト)で改善することが出来る。
東西南側の気密断熱層では、太陽熱エネルギーの日射取得は屋内側から吸湿液化し・屋外側へ気化放湿する吸放湿の方向性を担保するものの、北側の気密断熱層では、屋外側への気化放湿に頼らずに、屋内側から吸湿し屋外側へ放湿する吸放湿の方向性を堅持することが出来る。その結果、除湿効果を実現できる。
冬季は、気密住宅の閉鎖性を活かし、暖房効果を高めて省エネを追求しながら、夏季は、通気住宅の開放性を活かせる建築的工夫を最大限に追求しながら、地熱・放射冷却等の自然エネルギーを有効利用して、人為的なエネルギーの省エネ化を図りながら、冷房負荷の増大・除湿負荷の増大及びヒートアイランド化の助長を避けられるシステムの構築を図れる。
液化を経ることで昼夜相対湿度の低い室内側から吸湿し、昼間熱エネルギーを吸収して内側通気層に気化・放湿する速度を向上できるだけでなく、吸放湿材を介して相対湿度の高い側に湿気を移動(伝導)し、放湿できる。逆も真なりで、相対湿度の高い屋外側から相対湿度の低い屋内側への湿気の逆流(浸入)を阻止できる。
床下空間の湿気の建物外への排出路として二つの排出路を形成し、排出の効率を改善することにより、床下空間での結露の発生を抑制できる。
8A: Cooling energy storage means using midnight power can be dispersed in the heat storage layer composed of the frame and the heat storage body / foundation concrete / underground, and absorbs moisture from the frame (woody structural material, heat insulating material, etc.)・ Reduces adverse effects associated with the burden of cooling (propagation of molds, decaying fungi, etc., reduced insulation performance). In addition, the use of inexpensive fibrous insulation is widened.
B: Even if only midnight power is used in combination of an air conditioner and a heat storage body having high energy consumption efficiency, stable and inexpensive cooling energy can be supplied directly to the circulation channel in the form of convection heat for 24 hours. Similarly, heating energy can be continuously supplied throughout the day and supplied to the circulation channel directly in the form of convection heat at a low cost. Furthermore, an energy saving effect can be obtained.
C: While only midnight power is used as a cooling energy source, the direction of moisture absorption during the day can be controlled through continuous supply of cold air for 24 hours, and the indoor dehumidification effect can be enhanced for 24 hours at low cost.
D: Through continuous supply of cold air, it is possible to suitably ensure the transfer of cooling energy using the phase change of H 2 O even in the case of a low water content. Furthermore, it is possible to improve the efficiency of movement of H2O, which is in contradiction with the ratio of cooperation, and enhance the indoor dehumidifying effect.
E :
F: The release of energy using the phase change in the temperature range limited to 21 ° C to 23 ° C is absorbed by the sensible heat transfer with the enclosure in the circulation channel, so that the radiant heating in the winter and the summer Radiant cooling is preferably realized stably for 24 hours using inexpensive energy while achieving both heat insulation / dehumidification effects in summer and energy loss mitigation effects in winter. In addition, through further effective utilization of the fusion of geothermal, radiative cooling, and late-night power, it is possible to obtain a further heat-saving effect by further reducing energy costs, lowering energy costs, and appropriately controlling moisture content.
9: Solar heat energy that permeates the heat insulation layer of the roof is effectively discharged latently and sensiblely outside the building by devising a combination of a heat shield system and a ventilation system to suppress an increase in daytime cooling load I can do it. In addition, while efficiently fulfilling the purpose of ventilation, in addition to geothermal and radiative cooling, it is possible to efficiently use midnight power, and indoor environments (temperature, humidity, oxygen concentration , volatile chemicals, etc.) Can be improved at low cost (building cost and running cost) throughout the year.
In the airtight heat insulation layer on the east and west side, solar radiation acquisition of solar thermal energy is converted to moisture absorption from the indoor side, and the direction of moisture absorption and release to vaporize and release to the outdoor side is ensured. Without relying on vaporization and moisture release, it is possible to maintain the direction of moisture absorption and release by absorbing moisture from the indoor side and releasing it to the outdoor side. As a result, a dehumidifying effect can be realized.
In winter, we take advantage of the closeness of hermetic houses to improve the heating effect and pursue energy savings, and in summer, to maximize the architectural ingenuity that makes use of the openness of ventilated houses, It is possible to construct a system that avoids the increase of cooling load / dehumidification load and the promotion of heat island while effectively utilizing natural energy to save human energy.
Through liquefaction, it absorbs moisture from the indoor side where the relative humidity is low day and night , absorbs the heat energy during the day, and increases the rate of vaporization and moisture release to the inner ventilation layer. Moisture can be transferred (conducted) to the side to release moisture. The reverse is also true, and it is possible to prevent the reverse flow (intrusion) of moisture from the outdoor side where the relative humidity is high to the indoor side where the relative humidity is low.
By forming two discharge paths as moisture discharge paths outside the building in the underfloor space and improving the discharge efficiency, the occurrence of condensation in the underfloor space can be suppressed.

ところで、夜間に壁体に吸湿する際の相対湿度は周囲の温度低下により上昇し、吸湿の圧力は高まるが、その際、H2Oの相変化によって液化を生じると、同時に生成する凝縮熱により温度上昇要因を生むこととなる。結局、液化を生むだけの冷却エネルギーの供給が持続しなければ、相変化も持続しない。
H2Oが相変化して蒸発する際には、周囲から気化熱が奪われる。この気化熱の発生が持続すると、気化熱の蓄積によって太陽熱の日射取得に因る壁体の温度上昇は抑えられる。
ところで、壁体に液体状の「水」を直接供給・吸収させれば、それが気化・蒸発する際に周囲から気化熱を奪うので、継続して昼間太陽熱を吸収し、気化・蒸発することが可能である。只、水を直接吸収させる方法を採用していないので、これまでの方法では周囲から継続して気化熱を奪うことはない。
それで、「水」の供給・吸収に代わるものとして、湿気の吸収並びに冷却エネルギーの吸収を連携して行い、壁体での凝縮熱及び水の生成に繋がる相変化である潜熱式蓄冷が重要となる。しかも、相変化を経て液化する際に生じる凝縮熱を吸収する為に投じられた冷却エネルギーの総量(放射冷却・地熱)の範囲内で、潜熱を利用した遮熱の効果を得られる
By the way, the relative humidity when moisture is absorbed into the wall at night increases due to a decrease in ambient temperature, and the pressure of moisture absorption increases. At that time, if liquefaction occurs due to the phase change of H2O, the temperature rises due to condensation heat generated at the same time. It will be a factor. After all, if the supply of cooling energy sufficient to generate liquefaction does not continue, the phase change will not continue.
When H 2 O changes phase and evaporates, heat of vaporization is taken away from the surroundings. If the generation of this heat of vaporization continues, the temperature rise of the wall body due to solar solar radiation acquisition is suppressed by the accumulation of heat of vaporization.
By the way, if liquid "water" is directly supplied to and absorbed by the wall, it will take away heat of vaporization when it vaporizes and evaporates, so it continuously absorbs daytime solar heat and vaporizes and evaporates. Is possible.只 Since the method of directly absorbing water is not adopted, the conventional method does not continuously take away the heat of vaporization from the surroundings.
Therefore, as an alternative to the supply and absorption of “water”, the absorption of moisture and the absorption of cooling energy are performed in cooperation, and latent heat-type cold storage, which is a phase change that leads to condensation heat and water generation in the wall, is important. Become. In addition, the effect of heat insulation using latent heat can be obtained within the range of the total amount of cooling energy (radiation cooling / geothermal energy) thrown in order to absorb the condensation heat generated when liquefying through phase change .

