JP2007332091A - Manufacturing method of (poly)amic acid triorganosilyl ester and (poly)amide - Google Patents

Manufacturing method of (poly)amic acid triorganosilyl ester and (poly)amide Download PDF

Info

Publication number
JP2007332091A
JP2007332091A JP2006167298A JP2006167298A JP2007332091A JP 2007332091 A JP2007332091 A JP 2007332091A JP 2006167298 A JP2006167298 A JP 2006167298A JP 2006167298 A JP2006167298 A JP 2006167298A JP 2007332091 A JP2007332091 A JP 2007332091A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
substituted
organic group
unsubstituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006167298A
Other languages
Japanese (ja)
Other versions
JP4803371B2 (en
Inventor
Ayumi Kiyomori
歩 清森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006167298A priority Critical patent/JP4803371B2/en
Publication of JP2007332091A publication Critical patent/JP2007332091A/en
Application granted granted Critical
Publication of JP4803371B2 publication Critical patent/JP4803371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Indole Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing in a high yield an imide or a polyimide having a substituent group which is not stable under a basic condition or a nucleophilic condition. <P>SOLUTION: An amic acid triorganosilyl ester can be synthesized by causing a bis(trialkylsilyl)amino compound to react with a dicarboxylic acid anhydride or a tetracarboxylic acid dianhydride in the presence of a protonic compound or water. The aimed imide or polyimide can be manufactured by imidization of the silyl ester. For example, a reaction illustrated in the figure can be carried out. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、工業的に利用価値の高い化合物である(ポリ)イミド及びその前駆体である(ポリ)アミド酸トリオルガノシリルエステルの製造方法に関する。なお、本発明において、(ポリ)イミドは、イミド又はポリイミドであることを示し、(ポリ)アミド酸は、アミド酸又はポリアミド酸であることを示す。   The present invention relates to a method for producing (poly) imide, which is a highly industrially useful compound, and (poly) amido acid triorganosilyl ester, which is a precursor thereof. In the present invention, (poly) imide indicates imide or polyimide, and (poly) amide acid indicates amide acid or polyamic acid.

環状イミドは、熱的に、また化学的に安定な化合物であり、材料科学の分野において種々の応用が図られている。芳香族イミドは電子欠乏性であるため、電子豊富な化合物と結合させた分子においては分子内電荷移動が観察され、この性質が有機EL用色素として利用されている(非特許文献1:Chemistry of Materials、2003年15巻(1,913〜1,917頁))。また、比較的大きな共役系を有する芳香族イミドを他の色素と連結させた分子を光励起すると、分子内や会合体内で効率的な電子移動やエネルギー移動が起こるため、光合成反応中心モデルとしての研究も行われている(例えば、非特許文献2:Journal of the American Chemical Society、2004年126巻(10,810〜10,811頁))。   Cyclic imides are thermally and chemically stable compounds and have various applications in the field of materials science. Since aromatic imides are electron deficient, intramolecular charge transfer is observed in molecules combined with electron-rich compounds, and this property is used as a dye for organic EL (Non-patent Document 1: Chemistry of). Materials, 2003, 15 (1, 913-1, 917)). In addition, photoexcitation of a molecule in which an aromatic imide having a relatively large conjugated system is linked to another dye causes efficient electron transfer and energy transfer in the molecule and in the associated body. (For example, Non-Patent Document 2: Journal of the American Chemical Society, vol. 126, 2004 (10, 810 to 10, 811)).

環状イミド結合を介した重縮合型高分子であるポリイミドは、熱的に安定であることから産業上極めて有用である。芳香族ポリイミドは不溶不融でガラス転移点が観測されず、最も耐熱性が高い有機高分子の一つである。また、成形性を向上させた熱硬化性ポリイミドや熱可塑性ポリイミドも開発されており、実用的な観点から価値が高い。これらの重合体の物性を決定する要因としては様々あるが、主鎖と置換基の構造が最も重要である。従って、様々な構造のモノマーの組み合わせをポリイミドにすることによって目的の物性を得る試みがなされている。   Polyimide, which is a polycondensation polymer via a cyclic imide bond, is extremely useful industrially because it is thermally stable. Aromatic polyimide is one of the organic polymers with the highest heat resistance and insoluble and infusible glass transition point. Thermosetting polyimides and thermoplastic polyimides with improved moldability have also been developed and are highly valuable from a practical viewpoint. There are various factors that determine the physical properties of these polymers, but the structures of the main chain and the substituent are the most important. Therefore, an attempt has been made to obtain the desired physical properties by using a combination of monomers having various structures as polyimide.

環状イミド(以下、単にイミドという)の合成法としてこれまでに様々な方法が知られている。一般的には、アミンとジカルボン酸無水物を反応させてアミド酸を生成させた後、加熱により脱水環化させることによりイミドが得られる(下記スキーム[A])。   Various methods have been known so far for synthesizing cyclic imides (hereinafter simply referred to as imides). In general, an amide is obtained by reacting an amine with a dicarboxylic acid anhydride to form an amic acid, followed by dehydration cyclization by heating (scheme [A] below).

Figure 2007332091
(式中、Q1は一価の有機基、Q2は二価の有機基を表す。以下、同様。)
Figure 2007332091
(In the formula, Q 1 represents a monovalent organic group and Q 2 represents a divalent organic group. The same applies hereinafter.)

しかし、上記スキーム[A]において、Q1やQ2、特にQ1が塩基性条件や求核性条件で不安定な置換基を含む場合、原料となるアミン自身が安定でなく、このような合成法は万能ではない。 However, in the above scheme [A], when Q 1 and Q 2 , especially Q 1 contains a substituent that is unstable under basic conditions or nucleophilic conditions, the starting amine itself is not stable, The synthesis method is not universal.

出発物質としてアミン以外の化合物を用いるイミドの合成方法としては、イミドのアルカリ金属塩を有機ハロゲン化物と反応させる方法(下記スキーム[B])やジカルボン酸無水物と有機イソシアナートを反応させる方法(下記スキーム[C])などがある。いずれもスキーム[A]とは異なる原料から同じ生成物を得ることができるが、前者はアルカリ金属塩が強塩基性かつ求核性の化合物であるためQ1が不安定となり、目的物は高収率で得られない。後者では反応条件が中性であるため目的物を得ることが可能であるが、求核性条件で不安定な置換基Q1を有するイソシアナートを合成することは容易でないため、有用な方法とはいえない。 As a method for synthesizing an imide using a compound other than an amine as a starting material, a method of reacting an alkali metal salt of an imide with an organic halide (the following scheme [B]) or a method of reacting a dicarboxylic acid anhydride with an organic isocyanate ( The following scheme [C]) is available. In either case, the same product can be obtained from a raw material different from that in Scheme [A]. However, in the former, since the alkali metal salt is a strongly basic and nucleophilic compound, Q 1 becomes unstable, and the target product is high. It cannot be obtained in a yield. In the latter, since the reaction conditions are neutral, the target product can be obtained. However, since it is not easy to synthesize isocyanates having a substituent Q 1 that is unstable under nucleophilic conditions, a useful method and I can't say that.

Figure 2007332091
(式中、Xはハロゲン原子、Mはアルカリ金属原子を表す。)
Figure 2007332091
(In the formula, X represents a halogen atom, and M represents an alkali metal atom.)

Figure 2007332091
Figure 2007332091

なお、一時的にカルバミン酸エステルなどとして保護することにより塩基性と求核性を低下させ、安定化させることが可能である。しかし、保護したアミンからは直接イミドを得る方法がなく、一旦アミンを脱保護する工程が必要となり、無意味である。   In addition, it is possible to reduce and stabilize the basicity and nucleophilicity by temporarily protecting as a carbamic acid ester or the like. However, there is no method for directly obtaining an imide from a protected amine, and a step for once deprotecting the amine is required, which is meaningless.

前記のごとく、新しい機能発現のためには新しい構造や置換基を有する(ポリ)イミドの製造が必要であり、特に反応基質の構造に由来する制限を緩和する新たなイミド化方法の開発が求められていた。   As described above, the production of a new function requires the production of a (poly) imide having a new structure or substituent, and in particular, the development of a new imidization method that relaxes the restrictions derived from the structure of the reaction substrate is required. It was done.

Chemistry of Materials、2003年15巻(1,913〜1,917頁)Chemistry of Materials, 2003 Volume 15 (1,913-1,917) Journal of the American Chemical Society、2004年126巻(10,810〜10,811頁)Journal of the American Chemical Society, 126, 2004 (10,810-10, 811)

本発明は、上記要望に応えるためになされたもので、保護され安定化されたアミン成分を用いて工業的に有用な化合物である(ポリ)イミドを高収率で製造する方法を提供することを目的とする。   The present invention has been made to meet the above-mentioned demand, and provides a method for producing (poly) imide, which is an industrially useful compound, in a high yield using a protected and stabilized amine component. With the goal.

本発明者らは、前記課題を解決するため鋭意検討を行った結果、二個のトリオルガノシリル基で保護したアミンと酸無水物、水又はプロトン性化合物の三成分を共存させることにより、温和な条件で(ポリ)アミド酸トリオルガノシリルエステルが得られることを見出した。これにより安定化されたアミンを原料として簡便に(ポリ)イミド前駆体を製造し、またそれを用いて(ポリ)イミドを製造する方法を知見するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have made a mild reaction by coexisting three components of amine protected with two triorganosilyl groups and an acid anhydride, water or a protic compound. It was found that (poly) amido acid triorganosilyl ester can be obtained under various conditions. As a result, a (poly) imide precursor is easily produced using a stabilized amine as a raw material, and a method for producing a (poly) imide using the precursor has been found.

