JP2007332043A - Two-photon-absorbing compound - Google Patents
Two-photon-absorbing compound Download PDFInfo
- Publication number
- JP2007332043A JP2007332043A JP2006162583A JP2006162583A JP2007332043A JP 2007332043 A JP2007332043 A JP 2007332043A JP 2006162583 A JP2006162583 A JP 2006162583A JP 2006162583 A JP2006162583 A JP 2006162583A JP 2007332043 A JP2007332043 A JP 2007332043A
- Authority
- JP
- Japan
- Prior art keywords
- group
- photon absorption
- compound
- photon
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
本発明は、新規な化合物であり、特に2光子吸収断面積の大きい化合物に関する。 The present invention relates to a novel compound, and particularly to a compound having a large two-photon absorption cross section.
近年、3次の非線形光学材料の中でも、2光子吸収断面積の大きい有機化合物(以下「2光子吸収化合物」という)が関心を集めており、光デバイス及びバイオ関係で種々の応用が期待されている。 In recent years, organic compounds having a large two-photon absorption cross section (hereinafter referred to as “two-photon absorption compounds”) have been attracting interest among third-order nonlinear optical materials, and various applications are expected in optical devices and biotechnology. Yes.
有機化合物による非線形光学材料は、多く知られており、例えば、カルバゾール誘導体(特許文献1)、ヨードニウム塩構造を有する化合物(特許文献2)、テトラベンゾポルフィリン誘導体(特許文献3)、金属ポリフィリン類(特許文献4)、フタロシアン系化合物(特許文献5)、テトラアザポルフィン化合物(特許文献6)などがあげられる。中でも、効率よく2光子を吸収する有機材料、すなわち2光子吸収断面積の大きい有機材料として下記化合物が提案されている(特許文献7)。 Many nonlinear optical materials using organic compounds are known. For example, carbazole derivatives (Patent Document 1), compounds having an iodonium salt structure (Patent Document 2), tetrabenzoporphyrin derivatives (Patent Document 3), metal porphyrins ( Patent Document 4), phthalocyanine compounds (Patent Document 5), tetraazaporphine compounds (Patent Document 6), and the like. Among them, the following compound has been proposed as an organic material that efficiently absorbs two photons, that is, an organic material having a large two-photon absorption cross section (Patent Document 7).
一般に非線形光学材料は、印加する光電場の2乗、3乗等に比較する非線形の光学応答を示す物質で、2光子吸収をする、第二高調波や第三高調波等を発生する、2光子励起発光を生ずるなどの特性を示す。
In general, a nonlinear optical material is a substance that exhibits a nonlinear optical response compared to the square of a photoelectric field to be applied, etc., and generates a second harmonic, a third harmonic, or the like that absorbs two photons. It shows characteristics such as photon excitation light emission.
2光子吸収とは、化合物が2つの光子を同時に吸収して、励起される現象である。すなわち、化合物の吸収帯が存在しないエネルギー領域で、2つの光子を同時に吸収し励起状態へと電子が遷移する現象を2光子吸収という。 Two-photon absorption is a phenomenon in which a compound is excited by simultaneously absorbing two photons. That is, a phenomenon in which two photons are simultaneously absorbed and electrons are transitioned to an excited state in an energy region where no compound absorption band exists is called two-photon absorption.
化合物が2光子吸収により励起された場合であっても、エネルギーを放出する段階においては、1光子吸収励起と同様に種々の形でエネルギーを放出する。例えば、失活過程において、蛍光、リン光や熱としてエネルギーを放出するもの、化合物の分子構造の変化によりエネルギーを消化するものなどがある。 Even when the compound is excited by two-photon absorption, energy is released in various forms at the stage of releasing energy, as in the case of one-photon absorption excitation. For example, there are those that release energy as fluorescence, phosphorescence or heat in the deactivation process, and those that digest energy by changing the molecular structure of the compound.
