JP2007331234A - Method of manufacturing ceramic honeycomb structure - Google Patents

Method of manufacturing ceramic honeycomb structure Download PDF

Info

Publication number
JP2007331234A
JP2007331234A JP2006165896A JP2006165896A JP2007331234A JP 2007331234 A JP2007331234 A JP 2007331234A JP 2006165896 A JP2006165896 A JP 2006165896A JP 2006165896 A JP2006165896 A JP 2006165896A JP 2007331234 A JP2007331234 A JP 2007331234A
Authority
JP
Japan
Prior art keywords
mass
honeycomb structure
ceramic
parts
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006165896A
Other languages
Japanese (ja)
Inventor
Kazuhisa Hayakawa
和久 早川
Shingo Niinobe
信吾 新延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006165896A priority Critical patent/JP2007331234A/en
Publication of JP2007331234A publication Critical patent/JP2007331234A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a honeycomb structure which does not cause waving of the division wall, especially near the outer peripheral wall, on molding. <P>SOLUTION: The method of manufacturing a ceramic molding by extrusion comprises extruding, into a honeycomb molding, a ceramic plastic material comprising 100 pts.mass of a ceramic material added with 0.1-10 pts.mass of a polyoxyethylene polyoxypropylene derivative of formula (1) (wherein, R<SB>x</SB>is an x-hydric alcohol residue; for x=1, R is an alkoxyl group consisting of the residue of a monohydric alcohol of formula C<SB>p</SB>H<SB>2p+1</SB>O- and p is an integer of 4 to 6; for x=2-6, R is the residue of a polyhydric alcohol of formula C<SB>q</SB>H<SB>(q+2)</SB>O<SB>q</SB>, and q is an integer of 2 to 6; m and n are each 3-10,000). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、セラミックハニカム構造体を押出成形して製造する方法に関するものである。   The present invention relates to a method for producing a ceramic honeycomb structure by extrusion molding.

ハニカム構造体は、自動車及び産業用の排ガス浄化触媒担体、フィルター、熱交換体等として利用されている。
特に、近年の排ガス規制の強化への対応を目的として、浄化性能、圧力損失の低減、熱交換効率の向上のため、ハニカム構造体の隔壁の薄壁化が行われている。
Honeycomb structures are used as exhaust gas purification catalyst carriers, filters, heat exchangers and the like for automobiles and industries.
In particular, for the purpose of responding to the recent tightening of exhaust gas regulations, the partition walls of the honeycomb structure have been thinned in order to improve purification performance, pressure loss, and heat exchange efficiency.

一般にハニカム構造体を製造する際には、セラミック坏土を、格子状のスリットからなる排出通路とこのスリットの交点に坏土を供給する通路を備える押出用口金を通過させることにより成形する押出成形法が用いられている。
そして、押出性の向上のため、セラミック原料に有機バインダー、界面活性剤、潤滑剤、可塑剤等の成形助剤を混合、混練して得たセラミック坏土が使用されていた。
In general, when manufacturing a honeycomb structure, an extrusion molding is performed in which a ceramic clay is formed by passing an extrusion die including a discharge passage formed of lattice-shaped slits and a passage for supplying the clay to the intersection of the slits. The law is used.
In order to improve extrudability, a ceramic clay obtained by mixing and kneading molding aids such as an organic binder, a surfactant, a lubricant, and a plasticizer with a ceramic raw material has been used.

このように、セラミック坏土を上述した口金を通過させることにより押出成形する場合、上述した従来のセラミック坏土を使用すると、坏土と口金スリット壁面との摩擦抵抗により押出された外周部表面が粗面となり、外周部表面にめくれや亀裂が生じる問題があった。また、隔壁が押出方向に向かって波打つ現象が発生する問題もあった。
更に、隔壁同士の圧着が行われず、ハニカム状に成形されない不具合もあった。
As described above, when the ceramic clay is extruded by passing the above-mentioned base, when the above-described conventional ceramic clay is used, the outer peripheral surface extruded by the frictional resistance between the base and the base slit wall surface is There was a problem that the surface became rough and the outer peripheral surface was turned and cracked. In addition, there is a problem that a phenomenon that the partition wall undulates in the extrusion direction occurs.
Further, there is a problem that the partition walls are not pressed and formed into a honeycomb shape.

上記問題を解決するため、特開平7−138076号公報(特許文献1)では、セラミック原料に0.2〜3質量%のエマルジョン化したワックスと2〜7質量%のメチルセルロースを添加して押出成形可能に可塑化したセラミック坏土を使用することにより、坏土の潤滑性が向上して外周部表面のめくれや亀裂の発生が抑えられ、かつ押出速度の押出圧力依存性が少なくなるため、より均一に押し出され、隔壁の波打ちの発生を抑える技術が開示されている。   In order to solve the above problem, Japanese Patent Laid-Open No. 7-138076 (Patent Document 1) discloses that extrusion molding is performed by adding 0.2 to 3% by mass of emulsified wax and 2 to 7% by mass of methylcellulose to a ceramic raw material. By using a plasticized ceramic clay that can be plasticized, the lubricity of the clay is improved, curling and cracking of the outer peripheral surface is suppressed, and the dependency of the extrusion speed on the extrusion pressure is reduced. A technique for evenly extruding and suppressing the occurrence of waviness of the partition walls is disclosed.

また、特許第2756081号公報(特許文献2)では、コージェライトセラミック化原料バッチ中に親水基と疎水基との重量比で定義されるHLBが10以上のポリオキシエチレンオレイルエーテル又はポリオキシエチレンラウリルエーテルを添加することにより、押出圧力のばらつきに対し坏土の押出速度のばらつきが少なく、押出ダイスと坏土との摩擦を低減でき、成形時、乾燥時のクラック発生もない、隔壁厚の薄いハニカム構造体を得る技術が開示されている。   Further, in Japanese Patent No. 2756081 (Patent Document 2), polyoxyethylene oleyl ether or polyoxyethylene lauryl having an HLB of 10 or more defined by the weight ratio of hydrophilic groups to hydrophobic groups in the cordierite ceramic material batch. By adding ether, there is little variation in the extrusion speed of the clay against the variation in extrusion pressure, friction between the extrusion die and the clay can be reduced, no cracking occurs during molding and drying, and the partition wall thickness is thin A technique for obtaining a honeycomb structure is disclosed.