即ち本発明は、下記のイミド前駆体の製造方法及びイミドの製造方法を提供する。
請求項1:
下記一般式(1)で表されるアミン又は下記一般式(2)で表されるジアミンと下記一般式(3)で表されるジカルボン酸無水物又は下記一般式(4)で表されるテトラカルボン酸二無水物とを、下記一般式(5)で表されるプロトン性化合物又は水の存在下に反応させる(但し、式(2)のジアミンと式(4)のテトラカルボン酸二無水物とを反応させる場合を除く)ことを特徴とする、下記一般式(6)、(7)又は(8)で表されるアミド酸トリオルガノシリルエステルの製造方法。

Figure 2007332091
(式中、R1は同一でも互いに異なっていてもよい炭素数1〜20の一価炭化水素基であり、A1は置換又は非置換の炭素数1〜40の一価有機基を表す。)
Figure 2007332091
(式中、R1は同一でも互いに異なっていてもよい炭素数1〜20の一価炭化水素基であり、A4は置換又は非置換の炭素数1〜40の二価有機基を表す。)
Figure 2007332091
(式中、A2は置換又は非置換の炭素数2〜40の二価有機基を表す。)
Figure 2007332091
(式中、A3は置換又は非置換の炭素数4〜40の四価有機基を表す。)
Figure 2007332091
(式中、Rは置換又は非置換の炭素数1〜20の一価炭化水素基を表す。)
Figure 2007332091
(式中、R1は同一でも互いに異なっていてもよい炭素数1〜20の一価炭化水素基であり、A1は置換又は非置換の炭素数1〜40の一価有機基を表す。A2は置換又は非置換の炭素数2〜40の二価有機基を表す。)
Figure 2007332091
(式中、R1は同一でも互いに異なっていてもよい炭素数1〜20の一価炭化水素基であり、A1は置換又は非置換の炭素数1〜40の一価有機基を表す。A3は置換又は非置換の炭素数4〜40の四価有機基を表す。)
Figure 2007332091
(式中、R1は同一でも互いに異なっていてもよい炭素数1〜20の一価炭化水素基である。A2は置換又は非置換の炭素数2〜40の二価有機基を表す。A4は置換又は非置換の炭素数1〜40の二価有機基を表す。)
請求項2:
下記一般式(2)で表されるジアミンと、下記一般式(4)で表されるテトラカルボン酸二無水物とを下記一般式(5)で表されるプロトン性化合物又は水の存在下に反応させることを特徴とする、下記一般式(9)で表される繰り返し単位からなるポリアミド酸トリオルガノシリルエステルの製造方法。
Figure 2007332091
(式中、R1は同一でも互いに異なっていてもよい炭素数1〜20の一価炭化水素基であり、A4は置換又は非置換の炭素数1〜40の二価有機基を表す。)
Figure 2007332091
(式中、A3は置換又は非置換の炭素数4〜40の四価有機基を表す。)
Figure 2007332091
(式中、Rは置換又は非置換の炭素数1〜20の一価炭化水素基を表す。)
Figure 2007332091
(式中、R1は同一でも互いに異なっていてもよい炭素数1〜20の一価炭化水素基である。A3は置換又は非置換の炭素数4〜40の四価有機基を表す。A4は置換又は非置換の炭素数1〜40の二価有機基を表す。)
請求項3:
請求項1に記載の製造方法により得られたアミド酸トリオルガノシリルエステルをイミド化させることを特徴とする、下記一般式(10)、(11)又は(12)で表されるイミドの製造方法。
Figure 2007332091
(式中、A1は置換又は非置換の炭素数1〜40の一価有機基を表す。A2は置換又は非置換の炭素数2〜40の二価有機基を表す。)
Figure 2007332091
(式中、A1は置換又は非置換の炭素数1〜40の一価有機基を表す。A3は置換又は非置換の炭素数4〜40の四価有機基を表す。)
Figure 2007332091
(式中、A2は置換又は非置換の炭素数2〜40の二価有機基を表す。A4は置換又は非置換の炭素数1〜40の二価有機基を表す。)
請求項4:
請求項2に記載の製造方法により得られたポリアミド酸トリオルガノシリルエステルをイミド化させることを特徴とする、下記一般式(13)で表される繰り返し単位からなるポリイミドの製造方法。
Figure 2007332091
(式中、A3は置換又は非置換の炭素数4〜40の四価有機基を表す。A4は置換又は非置換の炭素数1〜40の二価有機基を表す。) That is, this invention provides the manufacturing method of the following imide precursor, and the manufacturing method of imide.
Claim 1:
An amine represented by the following general formula (1) or a diamine represented by the following general formula (2) and a dicarboxylic acid anhydride represented by the following general formula (3) or a tetra represented by the following general formula (4) Carboxylic dianhydride is reacted in the presence of a protic compound represented by the following general formula (5) or water (provided that the diamine of formula (2) and the tetracarboxylic dianhydride of formula (4) And a method for producing an amic acid triorganosilyl ester represented by the following general formula (6), (7) or (8).
Figure 2007332091
(Wherein R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different from each other, and A 1 represents a substituted or unsubstituted monovalent organic group having 1 to 40 carbon atoms. )
Figure 2007332091
Wherein R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different from each other, and A 4 represents a substituted or unsubstituted divalent organic group having 1 to 40 carbon atoms. )
Figure 2007332091
(In the formula, A 2 represents a substituted or unsubstituted divalent organic group having 2 to 40 carbon atoms.)
Figure 2007332091
(In the formula, A 3 represents a substituted or unsubstituted tetravalent organic group having 4 to 40 carbon atoms.)
Figure 2007332091
(In the formula, R represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms.)
Figure 2007332091
(Wherein R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different from each other, and A 1 represents a substituted or unsubstituted monovalent organic group having 1 to 40 carbon atoms. A 2 represents a substituted or unsubstituted divalent organic group having 2 to 40 carbon atoms.)
Figure 2007332091
(Wherein R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different from each other, and A 1 represents a substituted or unsubstituted monovalent organic group having 1 to 40 carbon atoms. A 3 represents a substituted or unsubstituted tetravalent organic group having 4 to 40 carbon atoms.
Figure 2007332091
Wherein R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different from each other. A 2 represents a substituted or unsubstituted divalent organic group having 2 to 40 carbon atoms. A 4 represents a substituted or unsubstituted divalent organic group having 1 to 40 carbon atoms.
Claim 2:
A diamine represented by the following general formula (2) and a tetracarboxylic dianhydride represented by the following general formula (4) are present in the presence of a protic compound represented by the following general formula (5) or water. A process for producing a polyamic acid triorganosilyl ester comprising a repeating unit represented by the following general formula (9), characterized by reacting.
Figure 2007332091
Wherein R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different from each other, and A 4 represents a substituted or unsubstituted divalent organic group having 1 to 40 carbon atoms. )
Figure 2007332091
(In the formula, A 3 represents a substituted or unsubstituted tetravalent organic group having 4 to 40 carbon atoms.)
Figure 2007332091
(In the formula, R represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms.)
Figure 2007332091
(In the formula, R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different from each other. A 3 represents a substituted or unsubstituted tetravalent organic group having 4 to 40 carbon atoms. A 4 represents a substituted or unsubstituted divalent organic group having 1 to 40 carbon atoms.
Claim 3:
A method for producing an imide represented by the following general formula (10), (11) or (12), wherein the triorganosilyl ester of amic acid obtained by the production method according to claim 1 is imidized. .
Figure 2007332091
(In the formula, A 1 represents a substituted or unsubstituted monovalent organic group having 1 to 40 carbon atoms. A 2 represents a substituted or unsubstituted divalent organic group having 2 to 40 carbon atoms.)
Figure 2007332091
(In the formula, A 1 represents a substituted or unsubstituted monovalent organic group having 1 to 40 carbon atoms. A 3 represents a substituted or unsubstituted tetravalent organic group having 4 to 40 carbon atoms.)
Figure 2007332091
(In the formula, A 2 represents a substituted or unsubstituted divalent organic group having 2 to 40 carbon atoms. A 4 represents a substituted or unsubstituted divalent organic group having 1 to 40 carbon atoms.)
Claim 4:
A method for producing a polyimide comprising a repeating unit represented by the following general formula (13), wherein the polyamic acid triorganosilyl ester obtained by the production method according to claim 2 is imidized.
Figure 2007332091
(In the formula, A 3 represents a substituted or unsubstituted tetravalent organic group having 4 to 40 carbon atoms. A 4 represents a substituted or unsubstituted divalent organic group having 1 to 40 carbon atoms.)

本発明の製造方法によれば、安定化されたアミンを用いて塩基性条件や求核性条件で安定でない置換基を有するイミドやポリイミドを高収率で製造することができる。反応条件は温和でありワンポットで行うことができ、副生成物を容易に除去することができる。   According to the production method of the present invention, an imide or polyimide having a substituent that is not stable under basic conditions or nucleophilic conditions can be produced in high yield using a stabilized amine. The reaction conditions are mild and can be carried out in one pot, and by-products can be easily removed.

本発明の製造方法においては、下記一般式(1)あるいは下記一般式(2)で表されるアミンを反応させる。アミノ基はそれぞれ二個のトリオルガノシリル基で保護されている。トリオルガノシリル基はかさ高く、アミノ基の求核性は著しく低下するために、置換基A1やA4が求核攻撃を受け易い場合でも安定に存在することができる。 In the production method of the present invention, an amine represented by the following general formula (1) or the following general formula (2) is reacted. Each amino group is protected by two triorganosilyl groups. Since the triorganosilyl group is bulky and the nucleophilicity of the amino group is significantly reduced, it can be present stably even when the substituents A 1 and A 4 are susceptible to nucleophilic attack.

Figure 2007332091
Figure 2007332091

上記一般式(1)及び一般式(2)において、R1は同一でも互いに異なっていてもよい炭素数1〜20、好ましくは1〜10の一価炭化水素基を表す。R1の具体例として、メチル基、エチル基、n−プロピル基、イソプロピル基、シクロプロピル基、n−ブチル基、イソブチル基、2−ブチル基、tert−ブチル基、シクロブチル基、ペンチル基、シクロペンチル基、イソペンチル基、tert−ペンチル基、メチルシクロペンチル基、ヘキシル基、シクロヘキシル基、テキシル基、メチルシクロヘキシル基、ヘプチル基、シクロヘプチル基、ノルボルニル基、2−エチルヘキシル基、オクチル基、イソオクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、イコシル基等の一価の飽和脂肪族炭化水素基(直鎖状、分岐状又は環状のアルキル基等)、ビニル基、アリル基、プロペニル基、3−ブテニル基、2−ブテニル基、ヘキセニル基、シクロペンテニル基、シクロヘキセニル基、5−ノルボルネニル基、オクテニル基、デセニル基、エチニル基、プロピニル基、ブチニル基等の一価の不飽和脂肪族炭化水素基(直鎖状、分岐状又は環状のアルケニル基又はアルキニル基等)、フェニル基、4−tert−ブチルフェニル基、2−トリル基、3−トリル基、4−トリル基、2,6−ジメチルフェニル基、2,4−ジメチルフェニル基、3,5−ジメチルフェニル基、3,4−ジメチルフェニル基、2,5−ジメチルフェニル基、2,4,6−トリメチルフェニル基、ナフチル基、ビフェニリル基、フェナンスリル基、アントラセニル基、ベンジル基、1−フェニルエチル基、2−フェニルエチル基、ナフチルエチル基等の一価の芳香族炭化水素基(アリール基、アラルキル基等)などが挙げられる。なかでもメチル基、エチル基、イソプロピル基、tert−ブチル基、フェニル基が好ましく、メチル基が最も好ましい。 In the above general formula (1) and general formula (2), R 1 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 which may be the same or different from each other. Specific examples of R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, 2-butyl group, tert-butyl group, cyclobutyl group, pentyl group, and cyclopentyl. Group, isopentyl group, tert-pentyl group, methylcyclopentyl group, hexyl group, cyclohexyl group, texyl group, methylcyclohexyl group, heptyl group, cycloheptyl group, norbornyl group, 2-ethylhexyl group, octyl group, isooctyl group, decyl group , Monovalent saturated aliphatic hydrocarbon groups (such as linear, branched or cyclic alkyl groups) such as dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, icosyl group, vinyl group, allyl group, propenyl group, 3-butenyl group, 2-butenyl group, hexenyl group, cyclopente Monovalent unsaturated aliphatic hydrocarbon group (straight chain, branched or cyclic alkenyl group) such as thiol group, cyclohexenyl group, 5-norbornenyl group, octenyl group, decenyl group, ethynyl group, propynyl group, butynyl group Or alkynyl group), phenyl group, 4-tert-butylphenyl group, 2-tolyl group, 3-tolyl group, 4-tolyl group, 2,6-dimethylphenyl group, 2,4-dimethylphenyl group, 3, 5-dimethylphenyl group, 3,4-dimethylphenyl group, 2,5-dimethylphenyl group, 2,4,6-trimethylphenyl group, naphthyl group, biphenylyl group, phenanthryl group, anthracenyl group, benzyl group, 1-phenyl And monovalent aromatic hydrocarbon groups (aryl group, aralkyl group, etc.) such as ethyl group, 2-phenylethyl group, naphthylethyl group, etc. It is. Of these, a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, and a phenyl group are preferable, and a methyl group is most preferable.

