JP2007332414A - High strength wide steel sheet pile and its production method - Google Patents

High strength wide steel sheet pile and its production method Download PDF

Info

Publication number
JP2007332414A
JP2007332414A JP2006164257A JP2006164257A JP2007332414A JP 2007332414 A JP2007332414 A JP 2007332414A JP 2006164257 A JP2006164257 A JP 2006164257A JP 2006164257 A JP2006164257 A JP 2006164257A JP 2007332414 A JP2007332414 A JP 2007332414A
Authority
JP
Japan
Prior art keywords
mass
less
steel sheet
sheet pile
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006164257A
Other languages
Japanese (ja)
Inventor
Tatsuki Kimura
達己 木村
Keiji Ueda
圭治 植田
Shinichi Suzuki
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006164257A priority Critical patent/JP2007332414A/en
Publication of JP2007332414A publication Critical patent/JP2007332414A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength wide steel sheet pile having an effective width of ≥500 nm and a yield point of ≥390 N/mm<SP>2</SP>which can be produced without degrading a productivity. <P>SOLUTION: A steel stock having a componential composition comprising, by mass, 0.01 to 0.20% C, 0.05 to 1.0% Si, 0.1 to 2.0% Mn, ≤0.030% P, ≤0.030% S and 0.3 to 2.0% Al, and the balance Fe with inevitable impurities, and in which C and Al satisfy inequality (1) of Al≥1.3×C+0.3; wherein, C and Al satisfy the composition (mass%) of each element is heated at 1,200 to 1,350°C, is thereafter hot-rolled at ≥850°C, is further subjected to joint forming/rolling at 600 to 800°C, and is allowed to cool, so as to obtain the high strength wide steel sheet pile. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主として土木・建築の分野で用に用いられる鋼矢板に関し、特に、有効幅が500mm以上で、降伏点が390N/mm以上、引張強さが540N/mm以上、0℃におけるシャルピー吸収エネルギーが43J以上の高強度広幅鋼矢板とその製造方法に関するものである。 The present invention relates to a steel sheet pile for use in use mainly in the fields of civil engineering and construction, in particular, the effective width of 500mm or more, yield point 390 N / mm 2 or more, a tensile strength of 540N / mm 2 or more, at 0 ℃ The present invention relates to a high-strength wide steel sheet pile with Charpy absorbed energy of 43 J or more and a method for producing the same.

鋼矢板は、港湾や河川、道路の護岸や土留工事、建築の基礎工事などにおいては、欠かすことのできない部材である。この鋼矢板は、通常、熱間圧延によって製造されており、JIS A 5528には「熱間圧延鋼矢板」が、またJIS A 5523には「溶接用熱間圧延鋼矢板」が規定されている。   The steel sheet pile is an indispensable member in harbors, rivers, road revetments, earth retaining works, architectural foundation works, and the like. This steel sheet pile is usually manufactured by hot rolling. JIS A 5528 defines “hot rolled steel sheet pile” and JIS A 5523 defines “hot rolled steel sheet pile for welding”. .

斯かる鋼矢板は、工事の能率向上の観点から、有効幅が400mmから500mm、600mmへと順次拡大される傾向にあり、近年では、有効幅が900mmもある超広幅の鋼矢板も開発されている。   Such steel sheet piles tend to be expanded from 400 mm to 500 mm and 600 mm in order from the viewpoint of improving the efficiency of construction. In recent years, ultra-wide steel sheet piles having an effective width of 900 mm have been developed. Yes.

しかし、上記のような鋼矢板の広幅化は、必然的に圧延幅の増大を伴うため、熱間圧延荷重(圧延負荷)が増大するとともに、継手部(爪部)の成形性の低下や鋼矢板の寸法精度低下によるオフライン矯正率の増加など、生産性の低下を招く。特に、JIS規格でSY390やSYW390のように降伏点が390N/mm以上で、引張強度が540N/mm以上の鋼矢板では、通常、NbやV,Tiのようなマイクロアロイが添加されるため(例えば、特許文献1参照)に、低強度のSY295やSYW295と比べて、熱間変形抵抗の増加による圧延負荷の増大が顕著となり、生産性の低下は著しくなる。
特開平10−001721号公報
However, the widening of the steel sheet pile as described above necessarily involves an increase in the rolling width, so that the hot rolling load (rolling load) increases and the formability of the joint portion (claw portion) decreases and the steel This leads to a decrease in productivity, such as an increase in the off-line correction rate due to a decrease in the dimensional accuracy of the sheet pile. In particular, at yield as SY390 and SYW390 in JIS standards 390 N / mm 2 or more, the tensile strength of 540N / mm 2 or more sheet pile, normally, Nb and V, microalloying such as Ti is added For this reason (for example, see Patent Document 1), as compared with low strength SY295 and SYW295, an increase in rolling load due to an increase in hot deformation resistance becomes remarkable, and a reduction in productivity becomes remarkable.
Japanese Patent Laid-Open No. 10-001721

そこで、本発明の目的は、生産性を阻害することなく製造が可能な、有効幅が500mm以上でかつ降伏点が390N/mm以上の高強度広幅鋼矢板と、その有利な製造方法を提案することにある。 Accordingly, an object of the present invention is to propose a high-strength wide steel sheet pile having an effective width of 500 mm or more and a yield point of 390 N / mm 2 or more, which can be manufactured without impairing productivity, and an advantageous manufacturing method thereof. There is to do.

