JP2007329512A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2007329512A
JP2007329512A JP2007234188A JP2007234188A JP2007329512A JP 2007329512 A JP2007329512 A JP 2007329512A JP 2007234188 A JP2007234188 A JP 2007234188A JP 2007234188 A JP2007234188 A JP 2007234188A JP 2007329512 A JP2007329512 A JP 2007329512A
Authority
JP
Japan
Prior art keywords
semiconductor region
region
layer
voltage
boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007234188A
Other languages
Japanese (ja)
Inventor
Akihiro Hasegawa
昭博 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007234188A priority Critical patent/JP2007329512A/en
Publication of JP2007329512A publication Critical patent/JP2007329512A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem: an element isolation structure is formed through complex formation processes in a four-partitioning photodetector. <P>SOLUTION: On a P-sub layer 80, which acts as a common anode of a PIN photodiode (PIN-PD) for each section 62, a high resistivity epitaxial layer 82 is grown, which acts as an i-layer of the PIN-PD. An isolation region 64 being a p+ region is formed by ion injection from a surface of a substrate on a boundary of the section 62. When reverse-biasing a cathode region 66 formed in each section 62 and the P-sub layer 80 to make the PIN-PD function, the isolation region 64 is made to be a ground potential along with the P-sub layer 80 to become an anode. As a result, a potential barrier against electrons is formed in an epitaxial layer 82 at a location sandwiched by the isolation region 64 and P-sub layer 80, thereby preventing electrons generated by absorbing light in each section 62 from moving to an adjacent section 62 and obtaining an element isolation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、PIN(p-intrinsic-n)フォトダイオードからなる受光部であって、当該受光部がそれぞれ別個に受光信号を出力可能な複数区画に分割された半導体装置に関する。   The present invention relates to a light-receiving unit composed of a PIN (p-intrinsic-n) photodiode, and the light-receiving unit is divided into a plurality of sections capable of separately outputting a light reception signal.

近年、情報記録媒体として、CD(Compact Disk)やDVD(Digital Versatile Disk)といった光ディスクが大きな位置を占めるようになってきた。これら光ディスクの再生装置は、光ディスクのトラックに沿って照射したレーザ光の反射光強度の変化に基づいて、記録データを再生する。   In recent years, optical disks such as CD (Compact Disk) and DVD (Digital Versatile Disk) have come to occupy a large position as information recording media. These optical disk reproducing devices reproduce recorded data based on a change in reflected light intensity of laser light irradiated along a track of the optical disk.

図5は、このレーザ光の照射及び反射光の検知を行う光ピックアップ機構の模式図である。レーザ光源として、小型低消費電力の半導体レーザ素子2が用いられ、半導体レーザ素子2から出射されたレーザ光は、コリメートレンズ4、対物レンズ6により光ディスク8の表面にフォーカスされる。フォーカスされたレーザ光は、光ディスク8のトラックに沿って照射され、光ディスク8はトラックに沿って記録されたデータに応じて、光ピックアップ機構へ向けた反射光量を変化させる。   FIG. 5 is a schematic diagram of an optical pickup mechanism that performs irradiation of the laser light and detection of reflected light. A small and low power consumption semiconductor laser element 2 is used as the laser light source, and the laser light emitted from the semiconductor laser element 2 is focused on the surface of the optical disk 8 by the collimating lens 4 and the objective lens 6. The focused laser beam is irradiated along the track of the optical disc 8, and the optical disc 8 changes the amount of reflected light toward the optical pickup mechanism in accordance with the data recorded along the track.

光路上に設けられた偏光ビームスプリッタ10は、入射光のうち縦偏光成分(p波)だけを透過する。光ディスク8からの反射光はλ/4板12を透過後において、照射時の当該λ/4板12での回転と合わせて偏光面が90°回転しており、偏光ビームスプリッタ10に横偏光成分(s波)として入射する。偏光ビームスプリッタ10は、回転した偏光面に応じて反射光を照射光とは異なる方向へ反射する。この偏光ビームスプリッタ10により照射光から分離された反射光は集束レンズ14及びシリンドリカルレンズ16を経由して光検出器18に入射する。   The polarization beam splitter 10 provided on the optical path transmits only the longitudinal polarization component (p wave) of the incident light. After the light reflected from the optical disk 8 is transmitted through the λ / 4 plate 12, the polarization plane is rotated by 90 ° together with the rotation of the λ / 4 plate 12 at the time of irradiation. Incident as (s wave). The polarization beam splitter 10 reflects the reflected light in a direction different from the irradiation light according to the rotated polarization plane. The reflected light separated from the irradiation light by the polarization beam splitter 10 enters the photodetector 18 via the focusing lens 14 and the cylindrical lens 16.

光ディスク再生装置は、反射光に基づいてデータを検出する一方、光ピックアップ機構と光ディスク8との位置関係をサーボ制御する。具体的には、レーザ光をトラックの中心線に沿って照射するためのトラッキングサーボ及び、光ディスク8と光ピックアップ機構との距離を一定に保つフォーカスサーボが行われる。このようなサーボ制御のための情報を得るために、光検出器18として反射光像を複数区画に分割して受光するものが用いられる。また、シリンドリカルレンズ16は、フォーカスサーボ制御を行うために設けられている。   The optical disk reproducing device detects data based on the reflected light, and servo-controls the positional relationship between the optical pickup mechanism and the optical disk 8. Specifically, tracking servo for irradiating the laser beam along the center line of the track and focus servo for keeping the distance between the optical disc 8 and the optical pickup mechanism constant are performed. In order to obtain such information for servo control, a photodetector 18 that receives a reflected light image divided into a plurality of sections is used. The cylindrical lens 16 is provided to perform focus servo control.