新しい技術では、相変化の有無に関わらず、壁体からの湿気の放出及び通気層を通じた排湿活動を促進することが出来る。又、屋外から取得する運動エネルギーの量に制約されるが、屋内からのエネルギー移動を可能にする。この湿気の形での排熱システムと、24時間換気システムの備える給湿・給冷システムとの補完的な連携によって、補完的連携による制御(促進・抑制)を通じた屋内の調湿効果と温度上昇抑制効果が繋がる高度の遮熱・除湿機構へと発展することが出来る。 With the new technology, it is possible to promote the release of moisture from the wall and the dehumidification activity through the ventilation layer, with or without phase change. Moreover, although it is restricted by the amount of kinetic energy acquired from the outdoors, it enables energy transfer from the inside. A waste heat system in the form of the moisture, 2 by complementary cooperation with the dampening-Kyuhiya system comprising the 4-hour ventilation systems, and indoor humidity effect through control by the complementary linkage (promoted or suppressed) It can be developed into an advanced heat-shielding / dehumidifying mechanism that leads to the effect of suppressing temperature rise.

湿気の供給サイドで、湿気の供給並びに吸湿の高い効率を如何にして実現するか。
昼間の太陽熱エネルギーの日射取得によるH2Oの放出による吸放湿材における含水率低下は、夜間の内での吸湿余力の回復を創出する。それは、結果として室内空間の湿気の吸収による、室内空間の湿度調節機能へと繋がっていく。只、先にも記した通り、送風ファンを夜間も稼動すると、屋外からの湿気及び冷気の供給を促すこととなり、その分、屋内からの湿気の吸収・移動は縮減することとなる。
The supply side of the moisture or realized in how the moisture supply as well as high moisture absorption efficiency.
The reduction in moisture content in the moisture absorbing / releasing material due to the release of H2O by solar radiation acquisition during the daytime creates a recovery of the moisture absorption capacity at night. As a result, it leads to a humidity control function of the indoor space due to moisture absorption in the indoor space. As described above, if the blower fan is operated even at night, the supply of moisture and cold from outside is urged, and the absorption and movement of moisture from the inside is reduced accordingly.

液化を促す吸放湿材及び促さない吸放湿材について。
相対湿度と平衡含水率との乖離により吸湿を促し含水率を上げたとしても、直ちに吸放湿材内での相変化(液化)の促進に繋がるわけではない。液化の促進は液化に伴い生成する凝縮熱を処理できる冷却エネルギーの吸収促進に依存する。ところが、吸放湿材はその断熱性により内部に冷却エネルギーを伝導する能力は低い。つまり、冷却エネルギーの伝導が緩慢な分、液化も緩慢である。潜熱的蓄冷を図るにしても、効率はよくない。それでは、たとえ冷却エネルギーの供給を増加したとしても、その増加に応じて効率よく吸冷出来ない。それで、効率的な潜熱的蓄冷を図ることが課題となる。
以上を潜熱的蓄冷の過程との関係で把握すれば、吸放湿層の表面で液化したH2Oを吸収できる特性を備える吸放湿材を用いると、空気中の湿気を吸収する際に凝縮熱を吸収し・液化を促進し、かつ、液体状のH2Oを吸引・吸収することで、吸放湿とH2Oの相変化の「連携の比率」を高く維持することに貢献する。それで、昼間含水率の低下した場合でも、冷却エネルギーの吸収・保持に繋げて、効率的なエネルギー移動を継続し、遮熱・除湿効果の維持に繋げることができる。尚余談ながら、潜熱的蓄冷が顕熱的蓄冷に比較して周囲の温度低下を招かないのは、冷却エネルギーが凝縮熱の吸収に用いられるからである
Moisture absorption / release materials that promote liquefaction and moisture absorption / release materials that do not promote liquefaction.
Even if moisture absorption is promoted by increasing the moisture content due to the difference between the relative humidity and the equilibrium moisture content, the phase change (liquefaction) in the moisture absorbent material is not immediately promoted. The promotion of liquefaction depends on the promotion of absorption of cooling energy capable of treating the heat of condensation generated with liquefaction. However, Hygroscopic material is less ability to conduct cooling energy inside by its heat insulating properties. That is, liquefaction is slow as the conduction of cooling energy is slow. Even if latent heat storage is attempted, the efficiency is not good. Then, even if the supply of cooling energy is increased, the cooling cannot be efficiently performed according to the increase. Therefore, it is a challenge to achieve efficient latent heat storage.
If the above is understood from the relationship with the latent heat storage process, the use of a moisture absorbing / releasing material that has the property of absorbing H2O liquefied on the surface of the moisture absorbing / releasing layer will cause condensation heat when absorbing moisture in the air. By absorbing and promoting liquefaction, and by sucking and absorbing liquid H2O, it contributes to maintaining a high "cooperation ratio" between moisture absorption / release and H2O phase change. Therefore, even when the moisture content in the daytime is reduced, the cooling energy can be absorbed and retained, the efficient energy transfer can be continued, and the heat shielding and dehumidifying effect can be maintained. It should be noted that the reason why latent heat storage does not cause a decrease in ambient temperature compared to sensible heat storage is that cooling energy is used to absorb condensation heat .