2光子吸収の効率は、印加する光電場の2乗に比例するため、2次元平面にレーザーを照射した場合、レーザースポットの中心部の電界強度の高い位置のみで、2光子の吸収が起こり、周辺部の電界強度の弱い部分では2光子の吸収は生じない状況を作り出すことができる。一方、3次元空間では、レーザー光をレンズで集光し、焦点の電界強度を高めることにより励起し、空間の一点で2光子吸収を起こさせ、焦点のみで2光子発光させたり、或いは高熱を生じさせて化学変化を起こさせるなど、光励起に対して高い空間分解能を与えることができる。このため、物体、特に透光性物体の内部の加工等を可能としたり、物体内部で特殊な発光をさせるなどができる。特に生体組織の造影(バイオイメージング)、フォトダイナミックセラピー、アップコンパージョンレージング等への応用は、光毒性、3次元空間分解能などの観点から、これまでの1光子励起よりも利点が多い。 Since the efficiency of two-photon absorption is proportional to the square of the applied photoelectric field, when a two-dimensional plane is irradiated with a laser, two-photon absorption occurs only at a position where the electric field strength is high at the center of the laser spot, It is possible to create a situation in which absorption of two photons does not occur in the peripheral portion where the electric field strength is weak. On the other hand, in a three-dimensional space, laser light is collected by a lens and excited by increasing the electric field strength at the focal point, causing two-photon absorption at one point in the space, causing two-photon emission only at the focal point, or high heat. High spatial resolution can be given to photoexcitation such as causing chemical change. For this reason, it is possible to process the inside of an object, particularly a translucent object, or to cause special light emission inside the object. In particular, application to imaging of biological tissue (bioimaging), photodynamic therapy, up-conversion lasing, etc. has many advantages over conventional one-photon excitation in terms of phototoxicity and three-dimensional spatial resolution.
しかし、生体内等で用いる場合、生体に対して、あまりに強い光を照射することは、生体組織の光による損傷を来たすこと、或いは2光子吸収化合物自体の劣化を生じるなどの悪影響のため、過度に強い光は使用できない。そこで、化合物の2光子吸収効率が高いこと及び2光子吸収による励起状態により発光や発熱の効率が高いことが望まれる。また、使用する化合物としては生体に無害でなければならないこと、生体組織への親和性があることなどの条件を満たす必要もある。 However, when used in a living body or the like, irradiating a living body with excessively strong light may cause excessive damage due to light damage to living tissue or deterioration of the two-photon absorption compound itself. Cannot use strong light. Therefore, it is desired that the two-photon absorption efficiency of the compound is high and the efficiency of light emission and heat generation is high due to the excited state by two-photon absorption. In addition, the compound to be used must satisfy conditions such as being harmless to the living body and having affinity for living tissue.
しかるに、かかる条件を満足する2光子吸収化合物は、現在の所ほとんど提案されていない。
本発明は、上記現状に鑑み、生体への親和性がよい、しかも2光子吸収効率のよい、また励起状態での2光子発光等の効率のよい新規な2光子吸収化合物を提供することを目的とする。 The present invention has been made in view of the above situation, and an object of the present invention is to provide a novel two-photon absorption compound having good affinity for a living body, good two-photon absorption efficiency, and high efficiency such as two-photon emission in an excited state. And
上記目的を達成するため、本発明の第1の態様は、下記一般式(1)で表される2光子吸収化合物である。 In order to achieve the above object, a first aspect of the present invention is a two-photon absorption compound represented by the following general formula (1).
更に本発明において好ましい態様は、上記第1の態様において、2つのRがメチレン基であり、且つ該メチレン基は互いに結合し、シクロペンタノン環を形成した化合物である。
Further, a preferred embodiment of the present invention is a compound in which two Rs are methylene groups in the first embodiment, and the methylene groups are bonded to each other to form a cyclopentanone ring.
また別の態様としては、上記一般式(1)において、2つのRが水素である2光子吸収化合物である。 Another embodiment is a two-photon absorption compound in which two Rs are hydrogen in the general formula (1).
本発明の最大の特徴は、化合物の両端にアズレン環を有する点にある。 The greatest feature of the present invention is that it has an azulene ring at both ends of the compound.
アズレン自体、医薬品ともなり得るものであり、本発明の化合物は、一般に生体への親和性が高いと考えられる。 Azulene itself can be a pharmaceutical, and the compound of the present invention is generally considered to have a high affinity for a living body.
更に後述する実施例からも明らかなとおり、本発明のアズレン環を有する化合物は、同じ分子量を持つ通常の芳香族化合物である下記化学式(2)の物質よりもはるかに2光子吸収断面積が大きい特徴を有する。 Further, as will be apparent from the examples described later, the compound having an azulene ring of the present invention has a much larger two-photon absorption cross section than the substance of the following chemical formula (2) which is a normal aromatic compound having the same molecular weight. Has characteristics.
本発明の化合物は、中央にカルボニル基を有し、両端のアズレン基が共役の二重結合で連結されていることが重要であり、交互に二重結合を持つ鎖状炭化水素であれば一応の効果を有するものではあるが、一般に前記一般式(1)で示されるnは0、1及び2の中から選ばれる(これを0から2と表現する)場合が好ましい。 It is important that the compound of the present invention has a carbonyl group at the center and the azulene groups at both ends are connected by conjugated double bonds. In general, it is preferable that n represented by the general formula (1) is selected from 0, 1 and 2 (represented as 0 to 2).
本発明は、新規な2光子吸収化合物であり、特にその両端にアズレン環が結合しているものであって、大きな2光子吸収断面積を有する。 The present invention is a novel two-photon absorption compound in which an azulene ring is bonded to both ends thereof, and has a large two-photon absorption cross section.
また、一般に生体への親和性が高いことから、生体内、例えば細胞内の状況探索や極部的発熱を利用した治療方法への展開が期待される。 In addition, since it generally has a high affinity for a living body, it is expected to expand into a treatment method utilizing in-vivo, for example, intracellular situation search and extreme heat generation.
本発明は、前記一般式(1)で表される化合物であり、これらの化合物を合成する手段は特に限定されない。通常の化学者が、該化合物を見た場合に行うであろう合成手段に従って合成すればよい。例えば、市販のアズレンに前記電子供与性置換基を常法により導入するか又はすることなく、ホルミル化し、これをシクロペンタノン、2.5ジ(エチリデン)シクロペンタノン、アセトン、ジアリルケトンなどと反応させ、例えば下記化学式(3)、(4)、(5)及び(6)に示す化合物等が得られる。 This invention is a compound represented by the said General formula (1), The means to synthesize | combine these compounds is not specifically limited. What is necessary is just to synthesize | combine according to the synthetic | combination means which a normal chemist will perform when seeing this compound. For example, a commercially available azulene may be formylated with or without introducing the electron-donating substituent by a conventional method, and this is converted to cyclopentanone, 2.5 di (ethylidene) cyclopentanone, acetone, diallyl ketone, and the like. By reacting, for example, compounds represented by the following chemical formulas (3), (4), (5) and (6) are obtained.