ちなみに、フォーカスサーボ制御は、光検出器18の出力信号に基づきアクチュエータで光ピックアップ機構の位置を可変制御し、光ディスク8との距離を一定に保つ。これにより、光ディスク8の表面での照射光のフォーカスのずれに応じた反射光量の変動が抑制され、データに応じた受光信号に重畳されるノイズが抑制される。   Incidentally, in the focus servo control, the position of the optical pickup mechanism is variably controlled by an actuator based on the output signal of the photodetector 18 to keep the distance from the optical disk 8 constant. Thereby, the fluctuation | variation of the reflected light amount according to the shift | offset | difference of the focus of the irradiated light on the surface of the optical disk 8 is suppressed, and the noise superimposed on the received light signal according to data is suppressed.

図6は、光検出器18の受光部及び、当該受光部上での反射光像を示す模式図である。非点収差法の原理により、シリンドリカルレンズ16を通過した反射光の像は、光ディスク8と対物レンズ6との距離dに応じて、直交する2方向(図5において紙面上下方向と紙面垂直方向)の寸法比率が変化する。具体的には、距離dが目標値である場合に、図6(b)に示すように、反射光像が真円30となるように設定される。例えば、距離dが、オーバーである場合には図6(a)に示すように、反射光像は縦長の楕円32となり、一方、アンダーである場合には図6(c)に示すように、反射光像は横長の楕円34となる。   FIG. 6 is a schematic diagram illustrating a light receiving unit of the photodetector 18 and a reflected light image on the light receiving unit. According to the principle of the astigmatism method, the image of the reflected light that has passed through the cylindrical lens 16 is in two orthogonal directions according to the distance d between the optical disk 8 and the objective lens 6 (the vertical direction in FIG. 5 and the vertical direction in FIG. 5). The dimensional ratio of changes. Specifically, when the distance d is a target value, the reflected light image is set to be a perfect circle 30 as shown in FIG. For example, when the distance d is over, the reflected light image becomes a vertically long ellipse 32 as shown in FIG. 6 (a), while when it is under, as shown in FIG. 6 (c). The reflected light image becomes a horizontally long ellipse 34.

光検出器子18は2×2の4つの区画36に分割された受光部を有し、各区画はそれぞれ受光信号を出力する受光素子を構成する。光検出器18は、受光素子の2×2の正方配列の対角方向が縦長楕円32及び横長楕円34それぞれの軸に一致するように配置される。このように配置することで、図6において垂直方向の対角線上に並ぶ2受光素子の出力信号の和と水平方向の対角線上に並ぶ2受光素子の出力信号の和との差に基づき、各反射光像の形状を判別し、距離dの制御に用いることができる。   The photodetector element 18 has a light receiving portion divided into four 2 × 2 sections 36, and each section constitutes a light receiving element that outputs a light reception signal. The photodetector 18 is arranged so that the diagonal direction of the 2 × 2 square array of light receiving elements coincides with the axes of the vertically long ellipse 32 and the horizontally long ellipse 34. With this arrangement, each reflection is based on the difference between the sum of the output signals of the two light receiving elements arranged on the diagonal line in the vertical direction and the sum of the output signals of the two light receiving elements arranged on the diagonal line in the horizontal direction in FIG. The shape of the optical image can be determined and used to control the distance d.

光ディスクから読み出されるデータレートは非常に高いため、光検出器18は、応答速度の速いPINフォトダイオードを用いた半導体素子で構成されている。図7は、従来の光検出器18の模式的な断面図である。この図は、隣り合う2つの受光素子を通り半導体基板に垂直な断面図を表している。この半導体素子は、p型半導体基板40の表面にアノード領域42となるp+領域を形成され、その上に不純物濃度が低く高比抵抗であるi層44がエピタキシャル成長により形成される。i層44には、受光素子の境界に対応する位置にp+領域からなり、アノード領域42に連続する分離領域46が形成される。またi層44の表面にはカソード領域48となるn+領域が形成される。   Since the data rate read from the optical disk is very high, the photodetector 18 is composed of a semiconductor element using a PIN photodiode having a high response speed. FIG. 7 is a schematic cross-sectional view of a conventional photodetector 18. This figure shows a sectional view perpendicular to the semiconductor substrate through two adjacent light receiving elements. In this semiconductor element, a p + region serving as an anode region 42 is formed on the surface of a p-type semiconductor substrate 40, and an i layer 44 having a low impurity concentration and a high specific resistance is formed thereon by epitaxial growth. In the i layer 44, a separation region 46 that is formed of a p + region at a position corresponding to the boundary of the light receiving element and continues to the anode region 42 is formed. Further, an n + region that becomes the cathode region 48 is formed on the surface of the i layer 44.

これらアノード領域42、i層44、及びカソード領域48が光検出器18の受光素子となるPINフォトダイオードを構成する。このPINフォトダイオードは、アノード領域42とカソード領域48とがそれぞれ電圧端子に接続され、それらの間に逆バイアス電圧が印加される。逆バイアス状態にてi層44には空乏層が形成され、空乏層内にて入射光の吸収により発生する電子が、空乏層内の電界でカソード領域48へ移動し、受光信号として出力される。ここで、分離領域46は、上述したように、i層44の表面からアノード領域42まで達する。これにより、i層44は受光素子毎に分断され、受光素子間のクロストークが防止される。   The anode region 42, the i layer 44, and the cathode region 48 constitute a PIN photodiode that serves as a light receiving element of the photodetector 18. In this PIN photodiode, an anode region 42 and a cathode region 48 are connected to voltage terminals, respectively, and a reverse bias voltage is applied between them. A depletion layer is formed in the i layer 44 in the reverse bias state, and electrons generated by absorption of incident light in the depletion layer move to the cathode region 48 by an electric field in the depletion layer, and are output as a light reception signal. . Here, the separation region 46 reaches the anode region 42 from the surface of the i layer 44 as described above. Thereby, i layer 44 is divided for every light receiving element, and crosstalk between light receiving elements is prevented.

i層44の厚さは、検出する光の半導体内での吸収長程度以上に設定される。例えば、CDやDVDに用いられている780nm帯や650nm帯の光に対するシリコンの吸収長は10〜20μm程度である。ここで、分離領域46のp+層はイオン注入後、熱拡散により深さ方向に押し込んで形成されるが、熱拡散では深さ方向と共に水平方向にも領域が拡大する。そこで、i層44が比較的厚い場合に、幅が抑制された分離領域46を形成するために、i層44を複数回のエピタキシャル成長に分けて形成し、各回のエピタキシャル層48を形成する毎に、その表面からイオン注入と熱拡散を行って、当該エピタキシャル層48の下面まで到達する分離領域52を形成することが行われる。このようにしてエピタキシャル層48と共に分離領域52を積み重ねることによって、幅を抑制しつつ深さ方向に伸びる分離領域46が形成される。
特開平10−107243号公報 特開2001−60713号公報
The thickness of the i layer 44 is set to be equal to or greater than the absorption length of the light to be detected in the semiconductor. For example, the absorption length of silicon for light in the 780 nm band and 650 nm band used for CDs and DVDs is about 10 to 20 μm. Here, the p + layer in the isolation region 46 is formed by being pushed in in the depth direction by thermal diffusion after ion implantation. However, in thermal diffusion, the region expands in the horizontal direction as well as in the depth direction. Therefore, when the i layer 44 is relatively thick, in order to form the isolation region 46 whose width is suppressed, the i layer 44 is divided into a plurality of times of epitaxial growth, and each time the epitaxial layer 48 is formed. The isolation region 52 reaching the lower surface of the epitaxial layer 48 is formed by performing ion implantation and thermal diffusion from the surface. By stacking the isolation region 52 together with the epitaxial layer 48 in this manner, the isolation region 46 extending in the depth direction while suppressing the width is formed.
JP-A-10-107243 JP 2001-60713 A

従来の光検出器18を構成する半導体素子では、10〜20μmといった比較的厚いi層を形成する場合に、エピタキシャル層50及び分離領域52の形成を複数繰り返す。そのため、製造コストが高くなるという問題があった。また、分離領域46とi層44との接合面積の分、アノードとカソードとの端子間容量が増加し、PINフォトダイオードの特長である高速応答性が損なわれるという問題もあった。   In the semiconductor element constituting the conventional photodetector 18, when a relatively thick i layer of 10 to 20 μm is formed, the formation of the epitaxial layer 50 and the isolation region 52 is repeated a plurality of times. Therefore, there has been a problem that the manufacturing cost becomes high. Further, there is a problem that the inter-terminal capacitance between the anode and the cathode is increased by the junction area between the isolation region 46 and the i layer 44, and the high-speed response characteristic of the PIN photodiode is impaired.

本発明は、上記問題点を解決するためになされたものであり、製造コストの低減が可能であり、また光ディスク等からの光信号を検出する分割光検出器として好適な性能を有した半導体装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can reduce the manufacturing cost. The semiconductor device has suitable performance as a split photodetector that detects an optical signal from an optical disk or the like. The purpose is to provide.

本発明に係る半導体装置は、複数区画に分割された受光部を半導体基板の表面に形成された半導体装置であって表面に設けられた低不純物濃度の中間半導体領域と、中間半導体領域の下面に接して配置され、第1電圧を印加される、中間半導体領域よりも高不純物濃度の第1導電型の下部半導体領域と、区画相互間の境界に沿って中間半導体領域の表面に形成され、第1電圧を印加される、中間半導体領域よりも高不純物濃度の第1導電型の境界半導体領域と、それぞれ中間半導体領域の表面の各区画に対応した位置に形成され、第2電圧を印加される、中間半導体領域よりも高不純物濃度の第2導電型の複数の上部半導体領域と、を有し、境界半導体領域と下部半導体領域との間に中間半導体領域を有し、第1電圧は下部半導体領域側から印加されるとともに、第2電圧は上部半導体領域側から印加され、各上部半導体領域と下部半導体領域とは、第1電圧及び第2電圧により逆バイアス状態とされて、中間半導体領域に空乏層を形成し、境界半導体領域は、前記第1電圧に応じて、前記下部半導体領域との間に前記信号電荷の前記区画間の移動に対する電位障壁を形成する。   A semiconductor device according to the present invention is a semiconductor device in which a light receiving portion divided into a plurality of sections is formed on a surface of a semiconductor substrate, and a low impurity concentration intermediate semiconductor region provided on the surface, and a lower surface of the intermediate semiconductor region A first conductivity type lower semiconductor region having a higher impurity concentration than the intermediate semiconductor region, which is disposed in contact with the first voltage, and is formed on a surface of the intermediate semiconductor region along a boundary between partitions; The first conductivity type boundary semiconductor region having a higher impurity concentration than the intermediate semiconductor region, to which one voltage is applied, and the respective regions on the surface of the intermediate semiconductor region are formed, and the second voltage is applied. A plurality of upper semiconductor regions of the second conductivity type having a higher impurity concentration than the intermediate semiconductor region, and having an intermediate semiconductor region between the boundary semiconductor region and the lower semiconductor region, the first voltage being the lower semiconductor From the area side The second voltage is applied from the upper semiconductor region side, and each upper semiconductor region and the lower semiconductor region are reversely biased by the first voltage and the second voltage, and a depletion layer is formed in the intermediate semiconductor region. The boundary semiconductor region is formed with a potential barrier against movement of the signal charge between the compartments with the lower semiconductor region according to the first voltage.

他の本発明に係る半導体装置は、前記下部半導体領域が、前記境界半導体領域に対向する位置に上向きに突出した凸部を有するものである。   In another semiconductor device according to the present invention, the lower semiconductor region has a convex portion protruding upward at a position facing the boundary semiconductor region.