吸放湿材は空気中の湿気を吸収する過程で、同時に、空気中の揮発性の化学物質・汚染物質を吸収する。吸放湿材の保水力によって、化学物質・汚染物質は溶解し、H2Oの移動とともに吸放湿材の内部を移動する。それで、最後は吸放湿材からH2Oが水蒸気として外部に放出される際に、一緒に排出される。肝心なことは、化学物質・汚染物質は吸着材である吸放湿材に蓄積される一方ではなく、適宜建物外に排出される手段が用意されている。 Hygroscopic material in the process of absorbing moisture in the air, at the same time, absorbs volatile chemicals, pollutants in the air. Due to the water retention capacity of the moisture absorbing / releasing material, the chemical substance / pollutant dissolves and moves inside the moisture absorbing / releasing material as H2O moves. Therefore, finally, when H2O is released as water vapor from the moisture absorbing / releasing material, it is discharged together. The main thing is, Chemicals and contaminants are not one to be stored in Hygroscopic material is adsorbent, means is discharged out suitable Yichun buildings are prepared.

請求項1に記載の外壁は、一般にサイディングを用いるが、モルタル下地に吹付け塗装仕上げもしくはタイル張りでも差し支えない。何れの材料も断熱材として使用されるものではないが、吸放湿とH2Oの相変化との連携を利用した遮熱機能を有する
ネルギー供給手段は、太陽熱エネルギーの利用に当たっては屋根面で集熱したものを公知の方法で床下空間に放熱する方法を取ることが出来る。それに対し、太陽熱エネルギーから温水を作り、建物外に一時貯湯して必要な時に建物内にエネルギーを供給することが出来る。そして、公知の手段により、床下空間に直接放熱するか或は基礎土間コンクリートに埋め込んだパイプを通じた熱交換により蓄熱するかの方法を取る。尚、貯湯のエネルギー源として、灯油・ガス・深夜電力を用いても良い。
棟換気口に関し。棟換気口と送風ファンとを一体とした構成とすることも出来る。その場合、屋根棟下空間及び送風ファンを及び屋根棟下換気口を別に設けなくても良い。
The outer wall according to claim 1 generally uses siding, but may be spray-coated or tiled on the mortar base. Without being used as both insulation material, with a thermal barrier function using cooperation between the phase change of the moisture-absorbing and desorbing with H2 O.
Energy supply means, the in use of solar thermal energy can take a method of radiating the underfloor space that heated collector roof surface in a known manner. On the other hand, hot water can be made from solar thermal energy, temporarily stored outside the building, and supplied to the building when needed. Then, a known method is used to directly radiate heat to the under-floor space or to store heat by heat exchange through a pipe embedded in the foundation soil concrete. In addition, you may use kerosene, gas, and midnight electric power as an energy source of hot water storage.
Concerning the building ventilation opening. It can also be set as the structure which integrated the building ventilation opening and the ventilation fan. In that case, the space under the roof ridge, the blower fan, and the ventilation hole under the roof ridge need not be provided separately.

寒冷地において請求項に記載のシステムを利用する場合、その気候特性を考慮した利用によりランニングコストを抑えて好適な住環境を得られる。
夏季は、寒冷地といえども昼間の気温は温暖地に比べて目立って変わらない。只、夜間に限れば温暖地に比較すると外気温の低下は著しい。それで、夜間の冷気を昼間に日射取得する太陽熱エネルギーの吸収に利用する。
請求項1に記載の「建物外から外気を導入し、室内を循環した空気を建物外に排出する通風を含めた換気する手段」は、24時間換気システムの備える給湿・給冷システムにより、具体的には、夜間温度低下した外気を取り入れ、放射冷却のエネルギーを取り込んで冷却エネルギーを供給し、又、液化の促進は液化に伴い生成する凝縮熱を処理できる冷却エネルギーの吸収促進に依存するので、屋内からの冷エネルギー供給の増加に対応して、夜間の屋外からの吸湿・吸冷を抑制することで、屋内からの吸湿・吸冷及び屋内から屋外へのH2Oの移動の効率を向上し、しかも、液化を経ることで昼夜相対湿度の低い室内から吸湿し、昼間熱エネルギーを吸収して相対湿度の高い内側通気層に気化・放湿出来る。その結果、吸放湿材は室内の湿気の吸収により除湿効果を上げ、日射取得する太陽熱エネルギーを吸収する形で遮熱効果を上げることが出来る。
尚、H2Oの相変化と吸放湿機能との連携を日射取得する太陽熱エネルギーの吸収により促進し、昼間の遮熱・除湿に利用することが出来るが、夜間の温度低下の大きさから、地熱と屋外側で供給する放射冷却エネルギーとを併せれば、昼間の遮熱・除湿効果は十分得られる
When the system according to claim 1 is used in a cold region, it is possible to obtain a suitable living environment while suppressing running costs by using the system considering its climatic characteristics.
In summer, even in cold regions, daytime temperatures are not as noticeable as in warm regions.れ ば If it is limited to the night, the decrease in the outside air temperature is remarkable compared to the warm area. Therefore, the cold air at night is used to absorb solar thermal energy that is acquired by solar radiation in the daytime.
The means for ventilating including the ventilation for introducing the outside air from outside the building and discharging the air circulated through the room to the outside of the building according to claim 1 is provided by a moisture supply / cooling system provided in the 24-hour ventilation system , Specifically, it takes in outside air whose temperature has fallen at night, takes in the energy of radiative cooling, and supplies cooling energy, and the promotion of liquefaction depends on the absorption of cooling energy that can handle the heat of condensation that is generated along with liquefaction. Therefore, in response to an increase in the supply of cold energy from indoors, by suppressing moisture absorption and cooling from the outside at night, the efficiency of moisture absorption and cooling from indoors and the movement of H2O from indoors to the outdoors is improved. In addition, by liquefying, it absorbs moisture from the room with low relative humidity day and night, absorbs heat energy during the daytime, and can vaporize and release moisture to the inner ventilation layer with high relative humidity. As a result, the moisture absorbing / releasing material can increase the dehumidifying effect by absorbing moisture in the room and can increase the heat shielding effect by absorbing solar thermal energy acquired by solar radiation.
In addition, the cooperation between the phase change of H2O and the moisture absorption and desorption function can be promoted by absorbing solar thermal energy acquired by solar radiation, and can be used for heat insulation and dehumidification during the daytime. When combined with the radiant cooling energy supplied on the outdoor side, a sufficient heat shielding and dehumidifying effect can be obtained in the daytime .

請求項1に記載の換気手段の内の、建物外と室内空間とを繋ぐ排気用連通管及び換気扇を示すものである。The exhaust pipe and exhaust fan which connect the exterior of a building and indoor space among the ventilation means of Claim 1 are shown. 請求項1の発明の構造概略断面図を示すものである。1 is a schematic cross-sectional view of the structure of the invention of claim 1. 図3に示す建物の壁体の斜断面詳細図である。FIG. 4 is a detailed oblique sectional view of the wall of the building shown in FIG. 3. 屋根体・壁体の概略断面図である。It is a schematic sectional drawing of a roof body and a wall body. 屋根体の概略断面図である。It is a schematic sectional drawing of a roof body. 屋根体の概略断面図である。It is a schematic sectional drawing of a roof body. 屋根体の概略断面図である。It is a schematic sectional drawing of a roof body. 請求項1の発明の内側通気層を示す壁体の平面概略断面図である。It is a plane schematic sectional drawing of the wall which shows the inner side ventilation layer of invention of Claim 1. 請求項1の発明の内側通気層を示す壁体の平面概略断面図である。It is a plane schematic sectional drawing of the wall which shows the inner side ventilation layer of invention of Claim 1. 請求項1の発明の内側通気層を示す壁体の平面概略断面図である。It is a plane schematic sectional drawing of the wall which shows the inner side ventilation layer of invention of Claim 1.

請求項1に記載の換気手段の内の、建物外と室内空間とを繋ぐ排気用連通管及び換気扇を示すものである。The exhaust pipe and exhaust fan which connect the exterior of a building and indoor space among the ventilation means of Claim 1 are shown. 請求項1に記載の換気手段の内の、建物外と室内空間とを繋ぐ排気用連通管及び換気扇を示すものである。The exhaust pipe and exhaust fan which connect the exterior of a building and indoor space among the ventilation means of Claim 1 are shown. 請求項1の発明の構造概略断面図を示すものである。1 is a schematic cross-sectional view of the structure of the invention of claim 1. 図3に示す建物の壁体の斜断面詳細図である。FIG. 4 is a detailed oblique sectional view of the wall of the building shown in FIG. 3. 屋根体・壁体の断熱層の接合部の概略断面図である。It is a schematic sectional drawing of the junction part of the heat insulation layer of a roof body and a wall body. 屋根体・壁体の断熱層の接合部の概略断面図である。It is a schematic sectional drawing of the junction part of the heat insulation layer of a roof body and a wall body. 屋根体・壁体の断熱層の接合部の概略断面図である。It is a schematic sectional drawing of the junction part of the heat insulation layer of a roof body and a wall body. 屋根体・壁体の断熱層の接合部の概略断面図である。It is a schematic sectional drawing of the junction part of the heat insulation layer of a roof body and a wall body. 請求項1の発明の内側通気層を示す壁体の平面概略断面図である。It is a plane schematic sectional drawing of the wall which shows the inner side ventilation layer of invention of Claim 1. 内装材と断熱材が積層され、内側通気層を備えない壁体の平面概略断面図である。It is a plane schematic sectional drawing of the wall body by which an interior material and a heat insulating material are laminated | stacked, and an inner side ventilation layer is not provided. 請求項1の発明の内側通気層を示す壁体の平面概略断面図である。It is a plane schematic sectional drawing of the wall which shows the inner side ventilation layer of invention of Claim 1. 請求項1の発明の内側通気層を示す壁体の平面概略断面図である。It is a plane schematic sectional drawing of the wall which shows the inner side ventilation layer of invention of Claim 1. 桁上で断熱気密を図る、図3の変形型である。It is a deformation | transformation type | mold of FIG. 3 which aims at heat insulation airtight on a girder.

Claims (23)