特開平6−92715号公報(特許文献3)においては、上記の成形時の問題点でなく、乾燥時の乾燥の不均一により生じる乾燥収縮のひずみの不均一によって発生する乾燥時の亀裂の発生の問題を抑制するためにポリオキシアルキレングリコールを添加することが開示されており、ポリオキシアルキレンとしてポリエチレングリコール、ポリプロピレングリコールが適するとの記述はあるが、適性となる重合量についての開示もなく、更にポリオキシエチレングリコールのブチルエーテルの使用が開示されているが、組成について記述があるのみで、前述の押出成形性の改善に及ぼす影響については開示されていない。   In Japanese Patent Laid-Open No. 6-92715 (Patent Document 3), the occurrence of cracks during drying caused by nonuniform drying shrinkage caused by nonuniform drying during drying is not a problem during the molding described above. In order to suppress this problem, it is disclosed that polyoxyalkylene glycol is added, and there is a description that polyethylene glycol and polypropylene glycol are suitable as polyoxyalkylene, but there is no disclosure about an appropriate polymerization amount, Further, the use of butyl ether of polyoxyethylene glycol is disclosed, but only the composition is described, and the influence on the improvement of the above-described extrudability is not disclosed.

更に、特開2001−179720号公報(特許文献4)には、前記特許第2756081号公報(特許文献2)に記載の内容では十分な改善効果が得られないとして、ソルビタン脂肪酸エステルを外配で0.1〜6.0質量%添加したセラミック坏土を押出成形することにより、コージェライト質ハニカム構造体を製造することで坏土との摩擦を低減でき、成形時、乾燥時のクラック発生もない、隔壁厚の薄いハニカム構造体を得る技術が開示されている。   Furthermore, JP 2001-179720 A (Patent Document 4) discloses that a sufficient improvement effect cannot be obtained with the contents described in the above-mentioned Patent No. 2756081 (Patent Document 2). By extruding 0.1 to 6.0 mass% added ceramic clay, it is possible to reduce the friction with the clay by producing a cordierite honeycomb structure, and cracks are generated during molding and drying. A technique for obtaining a honeycomb structure having a thin partition wall thickness is disclosed.

ところが、本発明者らが、特開平7−138076号公報(特許文献1)、特許第2756081号公報(特許文献2)、及び特開2001−179720号公報(特許文献4)で開示されている技術を適用してハニカム構造体の押出成形を行うと、ハニカム構造の隔壁が押出方向に向かって波打つ現象を抑える効果は認められるものの、十分ではなく、隔壁の波打ちを完全に防ぐことは困難であったり、更に成形物の粘着性が低減されすぎて、成形後乾燥中にクラックが発生する問題が生じることがわかった。また、特開平6−92715号公報(特許文献3)には、成形後乾燥中のクラックの発生防止にかかるポリアルキレングリコール誘導体類の開示があるが、これら開示の内容では、必ずしもクラック発生が防止できるものでないことがわかった。   However, the present inventors have disclosed in Japanese Patent Laid-Open No. 7-138076 (Patent Document 1), Japanese Patent No. 2756081 (Patent Document 2), and Japanese Patent Laid-Open No. 2001-179720 (Patent Document 4). When extruding the honeycomb structure by applying the technology, although the effect of suppressing the phenomenon that the honeycomb structure partition walls wave in the extrusion direction is recognized, it is not sufficient, and it is difficult to completely prevent the partition wall ripples. It was also found that there was a problem that the adhesiveness of the molded product was further reduced and cracks occurred during drying after molding. Japanese Patent Application Laid-Open No. 6-92715 (Patent Document 3) discloses polyalkylene glycol derivatives related to prevention of cracks during drying after molding. However, in the content of these disclosures, cracks are not necessarily prevented. I knew it wasn't possible.

特開平7−13807号公報Japanese Patent Laid-Open No. 7-13807 特許第2756081号公報Japanese Patent No. 2756081 特開平6−92715号公報JP-A-6-92715 特開2001−179720号公報JP 2001-179720 A

本発明は、上記事情に鑑みなされたもので、成形時に隔壁の波打ち、特に外周壁近くの隔壁の波打ちが発生しないハニカム構造体の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a honeycomb structure that does not generate undulations of partition walls, particularly undulations of partition walls near an outer peripheral wall during molding.

本発明者は、上記目的を達成するため鋭意検討を行った結果、セラミック材料に対するバインダーとして、下記構造式(1)で示され、m及びnが3〜10,000であるポリオキシエチレンポリオキシプロピレン誘導体を使用することにより、セラミックハニカム構造体を、成形時の隔壁の波打ちの発生を効果的に防止し、しかも成形後の乾燥時にクラックの発生を防止して製造できることを知見し、本発明をなすに至ったものである。   As a result of intensive studies to achieve the above object, the present inventor has shown, as a binder for a ceramic material, a polyoxyethylene polyoxy compound represented by the following structural formula (1), wherein m and n are 3 to 10,000. It was discovered that by using a propylene derivative, a ceramic honeycomb structure can be produced by effectively preventing the occurrence of corrugation of partition walls during molding, and also preventing the generation of cracks during drying after molding. That led to

従って、本発明は、下記セラミックハニカム構造体の製造方法を提供する。
請求項1:
押出成形によるセラミック成形体の製造において、セラミック材料100質量部に対し、下記構造式(1)

Figure 2007331234

(式中、Rxはx価のアルコール残基を示し、x=1の場合、RはCp2p+1O−(pは4〜6の整数)で表される1価アルコール残基としてのアルコキシル基を示し、x=2〜6の場合、RはCq(q+2)q(qは2〜6の整数)で表される多価アルコール残基である。)
におけるm及びnが3〜10,000であるポリオキシエチレンポリオキシプロピレン誘導体を0.1〜10質量部添加してなるセラミック坏土をハニカム形状に押出成形することを特徴とするセラミックハニカム構造体の製造方法。
請求項2:
構造式(1)中のRが、C49Oで示されるブトキシ基であり、m及びnが17であることを特徴とする請求項1記載のセラミックハニカム構造体の製造方法。
請求項3:
構造式(1)中のRが、C49O又はC353で示される構造を有し、m/nが15/85〜25/75であることを特徴とする請求項1記載のセラミックハニカム構造体の製造方法。
請求項4:
セラミック材料100質量部に対してメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースから選ばれる1種又は2種以上のセルロースエーテルを1〜10質量部添加した請求項1〜3のいずれか1項に記載のセラミックハニカム構造体の製造方法。
請求項5:
押出成形時に、スリット幅が0.2mm以下の押出用口金を使用する請求項1〜4のいずれか1項に記載のセラミックハニカム構造体の製造方法。 Accordingly, the present invention provides the following method for manufacturing a ceramic honeycomb structure.
Claim 1:
In the production of a ceramic molded body by extrusion, the following structural formula (1) is applied to 100 parts by mass of the ceramic material.
Figure 2007331234