上記一般式(1)において、A1は置換又は非置換の炭素数1〜40、好ましくは1〜20の一価有機基を表しており、具体的にはメチル基、メトキシカルボニルメチル基、エチル基、メトキシカルボニルエチル基、トリメチルシロキシカルボニルエチル基、tert−ブチルジメチルシロキシカルボニルエチル基、トリメチルシロキシエチル基、n−プロピル基、イソプロピル基、シクロプロピル基、3−トリメトキシシリルプロピル基、3−トリエトキシシリルプロピル基、3−トリメチルシリルプロピル基、3−トリメチルシロキシプロピル基、3−トリエチルシロキシプロピル基、3−tert−ブチルジメチルシロキシプロピル基、3−(ペンタメチルジシロキサン−1−イル)プロピル基、3−(1,1,3,3,5,5,5−ヘプタメチルトリシロキサン−1−イル)プロピル基、3−(1,3,3,5,5−ペンタメチルシクロテトラシロキサン−1−イル)プロピル基、3−(3−メタクリロイルオキシプロピル−1,1,3,3−テトラメチルジシロキサン−1−イル)プロピル基、3−(3−グリシジルオキシプロピル−1,1,3,3−テトラメチルジシロキサン−1−イル)プロピル基、3−(3−アクリロイルオキシプロピル−1,1,3,3−テトラメチルジシロキサン−1−イル)プロピル基、3−(3−エポキシシクロヘキシルエチル−1,1,3,3−テトラメチルジシロキサン−1−イル)プロピル基、3−(3−ビニル−1,1,3,3−テトラメチルジシロキサン−1−イル)プロピル基、3−(3−クロロプロピル−1,1,3,3−テトラメチルジシロキサン−1−イル)プロピル基、3−(3−メルカプトプロピル−1,1,3,3−テトラメチルジシロキサン−1−イル)プロピル基、3−(3−トリフルオロプロピル−1,1,3,3−テトラメチルジシロキサン−1−イル)プロピル基、3−(3−ノナフルオロヘキシル−1,1,3,3−テトラメチルジシロキサン−1−イル)プロピル基、3−(3−トリデカフルオロオクチル−1,1,3,3−テトラメチルジシロキサン−1−イル)プロピル基、3−(3−ヘプタデカフルオロデシル−1,1,3,3−テトラメチルジシロキサン−1−イル)プロピル基、n−ブチル基、イソブチル基、2−ブチル基、tert−ブチル基、シクロブチル基、ペンチル基、シクロペンチル基、イソペンチル基、tert−ペンチル基、メチルシクロペンチル基、ヘキシル基、シクロヘキシル基、テキシル基、メチルシクロヘキシル基、ヘプチル基、シクロヘプチル基、ノルボルニル基、2−エチルヘキシル基、オクチル基、イソオクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、イコシル基等の置換又は非置換の一価の飽和脂肪族炭化水素基(直鎖状、分岐状又は環状のアルキル基等)、ビニル基、アリル基、プロペニル基、3−ブテニル基、2−ブテニル基、ヘキセニル基、シクロペンテニル基、シクロヘキセニル基、5−ノルボルネニル基、オクテニル基、デセニル基、エチニル基、プロピニル基、ブチニル基等の置換又は非置換の一価の不飽和脂肪族炭化水素基(直鎖状、分岐状又は環状のアルケニル基又はアルキニル基等)、フェニル基、4−tert−ブチルフェニル基、2−クロロフェニル基、3−クロロフェニル基、4−クロロフェニル基、2−ブロモフェニル基、3−ブロモフェニル基、4−ブロモフェニル基、2−ヨードフェニル基、3−ヨードフェニル基、4−ヨードフェニル基、4−フルオロフェニル基、4−トリフルオロメチルフェニル基、2−メトキシフェニル基、3−メトキシフェニル基、4−メトキシフェニル基、4−トリメチルシロキシフェニル基、4−tert−ブチルジメチルシロキシフェニル基、4−アセタミドフェニル基、4−アセチルフェニル基、4−ベンゾイルフェニル基、4−メトキシカルボニルフェニル基、4−エトキシカルボニルフェニル基、4−トリメチルシロキシカルボニルフェニル基、4−tert−ブチルジメチルシロキシカルボニルフェニル基、4−トリイソプロピルシロキシカルボニルシロキシ基、4−(トリメチルシロキシエチル)フェニル基、2−トリル基、3−トリル基、4−トリル基、2,6−ジメチルフェニル基、2,4−ジメチルフェニル基、3,5−ジメチルフェニル基、3,4−ジメチルフェニル基、2,5−ジメチルフェニル基、2,4,6−トリメチルフェニル基、ナフチル基、ビフェニリル基、フェナンスリル基、アントラセニル基、ベンジル基、1−フェニルエチル基、2−フェニルエチル基、ナフチルエチル基等の置換又は非置換の一価の芳香族炭化水素基(アリール基、アラルキル基等)などが挙げられる。 In the general formula (1), A 1 represents a substituted or unsubstituted monovalent organic group having 1 to 40 carbon atoms, preferably 1 to 20 carbon atoms, specifically a methyl group, a methoxycarbonylmethyl group, ethyl Group, methoxycarbonylethyl group, trimethylsiloxycarbonylethyl group, tert-butyldimethylsiloxycarbonylethyl group, trimethylsiloxyethyl group, n-propyl group, isopropyl group, cyclopropyl group, 3-trimethoxysilylpropyl group, 3-trimethoxy Ethoxysilylpropyl group, 3-trimethylsilylpropyl group, 3-trimethylsiloxypropyl group, 3-triethylsiloxypropyl group, 3-tert-butyldimethylsiloxypropyl group, 3- (pentamethyldisiloxane-1-yl) propyl group, 3- (1,1,3,3,5,5,5- Putamethyltrisiloxane-1-yl) propyl group, 3- (1,3,3,5,5-pentamethylcyclotetrasiloxane-1-yl) propyl group, 3- (3-methacryloyloxypropyl-1,1 , 3,3-tetramethyldisiloxane-1-yl) propyl group, 3- (3-glycidyloxypropyl-1,1,3,3-tetramethyldisiloxane-1-yl) propyl group, 3- (3 -Acryloyloxypropyl-1,1,3,3-tetramethyldisiloxane-1-yl) propyl group, 3- (3-epoxycyclohexylethyl-1,1,3,3-tetramethyldisiloxane-1-yl ) Propyl group, 3- (3-vinyl-1,1,3,3-tetramethyldisiloxane-1-yl) propyl group, 3- (3-chloropropyl-1,1,3,3- Tetramethyldisiloxane-1-yl) propyl group, 3- (3-mercaptopropyl-1,1,3,3-tetramethyldisiloxane-1-yl) propyl group, 3- (3-trifluoropropyl-1) , 1,3,3-tetramethyldisiloxane-1-yl) propyl group, 3- (3-nonafluorohexyl-1,1,3,3-tetramethyldisiloxane-1-yl) propyl group, 3- (3-tridecafluorooctyl-1,1,3,3-tetramethyldisiloxane-1-yl) propyl group, 3- (3-heptadecafluorodecyl-1,1,3,3-tetramethyldisiloxane -1-yl) propyl group, n-butyl group, isobutyl group, 2-butyl group, tert-butyl group, cyclobutyl group, pentyl group, cyclopentyl group, isopentyl group, tert Pentyl group, methylcyclopentyl group, hexyl group, cyclohexyl group, texyl group, methylcyclohexyl group, heptyl group, cycloheptyl group, norbornyl group, 2-ethylhexyl group, octyl group, isooctyl group, decyl group, dodecyl group, tetradecyl group, Hexadecyl group, octadecyl group, icosyl group or the like substituted or unsubstituted monovalent saturated aliphatic hydrocarbon group (straight chain, branched or cyclic alkyl group, etc.), vinyl group, allyl group, propenyl group, 3- Substituted or unsubstituted monovalent unsaturation such as butenyl, 2-butenyl, hexenyl, cyclopentenyl, cyclohexenyl, 5-norbornenyl, octenyl, decenyl, ethynyl, propynyl, butynyl Aliphatic hydrocarbon group (straight chain, branched or cyclic alkenyl group or alkyl Nyl group, etc.), phenyl group, 4-tert-butylphenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, 2-bromophenyl group, 3-bromophenyl group, 4-bromophenyl group, 2 -Iodophenyl group, 3-iodophenyl group, 4-iodophenyl group, 4-fluorophenyl group, 4-trifluoromethylphenyl group, 2-methoxyphenyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, 4 -Trimethylsiloxyphenyl group, 4-tert-butyldimethylsiloxyphenyl group, 4-acetamidophenyl group, 4-acetylphenyl group, 4-benzoylphenyl group, 4-methoxycarbonylphenyl group, 4-ethoxycarbonylphenyl group, 4-trimethylsiloxycarbonylphenyl group, 4-tert -Butyldimethylsiloxycarbonylphenyl group, 4-triisopropylsiloxycarbonylsiloxy group, 4- (trimethylsiloxyethyl) phenyl group, 2-tolyl group, 3-tolyl group, 4-tolyl group, 2,6-dimethylphenyl group, 2,4-dimethylphenyl group, 3,5-dimethylphenyl group, 3,4-dimethylphenyl group, 2,5-dimethylphenyl group, 2,4,6-trimethylphenyl group, naphthyl group, biphenylyl group, phenanthryl group , Substituted or unsubstituted monovalent aromatic hydrocarbon groups (aryl group, aralkyl group, etc.) such as anthracenyl group, benzyl group, 1-phenylethyl group, 2-phenylethyl group and naphthylethyl group.