吸放湿性を具備する断熱材から構成され、構造耐力性を具備し、建物の図5から8に示す屋根体もしくは図9から12に示す壁体を構成する断熱パネルであって、
吸放湿とH2Oの相変化との連携の比率の低い断熱材と透湿防風防水シートと吸放湿とH2Oの相変化との連携の比率の高い断熱材とを重ね合わせた三層構造を特徴とする断熱パネル。
It is composed of a heat insulating material having moisture absorption / release properties, has a structural strength resistance, and constitutes a roof body shown in FIGS. 5 to 8 of a building or a wall body shown in FIGS. 9 to 12,
A three-layer structure in which a heat-insulating material with a low ratio of moisture absorption / release and H2O phase change, a moisture-permeable windproof waterproof sheet, and a heat-insulating material with a high ratio of moisture absorption / release and H2O phase change are superimposed. Characteristic insulation panel.
吸放湿とH2Oの相変化との連携の比率の高い断熱材と透湿防風防水シートと吸放湿とH2Oの相変化との連携の比率の高い断熱材とを重ね合わせた三層構造を特徴とする請求項1に記載の断熱パネル。 A three-layer structure in which heat-insulating material with a high ratio of moisture absorption and release and H2O phase change, moisture-permeable windproof waterproof sheet, and heat-insulating material with a high ratio of moisture absorption and release and H2O phase change are superimposed. The heat insulation panel according to claim 1, wherein 図1に示す建物を構造的に支える基礎・土台・柱・桁・梁の構造部材並びに屋根・外壁・断熱層を具備する屋根体・壁体から構成され、内壁・床・天井により室内空間を構成し、構造耐力を備え、
壁体を構成する断熱層は、吸放湿性を具備する断熱材から成る断熱層もしくは吸放湿性を具備しない断熱材から成る断熱層あるいは吸放湿性を具備する断熱材と吸放湿性を具備しない断熱材とを重ね合わせた断熱層の一つの種類の断熱層もしくは複数の種類の断熱層の組み合わせにより構成され、
屋根体を構成する断熱層は、吸放湿性を具備する断熱材から構成され、
棟換気口及び屋根棟下空間及び屋根通気層及び外側通気層を備え、
建物外から外気を導入し、室内を循環した空気を建物外に排出する通風を含めた換気する手段を備え、
防水性を備え、
地熱・放射冷却のエネルギー、夏季の暖気、冬季の冷気、太陽熱エネルギーの日射に曝される建物であって、
透湿性の断熱層は、請求項1に記載の断熱パネルから構成され、屋内側に吸放湿とH2Oの相変化との連携の比率の低い断熱材を用い、
断熱層の内、屋外側に吸放湿性を具備し、吸放湿とH2Oとの連携の比率の高い断熱材で構成する断熱層は、吸放湿性を具備する断熱材もしくは吸放湿性を具備しない断熱材と透湿防風防水シートと吸放湿性を具備する断熱材との三層構造とし、冬季に液化の際に生成する凝縮熱により屋外からの夜間の冷気を吸収し、
断熱層の内、吸放湿性を具備する断熱層は、H2Oの相変化(液化・気化)を媒介する断熱材の吸放湿機能により吸湿・吸冷し、夏季の昼間の常温で気化・蒸発し、屋外に排出し、その上、北側を除いた断熱層は、日射取得される太陽熱エネルギーを吸収し、湿気という潜熱の形に閉じ込めて屋外に排出し、
床材に吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を用い、床下空間から吸湿し、床材を透過し、室内空間に放湿し、室内空間から断熱層を経由して屋外に排出できる湿気の排出路を形成することを特徴とするエコ住宅。
It consists of structural members such as foundations, foundations, columns, girders and beams that structurally support the building shown in Fig. 1 and roofs and walls with roofs, outer walls, and heat insulation layers. Composed, structural strength,
The heat insulating layer constituting the wall body does not have a moisture absorbing / releasing property with a heat insulating layer composed of a heat insulating material having a moisture absorbing / releasing property or a heat insulating layer composed of a heat insulating material without a moisture absorbing / releasing property or a heat insulating material with a moisture absorbing / releasing property. Consists of one type of heat insulating layer or a combination of multiple types of heat insulating layers that are laminated with a heat insulating material,
The heat insulating layer constituting the roof body is composed of a heat insulating material having moisture absorption / release properties,
It has a building ventilation opening, a space under the roof building, a roof ventilation layer and an outer ventilation layer,
Introducing outside air from outside the building, equipped with ventilation means including ventilation to exhaust the air circulating inside the building outside the building,
With waterproofness,
It is a building that is exposed to geothermal / radiant cooling energy, summer warm air, winter cold air, solar thermal energy,
A moisture-permeable heat insulating layer is composed of the heat insulating panel according to claim 1, and uses a heat insulating material having a low ratio of cooperation between moisture absorption / release and H2O phase change on the indoor side,
Among the heat insulation layers, the heat insulation layer which has moisture absorption / release properties on the outdoor side and is composed of a heat insulation material with a high ratio of cooperation between moisture absorption / release and H2O has heat insulation materials with moisture absorption / release properties or moisture absorption / release properties. It has a three-layer structure consisting of a non-insulating heat insulating material, a moisture-permeable windproof waterproof sheet and a heat insulating material with moisture absorption and desorption, and absorbs cold air from the outside by condensation heat generated during liquefaction in winter,
Among heat insulation layers, heat insulation layers with moisture absorption and desorption properties absorb and cool by the moisture absorption and desorption function of the heat insulating material that mediates the phase change (liquefaction and vaporization) of H2O, and vaporize and evaporate at room temperature during the daytime in summer. In addition, the heat insulation layer excluding the north side absorbs solar heat energy acquired by solar radiation, confines it in the form of latent heat called moisture, and discharges it outdoors.
The floor material is a moisture absorbing / releasing material with a low ratio of moisture absorption / release and H2O phase change, absorbs moisture from the under floor space, permeates the floor material, releases moisture to the indoor space, and installs a heat insulating layer from the indoor space. An eco house characterized by forming a drainage path for moisture that can be discharged to the outside.
透湿性の断熱層は、請求項2に記載の断熱パネルから構成されることを特徴とする請求項3に記載のエコ住宅。 The eco-housing according to claim 3, wherein the moisture-permeable heat insulating layer includes the heat insulating panel according to claim 2. 透湿性の断熱層は、請求項1及び2に記載の断熱パネルから構成されることを特徴とする請求項3に記載のエコ住宅。 The eco-housing according to claim 3, wherein the moisture-permeable heat-insulating layer includes the heat-insulating panel according to claim 1. 北側に面し太陽熱エネルギーを日射取得できない断熱層は、吸放湿とH2Oの相変化との連携の比率の低い断熱材、もしくは、吸放湿性を具備しない断熱材から成ることを特徴とする請求項3から5の内の何れかの項に記載のエコ住宅。 The heat insulating layer facing the north side where solar heat energy cannot be obtained by solar radiation is composed of a heat insulating material having a low ratio of coexistence between moisture absorption / release and H2O phase change, or a heat insulating material not having moisture absorption / release properties. Item 6. The eco-housing according to any one of items 3 to 5. 前記断熱層は、気密性能を備えることを特徴とする請求項3から6の内の何れかの項に記載のエコ住宅。 The eco-house according to any one of claims 3 to 6, wherein the heat insulation layer has an airtight performance. 前記屋根棟下空間に送風ファン及び連通口を設け、外気に開放され、
送風ファンは昼夜稼動することを特徴とする請求項3から7の内の何れかの項に記載のエコ住宅。
A ventilation fan and a communication port are provided in the space below the roof wing, and are opened to the outside air.
The eco-housing according to any one of claims 3 to 7, wherein the blower fan operates day and night.
図1に記載の、床下空間と内側通気層は連通して空気の流路を形成し、内側通気層と各居室は内壁部の連通口を介して連通し、
建物外と各居室とを、開閉可能な吸気口に連結する排気用連通管により連通し、建物外と床下空間とを給気用連通管により連通し、
前記排気用連通管及び給気用連通管は送風機能を具備する熱交換式換気扇に連通し、
前記給気用連通管を通じて床下空間に外気を取入れ、内側通気層及び連通口を経由して各居室に流入した空気を、冬と夏とで室内の空気循環を変更して夏は暖気を屋内の吹抜け部の最上部の吸気口に連結する排気用連通管を通じて建物外に排出できる換気通気手段を備えることを特徴とする請求項3から8の内の何れかの項に記載のエコ住宅。
The underfloor space and the inner ventilation layer shown in FIG. 1 communicate with each other to form an air flow path, and the inner ventilation layer and each living room communicate with each other through a communication port on the inner wall,