発明者らは、高強度で広幅の鋼矢板を、生産性を阻害することなく製造する、具体的には、熱間圧延における変形抵抗の上昇を抑制して圧延負荷の軽減を図りつつ、常温における降伏点が390N/mm以上で、かつ、有効幅が500mm以上の高強度広幅鋼矢板を製造することについて検討を重ねた。その結果、鋼素材にAlを適正量添加することにより、熱間圧延が施される高温域で、鋼組織の一部にフェライト相が生成し、1000℃以下における変形抵抗の上昇、ひいては圧延荷重の上昇を抑制できるとともに、Alの固溶固溶強化によって、常温における強度(降伏点)も、目標とする390N/mm以上を確保することができることを見出し、本発明を完成させた。 The inventors produce a high-strength and wide steel sheet pile without impairing productivity. Specifically, while suppressing an increase in deformation resistance in hot rolling and reducing the rolling load, The production of a high strength wide steel sheet pile with a yield point of 390 N / mm 2 or more and an effective width of 500 mm or more was repeated. As a result, by adding an appropriate amount of Al to the steel material, a ferrite phase is generated in a part of the steel structure in a high temperature range where hot rolling is performed, and the deformation resistance is increased at 1000 ° C. or less, and hence the rolling load. As a result, it was found that the target strength (yield point) of 390 N / mm 2 or more can be secured by the solid solution strengthening of Al, and the present invention was completed.

すなわち、本発明は、C:0.01〜0.20mass%、Si:0.05〜1.0mass%、Mn:0.1〜2.0mass%、P:0.030mass%以下、S:0.030mass%以下、Al:0.3〜2.0mass%を含有し、残部がFeおよび不可避的不純物からなり、CおよびAlが下記(1)式;
Al≧1.3×C+0.3 ・・・(1)
ただし、C,Alは、それぞれの元素の含有量(mass%)
を満たす成分組成を有する高強度広幅鋼矢板である。
That is, the present invention is C: 0.01-0.20 mass%, Si: 0.05-1.0 mass%, Mn: 0.1-2.0 mass%, P: 0.030 mass% or less, S: 0 0.030 mass% or less, Al: 0.3 to 2.0 mass%, the balance is made of Fe and inevitable impurities, and C and Al are represented by the following formula (1);
Al ≧ 1.3 × C + 0.3 (1)
However, C and Al content of each element (mass%)
It is a high-strength wide steel sheet pile having a composition that satisfies the above.

本発明は、有効幅が500mm以上、降伏点が390N/mm以上であることを特徴とする。 The present invention is characterized in that the effective width is 500 mm or more and the yield point is 390 N / mm 2 or more.

また、本発明は、上記成分組成に加えてさらに、下記A群からC群のうちの少なくとも1群の成分を含有することを特徴とする。

A群;Cu:1.0mass%以下、Ni:2.0mass%以下、Cr:1.0mass%以下およびMo:0.5mass%以下のうちから選ばれる1種または2種以上
B群;V:0.2mass%以下、Nb:0.2mass%以下およびTi:0.03mass%以下のうちから選ばれる1種または2種以上
C群;B:0.0030mass%以下、Ca:0.0050mass%以下、REM:0.020mass%以下、Zr:0.010mass%以下およびMg:0.010mass%以下のうちから選ばれる1種または2種以上
Moreover, in addition to the said component composition, this invention contains the component of at least 1 group from the following A group to C group further.
Group A; Cu: 1.0 mass% or less, Ni: 2.0 mass% or less, Cr: 1.0 mass% or less and Mo: 0.5 mass% or less, Group B: V or more : 0.2 mass% or less, Nb: 0.2 mass% or less and Ti: 0.03 mass% or less selected from one or more C group; B: 0.0030 mass% or less, Ca: 0.0050 mass% Hereinafter, one or more selected from REM: 0.020 mass% or less, Zr: 0.010 mass% or less, and Mg: 0.010 mass% or less

また、本発明は、C:0.01〜0.20mass%、Si:0.05〜1.0mass%、Mn:0.1〜2.0mass%、P:0.030mass%以下、S:0.030mass%以下、Al:0.3〜2.0mass%を含有し、残部がFeおよび不可避的不純物からなり、CおよびAlが下記(1)式;
Al≧1.3×C+0.3 ・・・(1)
ただし、C,Alは、それぞれの元素の組成(mass%)
を満たす成分組成を有する鋼素材を1200〜1350℃に加熱後、850℃以上の温度で熱間圧延し、次いで600〜800℃の温度で継手成形圧延し、放冷する高強度広幅鋼矢板の製造方法を提案する。
In the present invention, C: 0.01-0.20 mass%, Si: 0.05-1.0 mass%, Mn: 0.1-2.0 mass%, P: 0.030 mass% or less, S: 0 0.030 mass% or less, Al: 0.3 to 2.0 mass%, the balance is made of Fe and inevitable impurities, and C and Al are represented by the following formula (1);
Al ≧ 1.3 × C + 0.3 (1)
However, C and Al are the composition of each element (mass%)
Of a high-strength wide steel sheet pile that is heated to 1200 to 1350 ° C., hot-rolled at a temperature of 850 ° C. or higher, then joint-rolled at a temperature of 600 to 800 ° C., and left to cool. A manufacturing method is proposed.

本発明の製造方法は、上記継手成形圧延後、放冷以上10℃/s以下の冷却速度で、Ar変態点〜500℃の温度まで加速冷却することを特徴とする。 The manufacturing method of the present invention is characterized in that after the joint forming and rolling, accelerated cooling is performed to a temperature of Ar 3 transformation point to 500 ° C. at a cooling rate of not less than 10 ° C./s and not more than cooling.

また、本発明の製造方法における高強度広幅鋼矢板は、有効幅が500mm以上、降伏点が390N/mm以上であることを特徴とする。 Further, the high-strength wide steel sheet pile in the production method of the present invention is characterized in that the effective width is 500 mm or more and the yield point is 390 N / mm 2 or more.