本発明によれば、受光素子となる区画相互を分離するためにそれらの境界に設けられる境界半導体領域は、i層となる中間半導体領域が完成した後に、形成されるので、製造コストが抑制される。境界半導体領域は、中間半導体領域の表面からその一部の深さまでしか達せず、区画の境界部分のうち、境界半導体領域と下部半導体領域との間には中間半導体領域が存在する。この境界部分の中間半導体領域は、境界半導体領域及び下部半導体領域の双方に上部半導体領域に対して逆バイアスとなる電圧を印加することにより、上部半導体領域に集まる信号電荷に対する電位障壁となる。これにより、区画相互間のクロストークが抑制される。また、境界半導体領域を中間半導体領域の一部の深さまでしか形成しないことにより、境界半導体領域及び下部半導体領域と上部半導体領域との間の端子間容量が抑制され、応答の高速化が図られる。さらに、境界部分の中間半導体領域も光電変換に供せられるので、変換効率が向上する。また、境界半導体領域の表面に光が入射可能に構成した場合、当該光は境界半導体領域を通過して、境界部分の中間半導体領域に入射し、光電変換され得る。すなわち、本発明に係る半導体装置は、区画の境界部分に入射する光に対しても感度を有し、境界部分での検出損失が抑制されるので、複数区画に跨る光学像が各区画それぞれに精度良く分割されて検出され得る。   According to the present invention, since the boundary semiconductor region provided at the boundary between the sections to be the light receiving elements is formed after the intermediate semiconductor region to be the i layer is completed, the manufacturing cost is suppressed. The The boundary semiconductor region reaches only a part of the depth from the surface of the intermediate semiconductor region, and the intermediate semiconductor region exists between the boundary semiconductor region and the lower semiconductor region in the boundary portion of the partition. The intermediate semiconductor region in the boundary portion serves as a potential barrier against signal charges collected in the upper semiconductor region by applying a voltage that is reverse biased to the upper semiconductor region in both the boundary semiconductor region and the lower semiconductor region. Thereby, crosstalk between the sections is suppressed. Further, by forming the boundary semiconductor region only to a part of the depth of the intermediate semiconductor region, the inter-terminal capacitance between the boundary semiconductor region and the lower semiconductor region and the upper semiconductor region is suppressed, and the response speed is increased. . Furthermore, since the intermediate semiconductor region at the boundary is also subjected to photoelectric conversion, the conversion efficiency is improved. Further, in the case where light can be incident on the surface of the boundary semiconductor region, the light can pass through the boundary semiconductor region, enter the intermediate semiconductor region of the boundary portion, and be photoelectrically converted. That is, the semiconductor device according to the present invention is sensitive to light incident on the boundary portion of the section, and detection loss at the boundary portion is suppressed, so that an optical image extending over a plurality of sections is provided for each section. It can be divided and detected with high accuracy.

以下、本発明の実施の形態(以下実施形態という)について、図面に基づいて説明する。
[実施形態1]
図1は、実施形態の半導体素子である光検出器の概略の平面図である。本光検出器60はシリコンからなる半導体基板に形成され、半導体基板表面上に積層される保護膜に設けられた開口部分(図示せず)に受光部が配置される。受光部は、基板表面へ入射する光を2×2の4区画62に分割して受光する。
Hereinafter, embodiments of the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.
[Embodiment 1]
FIG. 1 is a schematic plan view of a photodetector which is a semiconductor element of the embodiment. The photodetector 60 is formed on a semiconductor substrate made of silicon, and a light receiving portion is disposed in an opening (not shown) provided in a protective film laminated on the surface of the semiconductor substrate. The light receiving unit divides the light incident on the substrate surface into 2 × 2 four sections 62 and receives the light.

各区画62はそれらの周囲の半導体基板表面に形成される分離領域64(境界半導体領域)により区切られる。分離領域64は、例えば、高濃度のp型不純物を拡散されたp+領域として形成される。シリコン基板の受光部に対応した部分では、光の吸収により電子及び正孔が生成される。各区画62には、PINフォトダイオードのカソードとして、生成した電荷のうち電子を集めるカソード領域66(上部半導体領域)が配置される。カソ
ード領域66は、例えば、高濃度のn型不純物を拡散されたn+領域として形成される。
Each partition 62 is delimited by an isolation region 64 (boundary semiconductor region) formed on the surface of the surrounding semiconductor substrate. The isolation region 64 is formed, for example, as a p + region in which a high concentration p-type impurity is diffused. In the portion corresponding to the light receiving portion of the silicon substrate, electrons and holes are generated by absorption of light. In each section 62, a cathode region 66 (upper semiconductor region) that collects electrons among the generated charges is arranged as a cathode of the PIN photodiode. The cathode region 66 is formed, for example, as an n + region in which a high concentration n-type impurity is diffused.

分離領域64及び各カソード領域66はそれぞれコンタクトを介して、例えばアルミ(Al)層等で形成された配線に接続される。分離領域64は、配線68により例えば、接地電位を印加される。また、各カソード領域66に集められた信号電荷は、配線70を介して読み出される。   The isolation region 64 and each cathode region 66 are connected to wirings formed of, for example, an aluminum (Al) layer or the like through contacts. For example, a ground potential is applied to the isolation region 64 by the wiring 68. Further, the signal charge collected in each cathode region 66 is read out via the wiring 70.

図2は、図1に示す直線A−A’を通り半導体基板に垂直な断面での受光部の構造を示す模式的な断面図である。本光検出器60は、p型不純物が導入されたp型シリコン基板であるP-sub層80(下部半導体領域)の一方主面に、P-sub層80より不純物濃度が低く高比抵抗を有する半導体層が積層された半導体基板を用いて形成される。P-sub層80はPINフォトダイオードのアノードとなる。その上に積層される高比抵抗の半導体層は、例えばエピタキシャル成長により形成される。このエピタキシャル層82は、PINフォトダイオードのi層(中間半導体領域)を構成する。エピタキシャル層82に導入される低濃度不純物は、例えばp型不純物である。エピタキシャル層82の表面には、上述の分離領域64及びカソード領域66が形成される。   FIG. 2 is a schematic cross-sectional view showing the structure of the light receiving section in a cross section passing through the straight line A-A ′ shown in FIG. 1 and perpendicular to the semiconductor substrate. This photodetector 60 has a lower specific impurity concentration and a higher specific resistance than the P-sub layer 80 on one main surface of the P-sub layer 80 (lower semiconductor region) which is a p-type silicon substrate into which a p-type impurity has been introduced. The semiconductor substrate is formed using a semiconductor substrate on which a semiconductor layer is stacked. The P-sub layer 80 becomes the anode of the PIN photodiode. The high resistivity semiconductor layer stacked thereon is formed by, for example, epitaxial growth. The epitaxial layer 82 constitutes an i layer (intermediate semiconductor region) of the PIN photodiode. The low concentration impurity introduced into the epitaxial layer 82 is, for example, a p-type impurity. The isolation region 64 and the cathode region 66 described above are formed on the surface of the epitaxial layer 82.

ここで、エピタキシャル層82が積層されたシリコン基板は、半導体基板メーカから提供されており、これを用いて本光検出器60を製造することが可能である。分離領域64及びカソード領域66への不純物の導入はそれぞれ、このエピタキシャル層82を形成されたシリコン基板の表面にフォトリソグラフィ技術で形成されたマスクを形成し、このマスクを用いてイオン注入を対象領域へ選択的に行うことにより実現される。   Here, the silicon substrate on which the epitaxial layer 82 is laminated is provided by a semiconductor substrate maker, and the photodetector 60 can be manufactured using the silicon substrate. Impurities are introduced into the isolation region 64 and the cathode region 66 by forming a mask formed by a photolithographic technique on the surface of the silicon substrate on which the epitaxial layer 82 is formed, and ion implantation is performed using the mask. This is realized by selectively performing.

基板の分離領域64、カソード領域66を形成する位置にそれぞれイオン注入により導入された不純物は、さらに必要に応じて熱拡散工程を行って、基板深さ方向に押し込まれる。その押し込み量は、分離領域64、カソード領域66それぞれについて別個に制御され得る。例えば、分離領域64は、後述するように、各カソード領域66に集められる信号電荷の区画62間でのクロストークを抑制する機能を担っている。そこで分離領域64の深さは、例えば、カソード領域66に比べて深く設定され得る。一方、カソード領域66の深さを浅くすることで、その下のi層に形成される空乏層が基板表面近くから広がることとなり、光電変換効率の向上が期待できる。このようにカソード領域66を分離領域64より浅く形成する場合には、カソード領域66へのイオン注入に先立って、分離領域64への不純物のイオン注入及び熱拡散を行うのが好適である。   Impurities introduced by ion implantation at positions where the separation region 64 and the cathode region 66 of the substrate are respectively formed are further pushed into the substrate depth direction by performing a thermal diffusion process as necessary. The pushing amount can be controlled separately for each of the separation region 64 and the cathode region 66. For example, the separation region 64 has a function of suppressing crosstalk between the compartments 62 of the signal charge collected in each cathode region 66, as will be described later. Therefore, the depth of the separation region 64 can be set deeper than that of the cathode region 66, for example. On the other hand, by reducing the depth of the cathode region 66, the depletion layer formed in the i layer therebelow spreads from near the substrate surface, and an improvement in photoelectric conversion efficiency can be expected. When the cathode region 66 is formed to be shallower than the separation region 64 as described above, it is preferable to perform ion implantation and thermal diffusion of impurities into the separation region 64 prior to ion implantation into the cathode region 66.

すでに述べたように、i層を構成するエピタキシャル層82の厚さは、検出する光の半導体内での吸収長程度以上に設定される。例えば、CDやDVDに用いられている780nm帯や650nm帯の光に対するシリコンの吸収長は10〜20μm程度である。この厚さは分離領域64の深さよりも大きい。すなわち、本光検出器60の構成では、分離領域64はP-sub層80までは到達せず、分離領域64とP-sub層80との間には、高比抵抗のエピタキシャル層82がi層として存在する。   As already described, the thickness of the epitaxial layer 82 constituting the i layer is set to be equal to or greater than the absorption length of light to be detected in the semiconductor. For example, the absorption length of silicon for light in the 780 nm band and 650 nm band used for CDs and DVDs is about 10 to 20 μm. This thickness is greater than the depth of the isolation region 64. That is, in the configuration of the photodetector 60, the isolation region 64 does not reach the P-sub layer 80, and the high resistivity epitaxial layer 82 is formed between the isolation region 64 and the P-sub layer 80. Present as a layer.

上述したように、P-sub層80はPINフォトダイオードのアノードとして用いられる。つまり、P-sub層80は、例えば、基板裏面から接地電位を印加され、アノードとして機能する。ここで、分離領域64は、上述したように基板表面側に設けられた配線68により接地電位を印加され、P-sub層80と共にアノードを構成する。   As described above, the P-sub layer 80 is used as the anode of the PIN photodiode. That is, the P-sub layer 80 is applied with a ground potential from the back surface of the substrate, for example, and functions as an anode. Here, the isolation region 64 is applied with a ground potential by the wiring 68 provided on the substrate surface side as described above, and constitutes an anode together with the P-sub layer 80.

次に、本光検出器60の動作を説明する。図3は、本光検出器60の動作時における回路構成及び、図2に対応する素子断面でのポテンシャル分布を示す模式図である。カソード領域66は、電圧源90によって、接地電位とされた分離領域64及びP-sub層80に対して逆バイアス状態とされる。具体的には、各カソード領域66からの配線(図1の配
線70)はそれぞれオペアンプ92の一方入力端子に接続され、当該オペアンプ92の他方端子に電圧源90からの正電圧Vbが入力される。オペアンプ92は、抵抗を介して出
力端子がカソード領域66に接続され、電流検出器を構成する。この構成により、カソード領域66はVbを印加され、かつカソード電流に応じた電圧がオペアンプ92の出力端
子に取り出される。
Next, the operation of the photodetector 60 will be described. FIG. 3 is a schematic diagram showing a circuit configuration during the operation of the photodetector 60 and a potential distribution in the element cross section corresponding to FIG. The cathode region 66 is brought into a reverse bias state by the voltage source 90 with respect to the isolation region 64 and the P-sub layer 80 which are set to the ground potential. Specifically, the wiring from each cathode region 66 (wiring 70 in FIG. 1) is connected to one input terminal of the operational amplifier 92, and the positive voltage Vb from the voltage source 90 is input to the other terminal of the operational amplifier 92. . The operational amplifier 92 has an output terminal connected to the cathode region 66 through a resistor, and constitutes a current detector. With this configuration, Vb is applied to the cathode region 66 and a voltage corresponding to the cathode current is taken out to the output terminal of the operational amplifier 92.

断面図にはいくつかの等電位線を点線で示している。この断面図は、PINフォトダイオードのアノードとカソードとに逆バイアス電圧を印加したことにより、i層を構成するエピタキシャル層82に空乏層が広がっていることを示している。ポテンシャル電位はカソード領域66に近いほど深く、すなわち高くなり、各カソード領域66を中心として電子に対する電位井戸が形成されることとなる。分離領域64及びP-sub層80をアノードとしてカソード領域66に対し逆バイアスとなる接地電位を印加したことにより、エピタキシャル層82の分離領域64とP-sub層80との間の境界領域94のポテンシャル電位は浅くなる。つまり、P-sub層80に加えて分離領域64をアノードとして接地電位としたことにより、分離領域64下の境界領域94のポテンシャル電位が浅くなる方向に引っ張られる。これにより、分離領域64を挟んで隣り合う各区画62に対応する電位井戸の間に、電子の移動に対する電位障壁が形成される。   In the sectional view, several equipotential lines are indicated by dotted lines. This sectional view shows that a depletion layer spreads in the epitaxial layer 82 constituting the i layer by applying a reverse bias voltage to the anode and the cathode of the PIN photodiode. The closer to the cathode region 66, the deeper, that is, the potential potential becomes, and a potential well for electrons is formed around each cathode region 66. By applying a ground potential that is a reverse bias to the cathode region 66 using the isolation region 64 and the P-sub layer 80 as an anode, the boundary region 94 between the isolation region 64 of the epitaxial layer 82 and the P-sub layer 80 is applied. The potential potential becomes shallower. That is, by setting the separation region 64 as an anode in addition to the P-sub layer 80 to the ground potential, the potential potential of the boundary region 94 under the separation region 64 is pulled in a direction of decreasing. Thereby, a potential barrier against the movement of electrons is formed between the potential wells corresponding to the sections 62 adjacent to each other with the isolation region 64 interposed therebetween.

例えば、図2又は図3において左側の区画62への入射光によって、その左側のカソード領域66-1下のi層で発生した電子は、当該左側の電位井戸の電界に沿ってカソード領域66-1へは容易に移動可能であるが、右側のカソード領域66-2へは領域94に電位障壁が間に存在するため移動しにくい。そのため、左側の区画62への入射光に対応する信号電荷は、専らカソード領域66-1に集められることとなる。同様に、右側の区画62への入射光に対応する信号電荷は、電位障壁の存在によりカソード領域66-1へは移動しにくく、専らカソード領域66-2に集められる。各カソード領域66に集められた電子の量は、カソード電流としてオペアンプ92を介して検出される。   For example, in FIG. 2 or FIG. 3, the electrons generated in the i layer under the cathode region 66-1 on the left side by the incident light to the left section 62 cause the cathode region 66− along the electric field of the left potential well. 1 is easily movable, but it is difficult to move to the cathode region 66-2 on the right side because a potential barrier exists in the region 94. Therefore, the signal charges corresponding to the incident light on the left compartment 62 are collected exclusively in the cathode region 66-1. Similarly, the signal charges corresponding to the light incident on the right section 62 are less likely to move to the cathode region 66-1 due to the presence of the potential barrier, and are collected exclusively in the cathode region 66-2. The amount of electrons collected in each cathode region 66 is detected via the operational amplifier 92 as a cathode current.

本光検出器60の構成では、上述のようにP-sub層80に加えて分離領域64をアノードとしたことにより、分離領域64の下で隣接区画62のi層がつながっているにも関わらず、各区画62毎のPINフォトダイオード相互の素子分離が実現され、クロストークが抑制された受光信号が区画62毎に得られる。   In the configuration of the photodetector 60, although the separation region 64 is an anode in addition to the P-sub layer 80 as described above, the i layer of the adjacent section 62 is connected under the separation region 64. First, element isolation between PIN photodiodes in each section 62 is realized, and a light reception signal in which crosstalk is suppressed is obtained for each section 62.

なお、素子分離の1つの従来技術として、LOCOS(local oxidation of silicon)法が知られている。その技術によれば、例えば、分離領域64に形成したようなp+領域に選択的に、基板に食い込む厚い酸化膜を成長させる。本光検出器60においても、当該技術を適用することができる一方で、本実施形態では当該技術を採用していない。   A LOCOS (local oxidation of silicon) method is known as one conventional technique for element isolation. According to that technique, for example, a thick oxide film that grows into the substrate is grown selectively in the p + region as formed in the isolation region 64. Although the technology can be applied to the photodetector 60 as well, the technology is not adopted in the present embodiment.