(Wherein R x represents an x-valent alcohol residue, and when x = 1, R is a monovalent alcohol residue represented by C p H 2p + 1 O— (p is an integer of 4 to 6). In the case of x = 2 to 6, R is a polyhydric alcohol residue represented by C q H (q + 2) O q (q is an integer of 2 to 6).
A ceramic honeycomb structure obtained by extruding a ceramic clay obtained by adding 0.1 to 10 parts by mass of a polyoxyethylene polyoxypropylene derivative having m and n of 3 to 10,000 in a honeycomb shape Manufacturing method.
Claim 2:
The method for producing a ceramic honeycomb structure according to claim 1, wherein R in the structural formula (1) is a butoxy group represented by C 4 H 9 O, and m and n are 17.
Claim 3:
R in the structural formula (1) has a structure represented by C 4 H 9 O or C 3 H 5 O 3 , and m / n is 15/85 to 25/75. 2. A method for producing a ceramic honeycomb structure according to 1.
Claim 4:
1 to 10 parts by mass of one or more cellulose ethers selected from methylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxyethylcellulose, and hydroxypropylcellulose are added to 100 parts by mass of the ceramic material. The manufacturing method of the ceramic honeycomb structure of any one of Claims 1.
Claim 5:
The method for manufacturing a ceramic honeycomb structure according to any one of claims 1 to 4, wherein an extrusion die having a slit width of 0.2 mm or less is used during extrusion molding.

本発明により、成形時の隔壁の波打ち、特に外周近傍の隔壁の波打ち発生防止に有効であり、成形後の乾燥工程でクラックが入りにくくなるセラミックハニカム構造体の押出成形が可能となる。   According to the present invention, the ceramic honeycomb structure can be extrusion-molded, which is effective in preventing the undulation of the partition walls at the time of forming, in particular, the generation of undulations in the partition walls in the vicinity of the outer periphery, and is less prone to cracks in the drying step after forming.

本発明のセラミックハニカム構造体の製造方法において、セラミック材料としては、セラミック粉体が用いられ、コージェライト材料からアルミナ、ムライト、シリカ、炭化珪素、窒化珪素、酸化チタン、チタン酸バリウム、チタン酸ジルコン酸鉛、チタン酸アルミニウムなどあらゆるセラミック材料が使用できる。その粒度については特に限定しないが、押出成形が可能な粒度として平均粒子径が0.4〜50μm程度、特に1〜20μmのものが好ましい。なお、この平均粒子径は、ベックマンコールター社のコールターカウンターを用いた電気抵抗法による専用電解質溶液中での測定値である。   In the method for manufacturing a ceramic honeycomb structure of the present invention, ceramic powder is used as the ceramic material, and the cordierite material is made of alumina, mullite, silica, silicon carbide, silicon nitride, titanium oxide, barium titanate, zirconate titanate. All ceramic materials such as lead acid and aluminum titanate can be used. The particle size is not particularly limited, but a particle size that can be extruded is preferably about 0.4 to 50 μm, particularly 1 to 20 μm. The average particle size is a value measured in a dedicated electrolyte solution by an electric resistance method using a Beckman Coulter Coulter Counter.

本発明は、上記セラミック材料のバインダーとしてポリオキシエチレンポリオキシプロピレン誘導体を使用する。
本発明に使用するポリオキシエチレンポリオキシプロピレン誘導体とは、下記構造式(1)

Figure 2007331234

(式中、Rxはx価のアルコール残基を示し、x=1の場合、RはCp2p+1O−(pは4〜6の整数)で表される1価アルコール残基としてのアルコキシル基を示し、x=2〜6の場合、RはCq(q+2)q(qは2〜6の整数)で表される多価アルコール残基である。)
で示され、m,nがそれぞれ3〜10,000の範囲のものである。 In the present invention, a polyoxyethylene polyoxypropylene derivative is used as a binder for the ceramic material.
The polyoxyethylene polyoxypropylene derivative used in the present invention is the following structural formula (1)
Figure 2007331234

(Wherein R x represents an x-valent alcohol residue, and when x = 1, R is a monovalent alcohol residue represented by C p H 2p + 1 O— (p is an integer of 4 to 6). In the case of x = 2 to 6, R is a polyhydric alcohol residue represented by C q H (q + 2) O q (q is an integer of 2 to 6).
Where m and n are in the range of 3 to 10,000, respectively.

この場合、p,qが上記の値から外れると、本発明が期待する押出成形性の改善が図れない。   In this case, if p and q deviate from the above values, the extrusion moldability expected by the present invention cannot be improved.

なお、Cq(q+2)qは、多価アルコールの各OH基よりH原子が脱離した多価アルコール残基であり、具体的には、例えば、

Figure 2007331234
等が挙げられる。 Note that C q H (q + 2) O q is a polyhydric alcohol residue in which H atoms are eliminated from each OH group of the polyhydric alcohol.
Figure 2007331234
Etc.

また、m及びnは3〜10,000、好ましくは5〜8,000、更に好ましくは10〜5,000であり、3未満であると押出成形性の改善を図ることができず、一方、10,000を超えてしまうと分子量が大きくなりすぎて水への溶解性が悪くなり、押出成形性の改善の機能を果たさない。   Further, m and n are 3 to 10,000, preferably 5 to 8,000, more preferably 10 to 5,000, and if it is less than 3, the extrusion moldability cannot be improved, If it exceeds 10,000, the molecular weight becomes too large, the solubility in water becomes poor, and the function of improving the extrusion moldability is not fulfilled.

p2p+1O−で表されるアルコキシル基の例としては、p=4の場合のブタノールに酸化エチレンと酸化プロピレンを付加重合させたものが特に好ましい(1984年薬事日報社発行の化粧品原料規準注解1030ページから1044ページ)。酸化エチレンと酸化プロピレンの付加モル数としては、水に溶解ないし分散し得る分子構造を取る必要性から3〜10,000が好ましく、特に酸化エチレンと酸化プロピレンの付加モル数が17ずつ付加したものが好ましい。 As an example of the alkoxyl group represented by C p H 2p + 1 O—, a product obtained by addition-polymerizing ethylene oxide and propylene oxide to butanol in the case of p = 4 is particularly preferable (cosmetics published by Yakuji Nippo Inc. in 1984). (Raw material standard remarks, pages 1030 to 1044). The number of added moles of ethylene oxide and propylene oxide is preferably 3 to 10,000 because of the need to have a molecular structure that can be dissolved or dispersed in water, and in particular, the number of added moles of ethylene oxide and propylene oxide added by 17 each. Is preferred.

また、RとしてC49O−で示されるブトキシ基、又はC353、即ち

Figure 2007331234
で示されるグリセリン構造のものも好ましい。 R represents a butoxy group represented by C 4 H 9 O—, or C 3 H 5 O 3 ,
Figure 2007331234
The thing of the glycerin structure shown by is preferable.

この場合、ポリオキシエチレンとポリオキシプロピレンの重合数mとnについては、m/nが15/85〜25/75である。また、nの絶対値としては3〜10,000であり、好ましくは5〜5,000である。nの値がこれより低いとグリセリンの構造体としての性能が発揮されず、グリセリンそのものを添加したものと大差がない効果しか得られない。また、nがこれより大きいと、このグリセリン構造体の水への分散性が不良となり、効果が発揮されにくくなる。ポリオキシエチレンとポリオキシプロピレンの重合数mとnの比m/nが15/85〜25/75の範囲外であると、押出成形性の改善効果が発揮されない場合がある。これはこのグリセリン構造体としての親水性と疎水性のバランスが本発明の目的にあわなくなるためと考えられる。   In this case, for the polymerization numbers m and n of polyoxyethylene and polyoxypropylene, m / n is 15/85 to 25/75. The absolute value of n is 3 to 10,000, preferably 5 to 5,000. When the value of n is lower than this, the performance as a structure of glycerin is not exhibited, and only an effect that is not significantly different from that obtained by adding glycerin itself can be obtained. Moreover, when n is larger than this, the dispersibility to water of this glycerin structure will become bad, and it will become difficult to exhibit an effect. When the ratio m / n of the polymerization number m to n of polyoxyethylene and polyoxypropylene is outside the range of 15/85 to 25/75, the effect of improving the extrusion moldability may not be exhibited. This is presumably because the balance between hydrophilicity and hydrophobicity as the glycerin structure does not meet the object of the present invention.

これらポリオキシエチレンポリオキシプロピレン誘導体の添加量としてはセラミック材料100質量部に対して0.1〜10質量部、特に0.3〜8質量部とするのが好ましい。この添加量が0.1質量部未満では、外周近傍の隔壁の波打ちが発生し、10質量部を超えると、坏土が固くなってしまい、可塑性が低下して外周部表面の一部が切れて、亀裂が発生するおそれがあるためである。   The addition amount of these polyoxyethylene polyoxypropylene derivatives is preferably 0.1 to 10 parts by mass, particularly 0.3 to 8 parts by mass with respect to 100 parts by mass of the ceramic material. If this addition amount is less than 0.1 parts by mass, the undulation of the partition wall in the vicinity of the outer periphery occurs, and if it exceeds 10 parts by mass, the clay becomes hard, the plasticity is lowered, and a part of the outer peripheral surface is cut. This is because cracks may occur.

本発明においては、上記ポリオキシエチレンポリオキシプロピレン誘導体に加えて、セルロースエーテルを添加することができる。セルロースエーテルとしては、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースから選ばれる1種又は2種以上が使用し得る。   In the present invention, cellulose ether can be added in addition to the polyoxyethylene polyoxypropylene derivative. As the cellulose ether, one or more selected from methyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose can be used.

本発明で使用できるメチルセルロースとしては、1984年薬事日報社発行の化粧品原料規準注解1146ページに記載されているような塩化メチル法ないしはジメチル硫酸法により製造し得るもので、メトキシ置換度としては26〜33質量%で、2質量%水溶液の20℃での粘度が25〜300,000mPa・sのものが使用できる。また、ヒドロキシエチルセルロースとしては、1984年薬事日報社発行の化粧品原料規準注解840ページに記載されているような、エチレンオキサイドをセルロースに作用させる方法で得られるものが使用でき、ヒドロキシエチル置換度としては40〜60質量%で、2質量%水溶液の20℃での粘度が20〜300,000mPa・sのものが使用できる。ヒドロキシプロピルセルロースとしては、1984年薬事日報社発行の化粧品原料規準注解849ページに記載されているような、プロピレンオキサイドをセルロースに作用させて製造し得るもので、ヒドロキシプロピル置換度としては50〜70質量%で、2質量%水溶液の20℃での粘度が50〜300,000mPa・sのものが使用できる。   The methylcellulose that can be used in the present invention can be produced by the methyl chloride method or the dimethylsulfuric acid method described in page 1146 of the cosmetic raw material standards published by Yakuhin Nippo Co., Ltd. in 1984. A 33% by weight, 2% by weight aqueous solution having a viscosity at 20 ° C. of 25 to 300,000 mPa · s can be used. Moreover, as hydroxyethyl cellulose, what is obtained by a method of allowing ethylene oxide to act on cellulose as described in page 840 of Cosmetic Raw Material Standards, published by Yakuji Nippo Inc., can be used. A 40 to 60% by weight, 2% by weight aqueous solution having a viscosity at 20 ° C. of 20 to 300,000 mPa · s can be used. Hydroxypropyl cellulose can be produced by allowing propylene oxide to act on cellulose, as described in page 849 of the cosmetic raw material standard note published by Yakuhin Nippo Inc. in 1984. The hydroxypropyl substitution degree is 50 to 70. A 2% by weight aqueous solution having a viscosity at 20 ° C. of 50 to 300,000 mPa · s can be used.

ヒドロキシプロピルメチルセルロースやヒドロキシエチルメチルセルロースのごとき混合エーテルは、メチルセルロース製造時に使われる塩化メチル、ジメチル硫酸に加えてエチレンオキサイドやプロピレンオキサイドを反応させて製造できる。これらの置換度としては、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロースとしては、メチル基が19〜30質量%、ヒドロキシエチル基又はヒドロキシプロピル基が4〜12質量%のもので、2質量%水溶液の20℃での粘度が50〜200,000mPa・sのものが用いられる。   Mixed ethers such as hydroxypropylmethylcellulose and hydroxyethylmethylcellulose can be produced by reacting ethylene oxide and propylene oxide in addition to methyl chloride and dimethylsulfuric acid used in the production of methylcellulose. As these substitution degrees, as hydroxypropyl methylcellulose and hydroxyethyl methylcellulose, the methyl group is 19 to 30% by mass, the hydroxyethyl group or the hydroxypropyl group is 4 to 12% by mass, and a 2% by weight aqueous solution at 20 ° C. The viscosity at 50 to 200,000 mPa · s is used.

これらの置換度や粘度の測定は、第14改正の日本薬局方に記載の方法で測定が可能である。ここで記載した置換度より低かったり高かったりするセルロースエーテルでは、水への溶解性が不足し、セラミック成形体の乾燥時に結着力を十分発揮しない。また、その粘度も低すぎると、この結着力が不足し、高すぎると、押出成形時に粘性が高くなりすぎて押出成形しにくくなる。   These substitution degrees and viscosities can be measured by the method described in the Japanese Pharmacopoeia of the 14th revision. Cellulose ethers that are lower or higher than the degree of substitution described here lack solubility in water and do not exhibit sufficient binding force when the ceramic molded body is dried. If the viscosity is too low, the binding force is insufficient. If the viscosity is too high, the viscosity becomes too high during extrusion molding, making extrusion molding difficult.

本発明では、これらのメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースから選ばれるセルロースエーテルの1種又は2種以上のセルロースエーテルをセラミック材料100質量部に対して好ましくは1〜10質量部、より好ましくは3〜9質量部添加する。これらのセルロースの添加量が1質量部未満では、保形性が悪くなり、自重や外力で変形する場合があり、10質量部を超えると成形乾燥後の加熱による脱バインダー時に割れが発生しやすくなる。   In the present invention, one or more cellulose ethers selected from methyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose are preferably added in an amount of 1 to 2 parts by mass with respect to 100 parts by mass of the ceramic material. 10 mass parts, More preferably, 3-9 mass parts is added. If the added amount of these celluloses is less than 1 part by mass, the shape-retaining property is deteriorated and may be deformed by its own weight or external force. If it exceeds 10 parts by mass, cracks are likely to occur during debinding by heating after molding and drying. Become.

また、セラミックハニカム構造体を得るための原料組成物には、通常上記セラミック材料100質量部に対し、10〜100質量部、特に15〜50質量部の水を配合し得る。水が少なすぎると、押出成形できない程硬い組成物となり、多すぎると、組成物が軟らかすぎて押出成形から乾燥に至るまでの間、ハニカム構造を保持できない。   The raw material composition for obtaining the ceramic honeycomb structure can usually contain 10 to 100 parts by mass, particularly 15 to 50 parts by mass of water with respect to 100 parts by mass of the ceramic material. If the amount of water is too small, the composition becomes so hard that it cannot be extruded. If the amount is too large, the composition is too soft to hold the honeycomb structure from extrusion to drying.

上記原料組成物には、更に本発明の効果に支障のない範囲で樹脂類や紙類などの微粒子状の造孔剤を添加しても差し支えない。   A fine pore forming agent such as resins and papers may be added to the raw material composition as long as the effects of the present invention are not impaired.

上記原料組成物を押出成形してセラミックハニカム構造体を得るための方法は、従来から行われている方法を適用でき、押出成形条件も公知の条件を採用することができるが、押出成形時にスリット幅が0.2mm以下、特に0.01〜0.15mmの押出用口金を用いることが、ハニカム構造体の空孔容積を広くして、浄化性能、圧力損失の低減、熱交換効率の向上を図る上で好ましい。   As a method for extruding the raw material composition to obtain a ceramic honeycomb structure, a conventional method can be applied, and a known condition can be adopted as the extrusion molding condition. The use of an extrusion die having a width of 0.2 mm or less, particularly 0.01 to 0.15 mm, widens the pore volume of the honeycomb structure and improves purification performance, pressure loss, and heat exchange efficiency. It is preferable when trying.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1〜9]
表1に示すように、平均粒子径0.4μmの昭和軽金属製アルミナAL−160SG原料100質量部に対して、上記式(1)において、Rがブトキシ基であり、m及びnが17であるポリオキシエチレンポリオキシプロピレンブチルエーテル(日本油脂(株)製ユニルーブ50MB26、m=n=17、m/n=50/50)を0.1〜10質量部添加し、更に表1に示すセルロースエーテルを外配で1.0〜10.0質量部添加すると共に、表1に示す量で水を加え、川田製作所製のスーパーミキサーにて1,000rpmの撹拌羽により混合し、更に井上製作所製の小型3本ロールミルにて品温度を15℃にして混合した後、宮崎鉄工製のハニカム押出成形用小型押出成形機を用いて壁厚み0.1mmで壁間5mm、直径20mmのハニカムダイスによりハニカム成形体の押出成形を行った。この押出ハニカム構造体の押出成形後に100℃にて16時間乾燥して、乾燥されたハニカム構造体を得た。乾燥されたハニカム構造体を500℃にて2時間脱バインダーした後、電気炉にて1,700℃で焼結した。
実施例1〜9のいずれの成形においても、成形時の隔壁の波打ち、特に外周近傍の隔壁の波打ち発生もなく、成形後の乾燥工程でクラックが入っていないセラミックハニカム構造体が得られた。
[Examples 1 to 9]
As shown in Table 1, R is a butoxy group, and m and n are 17 in the above formula (1) with respect to 100 parts by mass of Showa light metal alumina AL-160SG raw material having an average particle diameter of 0.4 μm. 0.1 to 10 parts by mass of polyoxyethylene polyoxypropylene butyl ether (Nippon Yushi Co., Ltd. Unilube 50MB26, m = n = 17, m / n = 50/50) was added, and the cellulose ether shown in Table 1 was further added. Add 1.0 to 10.0 parts by mass externally, add water in the amount shown in Table 1, mix with a stirring blade at 1,000 rpm in a super mixer manufactured by Kawada Seisakusho, and then a small size manufactured by Inoue Seisakusho. After mixing at a temperature of 15 ° C. with a three-roll mill, using a small extruder for honeycomb extrusion molding manufactured by Miyazaki Tekko, a wall thickness of 0.1 mm, a wall width of 5 mm, and a diameter of 20 mm Was extruded honeycomb molded body by Kamudaisu. After extrusion molding of the extruded honeycomb structure, it was dried at 100 ° C. for 16 hours to obtain a dried honeycomb structure. The dried honeycomb structure was debindered at 500 ° C. for 2 hours and then sintered at 1,700 ° C. in an electric furnace.
In any of the moldings of Examples 1 to 9, there was no generation of corrugation of the partition walls during molding, particularly the occurrence of corrugation of the partition walls in the vicinity of the outer periphery, and a ceramic honeycomb structure free from cracks was obtained in the drying step after molding.

Figure 2007331234
Figure 2007331234

1)メチルセルロース:
メトキシ置換度30質量%
2質量%水溶液の20℃での粘度4,000mPa・s
2)ヒドロキシプロピルメチルセルロース:
メトキシ置換度29質量% ヒドロキシプロピル置換度10質量%
2質量%水溶液の20℃での粘度200,000mPa・s
3)ヒドロキシエチルメチルセルロース:
メトキシ置換度29質量% ヒドロキシエチル置換度10質量%
2質量%水溶液の20℃での粘度100,000mPa・s
4)ヒドロキシエチルセルロース:
ヒドロキシエチル置換度55質量%
2質量%水溶液の20℃での粘度4,000mPa・s
5)ヒドロキシプロピルセルロース:
ヒドロキシプロピル置換度60質量%
2質量%水溶液の20℃での粘度4,000mPa・s
1) Methylcellulose:
Methoxy substitution degree 30% by mass
Viscosity of 2% by weight aqueous solution at 20 ° C. 4,000 mPa · s
2) Hydroxypropyl methylcellulose:
Methoxy substitution degree 29% by mass Hydroxypropyl substitution degree 10% by mass
Viscosity of 2% by weight aqueous solution at 20 ° C. 200,000 mPa · s
3) Hydroxyethyl methylcellulose:
Methoxy substitution degree 29% by mass Hydroxyethyl substitution degree 10% by mass
Viscosity of 2% by weight aqueous solution at 20 ° C. 100,000 mPa · s
4) Hydroxyethyl cellulose:
Hydroxyethyl substitution degree 55% by mass
Viscosity of 2% by weight aqueous solution at 20 ° C. 4,000 mPa · s
5) Hydroxypropyl cellulose:
Hydroxypropyl substitution degree 60% by mass
Viscosity of 2% by weight aqueous solution at 20 ° C. 4,000 mPa · s

[実施例10〜18]
実施例10〜18として、上記実施例1〜9の配合品を使用し、壁厚み0.05mmで壁間4mm、直径20mmのハニカムダイスにより押出ハニカム構造体に押出成形後に、100℃にて16時間乾燥して、ハニカム構造体を得た。乾燥されたハニカム構造体を500℃にて2時間脱バインダーした後、電気炉にて1,700℃で焼結した。
実施例10〜18のいずれの成形においても、成形時の隔壁の波打ち、特に外周近傍の隔壁の波打ち発生もなく、成形後の乾燥工程でクラックが入っていないセラミックハニカム構造体が得られた。
[Examples 10 to 18]
As examples 10 to 18, the blended products of the above examples 1 to 9 were used. After extrusion into an extruded honeycomb structure with a honeycomb die having a wall thickness of 0.05 mm, a wall distance of 4 mm, and a diameter of 20 mm, the temperature was 16 ° C. The honeycomb structure was obtained by drying for a period of time. The dried honeycomb structure was debindered at 500 ° C. for 2 hours and then sintered at 1,700 ° C. in an electric furnace.
In any of the moldings of Examples 10 to 18, a ceramic honeycomb structure having no cracks in the drying step after molding was obtained without the corrugation of the partition walls at the time of molding, particularly the occurrence of the corrugation of the partition walls in the vicinity of the outer periphery.

[実施例19〜24]
平均粒子径0.4μmの昭和軽金属製アルミナAL−160SG原料100質量部に対して、上記式(1)において、表2に示すp,q,m,nを有するポリオキシエチレンポリオキシプロピレン誘導体を0.1〜10質量部添加し、メトキシ置換度29質量%、ヒドロキシプロピル置換度9質量%で、2質量%水溶液の20℃での粘度が10,000mPa・sであるヒドロキシプロピルメチルセルロースを5質量部添加すると共に、表2に示す量で水を加えた以外は実施例1〜9と同様のセラミックハニカム構造体を得た。
実施例19〜24のいずれの成形においても、表2の成形性評価に示すごとく、成形時の隔壁の波打ち、特に外周近傍の隔壁の波打ち発生もなく、成形後の乾燥工程でクラックの状況についても、表2に示したようにクラックが入っていないセラミックハニカム構造体が得られた。
成形性評価:◎ 隔壁の波打ち、特に外周近傍の隔壁の波打ち発生もなく、表面が平滑で
ある
○ 隔壁の波打ち、特に外周近傍の隔壁の波打ち発生もなし
[Examples 19 to 24]
Polyoxyethylene polyoxypropylene derivatives having p, q, m, and n shown in Table 2 in the above formula (1) with respect to 100 parts by mass of Showa Light Metal alumina AL-160SG raw material having an average particle size of 0.4 μm. 0.1 to 10 parts by mass, 5 mass% of hydroxypropyl methylcellulose having a methoxy substitution degree of 29 mass% and a hydroxypropyl substitution degree of 9 mass%, and a 2 mass% aqueous solution having a viscosity of 10,000 mPa · s at 20 ° C. A ceramic honeycomb structure similar to those of Examples 1 to 9 was obtained except that water was added in an amount shown in Table 2 along with the addition of a part thereof.
In any of the moldings of Examples 19 to 24, as shown in the moldability evaluation of Table 2, there is no corrugation of the partition walls at the time of molding, in particular, no occurrence of corrugation of the partition walls in the vicinity of the outer periphery. As shown in Table 2, a ceramic honeycomb structure having no cracks was obtained.
Formability evaluation: ◎ No waviness of partition walls, especially the occurrence of undulations of partition walls near the outer periphery, smooth surface
is there
○ No waviness on the bulkhead, especially on the outer circumference.

Figure 2007331234
Figure 2007331234

[実施例25〜33]
平均粒子径0.4μmの昭和軽金属製アルミナAL−160SG原料100質量部に対して、上記式(1)において、q=3、m=13、n=48、m/n=15/85であるグリセリン構造体(日本油脂(株)製のユニルーブ15TG−70B)を0.1〜10質量部添加し、表3に示すセルロースエーテルを外配で1.0〜10.0質量部添加すると共に、表3に示す量で水を加え、川田製作所製のスーパーミキサーにて1,000rpmの撹拌羽により混合し、更に井上製作所製の小型3本ロールミルにて品温度を15℃にして混合した後、宮崎鉄工製のハニカム押出成形用小型押出成形機を用いて壁厚み0.2mmで壁間5mm、直径20mmのハニカムダイスにより押出成形を行った。この押出成形後に100℃にて16時間乾燥して、ハニカム構造体を得た。乾燥されたハニカム構造体を500℃にて2時間脱バインダーした後、電気炉にて1,700℃で焼結した。
実施例25〜33のいずれの成形においても、成形時の隔壁の波打ち、特に外周近傍の隔壁の波打ち発生もなく、成形後の乾燥工程でクラックが入っていないセラミックハニカム構造体が得られた。
[Examples 25 to 33]
In the above formula (1), q = 3, m = 13, n = 48, m / n = 15/85 with respect to 100 parts by mass of Showa light metal alumina AL-160SG raw material having an average particle diameter of 0.4 μm. While adding 0.1-10 mass parts of glycerin structures (Nippon Oil Co., Ltd. Unilube 15TG-70B) and adding 1.0-10.0 mass parts of the cellulose ether shown in Table 3 outside, After adding water in the amount shown in Table 3, mixing with a stirring blade of 1,000 rpm with a super mixer manufactured by Kawada Manufacturing, and further mixing at a product temperature of 15 ° C. with a small three roll mill manufactured by Inoue Manufacturing, Extrusion was performed with a honeycomb die having a wall thickness of 0.2 mm, a wall space of 5 mm, and a diameter of 20 mm using a small extruder for honeycomb extrusion manufactured by Miyazaki Tekko. After the extrusion molding, the honeycomb structure was obtained by drying at 100 ° C. for 16 hours. The dried honeycomb structure was debindered at 500 ° C. for 2 hours and then sintered at 1,700 ° C. in an electric furnace.
In any of the moldings of Examples 25 to 33, there was no undulation of the partition walls during molding, in particular, no undulation of the partition walls in the vicinity of the outer periphery, and a ceramic honeycomb structure free from cracks was obtained in the drying step after molding.

Figure 2007331234
Figure 2007331234

[実施例34〜42]
平均粒子径0.4μmの昭和軽金属製アルミナAL−160SG原料100質量部に対して、上記式(1)において、q=3、m=12、n=48、m/n=20/80であるグリセリン構造体(日本油脂(株)製のユニルーブ20TG−40B)を0.1〜10質量部添加し、表4に示すセルロースエーテルを外配で1.0〜10.0質量部添加すると共に、表4に示す量で水を加えた以外は実施例25〜33と同様のセラミックハニカム構造体を得た。
実施例34〜42のいずれの成形においても、成形時の隔壁の波打ち、特に外周近傍の隔壁の波打ち発生もなく、成形後の乾燥工程でクラックが入っていないセラミックハニカム構造体が得られた。
[Examples 34 to 42]
In the above formula (1), q = 3, m = 12, n = 48, m / n = 20/80 with respect to 100 parts by mass of Showa Light Metal alumina AL-160SG raw material having an average particle diameter of 0.4 μm. While adding 0.1-10 mass parts of glycerin structures (Nippon Oil 20TG-40B manufactured by NOF Corporation), and adding 1.0-10.0 mass parts of the cellulose ether shown in Table 4 externally, A ceramic honeycomb structure similar to that of Examples 25 to 33 was obtained except that water was added in the amount shown in Table 4.
In any of the moldings of Examples 34 to 42, there was no undulation of the partition walls during molding, in particular, no undulation of the partition walls in the vicinity of the outer periphery, and a ceramic honeycomb structure free from cracks was obtained in the drying step after molding.

Figure 2007331234
Figure 2007331234

[実施例43〜51]
平均粒子径0.4μmの昭和軽金属製アルミナAL−160SG原料100質量部に対して、上記式(1)において、q=3、m=21、n=63、m/n=25/75であるグリセリン構造体(日本油脂(株)製のユニルーブ25TG−55)を0.1〜10質量部添加し、表5に示すセルロースエーテルを外配で1.0〜10.0質量部添加すると共に、表5に示す量で水を加えた以外は実施例25〜33と同様のセラミックハニカム構造体を得た。
実施例43〜51のいずれの成形においても、成形時の隔壁の波打ち、特に外周近傍の隔壁の波打ち発生もなく、成形後の乾燥工程でクラックが入っていないセラミックハニカム構造体が得られた。
[Examples 43 to 51]
In the above formula (1), q = 3, m = 21, n = 63, m / n = 25/75 with respect to 100 parts by mass of Showa Light Metal alumina AL-160SG raw material having an average particle size of 0.4 μm. While adding 0.1-10 mass parts of glycerin structures (Nippon Oil Co., Ltd. unilube 25TG-55) and adding 1.0-10.0 mass parts of the cellulose ether shown in Table 5 outside, Ceramic honeycomb structures similar to those in Examples 25 to 33 were obtained except that water was added in the amounts shown in Table 5.
In any of the moldings of Examples 43 to 51, there was no undulation of the partition walls during molding, particularly the generation of undulation of the partition walls in the vicinity of the outer periphery, and a ceramic honeycomb structure free from cracks was obtained in the drying step after molding.

Figure 2007331234
Figure 2007331234

[比較例1〜9]
実施例1のポリオキシエチレンポリオキシプロピレンブチルエーテルを特開2001−179720号公報記載の日本油脂(株)製のソルヒダン脂肪酸エステル(日本油脂(株)製セラミゾールC−08)に代えた以外は実施例1〜9と同様に成形したが、成形体は保形性維持が不十分で、乾燥時のクラック発生が多かった。
[Comparative Examples 1 to 9]
Example except that the polyoxyethylene polyoxypropylene butyl ether of Example 1 was replaced with solhydran fatty acid ester (Ceramisole C-08 manufactured by Nippon Oil & Fats Co., Ltd.) described in JP-A-2001-179720. Although it shape | molded similarly to 1-9, the molded object had insufficient shape retention maintenance, and there were many crack generation | occurrence | production at the time of drying.

[比較例10〜17]
平均粒子径0.4μmの昭和軽金属製アルミナAL−160SG原料100質量部に対して、上記式(1)において、表6に示すp,q,m,nを有するポリオキシエチレンポリオキシプロピレン誘導体を0.1〜10質量部添加し、メトキシ置換度29質量%、ヒドロキシプロピル置換度9質量%で、2質量%水溶液の20℃での粘度が10,000mPa・sであるヒドロキシプロピルメチルセルロース5質量部を添加すると共に、表6に示す量で水を加え、川田製作所製のスーパーミキサーにて1,000rpmの撹拌羽により混合し、更に井上製作所製の小型3本ロールミルにて品温度を15℃にして混合した後、宮崎鉄工製のハニカム押出成形用小型押出成形機を用いて壁厚み0.1mmで壁間5mm、直径20mmのハニカムダイスにより押出成形した。押出成形したハニカム構造体を100℃にて16時間乾燥して、ハニカム構造体を得た。乾燥されたハニカム構造体を500℃にて2時間脱バインダーした後、電気炉にて1,700℃で焼結した。
比較例10〜17のいずれの成形においても表6の成形性評価に示すごとく、成形時の隔壁の波打ち、特に外周近傍の隔壁の波打ち発生があり、成形性は不良であった。成形後の乾燥工程でクラックの状況についても、表6に示すようにクラックが入っていた。
成形性評価:× 隔壁の波打ち、特に外周近傍の隔壁の波打ち発生がある
[Comparative Examples 10 to 17]
Polyoxyethylene polyoxypropylene derivatives having p, q, m, and n shown in Table 6 in the above formula (1) with respect to 100 parts by mass of Showa Light Metal alumina AL-160SG raw material having an average particle size of 0.4 μm. 0.1 to 10 parts by mass, 5 parts by mass of hydroxypropyl methylcellulose having a methoxy substitution degree of 29% by mass and a hydroxypropyl substitution degree of 9% by mass, and a 2% by mass aqueous solution having a viscosity at 20 ° C. of 10,000 mPa · s. In addition, water is added in the amount shown in Table 6 and mixed with a stirring blade of 1,000 rpm with a super mixer manufactured by Kawada Seisakusho, and the product temperature is set to 15 ° C. with a small three-roll mill manufactured by Inoue Seisakusho. After mixing, a honeycomb extruder having a wall thickness of 0.1 mm, a wall space of 5 mm, and a diameter of 20 mm was used using a small-sized extrusion machine for honeycomb extrusion manufactured by Miyazaki Tekko. It was extruded by the nest. The extruded honeycomb structure was dried at 100 ° C. for 16 hours to obtain a honeycomb structure. The dried honeycomb structure was debindered at 500 ° C. for 2 hours and then sintered at 1,700 ° C. in an electric furnace.
In any of the moldings of Comparative Examples 10 to 17, as shown in the moldability evaluation of Table 6, the partition wall wavy during molding, particularly the partition wall near the outer periphery was generated, and the moldability was poor. As shown in Table 6, there were cracks in the cracking process in the drying step after molding.
Formability evaluation: x There is undulation of the partition walls, especially the partition wall near the outer periphery.

Figure 2007331234
Figure 2007331234

Claims (5)

押出成形によるセラミック成形体の製造において、セラミック材料100質量部に対し、下記構造式(1)
Figure 2007331234

(式中、Rxはx価のアルコール残基を示し、x=1の場合、RはCp2p+1O−(pは4〜6の整数)で表される1価アルコール残基としてのアルコキシル基を示し、x=2〜6の場合、RはCq(q+2)q(qは2〜6の整数)で表される多価アルコール残基である。)
におけるm及びnが3〜10,000であるポリオキシエチレンポリオキシプロピレン誘導体を0.1〜10質量部添加してなるセラミック坏土をハニカム形状に押出成形することを特徴とするセラミックハニカム構造体の製造方法。
In the production of a ceramic molded body by extrusion, the following structural formula (1) is applied to 100 parts by mass of the ceramic material.
Figure 2007331234

(Wherein R x represents an x-valent alcohol residue, and when x = 1, R is a monovalent alcohol residue represented by C p H 2p + 1 O— (p is an integer of 4 to 6). In the case of x = 2 to 6, R is a polyhydric alcohol residue represented by C q H (q + 2) O q (q is an integer of 2 to 6).
A ceramic honeycomb structure obtained by extruding a ceramic clay obtained by adding 0.1 to 10 parts by mass of a polyoxyethylene polyoxypropylene derivative having m and n of 3 to 10,000 in a honeycomb shape Manufacturing method.
構造式(1)中のRが、C49Oで示されるブトキシ基であり、m及びnが17であることを特徴とする請求項1記載のセラミックハニカム構造体の製造方法。 The method for producing a ceramic honeycomb structure according to claim 1, wherein R in the structural formula (1) is a butoxy group represented by C 4 H 9 O, and m and n are 17. 構造式(1)中のRが、C49O又はC353で示される構造を有し、m/nが15/85〜25/75であることを特徴とする請求項1記載のセラミックハニカム構造体の製造方法。 R in the structural formula (1) has a structure represented by C 4 H 9 O or C 3 H 5 O 3 , and m / n is 15/85 to 25/75. 2. A method for producing a ceramic honeycomb structure according to 1. セラミック材料100質量部に対してメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースから選ばれる1種又は2種以上のセルロースエーテルを1〜10質量部添加した請求項1〜3のいずれか1項に記載のセラミックハニカム構造体の製造方法。   1 to 10 parts by mass of one or more cellulose ethers selected from methylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxyethylcellulose, and hydroxypropylcellulose are added to 100 parts by mass of the ceramic material. The manufacturing method of the ceramic honeycomb structure of any one of Claims 1. 押出成形時に、スリット幅が0.2mm以下の押出用口金を使用する請求項1〜4のいずれか1項に記載のセラミックハニカム構造体の製造方法。   The method for manufacturing a ceramic honeycomb structure according to any one of claims 1 to 4, wherein an extrusion die having a slit width of 0.2 mm or less is used during extrusion molding.
JP2006165896A 2006-06-15 2006-06-15 Method of manufacturing ceramic honeycomb structure Pending JP2007331234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006165896A JP2007331234A (en) 2006-06-15 2006-06-15 Method of manufacturing ceramic honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006165896A JP2007331234A (en) 2006-06-15 2006-06-15 Method of manufacturing ceramic honeycomb structure

Publications (1)

Publication Number Publication Date
JP2007331234A true JP2007331234A (en) 2007-12-27

Family

ID=38931173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006165896A Pending JP2007331234A (en) 2006-06-15 2006-06-15 Method of manufacturing ceramic honeycomb structure

Country Status (1)

Country Link
JP (1) JP2007331234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045975A1 (en) * 2012-09-20 2014-03-27 三洋化成工業株式会社 Lubricant for ceramic extrusion molding, green body composition for ceramic extrusion molding, ceramic molded article, and method for producing ceramic molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045975A1 (en) * 2012-09-20 2014-03-27 三洋化成工業株式会社 Lubricant for ceramic extrusion molding, green body composition for ceramic extrusion molding, ceramic molded article, and method for producing ceramic molded article

Similar Documents

Publication Publication Date Title
KR101546097B1 (en) Composition for Ceramic Extrusion-Molded Body and Method for Manufacturing a Ceramic Extrusion-Molded Body
JP2007331978A (en) Composition for extrusion molding or injection molding and method for manufacturing molded product
US9365702B2 (en) Composition for extrusion-molded bodies
JP2011224978A (en) Extrusion molding composition and method for producing extrusion molded part
EP2563742B1 (en) Composition for extrusion-molded bodies
JP2011529846A5 (en)
JP2011529846A (en) Ceramic precursors with improved manufacturability
JP5560081B2 (en) Ceramic clay, ceramic molded body, ceramic structure and manufacturing method thereof
JP2012148962A (en) Ceramic extrusion molding binder and composition
JP2010201923A (en) Method of producing honeycomb structure
JP2007331234A (en) Method of manufacturing ceramic honeycomb structure
CN104981443A (en) Ceramic precursor batch compositions for increased tonset using organic additive heteroatom polyols
US9850170B2 (en) Selected binders for the extrusion of ultra-thin wall cellular ceramics
JP4281043B2 (en) Method for producing cordierite ceramic honeycomb structure
JP2004203705A (en) Binder for extrusion molding ceramic, and composition for extrusion molding ceramic
JP3949453B2 (en) Manufacturing method of ceramic structure
JPH0450157A (en) Ceramic material for extrusion molding and process for extrusion molding of the material
JP2005112679A (en) Manufacturing method of a cordierite ceramic honeycomb structure
JP2001179720A (en) Manufacturing method of cordierite honeycomb structure
JPH0450158A (en) Ceramic material for extrusion molding
JP2001220245A (en) Method for extrusion molding ceramic material
JP2011240618A (en) Additive for ceramics extrusion molding and composition for ceramics extrusion molding
WO2014045975A1 (en) Lubricant for ceramic extrusion molding, green body composition for ceramic extrusion molding, ceramic molded article, and method for producing ceramic molded article