JP2007332043A - Two-photon-absorbing compound - Google Patents

Two-photon-absorbing compound Download PDF

Info

Publication number
JP2007332043A
JP2007332043A JP2006162583A JP2006162583A JP2007332043A JP 2007332043 A JP2007332043 A JP 2007332043A JP 2006162583 A JP2006162583 A JP 2006162583A JP 2006162583 A JP2006162583 A JP 2006162583A JP 2007332043 A JP2007332043 A JP 2007332043A
Authority
JP
Japan
Prior art keywords
group
photon absorption
compound
photon
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006162583A
Other languages
Japanese (ja)
Other versions
JP5130514B2 (en
Inventor
Jun Kawamata
純 川俣
Shoichiro Hirakawa
祥一郎 平川
Toshihiro Murafuji
俊宏 村藤
Kazuo Kasatani
和男 笠谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2006162583A priority Critical patent/JP5130514B2/en
Publication of JP2007332043A publication Critical patent/JP2007332043A/en
Application granted granted Critical
Publication of JP5130514B2 publication Critical patent/JP5130514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel compound, particularly a two-photon-absorbing compound. <P>SOLUTION: The compound having an azulene ring on its end is represented by general formula (1). R is hydrogen or a methylene group and the methylene groups are bonded together to form a ring; X and Y are each a hydrogen atom or a group selected from among an alkyl group, an alkoxy group and an amino group; and n is an integer of 0-2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、新規な化合物であり、特に2光子吸収断面積の大きい化合物に関する。   The present invention relates to a novel compound, and particularly to a compound having a large two-photon absorption cross section.

近年、3次の非線形光学材料の中でも、2光子吸収断面積の大きい有機化合物(以下「2光子吸収化合物」という)が関心を集めており、光デバイス及びバイオ関係で種々の応用が期待されている。   In recent years, organic compounds having a large two-photon absorption cross section (hereinafter referred to as “two-photon absorption compounds”) have been attracting interest among third-order nonlinear optical materials, and various applications are expected in optical devices and biotechnology. Yes.

有機化合物による非線形光学材料は、多く知られており、例えば、カルバゾール誘導体(特許文献1)、ヨードニウム塩構造を有する化合物(特許文献2)、テトラベンゾポルフィリン誘導体(特許文献3)、金属ポリフィリン類(特許文献4)、フタロシアン系化合物(特許文献5)、テトラアザポルフィン化合物(特許文献6)などがあげられる。中でも、効率よく2光子を吸収する有機材料、すなわち2光子吸収断面積の大きい有機材料として下記化合物が提案されている(特許文献7)。   Many nonlinear optical materials using organic compounds are known. For example, carbazole derivatives (Patent Document 1), compounds having an iodonium salt structure (Patent Document 2), tetrabenzoporphyrin derivatives (Patent Document 3), metal porphyrins ( Patent Document 4), phthalocyanine compounds (Patent Document 5), tetraazaporphine compounds (Patent Document 6), and the like. Among them, the following compound has been proposed as an organic material that efficiently absorbs two photons, that is, an organic material having a large two-photon absorption cross section (Patent Document 7).

Figure 2007332043
(X,Xは置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロ環基を表し、同一でも異なってもよく、R、R、RおよびRは、それぞれ独立に水素原子、または置換基を表しR、R、RおよびRのうちのいくつかが互いに結合して環を形成してもよく、nおよびmは2以上の場合、複数個のR、R,RおよびRは同一でも、それぞれ異なってもよく、nおよびmは、それぞれ独立に1〜4の整数を表す。)
一般に非線形光学材料は、印加する光電場の2乗、3乗等に比較する非線形の光学応答を示す物質で、2光子吸収をする、第二高調波や第三高調波等を発生する、2光子励起発光を生ずるなどの特性を示す。
Figure 2007332043
(X 1 and X 2 represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, which may be the same or different, and R 1 , R 2 , R 3 and R 4 are each independently A hydrogen atom or a substituent, and some of R 1 , R 2 , R 3 and R 4 may be bonded to each other to form a ring, and when n and m are 2 or more, a plurality of R 1 , R 2 , R 3 and R 4 may be the same or different, and n and m each independently represent an integer of 1 to 4.)
In general, a nonlinear optical material is a substance that exhibits a nonlinear optical response compared to the square of a photoelectric field to be applied, etc., and generates a second harmonic, a third harmonic, or the like that absorbs two photons. It shows characteristics such as photon excitation light emission.