なお、本発明において、置換炭化水素基としては、アルコキシ基、アルコキシカルボニル基、トリアルキルシロキシカルボニル基、トリアルキルシロキシ基、トリアルコキシシリル基、トリアルキルシリル基、アルキルポリシロキサニル基、アルキルシクロポリシロキサニル基、アクリロイルオキシ基、メタクリロイルオキシ基、グリシジルオキシ基、エポキシシクロヘキシル基、アルケニル基、ハロゲン原子、メルカプト基等で置換された炭化水素基が挙げられる。この場合、ポリシロキサニル基のケイ素原子数は2〜100、特に2〜50が好ましく、シクロポリシロキサニル基のケイ素原子数は3〜20、特に3〜10が好ましい。   In the present invention, the substituted hydrocarbon group includes an alkoxy group, an alkoxycarbonyl group, a trialkylsiloxycarbonyl group, a trialkylsiloxy group, a trialkoxysilyl group, a trialkylsilyl group, an alkylpolysiloxanyl group, an alkylcyclohexane. Examples thereof include a hydrocarbon group substituted with a polysiloxanyl group, an acryloyloxy group, a methacryloyloxy group, a glycidyloxy group, an epoxycyclohexyl group, an alkenyl group, a halogen atom, a mercapto group, and the like. In this case, the number of silicon atoms in the polysiloxanyl group is preferably 2 to 100, particularly preferably 2 to 50, and the number of silicon atoms in the cyclopolysiloxanyl group is preferably 3 to 20, particularly 3 to 10.

上記一般式(2)において、A4は置換又は非置換の炭素数1〜40、好ましくは1〜20の二価有機基を表す。具体的には表1−1及び表1−2に示す基などが挙げられる。 In the above general formula (2), A 4 represents a substituted or unsubstituted divalent organic group having 1 to 40 carbon atoms, preferably 1 to 20 carbon atoms. Specific examples include groups shown in Table 1-1 and Table 1-2.

Figure 2007332091
Figure 2007332091

Figure 2007332091
Figure 2007332091

本発明の製造方法において、下記一般式(3)及び一般式(4)で表されるジカルボン酸無水物又はテトラカルボン酸二無水物が酸無水物として用いられる。   In the production method of the present invention, dicarboxylic acid anhydrides or tetracarboxylic dianhydrides represented by the following general formulas (3) and (4) are used as acid anhydrides.

Figure 2007332091
Figure 2007332091

上記一般式(3)において、A2は置換又は非置換の炭素数2〜40、好ましくは2〜20の二価有機基を表す。具体的には表2−1に示す基などが挙げられる。 In the above general formula (3), A 2 represents a substituted or unsubstituted divalent organic group having 2 to 40 carbon atoms, preferably 2 to 20 carbon atoms. Specific examples include groups shown in Table 2-1.

Figure 2007332091

(Meはメチル基を示す。以下、同様。)
Figure 2007332091

(Me represents a methyl group. The same shall apply hereinafter.)

上記一般式(4)において、A3は置換又は非置換の炭素数4〜40、好ましくは4〜20の四価有機基を表す。具体的には表3−1及び表3−2に示す基などが挙げられる。 In the above general formula (4), A 3 represents a substituted or unsubstituted tetravalent organic group having 4 to 40 carbon atoms, preferably 4 to 20 carbon atoms. Specific examples include groups shown in Table 3-1 and Table 3-2.

Figure 2007332091
Figure 2007332091

Figure 2007332091
Figure 2007332091

本発明の(ポリ)アミド酸トリオルガノシリルエステルの製造方法においては、アミン成分である上記一般式(1)又は(2)で表される化合物と、酸無水物成分である上記一般式(3)又は(4)で表される化合物とを、下記一般式(5)で表されるプロトン性化合物又は水の存在下で反応させる。

Figure 2007332091
In the method for producing a (poly) amidotriorganosilyl ester of the present invention, the compound represented by the above general formula (1) or (2) which is an amine component and the above general formula (3) which is an acid anhydride component. Or a compound represented by (4) is reacted in the presence of a protic compound represented by the following general formula (5) or water.
Figure 2007332091

式中、Rは置換又は非置換の炭素数1〜20の一価炭化水素基を表す。Rの具体例としてはメチル基、エチル基、n−プロピル基、イソプロピル基、シクロプロピル基、n−ブチル基、イソブチル基、2−ブチル基、tert−ブチル基、シクロブチル基、ペンチル基、シクロペンチル基、イソペンチル基、tert−ペンチル基、メチルシクロペンチル基、ヘキシル基、シクロヘキシル基、テキシル基、メチルシクロヘキシル基、ヘプチル基、シクロヘプチル基、ノルボルニル基、2−エチルヘキシル基、オクチル基、イソオクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、イコシル基等の置換又は非置換の飽和炭化水素基、ビニル基、アリル基、プロペニル基、3−ブテニル基、2−ブテニル基、ヘキセニル基、シクロペンテニル基、シクロヘキセニル基、5−ノルボルネニル基、オクテニル基、デセニル基、エチニル基、プロピニル基、ブチニル基等の置換又は非置換の不飽和脂肪族炭化水素基、フェニル基、4−tert−ブチルフェニル基、2−トリル基、3−トリル基、4−トリル基、2,6−ジメチルフェニル基、2,4−ジメチルフェニル基、3,5−ジメチルフェニル基、3,4−ジメチルフェニル基、2,5−ジメチルフェニル基、2,4,6−トリメチルフェニル基、ナフチル基、ビフェニリル基、フェナンスリル基、アントラセニル基、ベンジル基、1−フェニルエチル基、2−フェニルエチル基、ナフチルエチル基等の置換又は非置換の芳香族炭化水素基や、これらの基に結合する水素原子の一部又は全部がフッ素、塩素又は臭素等のハロゲン原子、シアノ基、ジメチルアミノ基やジエチルアミノ基等のジオルガノアミノ基、ニトロ基、アセチル基やベンゾイル基等のアシル基、アセトキシ基やベンゾイルオキシ基等のアシロキシ基、アセトアミド基等のアミド基、メトキシ基やフェノキシ基等のオルガノオキシ基で置換された基等が挙げられる。   In the formula, R represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms. Specific examples of R include methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, 2-butyl group, tert-butyl group, cyclobutyl group, pentyl group, and cyclopentyl group. , Isopentyl group, tert-pentyl group, methylcyclopentyl group, hexyl group, cyclohexyl group, texyl group, methylcyclohexyl group, heptyl group, cycloheptyl group, norbornyl group, 2-ethylhexyl group, octyl group, isooctyl group, decyl group, Substituted or unsubstituted saturated hydrocarbon groups such as dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, icosyl group, vinyl group, allyl group, propenyl group, 3-butenyl group, 2-butenyl group, hexenyl group, cyclopentenyl Group, cyclohexenyl group, 5-norbo Nenyl group, octenyl group, decenyl group, ethynyl group, propynyl group, butynyl group and other substituted or unsubstituted unsaturated aliphatic hydrocarbon groups, phenyl group, 4-tert-butylphenyl group, 2-tolyl group, 3- Tolyl group, 4-tolyl group, 2,6-dimethylphenyl group, 2,4-dimethylphenyl group, 3,5-dimethylphenyl group, 3,4-dimethylphenyl group, 2,5-dimethylphenyl group, 2, Substituted or unsubstituted aromatic hydrocarbon groups such as 4,6-trimethylphenyl group, naphthyl group, biphenylyl group, phenanthryl group, anthracenyl group, benzyl group, 1-phenylethyl group, 2-phenylethyl group, naphthylethyl group Or a part or all of the hydrogen atoms bonded to these groups are halogen atoms such as fluorine, chlorine or bromine, cyano groups, dimethylamino groups or di- Diorganoamino groups such as tilamino group, acyl groups such as nitro group, acetyl group and benzoyl group, acyloxy groups such as acetoxy group and benzoyloxy group, amide groups such as acetamide group, organooxy groups such as methoxy group and phenoxy group And a group substituted with.

上記一般式(5)で表されるプロトン性化合物の必要量は、上記一般式(1)又は(2)で表されるアミン成分の窒素原子に結合するトリオルガノシリル基に対して1当量以上であり、通常1〜10当量が好ましい。水を使用する場合は、上記一般式(1)又は(2)で表されるアミン成分の窒素原子に結合するトリオルガノシリル基に対して0.5当量以上であり、通常0.5〜5当量が好ましい。過剰に使用する場合には生成したアミド酸トリオルガノシリルエステルが加溶媒分解によりアミド酸となる場合がある。   The necessary amount of the protic compound represented by the general formula (5) is 1 equivalent or more with respect to the triorganosilyl group bonded to the nitrogen atom of the amine component represented by the general formula (1) or (2). Usually, 1 to 10 equivalents are preferable. When using water, it is 0.5 equivalent or more with respect to the triorganosilyl group couple | bonded with the nitrogen atom of the amine component represented by the said General formula (1) or (2), Usually 0.5-5 Equivalents are preferred. When used in excess, the produced amic acid triorganosilyl ester may be converted to amic acid by solvolysis.

上記の反応は、通常溶媒の存在下に行う。使用する溶媒としては非プロトン性溶媒が好ましく、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、アセトン、シクロペンタノン、シクロヘキサノン、メチルイソブチルケトン等のケトン類、N,N−ジメチルアセタミド、N,N−ジメチルホルムアミド、N−メチルピロリドン等のアミド類、ヘキサン、イソオクタン、ベンゼン、トルエン、キシレン等の炭化水素類、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素類、アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル類、ジメチルスルホキシド等のスルホキシド類等を用いることができる。二種類以上の溶媒を混合して使用することもできる。反応基質である酸無水物は水分と反応して低反応性のジカルボン酸となることがあるので、本反応には水分を低減した溶媒を用い、必要量の上記一般式(5)で表されるプロトン性化合物や水を添加することが好ましい。酸無水物の反応性が低い場合にはその限りではなく、上記の非プロトン性溶媒に加えてメタノール、エタノール、イソプロパノール等のアルコール類やクレゾールやクロロフェノールなどのフェノール類を溶媒とすることも可能である。なお、溶媒の使用量は任意であるが、反応基質が実質的な濃度で溶解し得る量とすることが好ましく、例えば基質質量の合計に対して3〜30倍が好ましい。   The above reaction is usually performed in the presence of a solvent. The solvent used is preferably an aprotic solvent, ethers such as diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran and dioxane, ketones such as acetone, cyclopentanone, cyclohexanone and methyl isobutyl ketone, N, N-dimethyl Amides such as acetamide, N, N-dimethylformamide, N-methylpyrrolidone, hydrocarbons such as hexane, isooctane, benzene, toluene, xylene, halogenated hydrocarbons such as dichloromethane and dichloroethane, acetonitrile, propio Nitriles such as nitrile and benzonitrile, sulfoxides such as dimethyl sulfoxide, and the like can be used. Two or more kinds of solvents can be mixed and used. Since the acid anhydride as a reaction substrate may react with moisture to form a low-reactivity dicarboxylic acid, a solvent with reduced moisture is used in this reaction, and the necessary amount is represented by the above general formula (5). It is preferable to add a protic compound or water. In the case where the reactivity of the acid anhydride is low, this is not the case. In addition to the above aprotic solvents, alcohols such as methanol, ethanol and isopropanol, and phenols such as cresol and chlorophenol can be used as the solvent. It is. In addition, although the usage-amount of a solvent is arbitrary, it is preferable to set it as the quantity which a reaction substrate can melt | dissolve by a substantial density | concentration, for example, 3-30 times is preferable with respect to the sum total of a substrate mass.

反応温度は60℃以下、より好ましくは0〜40℃で行うのがよい。反応温度が高いと生成したアミド酸トリオルガノシリルエステルが一部イミド化して純度が低下する。また過度に冷却すると反応進行が遅くなる。反応は常圧下に不活性ガス雰囲気下で行われるのが通常であるが、必ずしもそれに限られるものではない。なお、反応時間は適宜選定されるが、通常1〜24時間である。   The reaction temperature is 60 ° C. or lower, more preferably 0 to 40 ° C. When the reaction temperature is high, the produced amic acid triorganosilyl ester is partially imidized and the purity is lowered. Moreover, when it cools too much, reaction progress will become slow. The reaction is usually carried out under an inert gas atmosphere under normal pressure, but is not necessarily limited thereto. In addition, although reaction time is selected suitably, it is 1 to 24 hours normally.

反応基質の混合方法はその反応性に応じて様々に最適化されるが、例えばアミン、酸無水物、プロトン性化合物あるいは水の全てを一括で反応器に仕込む方法、これら三成分のうち一つを反応器に仕込み、残りの二成分を徐々に加える方法、これら三成分のうち二つを反応器に仕込み、残りの一成分を徐々に加える方法などが挙げられる。上記一般式(5)のプロトン性化合物あるいは水と上記一般式(3)又は(4)で表される酸無水物とが実質的な反応性を有する場合には、アミン成分と酸無水物とを混合し、プロトン性化合物あるいは水を徐々に加える方法が好ましい。   The reaction substrate mixing method is variously optimized depending on the reactivity. For example, amine, acid anhydride, protic compound, or water is charged all at once into the reactor, one of these three components. And a method of gradually adding the remaining two components, a method of adding two of these three components to the reactor, and gradually adding the remaining one component. When the protic compound of the general formula (5) or water and the acid anhydride represented by the general formula (3) or (4) have substantial reactivity, an amine component and an acid anhydride And a method in which the protic compound or water is gradually added is preferable.

上記一般式(1)で表されるアミンと上記一般式(3)で表されるジカルボン酸無水物を上記一般式(5)で表されるプロトン性化合物あるいは水の存在下に反応させると、下記一般式(6)で表されるアミド酸トリオルガノシリルエステルが得られる。同様に、上記一般式(1)で表されるアミンと上記一般式(4)で表されるテトラカルボン酸二無水物から下記一般式(7)で表されるアミド酸トリオルガノシリルエステルが得られる。また同様に、上記一般式(2)で表されるジアミンと上記一般式(3)で表されるジカルボン酸無水物から下記一般式(8)で表されるアミド酸トリオルガノシリルエステルが得られる。また上記一般式(2)で表されるジアミンと上記一般式(4)で表されるテトラカルボン酸二無水物からは下記一般式(9)で表される繰り返し単位を有するポリアミド酸トリオルガノシリルエステルが得られる。この場合、式(9)のポリアミド酸トリオルガノシリルエステルの繰り返し数は、2〜1,000、好ましくは2〜100である。   When the amine represented by the general formula (1) and the dicarboxylic anhydride represented by the general formula (3) are reacted in the presence of the protic compound represented by the general formula (5) or water, An amic acid triorganosilyl ester represented by the following general formula (6) is obtained. Similarly, an amic acid triorganosilyl ester represented by the following general formula (7) is obtained from the amine represented by the above general formula (1) and the tetracarboxylic dianhydride represented by the above general formula (4). It is done. Similarly, an amic acid triorganosilyl ester represented by the following general formula (8) is obtained from the diamine represented by the above general formula (2) and the dicarboxylic acid anhydride represented by the above general formula (3). . Further, from the diamine represented by the general formula (2) and the tetracarboxylic dianhydride represented by the general formula (4), a polyamic acid triorganosilyl having a repeating unit represented by the following general formula (9) Esters are obtained. In this case, the repeating number of the polyamic acid triorganosilyl ester of the formula (9) is 2 to 1,000, preferably 2 to 100.

Figure 2007332091
Figure 2007332091

式中、R1は同一でも互いに異なっていてもよい炭素数1〜20の一価炭化水素基、A1は置換又は非置換の炭素数1〜40の一価有機基、A2は置換又は非置換の炭素数2〜40の二価有機基、A3は置換又は非置換の炭素数4〜40の四価有機基を表す。A4は置換又は非置換の炭素数1〜40の二価有機基を表し、それぞれ上記一般式(1)〜(4)において説明した通りである。 In the formula, R 1 may be the same or different from each other, and the monovalent hydrocarbon group having 1 to 20 carbon atoms, A 1 is a substituted or unsubstituted monovalent organic group having 1 to 40 carbon atoms, and A 2 is substituted or An unsubstituted divalent organic group having 2 to 40 carbon atoms, A 3 represents a substituted or unsubstituted tetravalent organic group having 4 to 40 carbon atoms. A 4 represents a substituted or unsubstituted divalent organic group having 1 to 40 carbon atoms, and is as described in the above general formulas (1) to (4).

本発明の(ポリ)イミドの製造方法においては、前記の方法により得られた上記一般式(6)、(7)又は(8)で表されるアミド酸トリオルガノシリルエステル、あるいは上記一般式(9)で表される繰り返し単位からなるポリアミド酸トリオルガノシリルエステルをイミド化させる。上記一般式(6)、(7)、(8)の化合物からそれぞれ下記一般式(10)、(11)、(12)で表されるイミドが得られる。   In the production method of the (poly) imide of the present invention, the amidic acid triorganosilyl ester represented by the above general formula (6), (7) or (8) obtained by the above method, or the above general formula ( The polyamic acid triorganosilyl ester comprising the repeating unit represented by 9) is imidized. Imides represented by the following general formulas (10), (11), and (12) are obtained from the compounds of the general formulas (6), (7), and (8), respectively.

Figure 2007332091
(式中、A1は置換又は非置換の炭素数1〜40の一価有機基を表す。A2は置換又は非置換の炭素数2〜40の二価有機基を表す。)
Figure 2007332091
(In the formula, A 1 represents a substituted or unsubstituted monovalent organic group having 1 to 40 carbon atoms. A 2 represents a substituted or unsubstituted divalent organic group having 2 to 40 carbon atoms.)

Figure 2007332091
(式中、A1は置換又は非置換の炭素数1〜40の一価有機基を表す。A3は置換又は非置換の炭素数4〜40の四価有機基を表す。)
Figure 2007332091
(In the formula, A 1 represents a substituted or unsubstituted monovalent organic group having 1 to 40 carbon atoms. A 3 represents a substituted or unsubstituted tetravalent organic group having 4 to 40 carbon atoms.)

Figure 2007332091
(式中、A2は置換又は非置換の炭素数2〜40の二価有機基を表す。A4は置換又は非置換の炭素数1〜40の二価有機基を表す。)
Figure 2007332091
(In the formula, A 2 represents a substituted or unsubstituted divalent organic group having 2 to 40 carbon atoms. A 4 represents a substituted or unsubstituted divalent organic group having 1 to 40 carbon atoms.)

また、上記一般式(9)で表される繰り返し単位からなるポリアミド酸トリオルガノシリルエステルから、下記一般式(13)で表される繰り返し単位からなるポリイミドが得られる。   Moreover, the polyimide which consists of a repeating unit represented by the following general formula (13) is obtained from the polyamic acid triorganosilyl ester which consists of a repeating unit represented by the said General formula (9).

Figure 2007332091
(式中、A3は置換又は非置換の炭素数4〜40の四価有機基を表す。A4は置換又は非置換の炭素数1〜40の二価有機基を表す。)
Figure 2007332091
(In the formula, A 3 represents a substituted or unsubstituted tetravalent organic group having 4 to 40 carbon atoms. A 4 represents a substituted or unsubstituted divalent organic group having 1 to 40 carbon atoms.)

上記一般式(10)、(11)、(12)、(13)において、A1は置換又は非置換の炭素数1〜40の一価有機基、A2は置換又は非置換の炭素数2〜40の二価有機基、A3は置換又は非置換の炭素数4〜40の四価有機基、A4は置換又は非置換の炭素数1〜40の二価有機基を表しており、それぞれ既に説明した通りである。 In the general formulas (10), (11), (12), and (13), A 1 is a substituted or unsubstituted monovalent organic group having 1 to 40 carbon atoms, and A 2 is a substituted or unsubstituted carbon number 2 40 divalent organic group, a 3 is a tetravalent organic group having a carbon number of 4 to 40 substituted or unsubstituted, a 4 represents a substituted or unsubstituted divalent organic group having 1 to 40 carbon atoms, Each is as already described.

イミド化反応は、アミド酸トリオルガノシリルエステルやポリアミド酸トリオルガノシリルエステルを加熱することにより行うことが好ましい。この場合、イミド化反応の温度は60℃以上、好ましくは100〜300℃である。イミド化反応は無水酢酸などの公知のイミド化剤を使用することによっても行うことができる。なお、反応時間は、通常1〜24時間である。   The imidization reaction is preferably performed by heating the amic acid triorganosilyl ester or the polyamic acid triorganosilyl ester. In this case, the temperature of the imidization reaction is 60 ° C. or higher, preferably 100 to 300 ° C. The imidization reaction can also be performed by using a known imidizing agent such as acetic anhydride. In addition, reaction time is 1 to 24 hours normally.

また、上述のようにアミド酸トリオルガノシリルエステルやポリアミド酸トリオルガノシリルエステルを加溶媒分解して(ポリ)アミド酸とした後にイミド化反応を行うことも可能である。   Further, as described above, it is also possible to carry out an imidization reaction after solvolysis of the amic acid triorganosilyl ester or the polyamic acid triorganosilyl ester to give (poly) amidic acid.

上記の(ポリ)アミド酸トリオルガノシリルエステルは単離したものを用いてもよいし、単離せずにイミド化反応を行ってもよい。イミド化反応には溶媒は必ずしも必要でないが、溶媒を用いる場合にはジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、アセトン、シクロペンタノン、シクロヘキサノン、メチルイソブチルケトン等のケトン類、N,N−ジメチルアセタミド、N,N−ジメチルホルムアミド、N−メチルピロリドン等のアミド類、ヘキサン、イソオクタン、ベンゼン、トルエン、キシレン等の炭化水素類、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素類、アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル類、ジメチルスルホキシド等のスルホキシド類等の非プロトン性溶媒が使用できる。メタノール、エタノール、イソプロパノール、ブタノール等のアルコール類やクレゾール、クロロフェノール等のフェノール類などプロトン性溶媒も使用できるが、アミド酸トリオルガノシリルエステルの加溶媒分解が同時に進行することに留意しなくてはならない。   The above (poly) amido triorganosilyl ester may be used isolated, or may be subjected to imidization without isolation. A solvent is not necessarily required for the imidation reaction, but when a solvent is used, ethers such as diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, dioxane, and ketones such as acetone, cyclopentanone, cyclohexanone, and methyl isobutyl ketone Amides such as N, N-dimethylacetamide, N, N-dimethylformamide and N-methylpyrrolidone, hydrocarbons such as hexane, isooctane, benzene, toluene and xylene, halogenated hydrocarbons such as dichloromethane and dichloroethane , Nitriles such as acetonitrile, propionitrile and benzonitrile, and aprotic solvents such as sulfoxides such as dimethyl sulfoxide can be used. Protic solvents such as alcohols such as methanol, ethanol, isopropanol and butanol, and phenols such as cresol and chlorophenol can also be used, but it should be noted that the solvolysis of the amic acid triorganosilyl ester proceeds simultaneously. Don't be.

以下に実施例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記の例において、反応はすべて窒素雰囲気下で行った。目的物のGC測定はTHF溶液として行い、溶媒ピークを差し引いて純度を算出した。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples. In the following examples, all reactions were performed in a nitrogen atmosphere. GC measurement of the target product was performed as a THF solution, and the purity was calculated by subtracting the solvent peak.

[実施例1] N−アリルフタルイミドの合成

Figure 2007332091
[Example 1] Synthesis of N-allylphthalimide
Figure 2007332091

ジムロート式還流冷却器、撹拌機、温度計、滴下ロートを備えた200mLの四つ口フラスコを窒素置換した。無水フタル酸4.00g(27mmol)及びメタノール0.86g(27mmol)を脱水テトラヒドロフラン(以下、THFと略)37gに溶解させフラスコ内に仕込んだ。溶液を室温(約22℃)で撹拌しながら滴下ロートよりアミン成分であるN,N−ビス(トリメチルシリル)アミノプロペン5.44g(27mmol)を3時間で滴下した。滴下終了後室温で13時間撹拌したところ、アミン成分はほぼ消失していた。反応混合物を減圧濃縮するとオレンジ色の油状物が得られ、MALDI−TOFMS(コバルトマトリックス)によりこの油状物を分析するとN−アリルフタルアミド酸トリメチルシリルエステルであることが判明した。
得られた油状物をフラスコに入れ、0.8kPaに減圧しながら170℃の油浴中で3時間加熱した。内容物を室温に冷却すると結晶性の固体4.70gが得られた。GC−MS分析によりこの固体がN−アリルフタルイミドであることが判明した。純度は97.8%であり、収率は93.0%であった。
[実施例2] N−アリルフタルイミドの合成

Figure 2007332091
A 200 mL four-necked flask equipped with a Dimroth reflux condenser, a stirrer, a thermometer, and a dropping funnel was replaced with nitrogen. 4.00 g (27 mmol) of phthalic anhydride and 0.86 g (27 mmol) of methanol were dissolved in 37 g of dehydrated tetrahydrofuran (hereinafter abbreviated as THF) and charged into the flask. While stirring the solution at room temperature (about 22 ° C.), 5.44 g (27 mmol) of N, N-bis (trimethylsilyl) aminopropene as an amine component was dropped from the dropping funnel over 3 hours. After stirring for 13 hours at the room temperature, the amine component was almost disappeared. The reaction mixture was concentrated under reduced pressure to give an orange oil which was analyzed by MALDI-TOFMS (cobalt matrix) and found to be N-allylphthalamic acid trimethylsilyl ester.
The obtained oil was put into a flask and heated in an oil bath at 170 ° C. for 3 hours while reducing the pressure to 0.8 kPa. When the contents were cooled to room temperature, 4.70 g of a crystalline solid was obtained. GC-MS analysis revealed that the solid was N-allylphthalimide. The purity was 97.8% and the yield was 93.0%.
[Example 2] Synthesis of N-allylphthalimide
Figure 2007332091

ジムロート式還流冷却器、撹拌機、温度計、滴下ロートを備えた100mLの四つ口フラスコを窒素置換した。無水フタル酸3.70g(25mmol)及びアミン成分であるN,N−ビス(トリメチルシリル)アミノプロペン5.04g(25mmol)をフラスコ内に仕込み、THF25gを加えて溶解させた。溶液を室温で撹拌しながら滴下ロートより水0.45g(25mmol)のTHF3g溶液を1時間で滴下した。滴下に伴い発熱があり、滴下終了後室温で10分間撹拌したところ、アミン成分が消失しており、トリメチルシラノールが生成したことがGC分析により確認された。更に12時間撹拌を続けた後、反応混合物を減圧濃縮して、オフホワイトの固体5.10gを得た。MALDI−TOFMS(コバルトマトリックス)によりこの固体を分析すると実施例1で得られたN−アリルフタルアミド酸トリメチルシリルエステルが加水分解されたN−アリルフタルアミド酸であることが判明した。
得られた固体をフラスコに入れ、0.8kPaに減圧しながら170℃の油浴中で3時間加熱した。内容物を室温に冷却すると結晶性の固体4.27gが得られた。GC−MS分析によりこの固体がN−アリルフタルイミドであることが判明した。収率は91.2%であった。
A 100 mL four-necked flask equipped with a Dimroth reflux condenser, a stirrer, a thermometer, and a dropping funnel was replaced with nitrogen. 3.70 g (25 mmol) of phthalic anhydride and 5.04 g (25 mmol) of N, N-bis (trimethylsilyl) aminopropene as an amine component were charged into a flask, and 25 g of THF was added and dissolved. While stirring the solution at room temperature, a THF 3 g solution of 0.45 g (25 mmol) of water was added dropwise from a dropping funnel over 1 hour. There was heat generation with the dropping, and after stirring for 10 minutes at room temperature, the amine component disappeared and it was confirmed by GC analysis that trimethylsilanol was produced. After further stirring for 12 hours, the reaction mixture was concentrated under reduced pressure to obtain 5.10 g of an off-white solid. Analysis of this solid by MALDI-TOFMS (cobalt matrix) revealed that the N-allylphthalamic acid trimethylsilyl ester obtained in Example 1 was hydrolyzed N-allylphthalamic acid.
The obtained solid was put into a flask and heated in an oil bath at 170 ° C. for 3 hours while reducing the pressure to 0.8 kPa. The contents were cooled to room temperature, yielding 4.27 g of a crystalline solid. GC-MS analysis revealed that the solid was N-allylphthalimide. The yield was 91.2%.

[実施例3] N−アリルナジアミド酸トリメチルシリルエステルの合成

Figure 2007332091
Example 3 Synthesis of N-allylnadiamic acid trimethylsilyl ester
Figure 2007332091

ジムロート式還流冷却器、撹拌機、温度計、滴下ロートを備えた200mLの四つ口フラスコを窒素置換した。5−ノルボルネンー2,3−ジカルボン酸無水物8.21g(50mmol)及びメタノール1.60g(50mmol)をTHF73gに溶解させてフラスコに仕込んだ。溶液を室温で撹拌しながら滴下ロートよりアミン成分であるN,N−ビス(トリメチルシリル)アミノプロペン10.1g(50mmol)を2時間で滴下した。滴下に伴い発熱があり、白色固体が析出した。滴下終了後室温で4時間撹拌したところ、アミン成分はほぼ消失していた。反応混合物を減圧濃縮して、オフホワイトの固体14.4gを得た。MALDI−TOFMS(コバルトマトリックス)によりこの固体を分析すると、N−アリルナジアミド酸トリメチルシリルエステルであることが判明した。   A 200 mL four-necked flask equipped with a Dimroth reflux condenser, a stirrer, a thermometer, and a dropping funnel was replaced with nitrogen. A flask was prepared by dissolving 8.21 g (50 mmol) of 5-norbornene-2,3-dicarboxylic anhydride and 1.60 g (50 mmol) of methanol in 73 g of THF. While stirring the solution at room temperature, 10.1 g (50 mmol) of N, N-bis (trimethylsilyl) aminopropene as an amine component was added dropwise from a dropping funnel over 2 hours. There was an exotherm with the addition and a white solid precipitated. After completion of the dropwise addition, the mixture was stirred at room temperature for 4 hours. The reaction mixture was concentrated under reduced pressure to give 14.4 g of an off-white solid. The solid was analyzed by MALDI-TOFMS (cobalt matrix) and found to be N-allylnadiamic acid trimethylsilyl ester.

[実施例4] N,N’−ジアリルピロメリットイミドの合成

Figure 2007332091
[Example 4] Synthesis of N, N'-diallylpyromellitimide
Figure 2007332091

ジムロート式還流冷却器、撹拌機、温度計、滴下ロートを備えた200mLの四つ口フラスコを窒素置換した。ピロメリット酸二無水物2.18g(10mmol)及びN,N−ビス(トリメチルシリル)アミノプロペン4.03g(20mmol)をフラスコに仕込み、THF24gを加えて溶解させた。溶液を室温で撹拌しながら滴下ロートよりメタノール0.64g(20mmol)のTHF6g溶液を1.5時間で滴下した。滴下終了後室温で2時間撹拌したところ、アミン成分はほぼ消失していた。反応混合物を減圧濃縮するとオフホワイトの固体4.68gが得られた。MALDI−TOFMS(コバルトマトリックス)によりこの固体を分析すると、中間生成物であるピロメリットアミド酸トリメチルシリルエステルであることが判明した。
得られた固体4.49gをガラスフラスコに入れ、オーブン中に入れ2.4kPaに減圧しながら80℃で1時間、170℃で2時間加熱した。淡褐色の固体2.7gが得られGC純度は98.2%であった。GC−MS分析によりこの固体が目的のN,N’−ジアリルピロメリットイミドであることがわかった。収率は用いたアミン成分に対して96.7%であった。
A 200 mL four-necked flask equipped with a Dimroth reflux condenser, a stirrer, a thermometer, and a dropping funnel was replaced with nitrogen. 2.18 g (10 mmol) of pyromellitic dianhydride and 4.03 g (20 mmol) of N, N-bis (trimethylsilyl) aminopropene were charged into a flask, and dissolved by adding 24 g of THF. While stirring the solution at room temperature, a solution of 0.64 g (20 mmol) of methanol in 6 g of THF was added dropwise from a dropping funnel over 1.5 hours. After completion of the dropwise addition, the mixture was stirred at room temperature for 2 hours. The reaction mixture was concentrated in vacuo to give 4.68 g of an off-white solid. Analysis of this solid by MALDI-TOFMS (cobalt matrix) revealed an intermediate product, pyromellitic acid trimethylsilyl ester.
4.49 g of the obtained solid was put in a glass flask, placed in an oven, and heated at 80 ° C. for 1 hour and 170 ° C. for 2 hours while reducing the pressure to 2.4 kPa. 2.7 g of a light brown solid was obtained, and the GC purity was 98.2%. GC-MS analysis showed that this solid was the desired N, N′-diallyl pyromellitic imide. The yield was 96.7% based on the amine component used.

[実施例5] N−[3−(1,3,3,5,5,7,7−ヘプタメチルシクロテトラシロキサン−1−イル)プロピル]フタルアミド酸トリメチルシリルエステルの合成     Example 5 Synthesis of N- [3- (1,3,3,5,5,7,7-heptamethylcyclotetrasiloxane-1-yl) propyl] phthalamic acid trimethylsilyl ester

Figure 2007332091
Figure 2007332091

ジムロート式還流冷却器、撹拌機、温度計、滴下ロートを備えた100mLの四つ口フラスコを窒素置換した。無水フタル酸1.48g(10mmol)及びメタノール0.32g(10mmol)をフラスコ内に仕込み、THF18gを加えて溶解させた。溶液を室温で撹拌しながら滴下ロートよりアミン成分である1−[3−(N,N−ビス(トリメチルシリル)アミノ)プロピル]−1,3,3,5,5,7,7−ヘプタメチルシクロテトラシロキサン4.84g(10mmol)とTHF4.0gの混合物を2時間で滴下した。滴下後室温で4時間撹拌したところ、アミン成分がほぼ消失したことがGC分析により確認された。反応混合物を減圧濃縮すると白色固体5.68gが得られた。この固体をMALDI−TOFMSにより分析したところ、目的の化合物であることが判明した。   A 100 mL four-necked flask equipped with a Dimroth reflux condenser, a stirrer, a thermometer, and a dropping funnel was replaced with nitrogen. 1.48 g (10 mmol) of phthalic anhydride and 0.32 g (10 mmol) of methanol were charged into the flask, and 18 g of THF was added and dissolved. While stirring the solution at room temperature, 1- [3- (N, N-bis (trimethylsilyl) amino) propyl] -1,3,3,5,5,7,7-heptamethylcyclo is an amine component from a dropping funnel. A mixture of 4.84 g (10 mmol) of tetrasiloxane and 4.0 g of THF was added dropwise over 2 hours. After stirring for 4 hours at room temperature, it was confirmed by GC analysis that the amine component was almost lost. The reaction mixture was concentrated under reduced pressure to obtain 5.68 g of a white solid. When this solid was analyzed by MALDI-TOFMS, it was found to be the target compound.

[実施例6] 1,3−ビス(3−フタルイミドプロピル)−1,1,3,3−テトラメチルジシロキサンの合成

Figure 2007332091
Example 6 Synthesis of 1,3-bis (3-phthalimidopropyl) -1,1,3,3-tetramethyldisiloxane
Figure 2007332091

ジムロート式還流冷却器、撹拌機、温度計を備えた100mLの四つ口フラスコを窒素置換した。無水フタル酸592mg(4.0mmol)、N,N,N’,N’−テトラキス(トリメチルシリル)−1,3−ビス(3−アミノプロピル)−1,1,3,3−テトラメチルジシロキサン1.07g(2.0mmol)をフラスコ内に仕込み、THF9.9gを加えて溶解させた。溶液を室温で撹拌しながらエタノール184mg(4.0mmol)をTHF2.5gで希釈した溶液を滴下ロートから0.5時間かけて滴下した。室温で9時間撹拌したところ、白色固体が析出した。反応混合物を減圧濃縮し、濃縮物158mgをステンレスシャーレ上にとってオーブン中に入れ、窒素通気しながら240℃で0.5時間加熱した。冷却するとわずかに黄色の針状結晶95mgが得られ、EI−MS及びFT−IRの分析結果より目的の1,3−ビス(3−フタルイミドプロピル)−1,1,3,3−テトラメチルジシロキサンであることがわかった。GC純度は99.3%であり、収率は用いたアミン成分に対して85.8%であった。   A 100 mL four-necked flask equipped with a Dimroth reflux condenser, a stirrer, and a thermometer was purged with nitrogen. Phthalic anhydride 592 mg (4.0 mmol), N, N, N ′, N′-tetrakis (trimethylsilyl) -1,3-bis (3-aminopropyl) -1,1,3,3-tetramethyldisiloxane 1 0.07 g (2.0 mmol) was charged into the flask, and 9.9 g of THF was added and dissolved. While stirring the solution at room temperature, a solution obtained by diluting 184 mg (4.0 mmol) of ethanol with 2.5 g of THF was added dropwise from a dropping funnel over 0.5 hours. When the mixture was stirred at room temperature for 9 hours, a white solid was precipitated. The reaction mixture was concentrated under reduced pressure, and 158 mg of the concentrate was placed in an oven on a stainless steel petri dish, and heated at 240 ° C. for 0.5 hour while bubbling nitrogen. Upon cooling, 95 mg of slightly yellow needle-like crystals were obtained. From the analysis results of EI-MS and FT-IR, the desired 1,3-bis (3-phthalimidopropyl) -1,1,3,3-tetramethyldimethyl ester was obtained. It was found to be siloxane. The GC purity was 99.3%, and the yield was 85.8% based on the amine component used.

[実施例7] ポリイミドシロキサンの合成

Figure 2007332091
[Example 7] Synthesis of polyimidesiloxane
Figure 2007332091

ジムロート式還流冷却器、撹拌機、温度計を備えた100mLの四つ口フラスコを窒素置換した。ピロメリット酸二無水物1.09g(5.0mmol)、N,N,N’,N’−テトラキス(トリメチルシリル)−1,5−ビス(3−アミノプロピル)−1,1,3,3,5,5−ヘプタメチルトリシロキサン3.06g(5.0mmol)をフラスコ内に仕込み、N−メチル−2−ピロリドン(NMP)24.6gを加えて溶解させた。溶液を室温で撹拌しながらメタノール0.32g(10mmol)をNMP6.2gで希釈した溶液を滴下ロートから1.5時間かけて滴下した。室温で14時間撹拌後、徐々に温度を上昇させて184〜188℃で8時間反応させた。反応混合物をGPCで分析すると、出発物質は消失しておりMw=3,000、Mn=1,900のポリマーが生成していた。溶媒と副生成物を減圧下で除去すると褐色の固体2.49gが得られた。FT−IRスペクトルによると1,600〜1,700cm-1のアミド酸エステルに由来するピークはなく、1,718及び1,770cm-1にイミドに由来するピークが検出された。また、1,051及び1,079cm-1にシロキサン結合のピークが検出され、目的のポリマーが得られたことがわかった。 A 100 mL four-necked flask equipped with a Dimroth reflux condenser, a stirrer, and a thermometer was purged with nitrogen. Pyromellitic dianhydride 1.09 g (5.0 mmol), N, N, N ′, N′-tetrakis (trimethylsilyl) -1,5-bis (3-aminopropyl) -1,1,3,3 3,5-Heptamethyltrisiloxane (3.06 g, 5.0 mmol) was charged into the flask, and N-methyl-2-pyrrolidone (NMP) (24.6 g) was added and dissolved. While stirring the solution at room temperature, a solution obtained by diluting 0.32 g (10 mmol) of methanol with 6.2 g of NMP was dropped from the dropping funnel over 1.5 hours. After stirring at room temperature for 14 hours, the temperature was gradually raised and the reaction was carried out at 184 to 188 ° C. for 8 hours. When the reaction mixture was analyzed by GPC, the starting material disappeared and a polymer with Mw = 3,000 and Mn = 1,900 was formed. Removal of the solvent and by-products under reduced pressure gave 2.49 g of a brown solid. According to the FT-IR spectrum, there was no peak derived from 1,600 to 1,700 cm −1 amic acid ester, and peaks derived from imide were detected at 1,718 and 1,770 cm −1 . In addition, siloxane bond peaks were detected at 1,051 and 1,079 cm −1 , indicating that the desired polymer was obtained.

Claims (4)

下記一般式(1)で表されるアミン又は下記一般式(2)で表されるジアミンと下記一般式(3)で表されるジカルボン酸無水物又は下記一般式(4)で表されるテトラカルボン酸二無水物とを、下記一般式(5)で表されるプロトン性化合物又は水の存在下に反応させる(但し、式(2)のジアミンと式(4)のテトラカルボン酸二無水物とを反応させる場合を除く)ことを特徴とする、下記一般式(6)、(7)又は(8)で表されるアミド酸トリオルガノシリルエステルの製造方法。
Figure 2007332091
(式中、R1は同一でも互いに異なっていてもよい炭素数1〜20の一価炭化水素基であり、A1は置換又は非置換の炭素数1〜40の一価有機基を表す。)
Figure 2007332091
(式中、R1は同一でも互いに異なっていてもよい炭素数1〜20の一価炭化水素基であり、A4は置換又は非置換の炭素数1〜40の二価有機基を表す。)
Figure 2007332091
(式中、A2は置換又は非置換の炭素数2〜40の二価有機基を表す。)
Figure 2007332091
(式中、A3は置換又は非置換の炭素数4〜40の四価有機基を表す。)
Figure 2007332091
(式中、Rは置換又は非置換の炭素数1〜20の一価炭化水素基を表す。)
Figure 2007332091
(式中、R1は同一でも互いに異なっていてもよい炭素数1〜20の一価炭化水素基であり、A1は置換又は非置換の炭素数1〜40の一価有機基を表す。A2は置換又は非置換の炭素数2〜40の二価有機基を表す。)
Figure 2007332091
(式中、R1は同一でも互いに異なっていてもよい炭素数1〜20の一価炭化水素基であり、A1は置換又は非置換の炭素数1〜40の一価有機基を表す。A3は置換又は非置換の炭素数4〜40の四価有機基を表す。)
Figure 2007332091
(式中、R1は同一でも互いに異なっていてもよい炭素数1〜20の一価炭化水素基である。A2は置換又は非置換の炭素数2〜40の二価有機基を表す。A4は置換又は非置換の炭素数1〜40の二価有機基を表す。)
An amine represented by the following general formula (1) or a diamine represented by the following general formula (2) and a dicarboxylic acid anhydride represented by the following general formula (3) or a tetra represented by the following general formula (4) Carboxylic dianhydride is reacted in the presence of a protic compound represented by the following general formula (5) or water (provided that the diamine of formula (2) and the tetracarboxylic dianhydride of formula (4) And a method for producing an amic acid triorganosilyl ester represented by the following general formula (6), (7) or (8).
Figure 2007332091
(Wherein R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different from each other, and A 1 represents a substituted or unsubstituted monovalent organic group having 1 to 40 carbon atoms. )
Figure 2007332091
Wherein R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different from each other, and A 4 represents a substituted or unsubstituted divalent organic group having 1 to 40 carbon atoms. )
Figure 2007332091
(In the formula, A 2 represents a substituted or unsubstituted divalent organic group having 2 to 40 carbon atoms.)
Figure 2007332091
(In the formula, A 3 represents a substituted or unsubstituted tetravalent organic group having 4 to 40 carbon atoms.)
Figure 2007332091
(In the formula, R represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms.)
Figure 2007332091
(Wherein R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different from each other, and A 1 represents a substituted or unsubstituted monovalent organic group having 1 to 40 carbon atoms. A 2 represents a substituted or unsubstituted divalent organic group having 2 to 40 carbon atoms.)
Figure 2007332091
(Wherein R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different from each other, and A 1 represents a substituted or unsubstituted monovalent organic group having 1 to 40 carbon atoms. A 3 represents a substituted or unsubstituted tetravalent organic group having 4 to 40 carbon atoms.
Figure 2007332091
Wherein R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different from each other. A 2 represents a substituted or unsubstituted divalent organic group having 2 to 40 carbon atoms. A 4 represents a substituted or unsubstituted divalent organic group having 1 to 40 carbon atoms.
下記一般式(2)で表されるジアミンと、下記一般式(4)で表されるテトラカルボン酸二無水物とを下記一般式(5)で表されるプロトン性化合物又は水の存在下に反応させることを特徴とする、下記一般式(9)で表される繰り返し単位からなるポリアミド酸トリオルガノシリルエステルの製造方法。
Figure 2007332091
(式中、R1は同一でも互いに異なっていてもよい炭素数1〜20の一価炭化水素基であり、A4は置換又は非置換の炭素数1〜40の二価有機基を表す。)
Figure 2007332091
(式中、A3は置換又は非置換の炭素数4〜40の四価有機基を表す。)
Figure 2007332091
(式中、Rは置換又は非置換の炭素数1〜20の一価炭化水素基を表す。)
Figure 2007332091
(式中、R1は同一でも互いに異なっていてもよい炭素数1〜20の一価炭化水素基である。A3は置換又は非置換の炭素数4〜40の四価有機基を表す。A4は置換又は非置換の炭素数1〜40の二価有機基を表す。)
A diamine represented by the following general formula (2) and a tetracarboxylic dianhydride represented by the following general formula (4) are present in the presence of a protic compound represented by the following general formula (5) or water. A process for producing a polyamic acid triorganosilyl ester comprising a repeating unit represented by the following general formula (9), characterized by reacting.
Figure 2007332091
Wherein R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different from each other, and A 4 represents a substituted or unsubstituted divalent organic group having 1 to 40 carbon atoms. )
Figure 2007332091
(In the formula, A 3 represents a substituted or unsubstituted tetravalent organic group having 4 to 40 carbon atoms.)
Figure 2007332091
(In the formula, R represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms.)
Figure 2007332091
(In the formula, R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be the same or different from each other. A 3 represents a substituted or unsubstituted tetravalent organic group having 4 to 40 carbon atoms. A 4 represents a substituted or unsubstituted divalent organic group having 1 to 40 carbon atoms.
請求項1に記載の製造方法により得られたアミド酸トリオルガノシリルエステルをイミド化させることを特徴とする、下記一般式(10)、(11)又は(12)で表されるイミドの製造方法。
Figure 2007332091
(式中、A1は置換又は非置換の炭素数1〜40の一価有機基を表す。A2は置換又は非置換の炭素数2〜40の二価有機基を表す。)
Figure 2007332091
(式中、A1は置換又は非置換の炭素数1〜40の一価有機基を表す。A3は置換又は非置換の炭素数4〜40の四価有機基を表す。)
Figure 2007332091
(式中、A2は置換又は非置換の炭素数2〜40の二価有機基を表す。A4は置換又は非置換の炭素数1〜40の二価有機基を表す。)
A method for producing an imide represented by the following general formula (10), (11) or (12), wherein the triorganosilyl ester of amic acid obtained by the production method according to claim 1 is imidized. .
Figure 2007332091
(In the formula, A 1 represents a substituted or unsubstituted monovalent organic group having 1 to 40 carbon atoms. A 2 represents a substituted or unsubstituted divalent organic group having 2 to 40 carbon atoms.)
Figure 2007332091
(In the formula, A 1 represents a substituted or unsubstituted monovalent organic group having 1 to 40 carbon atoms. A 3 represents a substituted or unsubstituted tetravalent organic group having 4 to 40 carbon atoms.)
Figure 2007332091
(In the formula, A 2 represents a substituted or unsubstituted divalent organic group having 2 to 40 carbon atoms. A 4 represents a substituted or unsubstituted divalent organic group having 1 to 40 carbon atoms.)
請求項2に記載の製造方法により得られたポリアミド酸トリオルガノシリルエステルをイミド化させることを特徴とする、下記一般式(13)で表される繰り返し単位からなるポリイミドの製造方法。
Figure 2007332091
(式中、A3は置換又は非置換の炭素数4〜40の四価有機基を表す。A4は置換又は非置換の炭素数1〜40の二価有機基を表す。)
A method for producing a polyimide comprising a repeating unit represented by the following general formula (13), wherein the polyamic acid triorganosilyl ester obtained by the production method according to claim 2 is imidized.
Figure 2007332091
(In the formula, A 3 represents a substituted or unsubstituted tetravalent organic group having 4 to 40 carbon atoms. A 4 represents a substituted or unsubstituted divalent organic group having 1 to 40 carbon atoms.)
JP2006167298A 2006-06-16 2006-06-16 (Poly) amido acid triorganosilyl ester and method for producing (poly) imide Active JP4803371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167298A JP4803371B2 (en) 2006-06-16 2006-06-16 (Poly) amido acid triorganosilyl ester and method for producing (poly) imide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167298A JP4803371B2 (en) 2006-06-16 2006-06-16 (Poly) amido acid triorganosilyl ester and method for producing (poly) imide

Publications (2)

Publication Number Publication Date
JP2007332091A true JP2007332091A (en) 2007-12-27
JP4803371B2 JP4803371B2 (en) 2011-10-26

Family

ID=38931895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167298A Active JP4803371B2 (en) 2006-06-16 2006-06-16 (Poly) amido acid triorganosilyl ester and method for producing (poly) imide

Country Status (1)

Country Link
JP (1) JP4803371B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052914A (en) * 2015-09-11 2017-03-16 信越化学工業株式会社 One terminal bis-trialkylsilyl aminopropyl silicone
CN112930352A (en) * 2018-10-31 2021-06-08 广荣化学株式会社 Silylamine compound and latent curing agent containing the same
US11773207B2 (en) 2019-01-07 2023-10-03 Shikoku Chemicals Corporation Thiol compound, method for synthesizing same, and uses for said thiol compound

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11655368B2 (en) 2020-12-23 2023-05-23 Momentive Performance Materials Inc. Condensation curable composition comprising siloxane-imide crosslinker
US11535715B2 (en) 2020-12-23 2022-12-27 Momentive Performance Materials Inc. Siloxane-imide copolymer and addition curable composition comprising same
US11753507B2 (en) 2020-12-23 2023-09-12 Momentive Performance Materials Inc. Addition curable composition comprising siloxane-imide copolymers
US11466126B2 (en) 2020-12-23 2022-10-11 Momentive Performance Materials Inc. Condensation curable composition comprising siloxane-imide base polymer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116326A (en) * 1977-03-17 1978-10-11 Goldschmidt Ag Th Method of reacting organo siliceous compound having at least one siliconnnitrogen linkage with poly basic inorganic or organic acid unhydride
JP2001072768A (en) * 1999-09-03 2001-03-21 Yoshiyuki Oishi Production of polyimide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116326A (en) * 1977-03-17 1978-10-11 Goldschmidt Ag Th Method of reacting organo siliceous compound having at least one siliconnnitrogen linkage with poly basic inorganic or organic acid unhydride
JP2001072768A (en) * 1999-09-03 2001-03-21 Yoshiyuki Oishi Production of polyimide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052914A (en) * 2015-09-11 2017-03-16 信越化学工業株式会社 One terminal bis-trialkylsilyl aminopropyl silicone
CN112930352A (en) * 2018-10-31 2021-06-08 广荣化学株式会社 Silylamine compound and latent curing agent containing the same
CN112930352B (en) * 2018-10-31 2024-02-13 广荣化学株式会社 Silylamine compounds and latent curing agents containing the same
US11773207B2 (en) 2019-01-07 2023-10-03 Shikoku Chemicals Corporation Thiol compound, method for synthesizing same, and uses for said thiol compound

Also Published As

Publication number Publication date
JP4803371B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4803371B2 (en) (Poly) amido acid triorganosilyl ester and method for producing (poly) imide
Yin et al. Synthesis and characterization of novel polyimides derived from 1, 1-bis [4-(4′-aminophenoxy) phenyl]-1-[3 ″, 5 ″-bis (trifluoromethyl) phenyl]-2, 2, 2-trifluoroethane
Jeong et al. Synthesis and characterization of novel polyimides containing fluorine and phosphine oxide moieties
Ren et al. Synthesis and characterization of a novel heat resistant epoxy resin based on N, N′-bis (5-hydroxy-1-naphthyl) pyromellitic diimide
JP2019510117A (en) Bisphenol M diphthalonitrile ether resin, bisphenol P diphthalonitrile ether resin, production method thereof, resin blend, and two-component system
Kumar et al. Development and characterization of phosphorus-containing siliconized epoxy resin coatings
EP2033984B1 (en) Heat-curable polyimide silicone composition and a cured film therefrom
JPS6045561A (en) Novel imide and use for polyimide
Lin et al. Soluble high‐Tg polyetherimides with good flame retardancy based on an asymmetric phosphinated etherdiamine
Lin et al. Dietheramine from an alkaline-stable phosphinated bisphenol for soluble polyetherimides
JP2011173827A (en) Bisimide phenol derivative and method for producing the same, and polymer compound
Shah et al. Synthesis and characterisation of cycloaliphatic and aromatic amines based cardanol benzoxazines: A comparative study
JP2003183387A (en) Fluorine-containing alicylic diamine and polymer using the same
CN110317453A (en) Silicone-modified polyimides resin combination
JPH03103441A (en) Acetylene bis-phthalic acid compound and polyimide formed therefrom
KR20150088733A (en) Silane coupling agent and method for preparing the same, primer composition, and coating composition
Durga et al. Curing and thermal behaviour of diamide–diimide–diamines based on l-phenylalanine with epoxy blends containing phosphorus/silicon
Ghaemy et al. Organosoluble and thermally stable polyimides derived from a new diamine containing bulky-flexible triaryl pyridine pendent group
US20070282078A1 (en) Synthesis of aryl N-acylurea from aryl isocyanates or aryl carbodiimides for use as intermediate in novel sequential self-repetitive reaction (SSRR) to form amides, amide-imides and their polymers
Bhuvana et al. Synthesis and characterization of epoxy/amine terminated amide‐imide‐imide blends
JP3867983B2 (en) Diamine monomer having phenylethynyl group
JP7388296B2 (en) Silicon-containing tetracarboxylic dianhydride, its production method and polyimide resin
JPH09512582A (en) Poly (imide-ether)
JPH03277633A (en) Polyetherimide
JPH093044A (en) Fluorine-containing bismaleimide compound and thermosetting resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

R150 Certificate of patent or registration of utility model

Ref document number: 4803371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3