The outside of the building and each room are connected by an exhaust communication pipe connected to an openable and closable inlet, and the outside of the building and the underfloor space are connected by an air supply communication pipe.
The exhaust communication pipe and the supply communication pipe communicate with a heat exchange type exhaust fan having a blowing function,
Outside air is taken into the underfloor space through the air supply communication pipe, and the air flowing into each room through the inner ventilation layer and the communication port is changed in the indoor air circulation between winter and summer, so that warm air is kept indoors in summer. The eco-house according to any one of claims 3 to 8, further comprising a ventilation / ventilating means capable of exhausting outside the building through an exhaust communication pipe connected to an uppermost intake port of the blowout portion.
前記給気用連通管を通じて外気を取り入れる際に、屋根通気層もしくは屋根棟下空間を通じて集めた熱エネルギーを併せて床下空間に取り入れることを特徴とする請求項3から9の内の何れかの項に記載のエコ住宅。 10. The method according to claim 3, wherein when the outside air is taken in through the air supply communication pipe, the heat energy collected through the roof ventilation layer or the space under the roof ridge is also taken into the underfloor space. Eco house as described in. 除湿機能付空気調和機(HP式エアコン)を床下空間及び室内空間に設置することを特徴とする請求項3から10の内の何れかの項に記載のエコ住宅。 The eco house according to any one of claims 3 to 10, wherein an air conditioner with a dehumidifying function (HP type air conditioner) is installed in an underfloor space and an indoor space. 図2に示す建物を囲む気密断熱層を境に、建物外と密閉状態のもと、
前記建物の床下空間と内側通気層と天井裏空間とを連通し、
前記内側通気層もしくは天井裏空間の何れかと室内空間とを連通口により連通し、
前記建物の室内側から、内壁、内側通気層、壁下地材、気密断熱層、外壁下地材、外側通気層、外壁で構成され、
前記建物の屋根棟下空間と屋根通気層と外側通気層を連通し、屋根棟下空間の上端は棟換気口を通じて常時外気に開放され、外側通気層の下端は常時外気に開放され、
前記建物の室内側から、天井、天井裏空間、天井下地材、気密断熱層、屋根下地材、屋根棟下空間及び屋根通気層、屋根材で構成され、
壁体は、構造耐力を備え、
壁体を構成する気密断熱層は、吸放湿性を具備する断熱材から成る断熱層もしくは吸放湿性を具備しない断熱材から成る断熱層あるいは吸放湿性を具備する断熱材と吸放湿性を具備しない断熱材とを重ね合わせた断熱層の一つの種類の断熱層もしくは複数の種類の断熱層の組み合わせにより構成され、
屋根体を構成する気密断熱層は、吸放湿性を具備する断熱材から構成され、
前記建物外と室内空間とを排気用連通管により連通し、
前記建物外と床下空間とを給気用連通管により連通し、
前記排気用連通管及び給気用連通管は送風機能を具備する全熱交換式換気扇に連通し、
前記排気用連通管の一端を便所・浴室・押入を含む各居室に連結して建物外に排気し、前記給気用連通管を通じて外気を取入れ、
地熱・放射冷却のエネルギー、夏季の暖気、冬季の冷気、太陽熱エネルギーの日射に曝される建物であって、
透湿性の気密断熱層は、請求項1に記載の断熱パネルから構成され、屋内側に吸放湿とH2Oの相変化との連携の比率の低い断熱材を用い、
気密断熱層の内、屋外側に吸放湿性を具備し、吸放湿とH2Oとの連携の比率の高い断熱材で構成する断熱層は、吸放湿性を具備する断熱材もしくは吸放湿性を具備しない断熱材と透湿防風防水シートと吸放湿性を具備する断熱材との三層構造とし、冬季に液化の際に生成する凝縮熱により屋外からの夜間の冷気を吸収し、
前記気密断熱層の内、太陽熱エネルギーを日射取得できない北側の壁体の気密断熱層は、吸放湿とH2Oの相変化との連携の比率の低い断熱材、もしくは、吸放湿性を具備しない断熱材を用い、
前記気密断熱層の内、吸放湿性を具備する気密断熱層は、H2Oの相変化(液化・気化)を媒介する断熱材の吸放湿機能により吸湿・吸冷し、夏季の昼間の常温で気化・蒸発し、屋外に排出し、その上、北側の壁体を除いた気密断熱層は、日射取得される太陽熱エネルギーを吸収し、湿気という潜熱の形に閉じ込めて屋外に排出し、
前記連通口は夏冬で開閉可能とし、
併せて夏季の夜間に放射冷却により温度低下した冷気を取入れ、
床・内壁・天井の内装材の内の、用いる吸放湿とH2Oの相変化との連携の比率の低い吸放湿材の働きにより、床下空間から吸湿し、床材を透過し、室内空間に放湿し、室内空間から内壁・天井の内装材及び内側通気層・天井裏空間及び断熱層を経由して屋外に排出できる湿気の排出路を形成することを特徴とするエコ住宅。
With the hermetic insulation layer surrounding the building shown in Figure 2 as the boundary,
The underfloor space of the building, the inner ventilation layer and the ceiling space are communicated,
Either the inner ventilation layer or the space behind the ceiling and the indoor space communicate with each other through a communication port,
From the indoor side of the building, it is composed of an inner wall, an inner ventilation layer, a wall base material, an airtight heat insulating layer, an outer wall base material, an outer ventilation layer, and an outer wall.
The building under the roof ridge space, the roof ventilation layer and the outer ventilation layer communicate with each other, the upper end of the roof wing space is always open to the outside air through the building ventilation opening, the lower end of the outer ventilation layer is always open to the outside air,
From the indoor side of the building, the ceiling, the ceiling space, the ceiling base material, the airtight heat insulating layer, the roof base material, the space under the roof ridge and the roof ventilation layer, the roof material,
The wall body has structural strength,
The airtight heat insulating layer constituting the wall body has a heat insulating layer made of a heat insulating material having moisture absorbing / releasing properties, a heat insulating layer made of a heat insulating material not having moisture absorbing / releasing properties, or a heat insulating material having moisture absorbing / releasing properties and a moisture absorbing / releasing property. It is composed of one type of heat insulation layer or a combination of multiple types of heat insulation layers that are stacked with heat insulation material that does not
The hermetic heat insulating layer constituting the roof body is composed of a heat insulating material having moisture absorption and desorption properties,
The outside of the building and the indoor space are communicated by an exhaust communication pipe,
The outside of the building and the space under the floor are communicated by a communication pipe for air supply,
The exhaust communication pipe and the air supply communication pipe communicate with a total heat exchange type exhaust fan having a blowing function,
One end of the exhaust communication pipe is connected to each living room including a toilet, a bathroom, and a closet to exhaust outside the building, and outside air is taken in through the air supply communication pipe.
It is a building that is exposed to geothermal / radiant cooling energy, summer warm air, winter cold air, solar thermal energy,
A moisture-permeable air-tight heat insulating layer is composed of the heat insulating panel according to claim 1, and uses a heat insulating material having a low ratio of moisture absorption and release and H2O phase change on the indoor side,
Among the airtight heat insulating layers, the heat insulating layer that has moisture absorption / release properties on the outdoor side and is composed of a heat insulating material with a high ratio of cooperation between moisture absorption / release and H2O has heat absorption / absorption properties with moisture absorption / release properties. It has a three-layer structure consisting of a heat insulating material that is not equipped, a moisture-permeable windproof waterproof sheet, and a heat insulating material that has moisture absorption and desorption, and absorbs cold air from the outside by the condensation heat generated during liquefaction in winter,
Among the airtight heat insulating layers, the airtight heat insulating layer of the north wall which cannot acquire solar thermal energy is a heat insulating material with a low ratio of moisture absorption / release and H2O phase change, or heat insulation without moisture absorption / release properties. Using materials,
Among the airtight heat insulating layers, the airtight heat insulating layer having moisture absorption and desorption properties absorbs and absorbs moisture by the moisture absorption and desorption function of the heat insulating material that mediates the phase change (liquefaction / vaporization) of H2O, and at room temperature in the daytime in summer. Vaporizes and evaporates and discharges to the outside, and the airtight insulation layer excluding the north wall absorbs solar heat energy acquired by solar radiation, traps it in the form of latent heat called moisture, and discharges it to the outside.
The communication port can be opened and closed in summer and winter.
At the same time, cool air that has fallen in temperature due to radiative cooling at night in the summer
The interior / exterior material of the floor / inner wall / ceiling absorbs moisture from the space under the floor by the function of the moisture absorbing / releasing material, which has a low ratio between the moisture absorption / release and the phase change of H2O. The eco-house is characterized in that it forms a moisture discharge path that can be discharged from the interior space to the outside through the interior material of the inner wall / ceiling, the inner ventilation layer, the ceiling back space, and the heat insulation layer.
透湿性の気密断熱層は、請求項2に記載の断熱パネルから構成されることを特徴とする請求項12に記載のエコ住宅。 The eco-housing according to claim 12, wherein the moisture-permeable airtight heat insulating layer is constituted by the heat insulating panel according to claim 2. 前記屋根通気層の上端は、送風ファンと連通管とから構成される送風設備に連結する屋根棟下空間を通じて外気に開放され、
屋根棟下換気口を閉じることを特徴とする請求項12から13の内の何れかの項に記載のエコ住宅。
The upper end of the roof ventilation layer is opened to the outside air through the space under the roof ridge connected to the blower facility composed of the blower fan and the communication pipe,
The eco house according to any one of claims 12 to 13, wherein the ventilation hole under the roof ridge is closed.
前記の送風ファンは夏季の昼間に限定して稼動し、日没後は稼動しないことを特徴とする請求項14に記載のエコ住宅。 15. The eco house according to claim 14, wherein the blower fan operates only during summer daytime and does not operate after sunset. 連通する前記床下空間・内側通気層・天井裏空間で構成する流路内に、除湿機能付空気調和機(HP式エアコン)を用いることを特徴とする請求項12から15に記載のエコ住宅。 16. The eco-house according to claim 12, wherein an air conditioner with a dehumidifying function (HP type air conditioner) is used in a flow path constituted by the underfloor space, the inner ventilation layer, and the ceiling space. 図3に示す建物を構造的に支える基礎・土台・柱・桁・梁の構造部材並びに屋根・外壁・断熱層を具備する屋根体・壁体から構成され、内壁・床・天井により室内空間を構成し、構造耐力を備え、
棟換気口及び屋根通気層及び外側通気層を備え、
内壁・天井の内装材と断熱層との間に内側通気層を備え、
内側通気層は、断熱層を介して屋根通気層・外側通気層と独立した通気層に形成し、棟換気口・第二棟下換気口(開閉式)・天井裏空間を通じて外気に開放され、床下空間・床下換気口(開閉式)を通じて外気に開放され、
建物外から外気を導入し、室内を循環した空気を建物外に排出する通風を含めた換気する手段を備え、
地熱・放射冷却のエネルギー、夏季の暖気、冬季の冷気、太陽熱エネルギーの日射に曝される建物であって、
内壁・天井の内装材の内、断熱層から輻射熱を受けられる部位に用いる吸放湿材は、吸放湿とH2Oの相変化との連携の比率の高い板材を用い、面積に関して床の内装材よりも広く施工し、
床の内装材は、吸放湿とH2Oの相変化との連携の比率の低い吸放湿材を用い、
湿気の建物外への排出路として、床下空間から内側通気層・天井裏空間・第二棟下換気口を通じた排出路及び床下空間から室内空間を経て内側通気層・天井裏空間・第二棟下換気口を通じた排出路の二つの排出路を形成することを特徴とするエコ住宅。
It consists of structural members such as foundations, foundations, columns, girders and beams that structurally support the building shown in Fig. 3 and roofs and walls with roofs, outer walls, and heat insulation layers. Composed, structural strength,
It has a ridge ventilation opening, a roof ventilation layer and an outer ventilation layer,
An inner ventilation layer is provided between the inner wall / ceiling interior material and the heat insulation layer.
The inner ventilation layer is formed in the ventilation layer independent of the roof ventilation layer and outer ventilation layer through the heat insulation layer, and is opened to the outside air through the building ventilation opening, the second building lower ventilation opening (opening and closing type), and the ceiling space, It is open to the outside air through the underfloor space and underfloor ventilation opening (opening and closing type),
Introducing outside air from outside the building, equipped with ventilation means including ventilation to exhaust the air circulating inside the building outside the building,
It is a building that is exposed to geothermal / radiant cooling energy, summer warm air, winter cold air, solar thermal energy,
Moisture absorption and desorption materials used for the interior wall and ceiling interior materials that can receive radiant heat from the heat insulation layer are made of plate materials that have a high ratio of coordination between moisture absorption and desorption and H2O phase change. Wider than construction,
The floor interior material uses a moisture absorbing / releasing material that has a low rate of coordination between moisture absorbing / releasing and H2O phase change,
As an exhaust path to the outside of the building, the exhaust path from the underfloor space to the inner ventilation layer, the ceiling back space, the ventilation passage under the second building and the interior ventilation space from the under floor space to the inner ventilation layer, the ceiling back space, the second building An eco house characterized by forming two discharge paths, one through the lower vent.
前記内側通気層は、第二棟下換気口付近で第二送風ファンと第二連通口により外気に直接開放され、
第二棟下換気口は閉じることを特徴とする請求項17に記載のエコ住宅。
The inner ventilation layer is directly opened to the outside air by the second blower fan and the second communication port near the second building lower ventilation port,
The eco house according to claim 17, wherein the ventilation opening under the second building is closed.
前記断熱層は、気密性能を備えることを特徴とする請求項17から18の内の何れかに記載のエコ住宅。 The eco-house according to any one of claims 17 to 18, wherein the heat insulating layer has an airtight performance. 前記内壁及び天井の内の吸放湿材を用いる内装材は、室内側に吸放湿とH2Oの相変化の連携の比率の低い板材、内装下地材として吸放湿とH2Oの相変化の連携の比率の高い板材を用い、重ねて張ることを特徴とする請求項17から19の内の何れかに記載のエコ住宅。 The interior material using the moisture absorbing / releasing material in the inner wall and ceiling is a plate material having a low ratio of moisture absorption / release and phase change of H2O on the indoor side, and the relationship between moisture absorption / release and phase change of H2O as an interior base material. The eco-house according to any one of claims 17 to 19, wherein a plate material having a high ratio is used and stretched. 前記第二送風ファンは夏季の昼間稼動し、夜間は停止することを特徴とする請求項17から20の内の何れかに記載のエコ住宅。 The eco-house according to any one of claims 17 to 20, wherein the second blower fan operates in the daytime in summer and stops in the nighttime. 除湿機能付空気調和機(HP式エアコン)を室内に設置し、
床下空間に滞留する湿気の排出路として、床下空間から室内空間を経てエアコンで建物外に排出される排出路を加え、三つの排出路を形成することを特徴とする請求項17から21の内の何れかに記載のエコ住宅。
Install an air conditioner with a dehumidifying function (HP type air conditioner) indoors,
The exhaust path for dampening in the underfloor space is added with an exhaust path that is discharged from the underfloor space through the indoor space to the outside of the building by an air conditioner to form three exhaust paths. Eco-house according to any one of the above.
前記除湿機能付空気調和機(HP式エアコン)の稼動は、深夜電力の利用できる時間帯に行うことを特徴とする請求項22に記載のエコ住宅。
23. The eco house according to claim 22, wherein the operation of the air conditioner with a dehumidifying function (HP air conditioner) is performed in a time zone in which midnight power can be used.
JP2006150931A 2005-06-13 2006-05-31 Ecologically friendly residence Pending JP2007332533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006150931A JP2007332533A (en) 2005-06-13 2006-05-31 Ecologically friendly residence

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2005171922 2005-06-13
JP2005171922 2005-06-13
JP2005203887 2005-07-13
JP2005203887 2005-07-13
JP2005234085 2005-08-12
JP2005234085 2005-08-12
JP2006134777 2006-05-15
JP2006134777 2006-05-15
JP2006150931A JP2007332533A (en) 2005-06-13 2006-05-31 Ecologically friendly residence

Publications (1)

Publication Number Publication Date
JP2007332533A true JP2007332533A (en) 2007-12-27

Family

ID=38932267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006150931A Pending JP2007332533A (en) 2005-06-13 2006-05-31 Ecologically friendly residence

Country Status (1)

Country Link
JP (1) JP2007332533A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107588493A (en) * 2017-09-18 2018-01-16 江苏建筑职业技术学院 The air constant temperature fresh-keeping apparatus and method of safety environment protecting energy saving
CN110312407A (en) * 2019-07-17 2019-10-08 李�浩 One kind being based on internet big data information processing unit
CN111174332A (en) * 2018-10-24 2020-05-19 青岛海尔空调器有限总公司 Control method and device for movable air conditioner
CN111379315A (en) * 2018-12-27 2020-07-07 海南华金钢构有限公司 Assembled light steel energy saving and emission reduction system
CN114277946A (en) * 2021-11-29 2022-04-05 南京国豪装饰安装工程股份有限公司 High-rise building heat-insulation external wall construction method and heat-insulation method
CN116659034A (en) * 2023-07-28 2023-08-29 沈阳春晖工程有限公司 Building thermal environment and building energy-saving control method and system in air-conditioning building
EP4269889A1 (en) * 2022-04-25 2023-11-01 ERNE AG Holzbau Ventilation system für a building

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107588493A (en) * 2017-09-18 2018-01-16 江苏建筑职业技术学院 The air constant temperature fresh-keeping apparatus and method of safety environment protecting energy saving
CN111174332A (en) * 2018-10-24 2020-05-19 青岛海尔空调器有限总公司 Control method and device for movable air conditioner
CN111174332B (en) * 2018-10-24 2021-05-25 青岛海尔空调器有限总公司 Control method and device for movable air conditioner
CN111379315A (en) * 2018-12-27 2020-07-07 海南华金钢构有限公司 Assembled light steel energy saving and emission reduction system
CN110312407A (en) * 2019-07-17 2019-10-08 李�浩 One kind being based on internet big data information processing unit
CN114277946A (en) * 2021-11-29 2022-04-05 南京国豪装饰安装工程股份有限公司 High-rise building heat-insulation external wall construction method and heat-insulation method
CN114277946B (en) * 2021-11-29 2024-03-22 南京国豪装饰安装工程股份有限公司 Construction method and heat preservation method for heat preservation outer wall of high-rise building
EP4269889A1 (en) * 2022-04-25 2023-11-01 ERNE AG Holzbau Ventilation system für a building
CN116659034A (en) * 2023-07-28 2023-08-29 沈阳春晖工程有限公司 Building thermal environment and building energy-saving control method and system in air-conditioning building
CN116659034B (en) * 2023-07-28 2023-09-29 沈阳春晖工程有限公司 Building thermal environment and building energy-saving control method and system in air-conditioning building

Similar Documents

Publication Publication Date Title
JP3921673B1 (en) Eco house
JP2007332533A (en) Ecologically friendly residence
JP3709465B1 (en) Indoor environment improvement building
JP2006112214A (en) Building with improved indoor environment
JP7038551B2 (en) Harvesting energy from humidity fluctuations
Chenvidyakarn Passive design for thermal comfort in hot humid climates
JP2008039372A (en) Eco-friendly house
JP2010150922A (en) Eco-house
JP2004197974A (en) Air conditioner and air conditioning method for residence
JP2008038584A (en) Eco-house
JP2008285851A (en) Eco-friendly house
US8776467B2 (en) Climate positive building envelope for housing
JP2008038589A (en) Eco-house
JP2008285986A (en) Eco-friendly house
JP6875671B1 (en) Housing
JP2008285990A (en) Eco-friendly house
JP2008039372A5 (en)
JP2004333106A (en) Air conditioning system
JP2018040105A (en) Pipe-form foaming heat insulation material
Bahadori Natural air-conditioning systems
JP2010189949A (en) Ventilation structure of building
JPH06299712A (en) Housing
JP5653413B2 (en) Energy saving building
JP2012211724A (en) Ceiling radiant cooling system by cold storage/radiational cooling and moisture storage/moisture desorption
Bhatia Alternatives to Active HVAC systems

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080122