2光子吸収とは、化合物が2つの光子を同時に吸収して、励起される現象である。すなわち、化合物の吸収帯が存在しないエネルギー領域で、2つの光子を同時に吸収し励起状態へと電子が遷移する現象を2光子吸収という。   Two-photon absorption is a phenomenon in which a compound is excited by simultaneously absorbing two photons. That is, a phenomenon in which two photons are simultaneously absorbed and electrons are transitioned to an excited state in an energy region where no compound absorption band exists is called two-photon absorption.

化合物が2光子吸収により励起された場合であっても、エネルギーを放出する段階においては、1光子吸収励起と同様に種々の形でエネルギーを放出する。例えば、失活過程において、蛍光、リン光や熱としてエネルギーを放出するもの、化合物の分子構造の変化によりエネルギーを消化するものなどがある。   Even when the compound is excited by two-photon absorption, energy is released in various forms at the stage of releasing energy, as in the case of one-photon absorption excitation. For example, there are those that release energy as fluorescence, phosphorescence or heat in the deactivation process, and those that digest energy by changing the molecular structure of the compound.

2光子吸収の効率は、印加する光電場の2乗に比例するため、2次元平面にレーザーを照射した場合、レーザースポットの中心部の電界強度の高い位置のみで、2光子の吸収が起こり、周辺部の電界強度の弱い部分では2光子の吸収は生じない状況を作り出すことができる。一方、3次元空間では、レーザー光をレンズで集光し、焦点の電界強度を高めることにより励起し、空間の一点で2光子吸収を起こさせ、焦点のみで2光子発光させたり、或いは高熱を生じさせて化学変化を起こさせるなど、光励起に対して高い空間分解能を与えることができる。このため、物体、特に透光性物体の内部の加工等を可能としたり、物体内部で特殊な発光をさせるなどができる。特に生体組織の造影(バイオイメージング)、フォトダイナミックセラピー、アップコンパージョンレージング等への応用は、光毒性、3次元空間分解能などの観点から、これまでの1光子励起よりも利点が多い。   Since the efficiency of two-photon absorption is proportional to the square of the applied photoelectric field, when a two-dimensional plane is irradiated with a laser, two-photon absorption occurs only at a position where the electric field strength is high at the center of the laser spot, It is possible to create a situation in which absorption of two photons does not occur in the peripheral portion where the electric field strength is weak. On the other hand, in a three-dimensional space, laser light is collected by a lens and excited by increasing the electric field strength at the focal point, causing two-photon absorption at one point in the space, causing two-photon emission only at the focal point, or high heat. High spatial resolution can be given to photoexcitation such as causing chemical change. For this reason, it is possible to process the inside of an object, particularly a translucent object, or to cause special light emission inside the object. In particular, application to imaging of biological tissue (bioimaging), photodynamic therapy, up-conversion lasing, etc. has many advantages over conventional one-photon excitation in terms of phototoxicity and three-dimensional spatial resolution.