(ホルミルアズレンの合成) (Synthesis of formylazulene)
(α,α’−ジ(1−アズレニリデン)シクロペンタノンの合成)
(Synthesis of α, α'-di (1-azulenylidene) cyclopentanone)
1HNMRスペクトル(溶媒:CDCl3):3.28(4H,s),7.30(2H,t,J=9.7Hz),7.39(2H,t,J=9.9Hz),7.52(2H,d,J=4.2Hz),7.72(2H,t,J=9.8Hz),8.28(2H,d,J=4.2Hz),8.35(2H,s),8.36(2H,d,J=8.8Hz),8.87(2H,d,J=9.8Hz)
[2光子吸収断面積の評価方法]
本発明の化合物の2光子吸収断面積の評価は、M.Sheik−Bahae et.al.,IEEE J.Quantum Electronics 1990,26,760.記載の方法を参考に行なった。2光子吸収断面積測定用の光源には、再生増幅器を通したTi:sapphire パルスレーザーの光(パルス幅:120fs、繰り返し:1kHz、平均出力:0.4mW、ピークパワー:3.3GW)を用い、700nmから1000nmの波長範囲で2光子吸収断面積を測定することで、各化合物の2光子吸収断面積を得た。2光子吸収測定用の試料には、1×10−3の濃度でクロロホルムに化合物を溶かした溶液を用いた。
1 HNMR spectrum (solvent: CDCl 3 ): 3.28 (4H, s), 7.30 (2H, t, J = 9.7 Hz), 7.39 (2H, t, J = 9.9 Hz), 7 .52 (2H, d, J = 4.2 Hz), 7.72 (2H, t, J = 9.8 Hz), 8.28 (2H, d, J = 4.2 Hz), 8.35 (2H, s), 8.36 (2H, d, J = 8.8 Hz), 8.87 (2H, d, J = 9.8 Hz)
[Method for evaluating two-photon absorption cross section]
The evaluation of the two-photon absorption cross section of the compound of the present invention is described in M.M. Sheik-Bahae et. al. , IEEE J. Quantum Electronics 1990, 26, 760. The description was made with reference to the method described. As a light source for measuring the two-photon absorption cross section, Ti: sapphire pulse laser light (pulse width: 120 fs, repetition rate: 1 kHz, average output: 0.4 mW, peak power: 3.3 GW) passed through a regenerative amplifier is used. The two-photon absorption cross section of each compound was obtained by measuring the two-photon absorption cross section in the wavelength range of 700 nm to 1000 nm. As a sample for two-photon absorption measurement, a solution in which a compound was dissolved in chloroform at a concentration of 1 × 10 −3 was used.
本発明の化合物の2光子吸収断面積を上記方法にて測定し、得られた結果をGM単位(1GM=1×10−50cm4s/photon)で表1に示した。なお、表中に示した値は1光子吸収の吸収端波長より長波側で1光子吸収との共鳴が生じない波長領域に観測された2光子吸収帯における吸収断面積の最大値である。 The two-photon absorption cross section of the compound of the present invention was measured by the above method, and the obtained results are shown in Table 1 in GM units (1 GM = 1 × 10 −50 cm 4 s / photon). The value shown in the table is the maximum value of the absorption cross section in the two-photon absorption band observed in the wavelength region where resonance with one-photon absorption does not occur on the longer wave side than the absorption edge wavelength of one-photon absorption.
なお、本発明の2光子吸収化合物が、類似する他の化合物に比べ格段に2光子吸収断面積が大きいことを示すための比較例としてα,α’−ジ(1−ナフチリデン)シクロペンタノンについても、2光子吸収断面積を測定し、表1に示した。 Note that α, α′-di (1-naphthylidene) cyclopentanone is used as a comparative example to show that the two-photon absorption compound of the present invention has a much larger two-photon absorption cross-section than other similar compounds. Also, the two-photon absorption cross section was measured and shown in Table 1.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006162583A JP5130514B2 (en) | 2006-06-12 | 2006-06-12 | Two-photon absorption compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006162583A JP5130514B2 (en) | 2006-06-12 | 2006-06-12 | Two-photon absorption compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007332043A true JP2007332043A (en) | 2007-12-27 |
JP5130514B2 JP5130514B2 (en) | 2013-01-30 |
Family
ID=38931853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006162583A Active JP5130514B2 (en) | 2006-06-12 | 2006-06-12 | Two-photon absorption compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5130514B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010014958A (en) * | 2008-07-03 | 2010-01-21 | Yamaguchi Univ | Two photon absorbing film made of composite material composed of inorganic compound and organic compound |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003183213A (en) * | 2001-09-05 | 2003-07-03 | Fuji Photo Film Co Ltd | Non-resonant two-photon absorbing compound, non- resonant two-photon emission compound and non- resonant two-photon absorption inducing method and luminescent method using the same |
-
2006