また、本発明の製造方法は、上記成分組成に加えてさらに、下記A群からC群のうちの少なくとも1群の成分を含有することを特徴とする。

A群;Cu:1.0mass%以下、Ni:2.0mass%以下、Cr:1.0mass%以下およびMo:0.5mass%以下のうちから選ばれる1種または2種以上
B群;V:0.2mass%以下、Nb:0.2mass%以下およびTi:0.03mass%以下のうちから選ばれる1種または2種以上
C群;B:0.0030mass%以下、Ca:0.0050mass%以下、REM:0.020mass%以下、Zr:0.010mass%以下およびMg:0.010mass%以下のうちから選ばれる1種または2種以上
In addition to the above component composition, the production method of the present invention further includes at least one component of the following groups A to C.
Group A; Cu: 1.0 mass% or less, Ni: 2.0 mass% or less, Cr: 1.0 mass% or less and Mo: 0.5 mass% or less, Group B: V or more : 0.2 mass% or less, Nb: 0.2 mass% or less and Ti: 0.03 mass% or less selected from one or more C group; B: 0.0030 mass% or less, Ca: 0.0050 mass% Hereinafter, one or more selected from REM: 0.020 mass% or less, Zr: 0.010 mass% or less, and Mg: 0.010 mass% or less

本発明によれば、有効幅が500mm以上で、常温における降伏点が390N/mm以上の高強度の高強度広幅鋼矢板を、生産性を阻害することなく製造することができる。 According to the present invention, a high-strength, wide-strength steel sheet pile having an effective width of 500 mm or more and a yield point at room temperature of 390 N / mm 2 or more can be produced without impairing productivity.

本発明を開発する契機となった実験について説明する。
図1は、JIS規格SYW295(YP≧295N/mm、TS≧490N/mm)の製造に用いられているC:0.15mass%のSi−Mn鋼と、この鋼に対して、Nbを0.015mass%添加してSYW390(YP≧390N/mm、TS≧540N/mm)の製造に用いられているC:0.15mass%のSi−Mn−Nb鋼について、900℃および1000℃における熱間圧延時の変形抵抗を測定し、Nb添加による変形抵抗の増加率を求めた結果を示したものである。なお、変形抵抗は、8mmφ×12mm高さの円柱状試験片を1300℃に加熱後、所定の温度まで1℃/sで冷却し、歪速度1/sで30%圧縮する際の荷重を測定することで導出した。この結果から、Nb,V,Ti等のマイクロアロイは、微量の添加でも、常温強度を著しく高める効果がある反面、熱間圧延における変形抵抗を10%程度も上昇させており、熱間圧延における圧延負荷の増大を招いていることがわかった。
An experiment that triggered the development of the present invention will be described.
FIG. 1 shows a C: 0.15 mass% Si—Mn steel used for manufacturing JIS standard SYW295 (YP ≧ 295 N / mm 2 , TS ≧ 490 N / mm 2 ), and Nb for this steel. 0.015 mass% added to SYW390 (YP ≧ 390N / mm 2 , TS ≧ 540N / mm 2) is used in manufacturing C: about 0.15 mass% of Si-Mn-Nb steel, 900 ° C. and 1000 ° C. The deformation resistance at the time of hot rolling in is measured, and the result of obtaining the increasing rate of the deformation resistance by adding Nb is shown. Deformation resistance was measured by heating a cylindrical test piece of 8 mmφ x 12 mm height to 1300 ° C, cooling to a predetermined temperature at 1 ° C / s, and compressing 30% at a strain rate of 1 / s. It was derived by doing. From these results, microalloys such as Nb, V, Ti and the like have the effect of remarkably increasing the normal temperature strength even when added in a small amount, but they have increased the deformation resistance in hot rolling by about 10%. It was found that the rolling load was increased.

そこで、発明者らは、熱間圧延における変形抵抗の上昇を抑制しつつ、具体的には、生産性を考慮して、5%未満に抑制しつつ、常温における高強度化を達成するために、詳細な検討を行った。その結果、鋼素材に適正量のAlを添加することにより、熱間圧延温度域で鋼組織の一部にフェライト相が生成し、1000℃以下の温度域における圧延荷重の上昇を抑制できるとともに、Alの固溶強化より常温強度が上昇し、母材強度を目標のYP390N/mm以上とすることができることを新規に見出した。 Therefore, the inventors have achieved a high strength at room temperature while suppressing an increase in deformation resistance in hot rolling, specifically, considering the productivity and suppressing it to less than 5%. A detailed study was conducted. As a result, by adding an appropriate amount of Al to the steel material, a ferrite phase is generated in a part of the steel structure in the hot rolling temperature range, and an increase in rolling load in a temperature range of 1000 ° C. or lower can be suppressed, It has been newly found that the room temperature strength is increased by the solid solution strengthening of Al, and the base material strength can be set to a target YP390N / mm 2 or more.

図2は、C:0.15mass%、Mn:1.45mass%、Al:0.03mass%のC−Mn−Al鋼をベース鋼とし、この鋼にAlを0.1〜2mass%の範囲で添加した鋼を実験室的に溶解して、100kgの鋳塊を100mm×200mm×650mmに粗圧延し、これらの粗圧材を12mmの厚さまで熱間圧延する際の900℃における変形抵抗と、上記熱間圧延後の鋼の常温における引張強度とを測定し、それらに及ぼすAl添加量の影響を示したものである。変形抵抗は、熱間圧延時の圧延荷重を測定し、この値より算出した。なお、比較として、上記ベース鋼に、Nbを0.018mass%添加した鋼についても同様の調査を行い図中に示した。図2から、Nbは、微量の添加でも常温強度だけでなく、900℃における変形抵抗をも大きく上昇させているのに対して、Alは、熱間変形抵抗の増加を抑制しつつ、常温強度を上昇させる効果があることがわかる。本発明は、上記知見に基くものである。   FIG. 2 shows a C—Mn—Al steel having C: 0.15 mass%, Mn: 1.45 mass%, and Al: 0.03 mass% as a base steel, and Al in the range of 0.1 to 2 mass%. The added steel was melted in the laboratory, 100 kg of ingot was roughly rolled to 100 mm × 200 mm × 650 mm, and the deformation resistance at 900 ° C. when these coarsely pressed materials were hot-rolled to a thickness of 12 mm, The tensile strength at normal temperature of the steel after the hot rolling is measured, and the influence of the Al addition amount on them is shown. The deformation resistance was calculated from this value by measuring the rolling load during hot rolling. For comparison, the same investigation was performed on the steel obtained by adding 0.018 mass% of Nb to the above base steel and shown in the figure. From FIG. 2, Nb greatly increased not only the normal temperature strength but also the deformation resistance at 900 ° C. even when added in a small amount, whereas Al suppressed the increase in hot deformation resistance while maintaining the normal temperature strength. It turns out that there is an effect which raises. The present invention is based on the above findings.

次に、本発明に係る鋼矢板の成分組成の限定理由について説明する。
C:0.01〜0.20mass%
Cは、鋼の強度を高めるのに有用な成分であるが、その含有量が0.01mass%未満では、上記効果に乏しく、一方、0.20mass%を超えると、溶接性を害することから、0.01〜0.20mass%の範囲とする。
Next, the reason for limiting the component composition of the steel sheet pile according to the present invention will be described.
C: 0.01-0.20 mass%
C is a component useful for increasing the strength of steel. However, if its content is less than 0.01 mass%, the above effect is poor. On the other hand, if it exceeds 0.20 mass%, weldability is impaired. The range is 0.01 to 0.20 mass%.

Si:0.05〜1.0mass%
Siは、鋼の強度上昇に有効な成分であり、0.05mass%以上添加する必要がある。しかし、Siの過剰の添加は、母材の靭性の劣化を招くので、上限を1.0mass%とする。好ましくは、0.10〜0.6mass%の範囲である。
Si: 0.05 to 1.0 mass%
Si is an effective component for increasing the strength of steel, and it is necessary to add 0.05 mass% or more. However, excessive addition of Si leads to deterioration of the toughness of the base material, so the upper limit is made 1.0 mass%. Preferably, it is the range of 0.10 to 0.6 mass%.

Mn:0.1〜2.0mass%
Mnは、鋼の強度を確保するために有用な成分であり、0.1mass%以上の添加を必要とする。しかし、2.0mass%を超えて添加すると、Cと同様、溶接性の低下を招くので、上限を2.0mass%とする。好ましくは、0.5〜1.5mass%の範囲である。
Mn: 0.1 to 2.0 mass%
Mn is a useful component for ensuring the strength of the steel, and requires addition of 0.1 mass% or more. However, if added over 2.0 mass%, as with C, the weldability is lowered, so the upper limit is made 2.0 mass%. Preferably, it is in the range of 0.5 to 1.5 mass%.

P:0.030mass%以下
Pは、鋼の脆化を助長する有害元素であり、極力少ないことが望ましく、本発明では0.030mass%以下とする。
P: 0.030 mass% or less P is a harmful element that promotes embrittlement of steel, and is desirably as small as possible. In the present invention, P is 0.030 mass% or less.

S:0.030mass%以下
Sも、Pと同様、鋼の脆化を助長する有害元素であり、極力少ないことが望ましく、本発明では0.030mass%以下とする。
S: 0.030 mass% or less S, like P, is a harmful element that promotes embrittlement of steel, and is desirably as small as possible. In the present invention, it is 0.030 mass% or less.

Al:0.3〜2.0mass%
Alは、先述したように、熱間圧延温度領域において鋼組織の一部にフェライト相を生成して熱間変形抵抗の増加を抑えるとともに、常温における強度の向上にも寄与する成分であり(図2を参照)、本発明においては、最も重要な元素である。しかし、その効果を得るためには、0.3mass%以上の添加が必要である。一方、2.0mass%を超える添加は、コストの上昇を招くので、上限を2.0mass%とする。
Al: 0.3 to 2.0 mass%
As described above, Al is a component that generates a ferrite phase in a part of the steel structure in the hot rolling temperature region to suppress an increase in hot deformation resistance and contributes to an improvement in strength at room temperature (see FIG. 2), the most important element in the present invention. However, in order to obtain the effect, addition of 0.3 mass% or more is necessary. On the other hand, since addition exceeding 2.0 mass% causes an increase in cost, the upper limit is set to 2.0 mass%.

Al≧1.3×C+0.3
本発明においては、圧延荷重が上昇する熱間圧延後半の温度領域である800℃〜1000℃において、鋼組織を確実にフェライト+オーステナイトの2相組織とし、変形抵抗の上昇を抑えるために、Alの添加量は、下記(1)式;
Al≧1.3×C+0.3 ・・・(1)
(ここで、Al、Cは、各元素の含有量(mass%))
を満たしていることが必要である。
Al ≧ 1.3 × C + 0.3
In the present invention, in the temperature range of 800 ° C. to 1000 ° C. in the latter half of the hot rolling in which the rolling load increases, in order to ensure that the steel structure has a two-phase structure of ferrite + austenite and to suppress an increase in deformation resistance, Al Is added in the following formula (1):
Al ≧ 1.3 × C + 0.3 (1)
(Here, Al and C are the contents of each element (mass%))
It is necessary to satisfy.

本発明の鋼矢板は、上記基本成分の他に、要求特性に応じて、下記成分を添加することができる。
Cu:1.0mass%以下、Ni:2.0mass%以下、Cr:1.0mass%以下およびMo:0.5mass%以下のうちから選ばれる1種または2種以上
Cu,Ni,CrおよびMoは、いずれも鋼の強度向上に有効な元素である。しかし、過剰に添加すると、Cuは熱間脆性を生じさせ、Niは高価であるため経済性を損ね、また、CrおよびMoは、溶接性を劣化させる。よって、Cuは1.0mass%、Niは2.0mass%、Crは1.0mass%、Moは0.5mass%を上限として添加するのが好ましい。
The steel sheet pile of this invention can add the following component according to a required characteristic other than the said basic component.
One or more selected from Cu: 1.0 mass% or less, Ni: 2.0 mass% or less, Cr: 1.0 mass% or less, and Mo: 0.5 mass% or less Cu, Ni, Cr and Mo are Both are effective elements for improving the strength of steel. However, when excessively added, Cu causes hot brittleness, Ni is expensive, and thus the economical efficiency is impaired, and Cr and Mo deteriorate weldability. Therefore, it is preferable to add Cu up to 1.0 mass%, Ni up to 2.0 mass%, Cr up to 1.0 mass%, and Mo up to 0.5 mass%.

V:0.2mass%以下、Nb:0.2mass%以下およびTi:0.03mass%以下のうちから選ばれる1種または2種以上
V,NbおよびTiは、いずれも炭窒化物を形成し、鋼組織中に微細に析出して鋼の強度を高める有用な成分である。しかし、V,Nbは、0.20mass%、Tiは0.03mass%を超えると、いずれも母材の靭性の低下を招くので、Vは0.2mass%以下、Nbは0.2mass%以下、Tiは0.03mass%以下とするのが好ましい。
V: 0.2 mass% or less, Nb: 0.2 mass% or less and Ti: 0.03 mass% or less selected from one or more types V, Nb and Ti all form carbonitrides, It is a useful component that precipitates finely in the steel structure and increases the strength of the steel. However, if V and Nb are 0.20 mass% and Ti exceeds 0.03 mass%, both lead to a decrease in the toughness of the base material, so V is 0.2 mass% or less, Nb is 0.2 mass% or less, Ti is preferably 0.03 mass% or less.

B:0.0030mass%以下、Ca:0.0050mass%以下、REM:0.020mass%以下、Zr:0.010mass%以下、Mg:0.010mass%以下のうちから選ばれる1種または2種以上
Bは、微量の添加で鋼を高強度化するのに有効な成分であるが、0.0030mass%を超えて添加すると靭性が低下するため、上限を0.0030mass%とするのが好ましい。Caは、Sを固定して靭性の向上を図るのに有用な成分であるが、0.0050mass%を超えて添加しても、その効果が飽和するだけでなく、鋼の清浄度を低下させるので、0.0050mass%以下とするのが好ましい。REM、ZrおよびMgは、結晶粒を微細化し、靭性を向上するのに有効な元素である。しかし、REMは0.020mass%、Zrは0.010mass%、Mgは0.010mass%を超えて添加しても、その効果が飽和するので、それぞれ上記値を上限として添加するのが好ましい。
B: 0.0030 mass% or less, Ca: 0.0050 mass% or less, REM: 0.020 mass% or less, Zr: 0.010 mass% or less, Mg: 0.010 mass% or less B is an effective component for increasing the strength of steel with a small amount of addition, but if added in excess of 0.0030 mass%, the toughness decreases, so the upper limit is preferably made 0.0030 mass%. Ca is a component useful for improving S toughness by fixing S, but even if added over 0.0050 mass%, the effect is not only saturated, but also the cleanliness of the steel is reduced. Therefore, it is preferable to set it as 0.0050 mass% or less. REM, Zr, and Mg are effective elements for refining crystal grains and improving toughness. However, even if REM is added in an amount of 0.020 mass%, Zr is added in an amount exceeding 0.010 mass%, and Mg is added in an amount exceeding 0.010 mass%, the effect is saturated.

次に、本発明に係る高強度広幅鋼矢板の製造方法について説明する。なお、本発明における広幅とは、有効幅が500mm以上のものを、また、高強度とは、降伏点が390N/mm以上ものを意味する。
鋼素材の加熱温度:1200〜1350℃
成分組成を上記の適正範囲に調整した鋼素材は、熱間圧延に先立って、加熱炉に装入し、1200〜1350℃の温度に加熱する必要がある。熱間変形抵抗は、圧延温度と関連しており、高温で圧延するほど低下するのが普通である。そこで、本発明では、変形抵抗の十分な低減を図るため、加熱温度を1200℃以上とする。一方、加熱温度が高温になり過ぎると、鋼素材の酸化ロスの増大を招いたり、加熱炉の炉体の損傷が進んだりするほか、熱エネルギーの点でも不利となるので、1350℃を上限とする必要がある。
Next, the manufacturing method of the high intensity | strength wide steel sheet pile concerning this invention is demonstrated. In the present invention, the wide width means that the effective width is 500 mm or more, and the high strength means that the yield point is 390 N / mm 2 or more.
Heating temperature of steel material: 1200-1350 ° C
Prior to hot rolling, the steel material whose component composition is adjusted to the above appropriate range needs to be charged into a heating furnace and heated to a temperature of 1200 to 1350 ° C. The hot deformation resistance is related to the rolling temperature and usually decreases as the rolling is performed at a higher temperature. Therefore, in the present invention, the heating temperature is set to 1200 ° C. or more in order to sufficiently reduce the deformation resistance. On the other hand, if the heating temperature becomes too high, the oxidation loss of the steel material will increase, damage to the furnace body of the heating furnace will progress, and it will be disadvantageous in terms of thermal energy, so 1350 ° C will be the upper limit. There is a need to.

上記温度に加熱した鋼素材は、常用プロセスと同様、リバース圧延にて850℃以上の温度で粗の熱間圧延後、600〜800℃の温度で継手の成形圧延し、所望の形状と寸法の鋼矢板とする。鋼矢板は、勘合性が重要であるため、継手部の寸法精度が高いことが求められる。しかし、600℃以下の温度で継手の成形圧延を行うと、成形性が不足し、所望の寸法精度を確保することが難しくなる。一方、800℃以上で継手の成形圧延しようとすると、熱間圧延時の温度低下を考えると、素材の加熱温度を1350℃以上とする必要があり、好ましくない。   The steel material heated to the above temperature is subjected to rough hot rolling at a temperature of 850 ° C. or higher by reverse rolling in the same manner as in the ordinary process, and then formed and rolled into a joint at a temperature of 600 to 800 ° C. to obtain a desired shape and size. It is a steel sheet pile. Steel sheet piles are required to have high dimensional accuracy at the joints because fitting is important. However, when the joint is formed and rolled at a temperature of 600 ° C. or lower, the formability is insufficient, and it becomes difficult to ensure desired dimensional accuracy. On the other hand, when trying to form and roll the joint at 800 ° C. or higher, considering the temperature drop during hot rolling, the heating temperature of the material needs to be 1350 ° C. or higher, which is not preferable.

本発明の鋼矢板は、本発明に適合する成分組成を有する鋼素材を上記条件で熱間圧延後、放冷するだけで、降伏点が390N/mm以上の高強度を得ることができる。ただし、有効幅部分が厚いサイズでも安定して高強度を確保したい場合や、より高強度を得たいような場合には、熱間圧延後の冷却は、放冷以上10℃/s以下の冷却速度で、Ar変態点〜500℃の温度まで加速冷却することが好ましい。冷却速度が10℃/s超え、あるいは、冷却停止温度が500℃未満となると、不定形の形状を有する鋼矢板では、不均一冷却に起因した残留応力による曲がり、反りなどの形状不良が発生するからである。より好ましい冷却停止温度は、Ar変態点〜600℃の温度範囲である。 The steel sheet pile of the present invention can obtain a high strength with a yield point of 390 N / mm 2 or more simply by allowing a steel material having a composition suitable for the present invention to be hot-rolled under the above conditions and then allowing to cool. However, when it is desired to secure high strength stably even when the effective width portion is thick or when it is desired to obtain higher strength, the cooling after hot rolling is performed at a cooling rate of not less than 10 ° C./s. Thus, accelerated cooling is preferably performed to a temperature of Ar 3 transformation point to 500 ° C. When the cooling rate exceeds 10 ° C./s or the cooling stop temperature is less than 500 ° C., in the steel sheet pile having an irregular shape, shape defects such as bending and warping due to residual stress due to uneven cooling occur. Because. A more preferable cooling stop temperature is a temperature range of Ar 3 transformation point to 600 ° C.

表1に示した成分組成を有する鋼を真空溶解炉で実験室的に溶製して100kgの鋳塊を粗圧延により100mm×200mm×650mmのスラブとし、次いで、この鋳塊を加熱炉に装入して広幅鋼矢板の製造条件と同じ1300℃に加熱後、仕上温度を900℃とする熱間圧延を施して板厚12mmの熱延板とし、その後、放冷または加速冷却した。なお、上記熱間圧延では、各パスの圧延温度と圧延荷重を測定し、1000℃および900℃における変形抵抗を求めた。また、従来例として、JIS規格SYW295級の従来材(鋼A)およびJIS規格390級の従来材(鋼B)についても、同様の測定を行い、変形抵抗を求めた。   Steel having the composition shown in Table 1 is melted in a laboratory in a vacuum melting furnace to make a 100 kg ingot into a 100 mm × 200 mm × 650 mm slab by rough rolling, and then this ingot is installed in a heating furnace. Then, after heating to 1300 ° C., which is the same as the manufacturing conditions for the wide steel sheet pile, hot rolling was performed to a finishing temperature of 900 ° C. to obtain a hot-rolled sheet having a thickness of 12 mm, and then allowed to cool or accelerate. In the hot rolling, the rolling temperature and rolling load of each pass were measured, and deformation resistance at 1000 ° C. and 900 ° C. was obtained. Further, as a conventional example, the same measurement was performed for a conventional material of JIS standard SYW295 class (steel A) and a conventional material of JIS standard 390 class (steel B), and deformation resistance was obtained.

Figure 2007332414
Figure 2007332414

また、上記のようにして得た熱延板から、JIS Z 2201に規定された1A号引張試験片を圧延方向に沿って採取し、JIS Z 2241に準拠して引張試験を行い、降伏点(YP)および引張強さ(TS)を求めた。さらに、上記熱延板から、JIS Z 2202に規定されたVノッチ衝撃試験片を圧延方向に沿って採取し、JIS Z 2242に準拠してシャルピー衝撃試験を行った。なお、衝撃試験は、−80〜20℃の温度範囲で行い、0℃における吸収エネルギー(vE)および延性破面率50%の破面遷移温度(vTr)を求めた。 In addition, from the hot-rolled sheet obtained as described above, a No. 1A tensile test piece defined in JIS Z 2201 was sampled along the rolling direction, subjected to a tensile test in accordance with JIS Z 2241, and yield point ( YP) and tensile strength (TS) were determined. Furthermore, a V-notch impact test piece defined in JIS Z 2202 was taken from the hot rolled sheet along the rolling direction, and a Charpy impact test was performed in accordance with JIS Z 2242. The impact test was performed in the temperature range of −80 to 20 ° C., and the absorbed energy (vE 0 ) at 0 ° C. and the fracture surface transition temperature (vTr s ) with a ductile fracture surface ratio of 50% were determined.

上記測定の結果を、表2に示した。なお、表2中の変形抵抗増加率は、鋼A(SYW295級)の変形抵抗に対する増加率のことである。表2の結果から、本発明に適合した成分組成を有する鋼は、従来材(鋼A)に対して、熱間圧延における変形抵抗の増加率が5%以下に収まっており、しかも、圧延後の鋼板の常温における降伏点YPは390N/mm以上で、衝撃特性に優れている。これに対して、Al含有量が少なく、マイクロアロイ(Nb、Ti)を添加した従来材(鋼B)および本発明の(1)式を満たさない比較例(鋼D)は、いずれも熱間圧延における変形抵抗の増加率が10%を超えており、また、衝撃特性も本発明例の鋼より劣っていることがわかる。 The measurement results are shown in Table 2. In addition, the deformation resistance increase rate in Table 2 is an increase rate with respect to the deformation resistance of steel A (SYW295 grade). From the results of Table 2, the steel having the composition suitable for the present invention has a deformation resistance increase rate of 5% or less in hot rolling compared to the conventional material (steel A), and after rolling. The yield point YP of the steel sheet at room temperature is 390 N / mm 2 or more, which is excellent in impact characteristics. On the other hand, both the conventional material (steel B) with a small Al content and microalloy (Nb, Ti) added and the comparative example (steel D) not satisfying the formula (1) of the present invention are hot. It can be seen that the rate of increase in deformation resistance in rolling exceeds 10%, and the impact characteristics are inferior to the steel of the present invention.

Figure 2007332414
Figure 2007332414

本発明の高強度広幅鋼矢板は、土木分野以外にも、建築、橋梁などの構造用途にも適用することができる。   The high-strength wide steel sheet pile of the present invention can be applied not only to the civil engineering field but also to structural uses such as architecture and bridges.

SYW295級のSi−Mn鋼と、SYW390級のSi−Mn−Nb鋼の900℃と1000℃の高温変形抵抗を比較したグラフである。It is the graph which compared the 900 degreeC and 1000 degreeC high temperature deformation resistance of SYW295 grade Si-Mn steel and SYW390 grade Si-Mn-Nb steel. C−Mn−Al鋼の900℃の変形抵抗に及ぼすAlまたはNbの添加効果を示すグラフである。It is a graph which shows the addition effect of Al or Nb which acts on the 900 degreeC deformation resistance of C-Mn-Al steel.

Claims (9)

C:0.01〜0.20mass%、Si:0.05〜1.0mass%、Mn:0.1〜2.0mass%、P:0.030mass%以下、S:0.030mass%以下、Al:0.3〜2.0mass%を含有し、残部がFeおよび不可避的不純物からなり、CおよびAlが下記(1)式を満たす成分組成を有する高強度広幅鋼矢板。

Al≧1.3×C+0.3 ・・・(1)
ただし、C,Alは、それぞれの元素の含有量(mass%)である。
C: 0.01-0.20 mass%, Si: 0.05-1.0 mass%, Mn: 0.1-2.0 mass%, P: 0.030 mass% or less, S: 0.030 mass% or less, Al : A high-strength wide steel sheet pile containing 0.3 to 2.0 mass%, the balance being Fe and inevitable impurities, and C and Al satisfying the following formula (1).
Al ≧ 1.3 × C + 0.3 (1)
However, C and Al are content (mass%) of each element.
有効幅が500mm以上、降伏点が390N/mm以上であることを特徴とする請求項1に記載の高強度広幅鋼矢板。 The high-strength wide steel sheet pile according to claim 1, wherein the effective width is 500 mm or more and the yield point is 390 N / mm 2 or more. 上記成分組成に加えてさらに、Cu:1.0mass%以下、Ni:2.0mass%以下、Cr:1.0mass%以下およびMo:0.5mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1または2に記載の高強度広幅鋼矢板。 In addition to the above component composition, Cu: 1.0 mass% or less, Ni: 2.0 mass% or less, Cr: 1.0 mass% or less, and Mo: 0.5 mass% or less The high-strength wide steel sheet pile according to claim 1 or 2, characterized by comprising: 上記成分組成に加えてさらに、V:0.2mass%以下、Nb:0.2mass%以下およびTi:0.03mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の高強度広幅鋼矢板。 In addition to the above component composition, it further comprises one or more selected from V: 0.2 mass% or less, Nb: 0.2 mass% or less, and Ti: 0.03 mass% or less. The high-strength wide steel sheet pile according to any one of claims 1 to 3. 上記成分組成に加えてさらに、B:0.0030mass%以下、Ca:0.0050mass%以下、REM:0.020mass%以下、Zr:0.010mass%以下およびMg:0.010mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1〜4のいずれか1項に記載の高強度広幅鋼矢板。 In addition to the above component composition, B: 0.0030 mass% or less, Ca: 0.0050 mass% or less, REM: 0.020 mass% or less, Zr: 0.010 mass% or less, and Mg: 0.010 mass% or less The high-strength wide steel sheet pile according to any one of claims 1 to 4, comprising one or more selected. C:0.01〜0.20mass%、Si:0.05〜1.0mass%、Mn:0.1〜2.0mass%、P:0.030mass%以下、S:0.030mass%以下、Al:0.3〜2.0mass%を含有し、残部がFeおよび不可避的不純物からなり、CおよびAlが下記(1)式を満たす成分組成を有する鋼素材を1200〜1350℃に加熱後、850℃以上の温度で熱間圧延し、次いで600〜800℃の温度で継手成形圧延し、放冷することを特徴とする高強度広幅鋼矢板の製造方法。

Al≧1.3×C+0.3 ・・・(1)
ただし、C,Alは、それぞれの元素の組成(mass%)を示す。
C: 0.01-0.20 mass%, Si: 0.05-1.0 mass%, Mn: 0.1-2.0 mass%, P: 0.030 mass% or less, S: 0.030 mass% or less, Al : A steel material containing 0.3 to 2.0 mass%, the balance being Fe and inevitable impurities, and C and Al satisfying the following formula (1) is heated to 1200 to 1350 ° C., and then 850 A method for producing a high-strength wide steel sheet pile, which is hot-rolled at a temperature equal to or higher than ° C., then joint-rolled at a temperature of 600 to 800 ° C., and allowed to cool.
Al ≧ 1.3 × C + 0.3 (1)
However, C and Al show the composition (mass%) of each element.
上記継手成形圧延後、放冷以上10℃/s以下の冷却速度で、Ar変態点〜500℃の温度まで加速冷却することを特徴とする請求項6に記載の製造方法。 The manufacturing method according to claim 6, wherein after the joint forming and rolling, accelerated cooling is performed to a temperature of Ar 3 transformation point to 500 ° C. at a cooling rate of not lower than 10 ° C./s. 上記高強度広幅鋼矢板は、有効幅が500mm以上、降伏点が390N/mm以上であることを特徴とする請求項6または7に記載の製造方法。 The manufacturing method according to claim 6 or 7, wherein the high-strength wide steel sheet pile has an effective width of 500 mm or more and a yield point of 390 N / mm 2 or more. 上記成分組成に加えてさらに、下記A群からC群のうちの少なくとも1群の成分を含有することを特徴とする請求項6〜8のいずれか1項に記載の製造方法。

A群;Cu:1.0mass%以下、Ni:2.0mass%以下、Cr:1.0mass%以下およびMo:0.5mass%以下のうちから選ばれる1種または2種以上
B群;V:0.2mass%以下、Nb:0.2mass%以下およびTi:0.03mass%以下のうちから選ばれる1種または2種以上
C群;B:0.0030mass%以下、Ca:0.0050mass%以下、REM:0.020mass%以下、Zr:0.010mass%以下およびMg:0.010mass%以下のうちから選ばれる1種または2種以上
The manufacturing method according to any one of claims 6 to 8, further comprising at least one component of the following group A to group C in addition to the above component composition.
Group A; Cu: 1.0 mass% or less, Ni: 2.0 mass% or less, Cr: 1.0 mass% or less and Mo: 0.5 mass% or less, Group B: V or more : 0.2 mass% or less, Nb: 0.2 mass% or less and Ti: 0.03 mass% or less selected from one or more C group; B: 0.0030 mass% or less, Ca: 0.0050 mass% Hereinafter, one or more selected from REM: 0.020 mass% or less, Zr: 0.010 mass% or less, and Mg: 0.010 mass% or less
JP2006164257A 2006-06-14 2006-06-14 High strength wide steel sheet pile and its production method Pending JP2007332414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006164257A JP2007332414A (en) 2006-06-14 2006-06-14 High strength wide steel sheet pile and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006164257A JP2007332414A (en) 2006-06-14 2006-06-14 High strength wide steel sheet pile and its production method

Publications (1)

Publication Number Publication Date
JP2007332414A true JP2007332414A (en) 2007-12-27

Family

ID=38932166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006164257A Pending JP2007332414A (en) 2006-06-14 2006-06-14 High strength wide steel sheet pile and its production method

Country Status (1)

Country Link
JP (1) JP2007332414A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845587A (en) * 2010-04-09 2010-09-29 武汉钢铁(集团)公司 Steel with yield ratio no larger than 0.8 for hot rolling U-shaped steel sheet pile and production method thereof
JP2012201904A (en) * 2011-03-24 2012-10-22 Sumitomo Metal Ind Ltd Steel sheet pile
WO2014157036A1 (en) 2013-03-28 2014-10-02 新日鐵住金株式会社 Steel sheet-pile and process for manufacturing same
CN109576589A (en) * 2019-01-23 2019-04-05 河北津西钢板桩型钢科技有限公司 A kind of low compression ratio hot-rolled steel sheet pile and preparation method thereof
KR20230098874A (en) 2021-01-07 2023-07-04 제이에프이 스틸 가부시키가이샤 Steel pile and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845587A (en) * 2010-04-09 2010-09-29 武汉钢铁(集团)公司 Steel with yield ratio no larger than 0.8 for hot rolling U-shaped steel sheet pile and production method thereof
JP2012201904A (en) * 2011-03-24 2012-10-22 Sumitomo Metal Ind Ltd Steel sheet pile
WO2014157036A1 (en) 2013-03-28 2014-10-02 新日鐵住金株式会社 Steel sheet-pile and process for manufacturing same
US10071406B2 (en) 2013-03-28 2018-09-11 Nippon Steel & Sumitomo Metal Corporation Steel sheet pile and method for manufacturing the same
CN109576589A (en) * 2019-01-23 2019-04-05 河北津西钢板桩型钢科技有限公司 A kind of low compression ratio hot-rolled steel sheet pile and preparation method thereof
KR20230098874A (en) 2021-01-07 2023-07-04 제이에프이 스틸 가부시키가이샤 Steel pile and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5293903B1 (en) Thick ERW Steel Pipe and Method for Manufacturing the Same
KR101795979B1 (en) Electric resistance welded steel pipe
JP6299935B2 (en) Steel sheet for high strength and high toughness steel pipe and manufacturing method thereof
JP2011132601A (en) Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing the same
JP6572963B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP6361278B2 (en) Manufacturing method of rolled steel
JP4853075B2 (en) Hot-rolled steel sheet for hydroforming and its manufacturing method, and electric resistance welded steel pipe for hydroforming
JP6048621B1 (en) High strength ERW steel pipe, method for manufacturing steel sheet for high strength ERW steel pipe, and method for manufacturing high strength ERW steel pipe
US20140352852A1 (en) Hot rolled high tensile strength steel sheet and method for manufacturing same
JP2008163446A (en) Steel member for high heat input welding
KR20150002871A (en) Electric resistance welded steel pipe
JP6256653B2 (en) Steel sheet for structural pipe, method for manufacturing steel sheet for structural pipe, and structural pipe
JP2013194316A (en) High strength steel plate for high heat input welding excellent in material uniformity in steel plate and method for manufacturing the same
JP6128042B2 (en) Low yield ratio high strength spiral steel pipe pile and manufacturing method thereof
JP2013147741A (en) High-strength steel sheet for heavy heat input welding excellent in material uniformity within the steel sheet and method for producing the same
WO2014175122A1 (en) H-shaped steel and method for producing same
JPWO2019220577A1 (en) Asroll ERW Steel Pipe for Torsion Beam
US20220090224A1 (en) Hot-rolled steel sheet and weld joint, and methods for producing same
JP5347827B2 (en) High yield point 490 MPa class welded structural steel excellent in acoustic anisotropy and method for producing the same
JP2006183133A (en) Method for producing steel sheet for high strength steam piping having excellent weld heat affected zone toughness
JP2007051321A (en) 490 MPa CLASS THICK HIGH-TENSILE STRENGTH FIRE-RESISTANT STEEL FOR WELDED STRUCTURE HAVING EXCELLENT WELDABILITY AND GAS CUTTING PROPERTY, AND ITS MANUFACTURING METHOD
JP2007332414A (en) High strength wide steel sheet pile and its production method
JP2020172707A (en) H-shaped steel and its manufacturing method
JP5157387B2 (en) Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability
JP5966909B2 (en) Steel sheet pile and manufacturing method thereof