しかし、生体内等で用いる場合、生体に対して、あまりに強い光を照射することは、生体組織の光による損傷を来たすこと、或いは2光子吸収化合物自体の劣化を生じるなどの悪影響のため、過度に強い光は使用できない。そこで、化合物の2光子吸収効率が高いこと及び2光子吸収による励起状態により発光や発熱の効率が高いことが望まれる。また、使用する化合物としては生体に無害でなければならないこと、生体組織への親和性があることなどの条件を満たす必要もある。   However, when used in a living body or the like, irradiating a living body with excessively strong light may cause excessive damage due to light damage to living tissue or deterioration of the two-photon absorption compound itself. Cannot use strong light. Therefore, it is desired that the two-photon absorption efficiency of the compound is high and the efficiency of light emission and heat generation is high due to the excited state by two-photon absorption. In addition, the compound to be used must satisfy conditions such as being harmless to the living body and having affinity for living tissue.

しかるに、かかる条件を満足する2光子吸収化合物は、現在の所ほとんど提案されていない。
特開2001−264828号 特開平10−325968 特開平9−179153号 特開平7−218939号 特開平7−218939号 特開平5−5916号 特開2003−183213号
However, two-photon absorption compounds that satisfy such conditions are hardly proposed at present.
JP 2001-264828 A JP-A-10-325968 JP-A-9-179153 JP-A-7-218939 JP-A-7-218939 JP-A-5-5916 JP 2003-183213 A

本発明は、上記現状に鑑み、生体への親和性がよい、しかも2光子吸収効率のよい、また励起状態での2光子発光等の効率のよい新規な2光子吸収化合物を提供することを目的とする。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a novel two-photon absorption compound having good affinity for a living body, good two-photon absorption efficiency, and high efficiency such as two-photon emission in an excited state. And

上記目的を達成するため、本発明の第1の態様は、下記一般式(1)で表される2光子吸収化合物である。   In order to achieve the above object, a first aspect of the present invention is a two-photon absorption compound represented by the following general formula (1).

Figure 2007332043
(但し、Rは水素又はメチレン基で、該メチレン基は互いに結合し、環を形成している。X、Yは、水素原子、アルキル基、アルコキシ基及びアミノ基から選ばれる基、nは0から2の整数を表す。)
更に本発明において好ましい態様は、上記第1の態様において、2つのRがメチレン基であり、且つ該メチレン基は互いに結合し、シクロペンタノン環を形成した化合物である。
Figure 2007332043
(However, R is hydrogen or a methylene group, and the methylene groups are bonded to each other to form a ring. X and Y are groups selected from a hydrogen atom, an alkyl group, an alkoxy group and an amino group, and n is 0. Represents an integer from 2 to 2.)
Further, a preferred embodiment of the present invention is a compound in which two Rs are methylene groups in the first embodiment, and the methylene groups are bonded to each other to form a cyclopentanone ring.

また別の態様としては、上記一般式(1)において、2つのRが水素である2光子吸収化合物である。   Another embodiment is a two-photon absorption compound in which two Rs are hydrogen in the general formula (1).

本発明の最大の特徴は、化合物の両端にアズレン環を有する点にある。   The greatest feature of the present invention is that it has an azulene ring at both ends of the compound.

アズレン自体、医薬品ともなり得るものであり、本発明の化合物は、一般に生体への親和性が高いと考えられる。   Azulene itself can be a pharmaceutical, and the compound of the present invention is generally considered to have a high affinity for a living body.

更に後述する実施例からも明らかなとおり、本発明のアズレン環を有する化合物は、同じ分子量を持つ通常の芳香族化合物である下記化学式(2)の物質よりもはるかに2光子吸収断面積が大きい特徴を有する。   Further, as will be apparent from the examples described later, the compound having an azulene ring of the present invention has a much larger two-photon absorption cross section than the substance of the following chemical formula (2) which is a normal aromatic compound having the same molecular weight. Has characteristics.

Figure 2007332043
本発明において、前記一般式(1)のX及びYは、水素原子又は置換基であって、特に電子供与性置換基である。一般にアミノ基、水酸基、アルキル基、アルコキシ基などである。なかでも、メチルアミノ基、エチルアミノ基、プロピルアミノ基、ブチルアミノ基などのモノアルキルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基などのジアルキルアミノ基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のアルコキシ基、メチル基、エチル基、プロピル基、ブチル基などのアルキル基が好ましく、特にジアルキルアミノ基、アルコキシ基及びアルキル基が高い吸収断面積を与える。勿論、各X及びYは同一の基であってもよいし、また任意に異なる基又は原子であってもよい。
Figure 2007332043
In the present invention, X and Y in the general formula (1) are a hydrogen atom or a substituent, particularly an electron donating substituent. Generally, an amino group, a hydroxyl group, an alkyl group, an alkoxy group and the like. Among them, monoalkylamino groups such as methylamino group, ethylamino group, propylamino group, and butylamino group, dialkylamino groups such as dimethylamino group, diethylamino group, dipropylamino group, and dibutylamino group, methoxy group, and ethoxy group Alkoxy groups such as a group, propoxy group and butoxy group, and alkyl groups such as a methyl group, an ethyl group, a propyl group and a butyl group are preferred, and particularly a dialkylamino group, an alkoxy group and an alkyl group give a high absorption cross section. Of course, each X and Y may be the same group or arbitrarily different groups or atoms.

本発明の化合物は、中央にカルボニル基を有し、両端のアズレン基が共役の二重結合で連結されていることが重要であり、交互に二重結合を持つ鎖状炭化水素であれば一応の効果を有するものではあるが、一般に前記一般式(1)で示されるnは0、1及び2の中から選ばれる(これを0から2と表現する)場合が好ましい。   It is important that the compound of the present invention has a carbonyl group at the center and the azulene groups at both ends are connected by conjugated double bonds. In general, it is preferable that n represented by the general formula (1) is selected from 0, 1 and 2 (represented as 0 to 2).

本発明は、新規な2光子吸収化合物であり、特にその両端にアズレン環が結合しているものであって、大きな2光子吸収断面積を有する。   The present invention is a novel two-photon absorption compound in which an azulene ring is bonded to both ends thereof, and has a large two-photon absorption cross section.

また、一般に生体への親和性が高いことから、生体内、例えば細胞内の状況探索や極部的発熱を利用した治療方法への展開が期待される。   In addition, since it generally has a high affinity for a living body, it is expected to expand into a treatment method utilizing in-vivo, for example, intracellular situation search and extreme heat generation.

本発明は、前記一般式(1)で表される化合物であり、これらの化合物を合成する手段は特に限定されない。通常の化学者が、該化合物を見た場合に行うであろう合成手段に従って合成すればよい。例えば、市販のアズレンに前記電子供与性置換基を常法により導入するか又はすることなく、ホルミル化し、これをシクロペンタノン、2.5ジ(エチリデン)シクロペンタノン、アセトン、ジアリルケトンなどと反応させ、例えば下記化学式(3)、(4)、(5)及び(6)に示す化合物等が得られる。   This invention is a compound represented by the said General formula (1), The means to synthesize | combine these compounds is not specifically limited. What is necessary is just to synthesize | combine according to the synthetic | combination means which a normal chemist will perform when seeing this compound. For example, a commercially available azulene may be formylated with or without introducing the electron-donating substituent by a conventional method, and this is converted to cyclopentanone, 2.5 di (ethylidene) cyclopentanone, acetone, diallyl ketone, and the like. By reacting, for example, compounds represented by the following chemical formulas (3), (4), (5) and (6) are obtained.

Figure 2007332043
以下に実施例を示すが、本発明はこれらに限定されるものではないし、また化合物の合成方法もこれらに限定されるものではない。
Figure 2007332043
Examples are shown below, but the present invention is not limited to these examples, and the method for synthesizing the compounds is not limited thereto.

(ホルミルアズレンの合成) (Synthesis of formylazulene)

Figure 2007332043
アルゴン雰囲気下、室温でアズレン(0.26g,2mmol)をベンゼン(8ml)に溶かしてDMF(0.31ml,4.0mmol)を加え、氷冷したでPOCl(0.37ml,4.0mmol)を徐々に滴下した。発熱が収まったら、溶液を85℃で2時間加熱還流した。反応溶液に飽和重曹水に加えてアルカリ性にし、CHClで抽出、無水硫酸ナトリウムで乾燥、濃縮してカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル=5/1)により分離精製した。紫色液体、収量0.31g、収率97.6%であった。
(α,α’−ジ(1−アズレニリデン)シクロペンタノンの合成)
Figure 2007332043
Under argon atmosphere, azulene (0.26 g, 2 mmol) was dissolved in benzene (8 ml) at room temperature, DMF (0.31 ml, 4.0 mmol) was added, and the mixture was cooled with ice and POCl 3 (0.37 ml, 4.0 mmol) was added. Was gradually added dropwise. When the exotherm subsided, the solution was heated to reflux at 85 ° C. for 2 hours. The reaction solution was made alkaline by adding saturated aqueous sodium bicarbonate, extracted with CHCl 3 , dried over anhydrous sodium sulfate, concentrated, and separated and purified by column chromatography (silica gel, hexane / ethyl acetate = 5/1). Purple liquid, yield 0.31 g, yield 97.6%.
(Synthesis of α, α'-di (1-azulenylidene) cyclopentanone)

Figure 2007332043
窒素雰囲気下、室温で1−ホルミルアズレン(0.33g,2mmol)とシクロペンタノン(0.08g,1mmol)をエタノール300mlに溶かして、飽和水酸化ナトリウム水溶液を1ml加え、室温で10時間攪拌した。−10℃で12時間放置し、得られた粗生成物をクロロホルムで再結晶した。深紫色針状晶、収量0.05g、収率13.9%であった。このものはNMRにより次のピークが得られたことから、α,α’−ジ(1−アズレニリデン)シクロペンタノンであることが確認された。
Figure 2007332043
In a nitrogen atmosphere, 1-formylazulene (0.33 g, 2 mmol) and cyclopentanone (0.08 g, 1 mmol) were dissolved in 300 ml of ethanol at room temperature, 1 ml of a saturated aqueous sodium hydroxide solution was added, and the mixture was stirred at room temperature for 10 hours. . The resulting crude product was recrystallized from chloroform by standing at -10 ° C for 12 hours. Deep purple needles, yield 0.05 g, yield 13.9%. This was confirmed to be α, α′-di (1-azulenylidene) cyclopentanone since the following peak was obtained by NMR.

HNMRスペクトル(溶媒:CDCl):3.28(4H,s),7.30(2H,t,J=9.7Hz),7.39(2H,t,J=9.9Hz),7.52(2H,d,J=4.2Hz),7.72(2H,t,J=9.8Hz),8.28(2H,d,J=4.2Hz),8.35(2H,s),8.36(2H,d,J=8.8Hz),8.87(2H,d,J=9.8Hz)
[2光子吸収断面積の評価方法]
本発明の化合物の2光子吸収断面積の評価は、M.Sheik−Bahae et.al.,IEEE J.Quantum Electronics 1990,26,760.記載の方法を参考に行なった。2光子吸収断面積測定用の光源には、再生増幅器を通したTi:sapphire パルスレーザーの光(パルス幅:120fs、繰り返し:1kHz、平均出力:0.4mW、ピークパワー:3.3GW)を用い、700nmから1000nmの波長範囲で2光子吸収断面積を測定することで、各化合物の2光子吸収断面積を得た。2光子吸収測定用の試料には、1×10−3の濃度でクロロホルムに化合物を溶かした溶液を用いた。
1 HNMR spectrum (solvent: CDCl 3 ): 3.28 (4H, s), 7.30 (2H, t, J = 9.7 Hz), 7.39 (2H, t, J = 9.9 Hz), 7 .52 (2H, d, J = 4.2 Hz), 7.72 (2H, t, J = 9.8 Hz), 8.28 (2H, d, J = 4.2 Hz), 8.35 (2H, s), 8.36 (2H, d, J = 8.8 Hz), 8.87 (2H, d, J = 9.8 Hz)
[Method for evaluating two-photon absorption cross section]
The evaluation of the two-photon absorption cross section of the compound of the present invention is described in M.M. Sheik-Bahae et. al. , IEEE J. Quantum Electronics 1990, 26, 760. The description was made with reference to the method described. As a light source for measuring the two-photon absorption cross section, Ti: sapphire pulse laser light (pulse width: 120 fs, repetition rate: 1 kHz, average output: 0.4 mW, peak power: 3.3 GW) passed through a regenerative amplifier is used. The two-photon absorption cross section of each compound was obtained by measuring the two-photon absorption cross section in the wavelength range of 700 nm to 1000 nm. As a sample for two-photon absorption measurement, a solution in which a compound was dissolved in chloroform at a concentration of 1 × 10 −3 was used.

本発明の化合物の2光子吸収断面積を上記方法にて測定し、得られた結果をGM単位(1GM=1×10−50cms/photon)で表1に示した。なお、表中に示した値は1光子吸収の吸収端波長より長波側で1光子吸収との共鳴が生じない波長領域に観測された2光子吸収帯における吸収断面積の最大値である。 The two-photon absorption cross section of the compound of the present invention was measured by the above method, and the obtained results are shown in Table 1 in GM units (1 GM = 1 × 10 −50 cm 4 s / photon). The value shown in the table is the maximum value of the absorption cross section in the two-photon absorption band observed in the wavelength region where resonance with one-photon absorption does not occur on the longer wave side than the absorption edge wavelength of one-photon absorption.

なお、本発明の2光子吸収化合物が、類似する他の化合物に比べ格段に2光子吸収断面積が大きいことを示すための比較例としてα,α’−ジ(1−ナフチリデン)シクロペンタノンについても、2光子吸収断面積を測定し、表1に示した。   Note that α, α′-di (1-naphthylidene) cyclopentanone is used as a comparative example to show that the two-photon absorption compound of the present invention has a much larger two-photon absorption cross-section than other similar compounds. Also, the two-photon absorption cross section was measured and shown in Table 1.

Figure 2007332043
Figure 2007332043

Claims (3)

下記一般式(1)で表される2光子吸収化合物。
Figure 2007332043
(但し、Rは水素又はメチレン基で、該メチレン基は互いに結合し、環を形成している。X、Yは、水素原子、アルキル基、アルコキシ基及びアミノ基から選ばれる基、nは0から2の整数を表す。)
A two-photon absorption compound represented by the following general formula (1).
Figure 2007332043
(However, R is hydrogen or a methylene group, and the methylene groups are bonded to each other to form a ring. X and Y are groups selected from a hydrogen atom, an alkyl group, an alkoxy group and an amino group, and n is 0. Represents an integer from 2 to 2.)
Rがメチレン基であり、互いに結合し、シクロペンタノン環を形成している請求項1記載の2光子吸収化合物。   2. The two-photon absorption compound according to claim 1, wherein R is a methylene group and is bonded to each other to form a cyclopentanone ring. Rが水素である請求項1記載の2光子吸収化合物。   The two-photon absorption compound according to claim 1, wherein R is hydrogen.
JP2006162583A 2006-06-12 2006-06-12 Two-photon absorption compound Active JP5130514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162583A JP5130514B2 (en) 2006-06-12 2006-06-12 Two-photon absorption compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162583A JP5130514B2 (en) 2006-06-12 2006-06-12 Two-photon absorption compound

Publications (2)

Publication Number Publication Date
JP2007332043A true JP2007332043A (en) 2007-12-27
JP5130514B2 JP5130514B2 (en) 2013-01-30

Family

ID=38931853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162583A Active JP5130514B2 (en) 2006-06-12 2006-06-12 Two-photon absorption compound

Country Status (1)

Country Link
JP (1) JP5130514B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014958A (en) * 2008-07-03 2010-01-21 Yamaguchi Univ Two photon absorbing film made of composite material composed of inorganic compound and organic compound

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183213A (en) * 2001-09-05 2003-07-03 Fuji Photo Film Co Ltd Non-resonant two-photon absorbing compound, non- resonant two-photon emission compound and non- resonant two-photon absorption inducing method and luminescent method using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183213A (en) * 2001-09-05 2003-07-03 Fuji Photo Film Co Ltd Non-resonant two-photon absorbing compound, non- resonant two-photon emission compound and non- resonant two-photon absorption inducing method and luminescent method using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012004551; Proseedings of the International Society for Optical Engineering 3798, 1999, 32-37 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014958A (en) * 2008-07-03 2010-01-21 Yamaguchi Univ Two photon absorbing film made of composite material composed of inorganic compound and organic compound

Also Published As

Publication number Publication date
JP5130514B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
Janiga et al. Quadrupolar, emission-tunable π-expanded 1, 4-dihydropyrrolo [3, 2-b] pyrroles–synthesis and optical properties
Li et al. Coumarin derivatives with enhanced two-photon absorption cross-sections
Yılmaz et al. The effect of charge transfer on the ultrafast and two-photon absorption properties of newly synthesized boron-dipyrromethene compounds
Zheng et al. Synthesis, two-and three-photon absorption, and optical limiting properties of fluorene-containing ferrocene derivatives
WO2013131235A1 (en) Two-photon fluorescent probe using naphthalene as matrix and preparation method and use thereof
Gu et al. Carbazole-based 1D and 2D hemicyanines: synthesis, two-photon absorption properties and application for two-photon photopolymerization 3D lithography
Teshima et al. Red fluorescence from tautomers of 2′-hydroxychalcones induced by intramolecular hydrogen atom transfer
CN113462187A (en) Heptamethine indocyanine dye and preparation method and application thereof
Guo et al. Morpholinyl dendrimer phthalocyanine: synthesis, photophysical properties and photoinduced intramolecular electron transfer
JP5130514B2 (en) Two-photon absorption compound
JP5803025B2 (en) Photochromic molecule
RU2621710C1 (en) Porphyrazine, gadolinius porphyrazine complex and their application
JP2009108249A (en) Intramolecular energy transfer material
Lin et al. Two-and three-photon absorption properties of fan-shaped dendrons derived from 2, 3, 8-trifunctionalized indenoquinoxaline units: synthesis and characterization
Yasin et al. Meso-Zn (ii) porphyrins of tailored functional groups for intensifying the photoacoustic signal
JP2014047139A (en) Naphthobisthiadiazole derivative and method of producing the same
An et al. Long-wavelength chromophores with thermally activated delayed fluorescence based on fluorescein derivatives
JP4244124B2 (en) Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, non-resonant two-photon absorption induction method, and non-resonant two-photon emission generation method
JP6249210B2 (en) Organic fluorescent material
CN115627082A (en) D-A-pi-A type benzothiadiazole functional dye and preparation method and application thereof
Lin et al. Synthesis and two-photon properties of a novel multi-branched chromophore with an unsymmetrically substituted scaffold derived from functionalized quinoxalinoid heterocycles
JP4627158B2 (en) Two-photon absorption material
Jaung Synthesis of new porphyrins with dicyanopyrazine moiety and their optical properties
CN104761578A (en) Rhodium tetraphenylporphyrin-aza-BODIPY-based near infrared absorption phosphorescence materials, and preparation method and application thereof
Yan et al. Synthesis, characterization and optical properties of a new heterocycle-based chromophore

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150