このように分離領域64の上にLOCOS酸化膜を形成しないことにより、分離領域64の上方からの入射光が、LOCOS酸化膜で減衰されることがなくなる。ここで、本光検出器60では、分離領域64の下はi層であり空乏化され得る。そのため、減衰を抑制されて分離領域64の上方から入射した光は、分離領域64下のi層にまで到達して信号電荷を発生し得ることとなり、受光部へ入射する光に対する検出効率が向上する。   By not forming the LOCOS oxide film on the isolation region 64 in this way, incident light from above the isolation region 64 is not attenuated by the LOCOS oxide film. Here, in this photodetector 60, the isolation region 64 is an i layer and can be depleted. Therefore, the light that has been suppressed from being attenuated and has entered from above the separation region 64 can reach the i layer below the separation region 64 to generate a signal charge, thereby improving the detection efficiency for the light incident on the light receiving unit. To do.

また、分離領域64は入射光検出に対して不感領域となり得る。ここで、LOCOS酸化膜を形成しないことにより、その形成工程での分離領域64の横方向の拡散が回避される。その結果、受光部に占める分離領域64の割合が抑制されるので、この点でも受光部へ入射する光に対する検出効率の向上が図られる。
[実施形態2]
第2の実施形態に係る光検出器60は、基板垂直方向の断面構造に特徴があり、平面構造は、例えば、上記第1の実施形態と同様とすることができ、ここでは図1を援用する。
図4は、図1に示す直線A−A’を通り半導体基板に垂直な断面での第2の実施形態の受光部の構造を示す模式的な断面図である。本実施形態において、上記第1の実施形態と同様の構成要素には同一の符号を付して説明の簡略化を図る。本光検出器60は、分離領域64に対向する位置に、P-sub層80から突出したp+領域である下部分離領域100を有する。
In addition, the separation region 64 can be an insensitive region for incident light detection. Here, by not forming the LOCOS oxide film, the lateral diffusion of the isolation region 64 in the formation process is avoided. As a result, since the ratio of the separation region 64 occupying the light receiving unit is suppressed, the detection efficiency for the light incident on the light receiving unit can be improved also in this respect.
[Embodiment 2]
The photodetector 60 according to the second embodiment is characterized by a cross-sectional structure in the direction perpendicular to the substrate. The planar structure can be the same as that of the first embodiment, for example, and FIG. 1 is used here. To do.
FIG. 4 is a schematic cross-sectional view showing the structure of the light receiving portion of the second embodiment in a cross section passing through the straight line AA ′ shown in FIG. 1 and perpendicular to the semiconductor substrate. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description is simplified. The photodetector 60 has a lower separation region 100 that is a p + region protruding from the P-sub layer 80 at a position facing the separation region 64.

この下部分離領域100は、P-sub層80に印加される電圧を受けて、P-sub層80と共に基板側のアノードとして機能する。下部分離領域100により、分離領域64が構成するアノードと基板側のアノードとの距離が、区画62の境界にて狭まり、それらの間のエピタキシャル層82に、電子に対する電位障壁が第1の実施形態よりも好適に形成され得る。そのため、区画62間の素子分離性能が向上する。   The lower isolation region 100 receives a voltage applied to the P-sub layer 80 and functions as an anode on the substrate side together with the P-sub layer 80. With the lower isolation region 100, the distance between the anode formed by the isolation region 64 and the anode on the substrate side is narrowed at the boundary of the section 62, and the potential barrier against electrons is formed in the epitaxial layer 82 between them. It can form more suitably. Therefore, the element isolation performance between the sections 62 is improved.

例えば、下部分離領域100は、P-sub層80にエピタキシャル層82を一部の厚さだけ積層した段階にて、当該エピタキシャル層82の区画62境界に対応する位置にイオン注入等によりp型不純物を導入して形成される。このように下部分離領域100を形成した後、エピタキシャル層82の残りの厚さを成長させ、第1の実施形態と同様にして分離領域64、カソード領域66等の基板表面の構造を形成する。   For example, in the lower isolation region 100, the p-type impurity is formed by ion implantation or the like at a position corresponding to the boundary of the partition 62 of the epitaxial layer 82 at the stage where the epitaxial layer 82 is partially stacked on the P-sub layer 80. It is formed by introducing. After forming the lower isolation region 100 in this manner, the remaining thickness of the epitaxial layer 82 is grown, and the structure of the substrate surface such as the isolation region 64 and the cathode region 66 is formed in the same manner as in the first embodiment.

実施形態の半導体素子である光検出器の概略の平面図である。It is a schematic plan view of a photodetector which is a semiconductor element of an embodiment. 第1の実施形態に係る受光部の構造を示す模式的な垂直断面図である。It is a typical vertical sectional view showing the structure of the light receiving unit according to the first embodiment. 光検出器の動作時における回路構成及び、垂直断面でのポテンシャル分布を示す模式図である。It is a schematic diagram which shows the circuit structure at the time of operation | movement of a photodetector, and the potential distribution in a vertical cross section. 第2の実施形態に係る受光部の構造を示す模式的な垂直断面図である。It is a typical vertical sectional view which shows the structure of the light-receiving part which concerns on 2nd Embodiment. レーザ光の照射及び反射光の検知を行う光ピックアップ機構の模式図である。It is a schematic diagram of the optical pick-up mechanism which performs irradiation of a laser beam, and detection of reflected light. 光検出器の受光部及び、当該受光部上での反射光像を示す模式図である。It is a schematic diagram which shows the light-receiving part of a photodetector, and the reflected light image on the said light-receiving part. 従来の光検出器の模式的な垂直断面図である。It is a typical vertical sectional view of a conventional photodetector.

符号の説明Explanation of symbols

2 半導体レーザ素子、8 光ディスク、10 偏光ビームスプリッタ、16 シリンドリカルレンズ、18,60 光検出器、62 区画、64 分離領域、66 カソード領域、68,70 配線、80 P- sub層、82 エピタキシャル層、100 下部分離領域。   2 semiconductor laser elements, 8 optical disks, 10 polarizing beam splitters, 16 cylindrical lenses, 18, 60 photodetectors, 62 sections, 64 separation areas, 66 cathode areas, 68, 70 wiring, 80 P-sub layers, 82 epitaxial layers, 100 Lower separation region.

Claims (2)

複数区画に分割された受光部を半導体基板の表面に形成された半導体装置であって、
前記表面に設けられた低不純物濃度の中間半導体領域と、
前記中間半導体領域の下面に接して配置され、第1電圧を印加される、前記中間半導体領域よりも高不純物濃度の第1導電型の下部半導体領域と、
前記区画相互間の境界に沿って前記中間半導体領域の表面に形成され、第1電圧を印加される、前記中間半導体領域よりも高不純物濃度の前記第1導電型の境界半導体領域と、
それぞれ前記中間半導体領域の表面の前記各区画に対応した位置に形成され、第2電圧を印加される、前記中間半導体領域よりも高不純物濃度の第2導電型の複数の上部半導体領域と、
を有し、
前記境界半導体領域と前記下部半導体領域との間に前記中間半導体領域を有し、
前記第1電圧は前記下部半導体領域側から印加されるとともに、前記第2電圧は前記上部半導体領域側から印加され、
前記各上部半導体領域と前記下部半導体領域とは、前記第1電圧及び前記第2電圧により逆バイアス状態とされて、前記中間半導体領域に空乏層を形成し、
前記境界半導体領域は、前記第1電圧に応じて、前記下部半導体領域との間に前記信号電荷の前記区画間の移動に対する電位障壁を形成すること、
を特徴とする半導体装置。
A semiconductor device in which a light receiving portion divided into a plurality of sections is formed on the surface of a semiconductor substrate,
A low impurity concentration intermediate semiconductor region provided on the surface;
A lower semiconductor region of a first conductivity type having a higher impurity concentration than the intermediate semiconductor region, which is disposed in contact with the lower surface of the intermediate semiconductor region and to which a first voltage is applied;
A boundary semiconductor region of the first conductivity type having a higher impurity concentration than the intermediate semiconductor region, which is formed on a surface of the intermediate semiconductor region along a boundary between the partitions and to which a first voltage is applied;
A plurality of upper semiconductor regions of a second conductivity type having a higher impurity concentration than the intermediate semiconductor region, each of which is formed at a position corresponding to each section of the surface of the intermediate semiconductor region and to which a second voltage is applied;
Have
Having the intermediate semiconductor region between the boundary semiconductor region and the lower semiconductor region;
The first voltage is applied from the lower semiconductor region side, and the second voltage is applied from the upper semiconductor region side,
Each of the upper semiconductor region and the lower semiconductor region is reverse biased by the first voltage and the second voltage to form a depletion layer in the intermediate semiconductor region,
The boundary semiconductor region forms a potential barrier against movement of the signal charge between the compartments with the lower semiconductor region according to the first voltage;
A semiconductor device characterized by the above.
請求項1に記載の半導体装置において、
前記下部半導体領域は、前記境界半導体領域に対向する位置に上向きに突出した凸部を有すること、を特徴とする半導体装置。
The semiconductor device according to claim 1,
The lower semiconductor region has a convex portion protruding upward at a position facing the boundary semiconductor region.
JP2007234188A 2007-09-10 2007-09-10 Semiconductor device Pending JP2007329512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007234188A JP2007329512A (en) 2007-09-10 2007-09-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007234188A JP2007329512A (en) 2007-09-10 2007-09-10 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005149472A Division JP4086860B2 (en) 2005-05-23 2005-05-23 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2007329512A true JP2007329512A (en) 2007-12-20

Family

ID=38929724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007234188A Pending JP2007329512A (en) 2007-09-10 2007-09-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2007329512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114242827A (en) * 2021-12-17 2022-03-25 中国电子科技集团公司第十三研究所 Transverse photoelectric detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114242827A (en) * 2021-12-17 2022-03-25 中国电子科技集团公司第十三研究所 Transverse photoelectric detector

Similar Documents

Publication Publication Date Title
JP4086860B2 (en) Semiconductor device
JP4131031B2 (en) Semiconductor device having light receiving element, optical pickup device, and method of manufacturing semiconductor device having light receiving element
JP2731115B2 (en) Split type light receiving element
JP3974322B2 (en) Optical semiconductor integrated circuit device and optical storage / reproduction device
US7619293B2 (en) Pin photodiode with improved blue light sensitivity
JP3976185B2 (en) Light receiving element, light receiving element with built-in circuit and optical pickup
JP2828244B2 (en) Light receiving element
US6005278A (en) Divided photodiode
JP2007129024A (en) Semiconductor device
JP2007329512A (en) Semiconductor device
JP2875244B2 (en) Split photodiode
JP3449590B2 (en) Photodetector with built-in circuit
KR100643034B1 (en) Light receiving element and light receiving device incorporating circuit and optical disc drive
JP4014384B2 (en) Semiconductor photo detector
JP3112407B2 (en) Light receiving element
US20080315337A1 (en) Light receiving element
JPH0773503A (en) Optical head and photodetector used in the head
JP2000150842A (en) Photodetector and manufacture of it
JP2003086828A (en) Division type light receiving element and optical disk device using the same
JP2002329853A (en) Light receiving element with built-in circuit
JP2008244133A (en) Light-receiving element
JP2003209276A (en) Light receiving element
JPH07297443A (en) Photoreceptor element
JPH05198833A (en) Optical semiconductor device