- 2006-06-12 JP JP2006162583A patent/JP5130514B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003183213A (en) * | 2001-09-05 | 2003-07-03 | Fuji Photo Film Co Ltd | Non-resonant two-photon absorbing compound, non- resonant two-photon emission compound and non- resonant two-photon absorption inducing method and luminescent method using the same |
Non-Patent Citations (1)
Title |
---|
JPN6012004551; Proseedings of the International Society for Optical Engineering 3798, 1999, 32-37 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010014958A (en) * | 2008-07-03 | 2010-01-21 | Yamaguchi Univ | Two photon absorbing film made of composite material composed of inorganic compound and organic compound |
Also Published As
Publication number | Publication date |
---|---|
JP5130514B2 (en) | 2013-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Janiga et al. | Quadrupolar, emission-tunable π-expanded 1, 4-dihydropyrrolo [3, 2-b] pyrroles–synthesis and optical properties | |
Li et al. | Coumarin derivatives with enhanced two-photon absorption cross-sections | |
Yılmaz et al. | The effect of charge transfer on the ultrafast and two-photon absorption properties of newly synthesized boron-dipyrromethene compounds | |
Zheng et al. | Synthesis, two-and three-photon absorption, and optical limiting properties of fluorene-containing ferrocene derivatives | |
WO2013131235A1 (en) | Two-photon fluorescent probe using naphthalene as matrix and preparation method and use thereof | |
Gu et al. | Carbazole-based 1D and 2D hemicyanines: synthesis, two-photon absorption properties and application for two-photon photopolymerization 3D lithography | |
Teshima et al. | Red fluorescence from tautomers of 2′-hydroxychalcones induced by intramolecular hydrogen atom transfer | |
CN113462187A (en) | Heptamethine indocyanine dye and preparation method and application thereof | |
Guo et al. | Morpholinyl dendrimer phthalocyanine: synthesis, photophysical properties and photoinduced intramolecular electron transfer | |
JP5130514B2 (en) | Two-photon absorption compound | |
JP5803025B2 (en) | Photochromic molecule | |
RU2621710C1 (en) | Porphyrazine, gadolinius porphyrazine complex and their application | |
JP2009108249A (en) | Intramolecular energy transfer material | |
Lin et al. | Two-and three-photon absorption properties of fan-shaped dendrons derived from 2, 3, 8-trifunctionalized indenoquinoxaline units: synthesis and characterization | |
Yasin et al. | Meso-Zn (ii) porphyrins of tailored functional groups for intensifying the photoacoustic signal | |
JP2014047139A (en) | Naphthobisthiadiazole derivative and method of producing the same | |
An et al. | Long-wavelength chromophores with thermally activated delayed fluorescence based on fluorescein derivatives | |
JP4244124B2 (en) | Non-resonant two-photon absorption material, non-resonant two-photon light-emitting material, non-resonant two-photon absorption induction method, and non-resonant two-photon emission generation method | |
JP6249210B2 (en) | Organic fluorescent material | |
CN115627082A (en) | D-A-pi-A type benzothiadiazole functional dye and preparation method and application thereof | |
Lin et al. | Synthesis and two-photon properties of a novel multi-branched chromophore with an unsymmetrically substituted scaffold derived from functionalized quinoxalinoid heterocycles | |
JP4627158B2 (en) | Two-photon absorption material | |
Jaung | Synthesis of new porphyrins with dicyanopyrazine moiety and their optical properties | |
CN104761578A (en) | Rhodium tetraphenylporphyrin-aza-BODIPY-based near infrared absorption phosphorescence materials, and preparation method and application thereof | |
Yan et al. | Synthesis, characterization and optical properties of a new heterocycle-based chromophore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20060620 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081014 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120406 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121009 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |