JP2007331411A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2007331411A
JP2007331411A JP2006162081A JP2006162081A JP2007331411A JP 2007331411 A JP2007331411 A JP 2007331411A JP 2006162081 A JP2006162081 A JP 2006162081A JP 2006162081 A JP2006162081 A JP 2006162081A JP 2007331411 A JP2007331411 A JP 2007331411A
Authority
JP
Japan
Prior art keywords
tire
groove
lug groove
lug
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006162081A
Other languages
Japanese (ja)
Other versions
JP4971694B2 (en
Inventor
Koyo Kiwaki
幸洋 木脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006162081A priority Critical patent/JP4971694B2/en
Publication of JP2007331411A publication Critical patent/JP2007331411A/en
Application granted granted Critical
Publication of JP4971694B2 publication Critical patent/JP4971694B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire for compatibly attaining eccentric wear resistance and hydroplaning resistance resulting from the structure of the tire. <P>SOLUTION: The pneumatic tire comprises a belt layer provided on the tire-radial-direction outside of a crown portion of a carcass ply toridally extending between a pair of bead cores, a tread part provided on the tire-radial-direction outside beyond the belt layer and having a plurality of land trains partitioned with a plurality of peripheral grooves extending to a tire peripheral direction, a plurality of first lug grooves provided in at least one of the land trains between the peripheral grooves on the tire-cross-direction outside, and a plurality of second lug grooves provided therein which have greater angles to the tire peripheral direction than the first lug grooves and different widths from the first lug grooves. It compatibly attains eccentric wear resistance and hydroplaning resistance resulting from the structure of the tire. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空気入りタイヤに関するものであり、一つのトレッドパターンを幾つかのサイズでラインアップする際に、そのタイヤの構造上の特徴によってトレッド部に配置される溝形状を設計変更することで、同一の商品系列を持ちつつ構造特有の問題を解決しようとするものである。   The present invention relates to a pneumatic tire. When a single tread pattern is lined up in several sizes, the design of the groove shape arranged in the tread portion is changed according to the structural characteristics of the tire. It is intended to solve the structure-specific problems while having the same product line.

従来の空気入りタイヤの代表的なトレッドパターンは、タイヤ周方向に対する角度が夫々異なる2種類のラグ溝が同一の陸部列上に存在する場合に、それらのラグ溝の溝幅の関係がタイヤサイズラインアップ上のどのサイズでも変わることがないが、タイヤの構造は、タイヤに対する路面からの入力の違いによって、扁平率の高いものに対して低いものは、周方向スパイラルベルトを追加したり、交錯スチールベルトの枚数を増やしたりする。(例えば、特許文献1)
特開平08−142612号公報
A typical tread pattern of a conventional pneumatic tire is that when two types of lug grooves having different angles with respect to the tire circumferential direction exist on the same land portion row, the relationship between the groove widths of these lug grooves is There is no change in any size on the size lineup, but due to the difference in input from the road surface to the tire, the one with low flatness compared to the one with high flatness can add a circumferential spiral belt, Increase the number of crossed steel belts. (For example, Patent Document 1)
Japanese Patent Laid-Open No. 08-142612

さて、通常、同一の商品系列で複数のサイズをラインアップする際に、トレッドパターンは相似形のものを適用し、タイヤの構造は路面からの入力の違いにより変更してラインアップしている。
しかしながら、扁平率の高いタイヤにおいては、タイヤとしてのばね剛性が低いため、ベルトの枚数を少なくすることで面外剛性を低下させて操縦安定性能を確保するが、このような構造の場合には、接地形状が丸い(センターとショルダーとの接地長の差が大きい)接地形状となるため、耐ハイドロプレーニング性能は高いが、耐偏摩耗性能が不利な状況(肩落ち摩耗が生じ易い状況)となる問題点がある。
また、扁平率の低いタイヤにおいては、タイヤとしてのばね剛性が高いため、ベルトの枚数を多くすることで面外剛性を向上させて操縦安定性能を確保するが、このような構造の場合には、接地形状が四角い(センターとショルダーとの接地長の差が小さい)接地形状となるため、耐偏摩耗性能は高いが、耐ハイドロプレーニング性能が不利な状況となる問題点がある。
Now, when a plurality of sizes are lined up in the same product series, a similar tread pattern is applied, and the tire structure is changed according to the difference in input from the road surface.
However, in tires with a high flatness ratio, the spring stiffness as a tire is low, so reducing the number of belts reduces the out-of-plane rigidity and ensures steering stability performance. Since the contact shape is round (the difference in contact length between the center and the shoulder is large), the hydroplaning performance is high, but the uneven wear resistance is disadvantageous (the situation where shoulder drop wear is likely to occur) There is a problem.
Also, tires with low flatness have high spring rigidity as tires, so increasing the number of belts improves out-of-plane rigidity and ensures steering stability performance. Since the ground contact shape is a square shape (the difference in contact length between the center and the shoulder is small), the uneven wear resistance is high, but the hydroplaning performance is disadvantageous.

このため、前述したような溝の配設態様を採用した空気入りタイヤにおいても、タイヤの構造によっては偏摩耗が発生しやすく、またハイドロプレーニング性能が発揮できないという問題があった。   For this reason, even in a pneumatic tire that employs the groove arrangement as described above, there is a problem that uneven wear tends to occur depending on the structure of the tire and the hydroplaning performance cannot be exhibited.

本発明の目的は、上記事実を考慮して、タイヤの構造に起因する耐偏摩耗性能と耐ハイドロプレーニング性能とを両立させた空気入りタイヤを提供することを目的とする。   In view of the above facts, an object of the present invention is to provide a pneumatic tire having both uneven wear resistance and hydroplaning performance due to the tire structure.

上記目的を達成するために本発明の請求項1に係る空気入りタイヤは、一対のビードコアの間をトロイド状に延びるカーカスプライのクラウン部のタイヤ半径方向外側に設けられたベルト層と、前記ベルト層よりタイヤ半径方向外側に設けられ、タイヤ周方向に延びる複数本の周方向溝によって区画された複数の陸部列を有するトレッド部と、タイヤ幅方向最外側の前記周方向溝の間の前記陸部列の少なくとも1列に設けられた複数の第1のラグ溝と、前記第1のラグ溝が設けられた前記陸部列に設けられ、タイヤ周方向に対する角度が前記第1のラグ溝以上であり、溝幅が前記第1のラグ溝と異なる複数の第2のラグ溝と、を備えることを特徴とする。   In order to achieve the above object, a pneumatic tire according to claim 1 of the present invention includes a belt layer provided on the outer side in the tire radial direction of a crown portion of a carcass ply extending in a toroidal shape between a pair of bead cores, and the belt Between the tread portion having a plurality of land portion rows provided on the outer side in the tire radial direction from the layer and partitioned by a plurality of circumferential grooves extending in the tire circumferential direction, and the circumferential groove on the outermost side in the tire width direction A plurality of first lug grooves provided in at least one of the land portion rows and the land portion row provided with the first lug grooves, the angle with respect to the tire circumferential direction being the first lug grooves A plurality of second lug grooves having a groove width different from that of the first lug groove are provided.

次に、請求項1に記載の空気入りタイヤの作用効果について説明する。
タイヤ周方向に対する角度から、第1のラグ溝は主に耐ハイドロプレーニング性能に寄与し、第2のラグ溝は主に耐偏摩耗性能(耐肩落ち摩耗性能)に寄与する。第1のラグ溝及び第2のラグ溝をタイヤ幅方向最外側の周方向溝の間(以下、トレッドセンター部と称する。)の陸部列の少なくとも1列に設けたことで、接地形状が丸くなる構造のタイヤにおいては、第2のラグ溝がトレッドセンター部の陸部列のブロック剛性を低下させ、トレッドセンター部の摩耗量とトレッドショルダー部(トレッドセンター部と両トレッド接地端との間)の摩耗量とをバランスさせて耐偏摩耗性能(耐肩落ち摩耗性能)を改良し、接地形状が四角くなる構造のタイヤにおいては、第1のラグ溝がウエット路面走行時のタイヤ進行方向の路面の水を周方向溝に排除するのに寄与して、耐ハイドロプレーニング性能を改良する。
以上のことから、第1のラグ溝及び第2のラグ溝によって、タイヤの構造に起因する耐偏摩耗性能と耐ハイドロプレーニング性能とが両立される。
また、第1のラグ溝及び第2のラグ溝の夫々の溝幅をタイヤの構造によって設計変更することで、更に耐ハイドロプレーニング性能と耐偏摩耗性能とを改良でき、これら二つの性能の両立を更に図ることができる。
Next, the effect of the pneumatic tire according to claim 1 will be described.
From the angle with respect to the tire circumferential direction, the first lug groove mainly contributes to the hydroplaning performance, and the second lug groove mainly contributes to the uneven wear resistance (shoulder wear resistance). By providing the first lug groove and the second lug groove in at least one row of the land portion rows between the outermost circumferential grooves in the tire width direction (hereinafter referred to as a tread center portion), the ground contact shape is In a tire with a rounded structure, the second lug groove reduces the block rigidity of the land portion row of the tread center portion, and the amount of wear of the tread center portion and the tread shoulder portion (between the tread center portion and both tread ground contact ends). ) To improve the uneven wear resistance (shoulder wear resistance), and in tires with a structure where the ground contact shape is square, the first lug groove is in the tire traveling direction when traveling on a wet road surface. Contributes to eliminating road surface water into the circumferential grooves and improves hydroplaning performance.
From the above, the first lug groove and the second lug groove achieve both unbalanced wear resistance and hydroplaning performance due to the tire structure.
In addition, by changing the design of the width of each of the first lug groove and the second lug groove according to the structure of the tire, it is possible to further improve the hydroplaning performance and uneven wear resistance performance. Can be further achieved.

なお、ここで言う、トレッド接地端とは、空気入りタイヤをJATMA YEAR BOOK(2006年度版、日本自動車タイヤ協会規格)に規定されている標準リムに装着し、JATMA YEAR BOOKでの適用サイズ・プライレーティングにおける最大負荷能力(内圧−負荷能力対応表の太字荷重)に対応する空気圧(最大空気圧)の100%を内圧として充填し、最大負荷能力を負荷したときのタイヤ幅方向最外の接地部分を指す。なお、使用地又は製造地においてTRA規格、ETRTO規格が適用される場合は各々の規格に従う。   Here, the tread grounding end means that a pneumatic tire is mounted on a standard rim specified in JATMA YEAR BOOK (2006 edition, Japan Automobile Tire Association Standard) and applied size / ply in JATMA YEAR BOOK Filling 100% of the air pressure (maximum air pressure) corresponding to the maximum load capacity in the rating (internal pressure-load capacity correspondence table in bold) as the internal pressure, and the outermost ground contact part in the tire width direction when the maximum load capacity is loaded Point to. In addition, when TRA standard and ETRTO standard are applied in a use place or a manufacturing place, it follows each standard.

本発明の請求項2に係る空気入りタイヤは、請求項1に記載の空気入りタイヤにおいて、前記第1のラグ溝のタイヤ周方向となす角度が0〜45°であり、前記第2のラグ溝のタイヤ周方向となす角度が45〜90°であることを特徴とする。   A pneumatic tire according to a second aspect of the present invention is the pneumatic tire according to the first aspect, wherein an angle formed by the tire circumferential direction of the first lug groove is 0 to 45 °, and the second lug The angle between the groove and the tire circumferential direction is 45 to 90 °.

次に、請求項2に記載の空気入りタイヤの作用効果について説明する。
第1のラグ溝のタイヤ周方向に対する角度が45°を超えると、タイヤ周方向に対する角度が大きくなり過ぎて耐ハイドロプレーニング性能を改良することができない。
また、第2のラグ溝のタイヤ周方向に対する角度が45°に満たないと、陸部列の角が鋭角になり過ぎて耐偏摩耗性能が悪化する。
従って、第1のラグ溝のタイヤ周方向となす角度が0〜45°であり、第2のラグ溝のタイヤ周方向となす角度が45〜90°であることが好ましい。
Next, the effect of the pneumatic tire of Claim 2 is demonstrated.
If the angle of the first lug groove with respect to the tire circumferential direction exceeds 45 °, the angle with respect to the tire circumferential direction becomes too large to improve the hydroplaning performance.
Further, if the angle of the second lug groove with respect to the tire circumferential direction is less than 45 °, the corner of the land portion row becomes too acute and the uneven wear resistance performance deteriorates.
Therefore, it is preferable that the angle between the first lug groove and the tire circumferential direction is 0 to 45 °, and the angle between the second lug groove and the tire circumferential direction is 45 to 90 °.

本発明の請求項3に係る空気入りタイヤは、請求項1又は2に記載の空気入りタイヤにおいて、前記第1のラグ溝より前記第2のラグ溝の溝幅が広いことを特徴とする。   The pneumatic tire according to claim 3 of the present invention is characterized in that, in the pneumatic tire according to claim 1 or 2, the groove width of the second lug groove is wider than that of the first lug groove.

次に、請求項3に記載の空気入りタイヤの作用効果について説明する。
通常、ベルト層のみのベルト構造の場合には、接地形状が丸い接地形状となりやすく、第2のラグ溝の溝幅を第1のラグ溝の溝幅より広くとることで、トレッドセンター部の陸部列のブロック剛性が効率良く低下してトレッドセンター部の摩耗量とトレッドショルダー部の摩耗量とがバランスされ、耐偏摩耗性能(耐肩落ち摩耗性能)が更に改良される。
Next, the effect of the pneumatic tire according to claim 3 will be described.
Usually, in the case of a belt structure with only a belt layer, the grounding shape tends to be a round grounding shape, and the width of the second lug groove is wider than the width of the first lug groove, so that The block rigidity of the row is efficiently reduced to balance the wear amount of the tread center portion and the wear amount of the tread shoulder portion, thereby further improving the uneven wear resistance (shoulder fall wear resistance).

本発明の請求項4に係る空気入りタイヤは、請求項1又は2に記載の空気入りタイヤにおいて、前記ベルト層と前記トレッド部との間にベルト補強層を有し、前記第1のラグ溝より前記第2のラグ溝の溝幅が狭いことを特徴とする。   A pneumatic tire according to a fourth aspect of the present invention is the pneumatic tire according to the first or second aspect, wherein the pneumatic tire has a belt reinforcing layer between the belt layer and the tread portion, and the first lug groove. Further, the groove width of the second lug groove is narrow.

次に、請求項4に記載の空気入りタイヤの作用効果について説明する。
ベルト補強層が設けられているベルト構造の場合には、ベルト補強層がない場合と比較して接地形状が四角い接地形状となるため、第1のラグ溝の溝幅を第2のラグ溝の溝幅より広くとることで、ウエット路面走行時にタイヤ進行方向の路面の水を周方向溝に排除する量が増加するため、耐ハイドロプレーニング性能が更に改良される。
Next, the effect of the pneumatic tire of Claim 4 is demonstrated.
In the case of the belt structure in which the belt reinforcing layer is provided, the grounding shape is a square grounding shape as compared with the case where the belt reinforcing layer is not provided. Therefore, the groove width of the first lug groove is set to be equal to that of the second lug groove. By taking it wider than the groove width, the amount of water on the road surface in the tire advancing direction being excluded to the circumferential groove when running on a wet road surface is increased, so that the hydroplaning performance is further improved.

本発明の空気入りタイヤは、タイヤの構造に起因する耐偏摩耗性能と耐ハイドロプレーニング性能とを両立できる。   The pneumatic tire of the present invention can achieve both uneven wear resistance and hydroplaning performance due to the tire structure.

[第1の実施形態]
(構成)次に、本発明の空気入りタイヤの第1の実施形態を図1及び図2にしたがって説明する。なお、本実施形態の空気入りタイヤ10(以下、単にタイヤ10と記載する。)は、タイヤサイズが155/70R13のサマータイヤである。
図1に示すように、このタイヤ10は一対のビードコア12と、このビードコア12にトロイド状に延びて跨るカーカスプライ14と、カーカスプライ14のクラウン部のタイヤ半径方向外側に設けられたベルト層16と、ベルト層16よりタイヤ半径方向外側に設けられたトレッド部18とを備えている。なお、本実施形態のベルト層16は、複数本のスチールコードを平行に並べて被覆ゴム中に埋設して形成されたベルトプライ16Aを2枚重ねて形成されている。
[First Embodiment]
(Configuration) Next, a first embodiment of the pneumatic tire of the present invention will be described with reference to FIGS. Note that the pneumatic tire 10 of the present embodiment (hereinafter simply referred to as the tire 10) is a summer tire having a tire size of 155 / 70R13.
As shown in FIG. 1, the tire 10 includes a pair of bead cores 12, a carcass ply 14 extending and straddling the bead core 12 in a toroid shape, and a belt layer 16 provided on the outer side in the tire radial direction of the crown portion of the carcass ply 14. And a tread portion 18 provided on the outer side in the tire radial direction from the belt layer 16. The belt layer 16 of the present embodiment is formed by stacking two belt plies 16A formed by arranging a plurality of steel cords in parallel and embedding them in a covering rubber.

(周方向溝、陸部列)
図2に示すように、タイヤ10のトレッドパターンは、トレッドパターンの左右両側が赤道面CL(一点鎖線)上の一点を対称点に点対称形状となる回転方向が指定されないトレッドパターンである。なお、ここで言う上、下、左、右の方向を表す表現は、図面に向かって上、下、左、右の方向を意味する。
トレッド部18のトレッド踏面18Sには、赤道面CL上に設けられて赤道面CLに沿って延びる周方向溝20が設けられている。この周方向溝20の左側には、タイヤ周方向に延びる周方向溝22Lが設けられ、右側には、タイヤ周方向に延びる周方向溝22Rが設けられている。この周方向溝20と周方向溝22L及び22Rとの間に形成される陸部列を夫々センター陸部列24L及び24Rと称し、周方向溝22L及び22Rよりタイヤ幅方向外側に形成される陸部列を夫々ショルダー陸部列26L及び26Rと称する。
なお、トレッド踏面18Sとは、両トレッド接地端18E(図2では二点鎖線)の間の領域を指している。また、周方向溝22L及び22Rの間の領域をトレッドセンター部40と称し、トレッドセンター部40と両トレッド接地端18Eの間の領域をトレッドショルダー部42と称する。
(Circumferential groove, land part row)
As shown in FIG. 2, the tread pattern of the tire 10 is a tread pattern in which a rotational direction in which the left and right sides of the tread pattern are symmetrical with respect to one point on the equator plane CL (one-dot chain line) is not specified. In addition, the expression showing the upper, lower, left, and right directions here means the upper, lower, left, and right directions as viewed in the drawing.
A tread tread surface 18S of the tread portion 18 is provided with a circumferential groove 20 provided on the equator plane CL and extending along the equator plane CL. A circumferential groove 22L extending in the tire circumferential direction is provided on the left side of the circumferential groove 20, and a circumferential groove 22R extending in the tire circumferential direction is provided on the right side. The land portion rows formed between the circumferential groove 20 and the circumferential grooves 22L and 22R are referred to as center land portion rows 24L and 24R, respectively, and the land formed on the outer side in the tire width direction from the circumferential grooves 22L and 22R. The partial rows are referred to as shoulder land portion rows 26L and 26R, respectively.
The tread surface 18S indicates a region between the tread grounding ends 18E (two-dot chain line in FIG. 2). A region between the circumferential grooves 22L and 22R is referred to as a tread center portion 40, and a region between the tread center portion 40 and both tread grounding ends 18E is referred to as a tread shoulder portion 42.

(ラグ溝)
図2に示すように、センター陸部列24Lには、左上から右下に曲線状に延びるラグ溝28Lが設けられている。ラグ溝28Lの一端は周方向溝22Lと連通し、他端はセンター陸部列24L内で終端している。センター陸部列24Lには左上から右下に直線状に延びるラグ溝30Lが設けられている。ラグ溝30Lのタイヤ周方向に対する角度は、ラグ溝28L以上であり、ラグ溝30Lの一端は周方向溝22Lと連通し、他端はラグ溝28Lと連通している。
また、ラグ溝30Lの溝幅は、ラグ溝28Lの溝幅より広く設定され、ラグ溝28Lのタイヤ周方向に対する角度は、0〜45°を満たすことが好ましく、ラグ溝30Lのタイヤ周方向に対する角度は、45〜90°を満たすことが好ましい。
(Lug groove)
As shown in FIG. 2, the center land portion row 24L is provided with a lug groove 28L extending in a curved shape from the upper left to the lower right. One end of the lug groove 28L communicates with the circumferential groove 22L, and the other end terminates in the center land portion row 24L. The center land portion row 24L is provided with a lug groove 30L extending linearly from the upper left to the lower right. The angle of the lug groove 30L with respect to the tire circumferential direction is equal to or greater than the lug groove 28L. One end of the lug groove 30L communicates with the circumferential groove 22L and the other end communicates with the lug groove 28L.
Further, the groove width of the lug groove 30L is set wider than the groove width of the lug groove 28L, and the angle of the lug groove 28L with respect to the tire circumferential direction preferably satisfies 0 to 45 °, and the lug groove 30L with respect to the tire circumferential direction The angle preferably satisfies 45 to 90 °.

センター陸部列24Rには、右下から左上に曲線状に延びるラグ溝28Rが設けられている。ラグ溝28Rの一端は周方向溝22Rと連通し、他端はセンター陸部列24L内で終端している。センター陸部列24Rには右下から左上に直線状に延びるラグ溝30Rが設けられている。ラグ溝30Rのタイヤ周方向に対する角度は、ラグ溝28R以上であり、ラグ溝30Rの一端は周方向溝22Rと連通し、他端はラグ溝28Rと連通している。
また、ラグ溝30Rの溝幅は、ラグ溝28Rの溝幅より広く設定され、ラグ溝28Rのタイヤ周方向に対する角度は、0〜45°を満たすことが好ましく、ラグ溝30Rのタイヤ周方向に対する角度は、45〜90°を満たすことが好ましい。
The center land portion row 24R is provided with a lug groove 28R extending in a curved shape from the lower right to the upper left. One end of the lug groove 28R communicates with the circumferential groove 22R, and the other end terminates in the center land portion row 24L. The center land portion row 24R is provided with a lug groove 30R extending linearly from the lower right to the upper left. The angle of the lug groove 30R with respect to the tire circumferential direction is equal to or greater than the lug groove 28R. One end of the lug groove 30R communicates with the circumferential groove 22R and the other end communicates with the lug groove 28R.
Further, the groove width of the lug groove 30R is set wider than the groove width of the lug groove 28R, and the angle of the lug groove 28R with respect to the tire circumferential direction preferably satisfies 0 to 45 °, and the lug groove 30R with respect to the tire circumferential direction is satisfied. The angle preferably satisfies 45 to 90 °.

ショルダー陸部列26Lには、タイヤ幅方向に延びるラグ溝32Lが設けられている。ラグ溝32Lの一端は周方向溝22Lと連通し、他端はショルダー陸部列26L内で終端している。
ショルダー陸部列26Rには、タイヤ幅方向に延びるラグ溝32Rが設けられている。ラグ溝32Rの一端は周方向溝22Rと連通し、他端はショルダー陸部列26R内で終端している。
The shoulder land portion row 26L is provided with lug grooves 32L extending in the tire width direction. One end of the lug groove 32L communicates with the circumferential groove 22L, and the other end terminates in the shoulder land portion row 26L.
The shoulder land portion row 26R is provided with lug grooves 32R extending in the tire width direction. One end of the lug groove 32R communicates with the circumferential groove 22R, and the other end terminates in the shoulder land portion row 26R.

(作用)次に第1の実施形態のタイヤ10の作用を説明する。
タイヤ10の扁平率は70%であり、ベルト構造はベルトプライ16Aを2枚重ね合わせたのみのため、接地形状が図3に示すような丸い接地形状となる。即ち、タイヤ10の接地形状におけるセンター(赤道面CL)の接地長L1(本実施形態では、センター陸部列の最長接地長をL1とする。)と該接地形状におけるショルダー(トレッド接地端18E)の接地長L2との差が大きいことを意味する。このような接地形状の場合、ウエット路面走行時のタイヤ進行方向の路面の水をタイヤ幅方向に排除し易いため、耐ハイドロプレーニング性能が高くなるが、トレッドセンター部40とトレッドショルダー部42との周長の差が大きくなり、耐偏摩耗性能(耐肩落ち摩耗性能)が不利な状況となる。
しかし、ラグ溝30L及び30Rがトレッドセンター部40のセンター陸部列24L及び24Rのブロック剛性を低下させるため、トレッドセンター部40の摩耗量とトレッドショルダー部42の摩耗量とをバランスさせることができ、耐偏摩耗性能(耐肩落ち摩耗性能)を改良することができる。
従って、タイヤ10は、ラグ溝28L及び28Rとラグ溝30L及び30Rとによって、タイヤの構造に起因する耐偏摩耗性能と耐ハイドロプレーニング性能とを両立することができる。
(Operation) Next, the operation of the tire 10 of the first embodiment will be described.
The flatness of the tire 10 is 70%, and the belt structure has only two belt plies 16A overlapped, so that the ground contact shape is a round contact shape as shown in FIG. That is, the contact length L1 of the center (equatorial plane CL) in the contact shape of the tire 10 (in this embodiment, the longest contact length of the center land portion row is L1) and the shoulder (tread contact end 18E) in the contact shape. This means that the difference from the ground contact length L2 is large. In the case of such a ground contact shape, water on the road surface in the tire traveling direction at the time of running on a wet road surface can be easily removed in the tire width direction, so that the hydroplaning performance is improved, but the tread center portion 40 and the tread shoulder portion 42 The difference in circumference increases, and uneven wear resistance (shoulder wear resistance) is disadvantageous.
However, since the lug grooves 30L and 30R lower the block rigidity of the center land portion rows 24L and 24R of the tread center portion 40, the wear amount of the tread center portion 40 and the wear amount of the tread shoulder portion 42 can be balanced. Further, uneven wear resistance (shoulder wear resistance) can be improved.
Therefore, the tire 10 can achieve both uneven wear resistance and hydroplaning performance due to the tire structure by the lug grooves 28L and 28R and the lug grooves 30L and 30R.

ラグ溝28L及び28Rのタイヤ周方向に対する角度が45°を超えると、タイヤ周方向に対する角度が大きくなり過ぎて耐ハイドロプレーニング性能を改良することができない。また、ラグ溝30L及び30Rのタイヤ周方向に対する角度が45°に満たないと、センター陸部列24L及び24Rに角が鋭角になり過ぎる箇所が生じ、耐偏摩耗性能が悪化する。従って、ラグ溝28L及び28Rのタイヤ周方向となす角度が0〜45°を満たすことが好ましく、ラグ溝30L及び30Rのタイヤ周方向となす角度が45〜90°を満たすことが好ましい。   If the angle of the lug grooves 28L and 28R with respect to the tire circumferential direction exceeds 45 °, the angle with respect to the tire circumferential direction becomes too large to improve the hydroplaning performance. Further, if the angle of the lug grooves 30L and 30R with respect to the tire circumferential direction is less than 45 °, the center land portion rows 24L and 24R have locations where the angles become too acute, and the uneven wear resistance performance deteriorates. Therefore, the angle formed between the lug grooves 28L and 28R and the tire circumferential direction is preferably 0 to 45 °, and the angle formed between the lug grooves 30L and 30R and the tire circumferential direction is preferably 45 to 90 °.

また、ラグ溝30L及び30Rの溝幅をラグ溝28L及び28Rの溝幅より広くとることで、トレッドセンター部40のセンター陸部列24L及び24Rのブロック剛性を効率良く低下させ、トレッドセンター部40の摩耗量とトレッドショルダー部42の摩耗量とをバランスさせて、耐偏摩耗性能(耐肩落ち摩耗性能)を更に改良することができる。   Further, by making the groove widths of the lug grooves 30L and 30R wider than the groove widths of the lug grooves 28L and 28R, the block rigidity of the center land portion rows 24L and 24R of the tread center portion 40 is efficiently reduced, and the tread center portion 40 It is possible to further improve the uneven wear resistance (shoulder fall wear resistance) by balancing the amount of wear and the wear of the tread shoulder portion 42.

[第2の実施形態]
(構成)次に、本発明の空気入りタイヤの第2の実施形態を図3及び図4にしたがって説明する。なお、本実施形態の空気入りタイヤ50(以下、単にタイヤ50と記載する。)は、第1の実施形態に対して、タイヤサイズと、ベルト補強層の追加と、ラグ溝28L及びラグ溝30Lの夫々の溝幅の関係と、ラグ溝28R及びラグ溝30Rの夫々の溝幅の関係とが相違している。相違点の詳細については、以下に説明する。なお、第1の実施形態と同一構成には同一符号を付し、その説明は省略する。
[Second Embodiment]
(Configuration) Next, a second embodiment of the pneumatic tire of the present invention will be described with reference to FIGS. Note that the pneumatic tire 50 of the present embodiment (hereinafter simply referred to as the tire 50) is different from the first embodiment in terms of tire size, addition of a belt reinforcing layer, lug grooves 28L and lug grooves 30L. The relationship between the respective groove widths is different from the relationship between the respective groove widths of the lug groove 28R and the lug groove 30R. Details of the differences will be described below. In addition, the same code | symbol is attached | subjected to the same structure as 1st Embodiment, and the description is abbreviate | omitted.

タイヤ50のタイヤサイズは、195/65R15のサマータイヤである。図4に示すように、このタイヤ50のベルト層16とトレッド部18との間には、ベルト補強層34が設けられている。なお、本実施形態のベルト補強層34は、1本または複数本のナイロンコードを未加硫の被覆ゴムで被覆した帯状体を螺旋状に巻き回すことにより形成されている。また、図5に示すように、ラグ溝28Lの溝幅は、ラグ溝30Lの溝幅より広く設定されている。更に、ラグ溝28Rの溝幅は、ラグ溝30Rの溝幅より広く設定されている。   The tire size of the tire 50 is a 195 / 65R15 summer tire. As shown in FIG. 4, a belt reinforcing layer 34 is provided between the belt layer 16 and the tread portion 18 of the tire 50. The belt reinforcing layer 34 according to the present embodiment is formed by spirally winding a belt-like body in which one or a plurality of nylon cords are covered with unvulcanized covering rubber. Further, as shown in FIG. 5, the groove width of the lug groove 28L is set wider than the groove width of the lug groove 30L. Furthermore, the groove width of the lug groove 28R is set wider than the groove width of the lug groove 30R.

(作用)次に第2の実施形態の作用を説明する。
タイヤ50の扁平率は65%であり、ベルト構造はベルトプライ16Aを2枚重ね合わせたベルト層16に加えて、ナイロンコードをタイヤ周方向に螺旋状に巻いたベルト補強層34を備えるため、接地形状が図6に示すような四角い接地形状となる。即ち、タイヤ50の接地形状におけるセンターの接地長L1(本実施形態では、センター陸部列の最長接地長をL1とする。)と該接地形状におけるショルダーの接地長L2との差が小さいことを意味する。このような接地形状の場合、トレッドセンター部40とトレッドショルダー部42との周長の差が小さくなり、耐偏摩耗性能は高くなるが、ウエット路面走行時のタイヤ進行方向の路面の水をタイヤ幅方向に排除し難く、耐ハイドロプレーニング性能が不利な状況となる。
しかし、ラグ溝28L及び28Rが、ウエット路面走行時のタイヤ進行方向の路面の水を夫々の周方向溝に排除するのに寄与するため、耐ハイドロプレーニング性能を改良することができる。
従って、タイヤ50は、ラグ溝28L及び28Rによって、タイヤの構造に起因する耐偏摩耗性能と耐ハイドロプレーニング性能とを両立することができる。
(Operation) Next, the operation of the second embodiment will be described.
The flatness of the tire 50 is 65%, and the belt structure includes a belt reinforcing layer 34 in which a nylon cord is spirally wound in the tire circumferential direction in addition to the belt layer 16 in which two belt plies 16A are overlapped. The grounding shape is a square grounding shape as shown in FIG. That is, the difference between the ground contact length L1 of the center in the ground contact shape of the tire 50 (in this embodiment, the longest ground contact length of the center land portion row is L1) and the ground contact length L2 of the shoulder in the ground contact shape is small. means. In the case of such a ground contact shape, the difference in circumferential length between the tread center portion 40 and the tread shoulder portion 42 is reduced, and the uneven wear resistance performance is improved, but the water on the road surface in the tire traveling direction when traveling on a wet road surface is used as the tire. It is difficult to eliminate in the width direction, resulting in a disadvantageous hydroplaning performance.
However, the lug grooves 28L and 28R contribute to the elimination of the water on the road surface in the tire traveling direction during running on the wet road surface into the respective circumferential grooves, and therefore the hydroplaning performance can be improved.
Therefore, the tire 50 can achieve both uneven wear resistance and hydroplaning resistance due to the tire structure by the lug grooves 28L and 28R.

また、ラグ溝28L及び28Rの溝幅をラグ溝30L及び30Rの溝幅より広くとることで、ウエット路面走行時にタイヤ進行方向の路面の水を夫々の周方向溝に排除する量が増加するため、耐ハイドロプレーニング性能が更に改良される。   Further, since the groove widths of the lug grooves 28L and 28R are wider than the groove widths of the lug grooves 30L and 30R, the amount of water on the road surface in the tire advancing direction when driving on the wet road surface is increased in each circumferential groove. Further, the hydroplaning performance is further improved.

[その他の実施形態]
第1及び第2の実施形態では、ラグ溝28Lとラグ溝30Lとが連通する構成としたが、ラグ溝28Lとラグ溝30Lとが連通しない構成であっても良く、また、ラグ溝28Lとラグ溝30Lとは、センター陸部列24Lを分断しない構成としたが、センター陸部列24Lを分断する構成であっても良い。同様に、ラグ溝28Rとラグ溝30Rとが連通しない構成であっても良く、またラグ溝28Rとラグ溝30Rとがセンター陸部列24Rを分断する構成であっても良い。
[Other Embodiments]
In the first and second embodiments, the lug groove 28L and the lug groove 30L communicate with each other. However, the lug groove 28L and the lug groove 30L may not communicate with each other. The lug groove 30L is configured not to divide the center land portion row 24L, but may be configured to divide the center land portion row 24L. Similarly, the lug groove 28R and the lug groove 30R may be configured not to communicate with each other, or the lug groove 28R and the lug groove 30R may be configured to divide the center land portion row 24R.

また、第1及び第2の実施形態では、ラグ溝28L及び28Rは曲線状に延びる構成であったが、それ以外の形状(例えば、直線状)で延びる構成であっても良く、ラグ溝30L及び30Rは直線状に延びる構成であったが、それ以外の形状(例えば、曲線状)で延びる構成であっても良い。   In the first and second embodiments, the lug grooves 28L and 28R are configured to extend in a curved shape. However, the lug grooves 28L and 28R may be configured to extend in other shapes (for example, linear), and the lug groove 30L. And 30R was the structure extended in linear form, However, The structure extended in other shapes (for example, curvilinear form) may be sufficient.

更に、第1及び第2の実施形態では、トレッドパターンをトレッドパターンの左右両側が赤道面CL上の一点を対称点に点対称形状となる回転方向が指定されないパターンとする構成であったが、赤道面CLを対称軸にして左右対称形状となる回転方向が指定されたパターンとする構成であっても良く、その場合には、特にラグ溝28L及び28Rによって耐ハイドロプレーニング性能が更に改良される。   Furthermore, in the first and second embodiments, the tread pattern is a pattern in which the left and right sides of the tread pattern are a pattern that does not specify a rotational direction in which a point symmetric shape is formed with respect to one point on the equator plane CL. A configuration may be adopted in which the rotational direction is a symmetrical shape with the equator plane CL as the axis of symmetry, and in this case, the hydroplaning performance is further improved by the lug grooves 28L and 28R. .

(試験例)
本発明の空気入りタイヤの性能改善効果を確認するために、本発明の第1の実施形態の空気入りタイヤ(サイズ155/70R13)、及び第2の実施形態の空気入りタイヤ(サイズ195/65R15)を同一の商品系列とする実施例と、第1の実施形態の空気入りタイヤ及び、第1の実施形態の空気入りタイヤのトレッドパターン(図2参照)をサイズ195/65R15用に相似形に拡大したトレッドパターンを備えた空気入りタイヤを同一商品系列とする比較例1と、第2の実施形態の空気入りタイヤ及び、第2の実施形態の空気入りタイヤのトレッドパターン(図5参照)をサイズ155/70R13用に相似形に縮小したトレッドパターンを備えた空気入りタイヤを同一商品系列とする比較例2とに対応する空気入りタイヤを夫々製作し、各供試タイヤについて、乾燥路での操縦安定性能、耐偏摩耗性能及びウエット路面での耐ハイドロプレーニング性能について評価を行った。なお、実施例、比較例1及び比較例2の夫々のタイヤの構成については表1中に示す。また、ベルト構造のスチールベルトとは第1の実施形態のベルトプライ16Aを指し、ナイロンスパイラルベルトとは第2の実施形態のベルト補強層34を指すものとする。
(Test example)
In order to confirm the performance improvement effect of the pneumatic tire of the present invention, the pneumatic tire of the first embodiment (size 155 / 70R13) and the pneumatic tire of the second embodiment (size 195 / 65R15) ) And the tread pattern (see FIG. 2) of the pneumatic tire of the first embodiment and the pneumatic tire of the first embodiment are similar to those for the size 195 / 65R15. The comparative example 1 which makes the pneumatic tire provided with the expanded tread pattern the same product series, the pneumatic tire of 2nd Embodiment, and the tread pattern (refer FIG. 5) of the pneumatic tire of 2nd Embodiment. Pneumatic tires corresponding to Comparative Example 2 in which pneumatic tires having a tread pattern reduced to a similar size for size 155 / 70R13 are the same product line It fabricated, for each test tires, steering stability on a dry road, evaluated hydroplaning resistance performance in uneven wear resistance and wet road surface was carried out. The tire configurations of the example, comparative example 1 and comparative example 2 are shown in Table 1. Further, the steel belt having the belt structure indicates the belt ply 16A of the first embodiment, and the nylon spiral belt indicates the belt reinforcing layer 34 of the second embodiment.

供試タイヤのサイズは、前述した155/70R13及び195/65R15の2種類とし、種別はサマータイヤであり、リム幅が5J−13及び6J−15のリムに組付け後、国産コンパクトカーに各供試タイヤを装着し、ドライバーの体重及び車重に600Nを加えた荷重条件下で、車両指定内圧を供試タイヤに充填して以下の評価試験を実施した。
耐偏摩耗性能については、乾燥路を10000km走行した時点でのトレッドセンター部とトレッドショルダー部との摩耗段差を測定し評価した。
操縦安定性能については、乾燥路走行時のドライバーのフィーリングにて評価した。
耐ハイドロプレーニング性能については、水深10mmのウエット路を走行時にハイドロプレーニング現象が発生した速度を測定して評価した。
なお、これらの各評価項目については、実施例の商品系列のタイヤの値を100とする指数表示として評価し、その値が大きい方が優れた結果を示すものとする。
There are two types of test tires, 155 / 70R13 and 195 / 65R15, and the types are summer tires. After assembling to rims with 5J-13 and 6J-15 rim widths, The test tire was mounted, and under the load condition in which 600 N was added to the weight and weight of the driver, the specified tire pressure was filled into the test tire and the following evaluation test was performed.
The uneven wear resistance performance was evaluated by measuring the wear level difference between the tread center portion and the tread shoulder portion at the time of traveling 10,000 km on the dry road.
Steering stability was evaluated by the driver's feeling when driving on dry roads.
The hydroplaning resistance was evaluated by measuring the speed at which hydroplaning occurred when traveling on a wet road with a water depth of 10 mm.
In addition, about each of these evaluation items, it evaluates as an index | exponent display which sets the value of the tire of the goods series of an Example to 100, and the one where the value is larger shall show the better result.

Figure 2007331411
Figure 2007331411

表1の結果から、実施例は比較例1に比べて、他の性能で同等レベルを確保しつつ、特にサイズ195/65R15における耐ハイドロプレーニング性能を改良できたことを示すことが分かる。
また実施例は比較例2に比べて、他の性能で同等レベルを確保しつつ、特にサイズ155/70R13における耐偏摩耗性能を改良できたことを示すことが分かる。
以上のことから、この発明によれば、同一商品系列として同様の構成をもつトレッドパターンをサイズラインアップ上で持ちつつ、第1のラグ溝及び第2のラグ溝の夫々の溝幅の比率をタイヤの構造ごとに設計変形することで、タイヤの構造に起因する耐偏摩耗性能と耐ハイドロプレーニング性能とを両立することができる。
From the results shown in Table 1, it can be seen that the example shows that the anti-hydroplaning performance can be improved particularly in the size 195 / 65R15 while ensuring the same level of other performance as compared with the comparative example 1.
Moreover, it turns out that an Example shows that the uneven wear-proof performance in size 155 / 70R13 was able to be improved compared with the comparative example 2 while ensuring the equivalent level with another performance.
From the above, according to the present invention, the ratio of the respective groove widths of the first lug groove and the second lug groove can be obtained while holding the tread pattern having the same configuration as the same product series on the size lineup. By designing and deforming for each tire structure, both uneven wear resistance and hydroplaning performance due to the tire structure can be achieved.

第1の実施形態に係る空気入りタイヤの回転軸に沿った断面図である。It is sectional drawing along the rotating shaft of the pneumatic tire which concerns on 1st Embodiment. 第1の実施形態に係る空気入りタイヤのトレッドパターンを示した平面図である。It is the top view showing the tread pattern of the pneumatic tire concerning a 1st embodiment. 第1の実施形態に係る空気入りタイヤの接地形状を示した図である。It is the figure which showed the contact shape of the pneumatic tire which concerns on 1st Embodiment. 第2の実施形態に係る空気入りタイヤの回転軸に沿った断面図である。It is sectional drawing along the rotating shaft of the pneumatic tire which concerns on 2nd Embodiment. 第2の実施形態に係る空気入りタイヤのトレッドパターンを示した平面図である。It is the top view which showed the tread pattern of the pneumatic tire which concerns on 2nd Embodiment. 第2の実施形態に係る空気入りタイヤの接地形状を示した図である。It is the figure which showed the contact shape of the pneumatic tire which concerns on 2nd Embodiment.

符号の説明Explanation of symbols

10 タイヤ(空気入りタイヤ)
12 ビードコア
14 カーカスプライ
16 ベルト層
18 トレッド部
20 周方向溝
22 周方向溝
24 センター陸部列(陸部列)
28 ラグ溝(第1のラグ溝)
30 ラグ溝(第2のラグ溝)
34 ベルト補強層
40 トレッドセンター部(タイヤ幅方向最外側の周方向溝の間)
50 タイヤ(空気入りタイヤ)
10 Tire (Pneumatic tire)
12 bead core 14 carcass ply 16 belt layer 18 tread portion 20 circumferential groove 22 circumferential groove 24 center land portion row (land portion row)
28 lug groove (first lug groove)
30 lug groove (second lug groove)
34 Belt reinforcement layer 40 Tread center (between the outermost circumferential grooves in the tire width direction)
50 tires (pneumatic tires)

Claims (4)

一対のビードコアの間をトロイド状に延びるカーカスプライのクラウン部のタイヤ半径方向外側に設けられたベルト層と、
前記ベルト層よりタイヤ半径方向外側に設けられ、タイヤ周方向に延びる複数本の周方向溝によって区画された複数の陸部列を有するトレッド部と、
タイヤ幅方向最外側の前記周方向溝の間の前記陸部列の少なくとも1列に設けられた複数の第1のラグ溝と、
前記第1のラグ溝が設けられた前記陸部列に設けられ、タイヤ周方向に対する角度が前記第1のラグ溝以上であり、溝幅が前記第1のラグ溝と異なる複数の第2のラグ溝と、
を備えることを特徴とする空気入りタイヤ。
A belt layer provided on the outer side in the tire radial direction of the crown portion of the carcass ply extending in a toroidal shape between the pair of bead cores;
A tread portion having a plurality of land portion rows provided on the outer side in the tire radial direction from the belt layer and partitioned by a plurality of circumferential grooves extending in the tire circumferential direction;
A plurality of first lug grooves provided in at least one row of the land portion rows between the circumferential grooves on the outermost side in the tire width direction;
Provided in the land portion row where the first lug groove is provided, an angle with respect to the tire circumferential direction is equal to or greater than the first lug groove, and a plurality of second different groove widths from the first lug groove Lug grooves,
A pneumatic tire characterized by comprising:
前記第1のラグ溝のタイヤ周方向となす角度が0〜45°であり、
前記第2のラグ溝のタイヤ周方向となす角度が45〜90°であることを特徴とする請求項1に記載の空気入りタイヤ。
The angle formed by the tire circumferential direction of the first lug groove is 0 to 45 °,
The pneumatic tire according to claim 1, wherein an angle between the second lug groove and the tire circumferential direction is 45 to 90 °.
前記第1のラグ溝より前記第2のラグ溝の溝幅が広いことを特徴とする請求項1又は2に記載の空気入りタイヤ。   The pneumatic tire according to claim 1 or 2, wherein a groove width of the second lug groove is wider than that of the first lug groove. 前記ベルト層と前記トレッド部との間にベルト補強層を有し、
前記第1のラグ溝より前記第2のラグ溝の溝幅が狭いことを特徴とする請求項1又は2に記載の空気入りタイヤ。

Having a belt reinforcing layer between the belt layer and the tread portion;
The pneumatic tire according to claim 1 or 2, wherein a groove width of the second lug groove is narrower than that of the first lug groove.

JP2006162081A 2006-06-12 2006-06-12 Pneumatic tire Expired - Fee Related JP4971694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162081A JP4971694B2 (en) 2006-06-12 2006-06-12 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162081A JP4971694B2 (en) 2006-06-12 2006-06-12 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2007331411A true JP2007331411A (en) 2007-12-27
JP4971694B2 JP4971694B2 (en) 2012-07-11

Family

ID=38931315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162081A Expired - Fee Related JP4971694B2 (en) 2006-06-12 2006-06-12 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP4971694B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7942177B2 (en) 2008-06-04 2011-05-17 The Yokohama Rubber Co., Ltd. Pneumatic tire with tread having lug grooves, sipes, and fine groove
WO2012066724A1 (en) * 2010-11-15 2012-05-24 株式会社ブリヂストン Pneumatic radial tire for use on passenger vehicle
WO2012066725A1 (en) * 2010-11-15 2012-05-24 株式会社ブリヂストン Pneumatic radial tire for use on passenger vehicle
WO2017013901A1 (en) * 2015-07-22 2017-01-26 横浜ゴム株式会社 Pneumatic tire
JP2020100205A (en) * 2018-12-20 2020-07-02 Toyo Tire株式会社 Pneumatic tire
CN111791651A (en) * 2019-04-03 2020-10-20 住友橡胶工业株式会社 Tyre for vehicle wheels

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08142612A (en) * 1994-11-28 1996-06-04 Yokohama Rubber Co Ltd:The Pneumatic tire
JPH11301213A (en) * 1998-04-20 1999-11-02 Bridgestone Corp Pneumatic radial tire
JP2004345405A (en) * 2003-05-20 2004-12-09 Bridgestone Corp Pneumatic tire
JP2005162145A (en) * 2003-12-05 2005-06-23 Bridgestone Corp Pneumatic tire
JP2005238905A (en) * 2004-02-25 2005-09-08 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2006143139A (en) * 2004-11-24 2006-06-08 Bridgestone Corp Pneumatic tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08142612A (en) * 1994-11-28 1996-06-04 Yokohama Rubber Co Ltd:The Pneumatic tire
JPH11301213A (en) * 1998-04-20 1999-11-02 Bridgestone Corp Pneumatic radial tire
JP2004345405A (en) * 2003-05-20 2004-12-09 Bridgestone Corp Pneumatic tire
JP2005162145A (en) * 2003-12-05 2005-06-23 Bridgestone Corp Pneumatic tire
JP2005238905A (en) * 2004-02-25 2005-09-08 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2006143139A (en) * 2004-11-24 2006-06-08 Bridgestone Corp Pneumatic tire

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7942177B2 (en) 2008-06-04 2011-05-17 The Yokohama Rubber Co., Ltd. Pneumatic tire with tread having lug grooves, sipes, and fine groove
WO2012066724A1 (en) * 2010-11-15 2012-05-24 株式会社ブリヂストン Pneumatic radial tire for use on passenger vehicle
WO2012066725A1 (en) * 2010-11-15 2012-05-24 株式会社ブリヂストン Pneumatic radial tire for use on passenger vehicle
CN103298631A (en) * 2010-11-15 2013-09-11 株式会社普利司通 Pneumatic radial tire for use on passenger vehicle
US9266396B2 (en) 2010-11-15 2016-02-23 Bridgestone Corporation Pneumatic radial tire for passenger cars
WO2017013901A1 (en) * 2015-07-22 2017-01-26 横浜ゴム株式会社 Pneumatic tire
CN107709045A (en) * 2015-07-22 2018-02-16 横滨橡胶株式会社 Pneumatic tire
US11040575B2 (en) 2015-07-22 2021-06-22 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP2020100205A (en) * 2018-12-20 2020-07-02 Toyo Tire株式会社 Pneumatic tire
JP7164425B2 (en) 2018-12-20 2022-11-01 Toyo Tire株式会社 pneumatic tire
CN111791651A (en) * 2019-04-03 2020-10-20 住友橡胶工业株式会社 Tyre for vehicle wheels
CN111791651B (en) * 2019-04-03 2024-06-07 住友橡胶工业株式会社 Tire with a tire body

Also Published As

Publication number Publication date
JP4971694B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5667614B2 (en) Pneumatic tire
JP5727965B2 (en) Pneumatic tire
JP5756486B2 (en) Pneumatic tire
JP4817711B2 (en) Pneumatic radial tire for motorcycles
JP5320491B2 (en) Motorcycle tires for running on rough terrain
JP5870082B2 (en) Heavy duty tire
JP4971694B2 (en) Pneumatic tire
JP6601215B2 (en) Pneumatic tire
EP3050721B1 (en) Pneumatic motorcycle tire
CN111699096B (en) Pneumatic tire
JP6657707B2 (en) Pneumatic tire
JP6658789B2 (en) Pneumatic tire
JP2009090742A (en) Pneumatic tire
JP7172954B2 (en) pneumatic tire
JP6707318B2 (en) Pneumatic tire
US6435237B1 (en) Pneumatic tire having generally rounded footprint shape
JP4553678B2 (en) Pneumatic tires for motorcycles
JP6330491B2 (en) Pneumatic tire
JP6982523B2 (en) Tricycle tires
JP6350002B2 (en) Pneumatic tire
WO2022244300A1 (en) Pneumatic tire
JP2012025317A (en) Rear tire for motorcycle and tire pair for motorcycle
JP5141414B2 (en) Pneumatic tire pair
JP5493982B2 (en) Pneumatic tire
JP2007290537A (en) Pneumatic tire for motorcycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees