JP2007327930A - Correlation detection device - Google Patents

Correlation detection device Download PDF

Info

Publication number
JP2007327930A
JP2007327930A JP2006191724A JP2006191724A JP2007327930A JP 2007327930 A JP2007327930 A JP 2007327930A JP 2006191724 A JP2006191724 A JP 2006191724A JP 2006191724 A JP2006191724 A JP 2006191724A JP 2007327930 A JP2007327930 A JP 2007327930A
Authority
JP
Japan
Prior art keywords
pulse
waveform
received
pulses
correlation type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006191724A
Other languages
Japanese (ja)
Other versions
JP4704968B2 (en
Inventor
Ikuo Arai
郁男 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006191724A priority Critical patent/JP4704968B2/en
Publication of JP2007327930A publication Critical patent/JP2007327930A/en
Application granted granted Critical
Publication of JP4704968B2 publication Critical patent/JP4704968B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To allow a phase at a front end of a waveform to use a random chirped pulse in a correlation detection device for detecting the correlation between the reflection signal from a target to a transmission signal with a chirped pulse in which one cycle is delayed and the chirped pulse. <P>SOLUTION: A reference FM pulse generator 3 produces reference FM pulses (chirped pulses) to supply the pulses to a fixed delayed circuit 5 and a rectangular detection circuit 11. Transmission pulses output from the fixed delayed circuit are transmitted from a transmission antenna 7 to a target TG, and then are reflected by the target TG and received by a receiving antenna 9. As a result, received pulses are produced. The received pulses are rectangularly detected by the reference FM pulses in the rectangular detection circuit 11, and thereby the rectangular detection components x, y are obtained. When the timing between the reference FM pulses and the received pulses, the square root of the squared-sum of the correlation components X, Y which are obtained by integrating the rectangular detection components x, y with integrators 13, 15 corresponds to the amplitude a of the received pulse. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、レーダやソーナなどの探知装置に関し、詳細には、送信信号と受信信号との相関をとることにより所要の探知信号を得る相関型探知装置に関する。   The present invention relates to a detection device such as a radar or a sonar, and more particularly to a correlation type detection device that obtains a required detection signal by correlating a transmission signal and a reception signal.

従来の一般的な相関型探知装置は図8に示すように、トリガ発生器101で生成されるトリガパルスP1に同期した送信パルスS1(t)を生成するパルス発生器103と、パルス発生器103で生成された送信パルスS1(t)を物標TGに向けて送信する送信アンテナ105と、物標TGからの反射波を受信する受信アンテナ107と、トリガ発生器101で生成されるトリガパルスP1を “τ”遅延させて遅延トリガパルスP2とする可変遅延回路109と、可変遅延回路109の出力に同期した基準パルスS2(t-τ)を生成するパルス発生器111と、受信アンテナ107で受信された反射パルスR1(t)と、パルス発生器111で生成された基準パルスS(t-τ)の掛算を行う掛算器113と、掛算器113の出力を積分する積分器115とを備えている。なお、実際には、さらに電力増幅器、ノイズ除去用のフィルタなどを備えているが、ここでは動作原理の説明に必要な基本構成要素のみを示している。 As shown in FIG. 8, a conventional general correlation detection apparatus includes a pulse generator 103 that generates a transmission pulse S 1 (t) synchronized with a trigger pulse P 1 generated by a trigger generator 101, and a pulse generator. A transmission antenna 105 that transmits the transmission pulse S 1 (t) generated by the device 103 toward the target TG, a reception antenna 107 that receives a reflected wave from the target TG, and a trigger generator 101 A variable delay circuit 109 that delays the trigger pulse P 1 by “τ” to generate a delayed trigger pulse P 2; and a pulse generator 111 that generates a reference pulse S 2 (t−τ) synchronized with the output of the variable delay circuit 109; The multiplier 113 that multiplies the reflected pulse R 1 (t) received by the receiving antenna 107 and the reference pulse S 2 (t−τ) generated by the pulse generator 111, and the output of the multiplier 113 is integrated. And an integrator 115. In practice, a power amplifier, a noise removal filter, and the like are further provided, but only basic components necessary for explaining the operation principle are shown here.

この相関型探知装置の動作について、図9のタイミングチャートを参照しながら説明する。トリガ発生器101で生成された周期T0のトリガパルスP1はパルス発生器103に供給されると共に、可変遅延回路109により遅延トリガパルスP2とされてパルス発生器111に供給される。可変遅延回路109の遅延時間は、トリガパルスP1の周期T0毎に0から一定時間ΔTずつ延長し、NΔT(Nは所定の整数)に達したときに、再び遅延時間を0からΔTずつ延長する動作を繰り返す。ここで、ΔTは例えば送信パルスS1(t)の時間長の1/m(例えば1/100)に設定する。 The operation of this correlation type detection apparatus will be described with reference to the timing chart of FIG. The trigger pulse P 1 having the period T 0 generated by the trigger generator 101 is supplied to the pulse generator 103, and the delay trigger pulse P 2 is supplied to the pulse generator 111 by the variable delay circuit 109. The delay time of the variable delay circuit 109 is extended by a fixed time ΔT from 0 every period T 0 of the trigger pulse P 1 , and when it reaches NΔT (N is a predetermined integer), the delay time is again increased by 0 to ΔT. Repeat the extension operation. Here, ΔT is set to 1 / m (for example, 1/100) of the time length of the transmission pulse S 1 (t), for example.

パルス発生器103はトリガパルスP1の立ち上がりに同期した送信パルスS1(t)を生成し、送信パルスS1(t)は送信アンテナ105から物標TGに向けて送信される。送信パルスS1(t)は物標TGにて反射され、受信アンテナ107にて受信され、受信パルスR1(t)が生成される。一方、パルス発生器111は遅延トリガ信号P2の立ち上がりに同期した基準パルスS2(t)を生成する。そして、受信パルスR1(t)と、基準パルスS2(t-τ)とは、掛算器113にて掛算され、その出力は積分器115にて積分され、下記の式[1]に示す積分出力V0が得られる。なお、積分器115はLPF(ローパスフィルタ)で代用できる。 The pulse generator 103 generates a transmission pulse S 1 (t) synchronized with the rising edge of the trigger pulse P 1 , and the transmission pulse S 1 (t) is transmitted from the transmission antenna 105 toward the target TG. The transmission pulse S 1 (t) is reflected by the target TG and received by the reception antenna 107, and a reception pulse R 1 (t) is generated. On the other hand, the pulse generator 111 generates a reference pulse S 2 (t) synchronized with the rising edge of the delay trigger signal P 2 . The received pulse R 1 (t) and the reference pulse S 2 (t−τ) are multiplied by a multiplier 113, and the output is integrated by an integrator 115, as shown in the following equation [1]. An integral output V 0 is obtained. The integrator 115 can be replaced by an LPF (low pass filter).

Figure 2007327930
Figure 2007327930

この式[1]は遅延相関を表しており、受信パルスR1(t)のタイミングと基準パルスS2(t-τ)のタイミングとが一致したときに最大値をとる。従って、送信パルスS1(t)のタイミングに対する受信パルスR1(t)のタイミングの遅れをt0とすると、
τ=t0・・・式[2]
のとき、受信パルスR1(t)と基準パルスS2(t)のタイミングが一致し、積分出力V0が最大値をとる。
This expression [1] represents the delay correlation, and takes the maximum value when the timing of the reception pulse R 1 (t) coincides with the timing of the reference pulse S 2 (t−τ). Therefore, when the delay of the timing of the reception pulse R 1 (t) with respect to the timing of the transmission pulse S 1 (t) is t 0 ,
τ = t 0 Formula [2]
In this case, the timings of the reception pulse R 1 (t) and the reference pulse S 2 (t) coincide, and the integral output V 0 takes the maximum value.

ここで、相関型探知装置から物標TGまでの距離をL、電波の伝播速度をcとすると、
L=c×t0/2・・・式[3]
となる。図9では
τ=3ΔT・・・式[4]
のとき、受信パルスの遅れt0(=3ΔT)とτが一致している場合を示している。なお、図9では送信パルスS1(t)、及び基準パルスS2(t-τ)として正弦波のモノパルスを示しているが、これらのパルスの波形として、階段状周波数変調形式・直線状周波数変調形式・符号位相変調形式・符号搬送波変調形式などの波形を用いたものもある。
Here, if the distance from the correlation type detector to the target TG is L, and the propagation speed of the radio wave is c,
L = c × t 0/2 ··· formula [3]
It becomes. In FIG. 9, τ = 3ΔT Equation [4]
In this case, the delay t 0 (= 3ΔT) of the received pulse and τ coincide with each other. In FIG. 9, sinusoidal monopulses are shown as the transmission pulse S 1 (t) and the reference pulse S 2 (t−τ). As the waveforms of these pulses, a stepped frequency modulation format / linear frequency is used. Some use waveforms such as a modulation format, a code phase modulation format, and a code carrier modulation format.

しかし、この相関型探知装置では、2つのパルス発生器が必要であるため構成が複雑化して装置が大型化してしまう。また、2つのパルス発生器で生成される波形が同一になるように調整しなければならないため、製造工数がかかるのみならず、経年変化を起こすなどの問題がある。   However, since this correlation type detection apparatus requires two pulse generators, the configuration becomes complicated and the apparatus becomes large. In addition, since the waveforms generated by the two pulse generators must be adjusted to be the same, there are problems such as not only the number of manufacturing steps but also aging.

そこで、本願の発明者は、このような問題の解決が可能な相関型探知装置を提案した(特許文献1参照)。この相関型探知装置は、図10に示すように、周期(間隔)が可変なトリガパルスP11を生成するトリガ発生器201と、トリガパルスP11の立ち上がりに同期した基準パルスS12(t-τ)を生成するパルス発生器203と、基準パルスS12(t-τ)を一定時間T0遅延させて送信パルスS11(t)とする固定遅延回路205と、送信パルスS11(t)を物標TGに向けて送信する送信アンテナ207と、物標TGからの反射波を受信する受信アンテナ209と、受信アンテナ209で受信された反射パルスR11(t)と、基準パルスS12(t)との掛算を行う掛算器211と、掛算器211の出力を積分する積分器213とを備えている。ここで、基準パルスS12(t-τ)におけるτは、送信パルスS11に対する基準パルスS12の時間遅れである。 Therefore, the inventor of the present application has proposed a correlation type detection apparatus that can solve such a problem (see Patent Document 1). The correlation-based detection system, as shown in FIG. 10, a trigger generator 201 that period (interval) to generate a variable trigger pulse P 11, the reference pulse S 12 that is synchronized with the rising edge of the trigger pulse P 11 (t- a pulse generator 203 that generates τ), a fixed delay circuit 205 that delays the reference pulse S 12 (t−τ) by a predetermined time T 0 to generate a transmission pulse S 11 (t), and a transmission pulse S 11 (t) Is transmitted to the target TG, a receiving antenna 209 that receives a reflected wave from the target TG, a reflected pulse R 11 (t) received by the receiving antenna 209, and a reference pulse S 12 ( A multiplier 211 that performs multiplication with t) and an integrator 213 that integrates the output of the multiplier 211 are provided. Here, τ in the reference pulse S 12 (t−τ) is a time delay of the reference pulse S 12 with respect to the transmission pulse S 11 .

この相関型探知装置の動作について、図11のタイミングチャートを参照しながら説明する。トリガ発生器201が生成するトリガパルスP11の周期は、T0を初期値とし、以後のトリガパルス発生毎にΔTずつ延び、T0+NΔT(Nは所定の整数)に達すると、再び初期値T0からΔTずつ延びることを繰り返す。ここで、初期値T0は固定遅延回路205の遅延時間と等しい。また、図9と同様、ΔTは例えば送信パルスS11(t)の時間長の1/m(例えば1/100)に設定する。 The operation of this correlation type detection apparatus will be described with reference to the timing chart of FIG. The period of the trigger pulse P 11 generated by the trigger generator 201 is set to T 0 as an initial value, extends by ΔT for each subsequent trigger pulse generation, and reaches the initial value again when reaching T 0 + NΔT (N is a predetermined integer). It repeats extending from T 0 by ΔT. Here, the initial value T 0 is equal to the delay time of the fixed delay circuit 205. Similarly to FIG. 9, ΔT is set to 1 / m (eg, 1/100) of the time length of the transmission pulse S 11 (t), for example.

パルス発生器203はトリガパルスP11の立ち上がりに同期した基準パルスS12(t-τ)を生成して固定遅延回路205及び掛算器211に供給する。固定遅延回路205から出力された送信パルスS11(t)は送信アンテナ207から物標TGに向けて送信される。そして、物標TGにて反射され、受信アンテナ209にて受信され、受信パルスR11(t)が生成される。受信パルスR11(t)と、基準パルスS12(t-τ)とは、掛算器211にて掛算され、その出力は積分器213にて積分され、下記の式[5]に示す積分出力V1が得られる。 The pulse generator 203 generates a reference pulse S 12 (t−τ) synchronized with the rising edge of the trigger pulse P 11 and supplies it to the fixed delay circuit 205 and the multiplier 211. The transmission pulse S 11 (t) output from the fixed delay circuit 205 is transmitted from the transmission antenna 207 toward the target TG. Then, it is reflected by the target TG and received by the reception antenna 209, and a reception pulse R 11 (t) is generated. The received pulse R 11 (t) and the reference pulse S 12 (t−τ) are multiplied by a multiplier 211, the output is integrated by an integrator 213, and the integrated output shown in the following equation [5] V 1 is obtained.

Figure 2007327930
Figure 2007327930

この式[5]は式[1]と同様、遅延相関を表しており、受信パルスR11(t)のタイミングと基準パルスS12(t-τ)のタイミングとが一致したときに最大値をとるから、図8に示す相関型探知装置と同様、式[2]及び[3]が成立する。また、図11は式[4]が成立する場合を示している。さらに、図11ではトリガパルスP11の周期をT0からT0+NΔTまでΔTずつ延長しているが、逆にT0+NΔTからT0迄ΔTずつ短縮してもよい。 This equation [5], like equation [1], represents the delay correlation, and the maximum value is obtained when the timing of the received pulse R 11 (t) and the timing of the reference pulse S 12 (t−τ) coincide. Therefore, the equations [2] and [3] are established as in the correlation type detection apparatus shown in FIG. FIG. 11 shows a case where equation [4] holds. Furthermore, although extended by ΔT the cycle of the trigger pulse P 11 in FIG. 11 from T 0 to T 0 + n.DELTA.T, it may be reduced from T 0 + n.DELTA.T until T 0 by ΔT reversed.

この相関型探知装置によれば、パルス発生器は1個ですむため、前述した一般的な相関型探知装置の問題は解決できる。しかし、この相関型探知装置では、基準パルスS12(t-τ)を毎回同一波形とする必要があるが、基準パルスS12(t-τ)としてチャープパルス(直線状周波数変調波)を採用する場合、以下のような問題がある。 According to this correlation type detection device, since only one pulse generator is required, the above-described problem of the general correlation type detection device can be solved. However, in this correlation type detector, the reference pulse S 12 (t-τ) needs to have the same waveform every time, but a chirp pulse (linear frequency modulation wave) is adopted as the reference pulse S 12 (t-τ). When doing so, there are the following problems.

チャープパルスを生成する場合、パルス発生器203としてVCO(Voltage Controlled Oscillator:電圧制御発振器)を用いるが、一般的なVCOは動作開始時或いは制御電圧を不連続に変化させたときの出力信号の前端の位相(以下、初期位相と言う)は一定ではなくランダムに変化してしまうため、図11に示すように、基準パルスS12(t-τ)を間欠的に生成する場合は、その生成毎に基準パルスS12(t-τ)の初期位相がランダムに変化してしまう。従って、例えば、図11において、仮に基準パルスS12(t-τ)がチャープパルスとすると、式[4]が成立する時に基準パルスS12(t-τ)のタイミングと、反射パルスR12(t)のタイミングが一致しているとしても、それらの波形に位相差があれば、位相差に応じて積分出力V1が小さくなる。このため、積分出力V1が最大になったときに基準パルスS12(t-τ)のタイミングと、反射パルスR12(t)のタイミングとが一致しているとは言えなくなる。 When generating a chirp pulse, a VCO (Voltage Controlled Oscillator) is used as the pulse generator 203. A general VCO is the front end of an output signal when the operation is started or when the control voltage is changed discontinuously. 11 (hereinafter referred to as the initial phase) is not constant and changes randomly. Therefore, as shown in FIG. 11, when the reference pulse S 12 (t-τ) is generated intermittently, In addition, the initial phase of the reference pulse S 12 (t-τ) changes randomly. Therefore, for example, in FIG. 11, if the reference pulse S 12 (t−τ) is a chirp pulse, the timing of the reference pulse S 12 (t−τ) and the reflected pulse R 12 ( Even if the timing of t) coincides, if there is a phase difference between these waveforms, the integrated output V 1 becomes small according to the phase difference. For this reason, it cannot be said that the timing of the reference pulse S 12 (t−τ) and the timing of the reflected pulse R 12 (t) coincide with each other when the integrated output V 1 becomes maximum.

この問題を解決するためには、パルス発生器203として、一般的なVCOではなく、特別に設計した初期位相が一定で毎回同一波形が得られるVCOを用いることが必要となるため、コストが高くなるという問題がある。
特許第3182448号公報
In order to solve this problem, it is necessary to use a specially designed VCO that has a constant initial phase and obtains the same waveform every time as the pulse generator 203, so that the cost is high. There is a problem of becoming.
Japanese Patent No. 3182448

本発明は、このような問題を解決するためになされたもので、その目的は、所定の時間長を有する複数の基準波形を、時間間隔が周期的に変化するように生成する手段と、前記基準波形を所定時間遅延させて遅延波形を生成する手段と、前記遅延波形に対応する送信信号を送信する手段と、前記送信信号の物標からの反射波又は透過波を受信して受信波形を生成する手段と、前記基準波形と前記受信波形との相関をとることにより所要の探知信号を得る相関型探知装置において、基準波形としてその前端の位相がランダムな波形を使用可能にすることである。   The present invention has been made to solve such a problem, and an object of the present invention is to generate a plurality of reference waveforms having a predetermined time length so that a time interval periodically changes, and A means for generating a delayed waveform by delaying a reference waveform for a predetermined time; a means for transmitting a transmission signal corresponding to the delay waveform; and a reflected waveform or a transmitted wave from a target of the transmission signal to receive a received waveform In a correlation type detection device that obtains a required detection signal by taking a correlation between the generating means and the reference waveform and the received waveform, a waveform having a random front end can be used as the reference waveform. .

請求項1の発明は、所定の時間長を有し、かつ波形の前端の位相がランダムな複数の基準波形を、時間間隔が周期的に変化するように生成する手段と、前記基準波形を所定時間遅延させて遅延波形を生成する手段と、前記遅延波形に対応する送信信号を送信する手段と、前記送信信号の物標からの反射波又は透過波を受信して受信波形を生成する手段と、前記受信波形を前記基準波形により直交検波する手段と、該直交検波された直交出力成分に基づいて、前記ランダムな位相に無関係な探知信号を得る手段とを備えたことを特徴とする相関型探知装置である。
請求項2の発明は、請求項1記載の相関型探知装置において、前記基準波形は前記時間間隔の変化に応じて時間長も変化することを特徴とする。
請求項3の発明は、請求項1記載の相関型探知装置において、前記基準波形は周波数変調波であることを特徴とする。
According to the first aspect of the present invention, there is provided means for generating a plurality of reference waveforms having a predetermined time length and having a random phase at the front end of the waveform so that the time interval changes periodically, and the reference waveform is determined in advance. Means for generating a delayed waveform by delaying time; means for transmitting a transmission signal corresponding to the delay waveform; means for receiving a reflected wave or transmitted wave from a target of the transmission signal and generating a received waveform; A correlation type comprising: means for quadrature detection of the received waveform using the reference waveform; and means for obtaining a detection signal irrelevant to the random phase based on the quadrature output component subjected to the quadrature detection. It is a detection device.
According to a second aspect of the present invention, in the correlation type detection apparatus according to the first aspect, the time length of the reference waveform also changes in accordance with the change of the time interval.
According to a third aspect of the present invention, in the correlation type detection device according to the first aspect, the reference waveform is a frequency modulation wave.

(作用)
本発明によれば、基準波形の前端の位相がランダムに変化していても、受信波形を基準波形により直交検波した直交出力成分に基づいて、前記ランダムな位相に無関係な探知信号が得られる。
(Function)
According to the present invention, even if the phase of the front end of the reference waveform changes randomly, a detection signal irrelevant to the random phase can be obtained based on the orthogonal output component obtained by orthogonal detection of the received waveform using the reference waveform.

本発明によれば、所定の時間長を有する複数の基準波形を、時間間隔が周期的に変化するように生成する手段と、前記基準波形を所定時間遅延させて遅延波形を生成する手段と、前記遅延波形に対応する送信信号を送信する手段と、前記送信信号の物標からの反射波又は透過波を受信して受信波形を生成する手段と、前記基準波形と前記受信波形との相関をとることにより所要の探知信号を得る相関型探知装置において、基準波形としてその前端の位相がランダムな波形が使用できる。   According to the present invention, means for generating a plurality of reference waveforms having a predetermined time length so that the time interval changes periodically, means for generating a delayed waveform by delaying the reference waveform for a predetermined time, A means for transmitting a transmission signal corresponding to the delay waveform; a means for receiving a reflected wave or a transmitted wave from a target of the transmission signal to generate a reception waveform; and a correlation between the reference waveform and the reception waveform. In the correlation type detection apparatus that obtains a required detection signal by taking the waveform, a waveform having a random front end phase can be used as a reference waveform.

以下、本発明の実施形態について図面を参照しながら説明する。
図1は本発明の実施形態の相関型探知装置の基本構成を示すブロック図である。この相関型探知装置は、周期(間隔)が可変なトリガパルスP21を生成するトリガ発生器1と、トリガパルスP21の立ち上がり(立ち下がりでもよい)に同期した基準FMパルスS22(t-τ)を生成するFM波発生器3と、基準FMパルスS22(t-τ)を一定時間T0遅延させて送信パルスS21(t)とする固定遅延回路5と、送信パルスS21(t)を物標TGに向けて送信する送信アンテナ7と、物標TGからの反射波を受信する受信アンテナ9と、受信アンテナ9で受信された受信パルスR21(t)を基準FMパルスS22(t-τ)により直交検波する直交検波器11と、直交検波器11の一対の直交検波成分をそれぞれ積分する一対の積分器13,15と、積分器13,15の各々の出力の2乗を算出する一対の2乗算出回路17,19と、2乗算出回路17,19の出力を加算する加算器21と、加算器21の加算値の平方根を算出する平方根算出回路23とを備えている。ここで、積分器13,15はLPFで代用できる。また、基準FMパルスS22(t-τ)のτは、図10の場合と同様、送信パルスS21に対する基準FMパルスS22の時間遅れである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a basic configuration of a correlation type detection apparatus according to an embodiment of the present invention. This correlation type detector includes a trigger generator 1 that generates a trigger pulse P 21 having a variable period (interval), and a reference FM pulse S 22 (t−) synchronized with the rising edge (or falling edge) of the trigger pulse P 21. FM wave generator 3 for generating τ), a fixed delay circuit 5 for delaying the reference FM pulse S 22 (t−τ) by a certain time T 0 and transmitting pulse S 21 (t), and transmission pulse S 21 ( a transmitting antenna 7 for transmitting t) toward the target TG, a receiving antenna 9 for receiving a reflected wave from the target TG, and a received pulse R 21 (t) received by the receiving antenna 9 as a reference FM pulse S 22 Quadrature detector 11 that performs quadrature detection by (t-τ), a pair of integrators 13 and 15 that integrate a pair of quadrature detection components of quadrature detector 11, respectively, and outputs 2 of the outputs of integrators 13 and 15. A pair of square calculation circuits 17 and 19 for calculating the power, and an adder 21 for adding the outputs of the square calculation circuits 17 and 19, And a square root calculating circuit 23 which calculates the square root of the sum of the adder 21. Here, the integrators 13 and 15 can be replaced by LPF. Further, τ of the reference FM pulse S 22 (t−τ) is a time delay of the reference FM pulse S 22 with respect to the transmission pulse S 21 as in the case of FIG.

ここで、トリガ発生器1、固定遅延回路5、送信アンテナ7、及び受信アンテナ9は、それぞれ図8における同名の手段と同一の構成を有する。また、FM波発生器3は、鋸歯状波発生器3aと、VCO3bとの縦続接続回路により構成されている。さらに、直交検波器11は図2に示すように、基準FMパルスS22(t)の電力を分配する電力分配器31と、受信パルスR21(t)の電力を分配する電力分配器33と、電力分配器31で分配された電力の一方を90°移相する移相器35と、電力分配器31で分配された電力の他方と、電力分配器33で分配された電力の一方とを掛算する掛算器37と、移相器35の出力と電力分配器33で分配された電力の他方とを掛算する掛算器39とからなる。 Here, the trigger generator 1, the fixed delay circuit 5, the transmission antenna 7, and the reception antenna 9 have the same configuration as the means of the same name in FIG. Further, the FM wave generator 3 is constituted by a cascade connection circuit of a sawtooth wave generator 3a and a VCO 3b. Further, as shown in FIG. 2, the quadrature detector 11 includes a power distributor 31 that distributes the power of the reference FM pulse S 22 (t), and a power distributor 33 that distributes the power of the received pulse R 21 (t). The phase shifter 35 that shifts one of the power distributed by the power distributor 31 by 90 °, the other power distributed by the power distributor 31, and one of the power distributed by the power distributor 33. It comprises a multiplier 37 for multiplying, and a multiplier 39 for multiplying the output of the phase shifter 35 and the other of the power distributed by the power distributor 33.

この相関型探知装置(図1)の動作について、図3のタイミングチャートを参照しながら説明する。トリガ発生器1が生成するトリガパルスP21の周期は、T0を初期値とし、以後のパルス発生毎にΔTずつ延び、T0+NΔT(Nは所定の整数)に達すると、再び初期値T0からΔTずつ延長することを繰り返す。ここで、初期値T0は固定遅延回路5の遅延時間と等しい。また、図9と同様、ΔTは例えば送信パルスS21(t)の時間長の1/m(例えば1/100)に設定する。なお、本実施形態では、後述するように、基準FMパルスS22(t-τ)は、トリガパルスP21から次のトリガパルスP21迄の全期間にわたり生成しているので、図9に示すようなトリガパルスP1から次のトリガパルスP1迄の期間の一部のみ生成している場合と比べ、エネルギー効率を向上させることができる。 The operation of this correlation type detection apparatus (FIG. 1) will be described with reference to the timing chart of FIG. The period of the trigger pulse P 21 generated by the trigger generator 1 is set to T 0 as an initial value, and is extended by ΔT for each subsequent pulse generation. When reaching T 0 + NΔT (N is a predetermined integer), the initial value T is again reached. Repeat the extension from 0 by ΔT. Here, the initial value T 0 is equal to the delay time of the fixed delay circuit 5. Similarly to FIG. 9, ΔT is set to 1 / m (for example, 1/100) of the time length of the transmission pulse S 21 (t), for example. In this embodiment, as will be described later, the reference FM pulse S 22 (t−τ) is generated over the entire period from the trigger pulse P 21 to the next trigger pulse P 21 , and is shown in FIG. Compared to the case where only a part of the period from the trigger pulse P 1 to the next trigger pulse P 1 is generated, the energy efficiency can be improved.

鋸歯状波発生器3aはトリガパルスP21の立ち上がりに同期した鋸歯状波を生成してVCO3bに供給し、VCO3bは上記鋸歯状波の振幅に対応する周波数を持った基準FMパルスS22(t-τ)を生成して固定遅延回路5及び直交検波回路11に供給する。固定遅延回路から出力された送信パルスS21(t)は送信アンテナ7から物標TGに向けて送信される。そして、物標TGにて反射され、受信アンテナ9にて受信され、受信パルスR21(t)が生成される。受信パルスR21(t)は、基準FMパルスS22(t-τ)により、直交検波器11にて直交検波されることで、直交検波成分x,yが得られる。次いで、直交検波成分x,yを積分器13,15にて積分することにより、相関値X,Yが得られる。 Sawtooth generator 3a is fed to VCO3b generates a sawtooth wave that is synchronized to the rising edge of the trigger pulse P 21, VCO3b the reference FM pulse S 22 (t having a frequency corresponding to the amplitude of the sawtooth wave -τ) is generated and supplied to the fixed delay circuit 5 and the quadrature detection circuit 11. The transmission pulse S 21 (t) output from the fixed delay circuit is transmitted from the transmission antenna 7 toward the target TG. Then, it is reflected by the target TG and received by the receiving antenna 9, and a reception pulse R 21 (t) is generated. The reception pulse R 21 (t) is subjected to quadrature detection by the quadrature detector 11 with the reference FM pulse S 22 (t−τ), thereby obtaining quadrature detection components x and y. Next, the quadrature detection components x and y are integrated by the integrators 13 and 15 to obtain correlation values X and Y.

ここまでの動作について数式を用いて詳しく説明する。
基準FMパルスS22(t-τ)、送信パルスS21(t)、受信パルスR21(t)は、それぞれ下記の式[6]、[7]、[8]で表される。ただし、これらの式において、便宜上、受信パルスR21(t)の振幅を“a”、それ以外の振幅は“1”とした。
22(t−τ)=cosφ2(t−τ)・・・式[6]
21(t)=cosφ1(t)・・・式[7]
21(t)=acosφ1(t−τ0)・・・式[8]
The operation so far will be described in detail using mathematical expressions.
The reference FM pulse S 22 (t−τ), the transmission pulse S 21 (t), and the reception pulse R 21 (t) are represented by the following equations [6], [7], and [8], respectively. However, in these equations, for the sake of convenience, the amplitude of the reception pulse R 21 (t) is “a”, and the other amplitudes are “1”.
S 22 (t−τ) = cosφ 2 (t−τ) (6)
S 21 (t) = cosφ 1 (t) Expression [7]
R 21 (t) = acosφ 1 (t−τ 0 ) Equation [8]

式[8]における“τ0”は直接波と反射波との間の時間差であり、この相関型探知装置から物標TG迄の距離Lに対応している。また、送信パルスS21(t)及び基準FMパルスS22(t-τ)の符号を“φ1”、“φ2”のように区別したのは、送信パルスS21(t)が1周期前の基準FMパルスS22(t-τ)に対応しており、初期位相がランダムに相違するためである。 “Τ 0 ” in Expression [8] is a time difference between the direct wave and the reflected wave, and corresponds to the distance L from the correlation type detection device to the target TG. The sign of the transmission pulse S 21 (t) and the reference FM pulse S 22 (t−τ) is distinguished as “φ 1 ” and “φ 2 ” because the transmission pulse S 21 (t) is one cycle. This is because it corresponds to the previous reference FM pulse S 22 (t−τ) and the initial phase is randomly different.

受信パルスR21(t)において、求めたい量はτ0とaであり、そのため基準パルスS22(t−τ)との相関をとる。まず、直交検波器11の掛算器37の出力xはS22(t-τ)とR21(t)とを掛算した値であるから下記の式[9]となり、掛算器39の出力はS22(t-τ)を90°移相した信号(=sinφ2(t−τ))とR21(t)とを掛算した値であるから下記の式[10]となる。
x=(a/2)〔cos{φ1(t−τ0)−φ2(t−τ)}+cos{φ1(t−τ0)+φ2(t−τ)}〕・・・式[9]
y=(a/2)〔sin{φ1(t−τ0)−φ2(t−τ)}+sin{φ1(t−τ0)+φ2(t−τ)}}・・・式[10]
In the received pulse R 21 (t), the amount to be obtained is τ 0 and a, and therefore, the correlation with the reference pulse S 22 (t−τ) is taken. First, since the output x of the multiplier 37 of the quadrature detector 11 is a value obtained by multiplying S 22 (t−τ) and R 21 (t), the following equation [9] is obtained, and the output of the multiplier 39 is S Since 22 (t−τ) is a value obtained by multiplying a signal (= sinφ 2 (t−τ)) 90 ° phase-shifted and R 21 (t), the following equation [10] is obtained.
x = (a / 2) [cos {φ 1 (t−τ 0 ) −φ 2 (t−τ)} + cos {φ 1 (t−τ 0 ) + φ 2 (t−τ)}] Equation [9]
y = (a / 2) [sin {φ 1 (t−τ 0 ) −φ 2 (t−τ)} + sin {φ 1 (t−τ 0 ) + φ 2 (t−τ)}} [Ten]

直交検波出力x,yを積分器13,15で積分することにより、式[9],[10]の第2項が消えるため、積分器13,15の出力X,Yは
X=(a/2)cos{φ1(t−τ0)−φ2(t−τ)}・・・式[11]
Y=(a/2)sin{φ1(t−τ0)−φ2(t−τ)}・・・式[12]
となる。
By integrating the quadrature detection outputs x and y by the integrators 13 and 15, the second terms of the equations [9] and [10] disappear, so that the outputs X and Y of the integrators 13 and 15 are X = (a / 2) cos {φ 1 (t−τ 0 ) −φ 2 (t−τ)} Expression [11]
Y = (a / 2) sin {φ 1 (t−τ 0 ) −φ 2 (t−τ)} Expression [12]
It becomes.

ここで基準FMパルスS22(t-τ)の周波数fが図4に示すように、時間Tの間に周波数f0からf0+Bに上昇させる掃引を繰り返すものとすると、
f(t)={(B/T)t+f0}・・・式[13]
であるから、角周波数ω(t)は
ω(t)=2πf(t)=2π{(B/T)t+f0}・・・式[14]
よって、位相φ(t)は下記の式[15]で表される。
Here, as shown in FIG. 4, when the frequency f of the reference FM pulse S 22 (t−τ) is repeatedly swept up from the frequency f 0 to f 0 + B during the time T,
f (t) = {(B / T) t + f 0 } Expression [13]
Therefore, the angular frequency ω (t) is given by ω (t) = 2πf (t) = 2π {(B / T) t + f 0 } Equation [14]
Therefore, the phase φ (t) is expressed by the following equation [15].

Figure 2007327930
Figure 2007327930

ここで、θはランダムな初期位相である。よって、
φ1(t−τ0)=2π{(B/2T)(t−τ02+f0(t−τ0)}+θ1・・・式[16]
φ2(t−τ)=2π{(B/2T)(t−τ)2+f0(t−τ)}+θ2・・・式[17]
となる。
Here, θ is a random initial phase. Therefore,
φ 1 (t−τ 0 ) = 2π {(B / 2T) (t−τ 0 ) 2 + f 0 (t−τ 0 )} + θ 1 Formula [16]
φ 2 (t−τ) = 2π {(B / 2T) (t−τ) 2 + f 0 (t−τ)} + θ 2 Formula [17]
It becomes.

いま、基準FMパルスの遅延時間τが受信パルスの遅延時間τ0と一致したとき、
τ=τ0・・・式[18]
φ1(t−τ0)−φ2(t−τ)=θ1−θ2=θr・・・式[19]
となり、θ1とθ2がランダムなのでθrもランダムとなる。なお、図3の場合、n番目の基準FMパルスのタイミングと(n−1)番目の受信パルスのタイミングとが一致している。ここで、FMパルスの長さはS21とR21とではΔTだけ異なるが、T0に比べてΔTは十分に小さいので無視できる。
Now, when the delay time τ of the reference FM pulse matches the delay time τ 0 of the received pulse,
τ = τ 0 Formula [18]
φ 1 (t−τ 0 ) −φ 2 (t−τ) = θ 1 −θ 2 = θr Equation [19]
Since θ 1 and θ 2 are random, θr is also random. In the case of FIG. 3, the timing of the nth reference FM pulse matches the timing of the (n−1) th received pulse. Here, although the length of the FM pulse differs by ΔT between S 21 and R 21 , ΔT is sufficiently smaller than T 0 and can be ignored.

式[19]を式[11]、[12]に代入すると、それぞれ
X=(a/2)cosθr・・・式[20]
Y=(a/2)sinθr・・・式[21]
となる。
Substituting equation [19] into equations [11] and [12], X = (a / 2) cosθr... Equation [20]
Y = (a / 2) sinθr Expression [21]
It becomes.

このように、積分器13,15の出力X,Yは基準FMパルスの周波数に無関係となり、ランダムな位相差θrによって変化する値となる。そして、積分器13,15の出力X,Yを2乗算出回路17,19により2乗し、加算器21により加算すると、その加算値は
2+Y2=(a/2)2{cos2θr+sin2θr}=(a/2)2・・・式[22]
となり、ランダムに変化する位相差θrは消える。よって、平方根算出回路23の出力は(a/2)となるから、“a”が求められる。
As described above, the outputs X and Y of the integrators 13 and 15 are irrelevant to the frequency of the reference FM pulse, and have values that change depending on the random phase difference θr. Then, when the outputs X and Y of the integrators 13 and 15 are squared by the square calculation circuits 17 and 19 and added by the adder 21, the added value is X 2 + Y 2 = (a / 2) 2 {cos 2 θr + sin 2 θr} = (a / 2) 2 Formula [22]
Thus, the randomly changing phase difference θr disappears. Therefore, since the output of the square root calculation circuit 23 is (a / 2), “a” is obtained.

このように、本実施形態の相関型探知装置によれば、基準FMパルスS22(t-τ)により受信パルスR21(t)を直交検波し、直交検波成分x,yを積分し、その2乗和を算出し、さらにその平方根を算出することにより、初期位相がランダムに変化する一般的なVCO3bを用いても、所要の探知信号を得ることができる。また、本実施形態の相関型探知装置によれば、基準FMパルスS22(t-τ)は、トリガパルスP21から次のトリガパルスP21迄の全期間にわたり生成しているので、送信パルスのエネルギー効率が高い。なお、以上の説明では、鋸歯状波発生器3aの出力波形に基づいてVCO3bによりチャープパルス(直線状周波数変調波)を生成しているが、鋸歯状波発生器3aに代えて階段状波発生器、正弦波発生器など、時間対振幅特性が任意の形状の波形発生器を用いることにより、VCO3bから階段状周波数変調形式、正弦波状周波数変調形式など、時間対周波数特性が任意の周波数変調波を生成してもよい。 As described above, according to the correlation detection device of the present embodiment, the received pulse R 21 (t) is quadrature detected by the reference FM pulse S 22 (t−τ), and the quadrature detection components x and y are integrated. By calculating the sum of squares and further calculating the square root, a required detection signal can be obtained even using a general VCO 3b whose initial phase changes randomly. Further, according to the correlation type detection device of the present embodiment, the reference FM pulse S 22 (t−τ) is generated over the entire period from the trigger pulse P 21 to the next trigger pulse P 21. High energy efficiency. In the above description, a chirp pulse (linear frequency modulation wave) is generated by the VCO 3b based on the output waveform of the sawtooth wave generator 3a. However, a staircase wave is generated instead of the sawtooth wave generator 3a. By using a waveform generator having an arbitrary shape with respect to time and amplitude characteristics such as a sine wave generator and a sine wave generator, a frequency modulation wave with arbitrary time to frequency characteristics such as a stepped frequency modulation format and a sine wave frequency modulation format from the VCO 3b. May be generated.

〔第1実施例〕
図5は本発明に係る相関型探知装置の第1実施例であるミリ波レーダのブロック図である。この図において、図1と同一又は対応する構成要素には図1と同じ符号を付した。
[First embodiment]
FIG. 5 is a block diagram of a millimeter wave radar which is a first embodiment of a correlation type detection apparatus according to the present invention. In this figure, the same reference numerals as those in FIG.

このミリ波レーダは、トリガパルスP21を生成する機能、並びに直交検波出力の積分値の2乗和の演算及びその平方根の演算機能を有するPC(パーソナルコンピュータ)51を備えている。また、VCO3bは76GHz付近の周波数で発振する。VCO3bの出力はカプラ53によりアイソレータ55及びミキサ61に分配される。アイソレータ55の出力である送信パルスは送信アンテナ7から物標(図示せず)に向けて送信される。物標からの反射波は受信アンテナ9にて受信されて受信パルスとなり、高周波増幅器65により増幅され、ミキサ67に入力される。ミキサ67には、76.5GHzのローカル発振器57の出力が電力分配器59を通して供給されており、受信パルスの搬送波が500MHzの中間周波数に変換される。ミキサ67の出力は中間周波増幅器71により増幅され、遅延線5にて一定時間(6.8μsec)遅延された後に直交検波器11に入力される。 This millimeter wave radar includes a PC (personal computer) 51 having a function of generating a trigger pulse P 21 and a function of calculating a sum of squares of an integral value of quadrature detection output and a function of calculating a square root thereof. The VCO 3b oscillates at a frequency near 76 GHz. The output of the VCO 3b is distributed to the isolator 55 and the mixer 61 by the coupler 53. A transmission pulse that is an output of the isolator 55 is transmitted from the transmission antenna 7 toward a target (not shown). The reflected wave from the target is received by the receiving antenna 9 to become a received pulse, amplified by the high frequency amplifier 65, and input to the mixer 67. The output of the 76.5 GHz local oscillator 57 is supplied to the mixer 67 through the power distributor 59, and the received pulse carrier wave is converted to an intermediate frequency of 500 MHz. The output of the mixer 67 is amplified by the intermediate frequency amplifier 71, delayed by a fixed time (6.8 μsec) by the delay line 5, and then input to the quadrature detector 11.

また、ローカル発振器57の出力は電力分配器59を通してミキサ61にも供給され、ここでカプラ53からの基準パルスと混合され、500MHzの中間周波数に変換される。ミキサ61の出力は中間周波増幅器63により増幅され、直交検波器11に入力される。   The output of the local oscillator 57 is also supplied to the mixer 61 through the power distributor 59, where it is mixed with the reference pulse from the coupler 53 and converted to an intermediate frequency of 500 MHz. The output of the mixer 61 is amplified by the intermediate frequency amplifier 63 and input to the quadrature detector 11.

直交検波器11では、図2及び3を参照しながら説明した動作により、直交検波成分x,yが算出され、その直交検波成分x,yは増幅器73,75により増幅され、LPF(ローパスフィルタ)13,15に低い周波数成分のみが取り出され、その出力がPC51に入力される。PC51は、入力信号の2乗和及びその平方根を算出する。   In the quadrature detector 11, the quadrature detection components x and y are calculated by the operation described with reference to FIGS. 2 and 3, and the quadrature detection components x and y are amplified by the amplifiers 73 and 75, and the low pass filter (LPF). Only the low frequency components 13 and 15 are extracted, and the output is input to the PC 51. The PC 51 calculates the sum of squares of the input signal and its square root.

図6は図5のミリ波レーダで検出した798m先の送電線(線径3cmの撚り線)からのエコー信号の実測値であり、極めて明瞭に検出できている。   FIG. 6 shows an actual measurement value of an echo signal from a transmission line (a stranded wire having a diameter of 3 cm) 798 m ahead detected by the millimeter wave radar of FIG. 5 and can be detected very clearly.

〔第2実施例〕
図7は本発明に係る相関型探知装置の第2実施例である地中探査レーダのブロック図である。この図において、図5と同一又は対応する構成要素には図5と同じ符号を付した。なお、この地中探査レーダも図5に示すミリ波レーダと同様、PC51、増幅器73,75、及びLPF13,15を備えているが、それらは省略した。
[Second Embodiment]
FIG. 7 is a block diagram of an underground exploration radar which is a second embodiment of the correlation type detection apparatus according to the present invention. In this figure, the same or corresponding elements as those in FIG. This underground exploration radar also includes a PC 51, amplifiers 73 and 75, and LPFs 13 and 15 as in the millimeter wave radar shown in FIG.

地中探査レーダのように極めて広帯域のレーダ信号を扱う場合、広帯域の直交検波器を実現することが技術的に困難であるため、図7のように構成することで、直交検波器11は一定周波数(ここでは1.2GHz)に対応するもので済むようにした。   When an extremely wide-band radar signal is handled like a ground penetrating radar, it is technically difficult to realize a wide-band quadrature detector, so that the quadrature detector 11 is fixed by configuring as shown in FIG. The one corresponding to the frequency (here 1.2 GHz) is sufficient.

この地中探査レーダにおいて、VCO3bは1.3〜1.8GHzのFMパルスを生成し、ローカル発振器57は1.2GHzの正弦波を生成する。VCO3bの出力は電力分配器59によりミキサ67,81に分配され、ローカル発振器57の出力はカプラ53によりミキサ81及び直交検波器11に分配される。ミキサ81では、VCO3bの出力とローカル発振器57の出力とが混合され、その出力は100〜600MHzの通過帯域を有するBPF(バンドパスフィルタ)83に供給される。BPF83では、VCO3bの出力とローカル発振器57のビート周波数成分である100〜600MHzの送信パルスが取り出され、送信パルスは遅延線5を通り、送信アンテナ7から物標(図示せず)に向けて送信される。   In this subsurface radar, the VCO 3b generates an FM pulse of 1.3 to 1.8 GHz, and the local oscillator 57 generates a sine wave of 1.2 GHz. The output of the VCO 3b is distributed to the mixers 67 and 81 by the power distributor 59, and the output of the local oscillator 57 is distributed to the mixer 81 and the quadrature detector 11 by the coupler 53. In the mixer 81, the output of the VCO 3b and the output of the local oscillator 57 are mixed, and the output is supplied to a BPF (band pass filter) 83 having a pass band of 100 to 600 MHz. In the BPF 83, the output of the VCO 3b and the transmission pulse of 100 to 600 MHz, which is the beat frequency component of the local oscillator 57, are extracted, and the transmission pulse is transmitted from the transmission antenna 7 toward the target (not shown) through the delay line 5. Is done.

物標からの反射波は受信アンテナ9にて受信されて受信パルスとなり、高周波増幅器65により増幅され、ミキサ67に入力される。ミキサ67では、受信パルスと、VCO3bの出力とが混合され、その出力は中心通過帯域が1.2GHzのBPF85に供給される。BPF85では、受信パルスと、VCO3bの出力とのビート周波数成分である1.2GHzの信号が取り出されることで、1.2GHzに周波数変換された受信パルスが得られる。この受信パルスは直交検波器11に入力され、カプラ53を通して直交検波器11に供給されているローカル発振器57の出力により直交検波される。   The reflected wave from the target is received by the receiving antenna 9 to become a received pulse, amplified by the high frequency amplifier 65, and input to the mixer 67. In the mixer 67, the received pulse and the output of the VCO 3b are mixed, and the output is supplied to the BPF 85 whose center passband is 1.2 GHz. The BPF 85 extracts a 1.2 GHz signal that is a beat frequency component of the received pulse and the output of the VCO 3b, thereby obtaining a received pulse frequency-converted to 1.2 GHz. This received pulse is input to the quadrature detector 11 and quadrature detected by the output of the local oscillator 57 supplied to the quadrature detector 11 through the coupler 53.

このように、本実施例によれば、図5に対し、VCO3bとローカル発振器57との位置を交替することにより、直交検波器11は一定周波数に対応するもので済み、広帯域の部品が不要となる。なお、遅延線5は、ミキサ81とBPF83との間、又は受信アンテナ9と高周波増幅器65との間、又は高周波増幅器65とミキサ67との間に接続してもよい。   As described above, according to the present embodiment, the positions of the VCO 3b and the local oscillator 57 are changed with respect to FIG. Become. The delay line 5 may be connected between the mixer 81 and the BPF 83, between the reception antenna 9 and the high frequency amplifier 65, or between the high frequency amplifier 65 and the mixer 67.

本発明の実施形態の相関型探知装置の基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the correlation type detection apparatus of embodiment of this invention. 図1における直交検波器の構成を示すブロック図である。It is a block diagram which shows the structure of the quadrature detector in FIG. 本発明の実施形態の相関型探知装置の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the correlation type detection apparatus of embodiment of this invention. 本発明の実施形態における基準FMパルスの時間と周波数との対応関係を示す図である。It is a figure which shows the correspondence of the time and frequency of a reference | standard FM pulse in embodiment of this invention. 本発明に係る相関型探知装置の第1実施例であるミリ波レーダのブロック図である。1 is a block diagram of a millimeter wave radar that is a first embodiment of a correlation type detection apparatus according to the present invention; FIG. 図5のミリ波レーダで検出した798m先の送電線(線径3cmの撚り対線)からのエコー信号の実測値を示す図である。It is a figure which shows the measured value of the echo signal from the 798-m ahead transmission line (twisted pair wire with a wire diameter of 3 cm) detected with the millimeter wave radar of FIG. 本発明に係る相関型探知装置の第2実施例である地中探査レーダのブロック図である。It is a block diagram of the underground exploration radar which is 2nd Example of the correlation type detection apparatus which concerns on this invention. 従来の一般的な相関型探知装置の基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the conventional common correlation type detection apparatus. 図8に示す相関型探知装置の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the correlation type detection apparatus shown in FIG. パルス発生器を削減した相関型探知装置の基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the correlation type detection apparatus which reduced the pulse generator. 図10に示す相関型探知装置の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the correlation type detection apparatus shown in FIG.

符号の説明Explanation of symbols

1・・・トリガ発生器、3・・・基準FMパルス発生器、5・・・固定遅延回路、7・・・送信アンテナ、9・・・受信アンテナ、11・・・直交検波器、13,15・・・積分器、17,19・・・2乗算出回路、21・・・加算器、23・・・平方根算出回路。


DESCRIPTION OF SYMBOLS 1 ... Trigger generator, 3 ... Reference | standard FM pulse generator, 5 ... Fixed delay circuit, 7 ... Transmitting antenna, 9 ... Receiving antenna, 11 ... Quadrature detector, 13, 15 ... integrator, 17, 19 ... square calculation circuit, 21 ... adder, 23 ... square root calculation circuit.


Claims (3)

所定の時間長を有し、かつ波形の前端の位相がランダムな複数の基準波形を、時間間隔が周期的に変化するように生成する手段と、前記基準波形を所定時間遅延させて遅延波形を生成する手段と、前記遅延波形に対応する送信信号を送信する手段と、前記送信信号の物標からの反射波又は透過波を受信して受信波形を生成する手段と、前記受信波形を前記基準波形により直交検波する手段と、該直交検波された直交出力成分に基づいて、前記ランダムな位相に無関係な探知信号を得る手段とを備えたことを特徴とする相関型探知装置。   Means for generating a plurality of reference waveforms having a predetermined time length and having a random phase at the front end of the waveform so that the time interval changes periodically; and delaying the reference waveform by a predetermined time Means for generating, means for transmitting a transmission signal corresponding to the delayed waveform, means for receiving a reflected wave or transmitted wave from a target of the transmission signal and generating a received waveform, and the received waveform as the reference A correlation type detection apparatus comprising: means for performing quadrature detection based on a waveform; and means for obtaining a detection signal irrelevant to the random phase based on the quadrature output component subjected to quadrature detection. 請求項1記載の相関型探知装置において、
前記基準波形は前記時間間隔の変化に応じて時間長が変化することを特徴とする相関型探知装置。
The correlation type detection apparatus according to claim 1,
The correlation type detecting apparatus according to claim 1, wherein a time length of the reference waveform changes according to a change in the time interval.
請求項1記載の相関型探知装置において、
前記基準波形は周波数変調波であることを特徴とする相関型探知装置。
The correlation type detection apparatus according to claim 1,
5. The correlation type detection apparatus according to claim 1, wherein the reference waveform is a frequency modulation wave.
JP2006191724A 2006-05-11 2006-07-12 Correlation detector Expired - Fee Related JP4704968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006191724A JP4704968B2 (en) 2006-05-11 2006-07-12 Correlation detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006132956 2006-05-11
JP2006132956 2006-05-11
JP2006191724A JP4704968B2 (en) 2006-05-11 2006-07-12 Correlation detector

Publications (2)

Publication Number Publication Date
JP2007327930A true JP2007327930A (en) 2007-12-20
JP4704968B2 JP4704968B2 (en) 2011-06-22

Family

ID=38928492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006191724A Expired - Fee Related JP4704968B2 (en) 2006-05-11 2006-07-12 Correlation detector

Country Status (1)

Country Link
JP (1) JP4704968B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191073A (en) * 2010-03-11 2011-09-29 Jfe Steel Corp Device and method for measuring surface state of granular material deposit
JP2015143619A (en) * 2014-01-31 2015-08-06 株式会社デンソーウェーブ Distance measuring apparatus
WO2016089175A1 (en) * 2014-12-05 2016-06-09 서울대학교산학협력단 Radar system and target detection method for detecting target located together with clutter
KR101729953B1 (en) * 2014-08-12 2017-04-25 서울대학교산학협력단 Radar system for detecting a target in a clutter and target detecting method of the same
JP2019501395A (en) * 2016-01-07 2019-01-17 ブライトスペック,インコーポレイテッド Method and apparatus for direct multiplication Fourier transform millimeter wave spectroscopy
WO2019224880A1 (en) * 2018-05-21 2019-11-28 三菱電機株式会社 Radar device
CN112204421A (en) * 2018-06-07 2021-01-08 三菱电机株式会社 Radar apparatus
CN116027321A (en) * 2022-01-14 2023-04-28 北京中创恒益科技有限公司 High-precision real-time protection system and method for power transmission line

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288844A (en) * 1992-04-08 1993-11-05 Ikuo Arai Correlation detection-type searching apparatus and correlation-type signal detection apparatus
JPH05288834A (en) * 1992-04-14 1993-11-05 Ikuo Arai Variable-cycle correlation-type detection apparatus and variable-cycle correlation-type signal detection apparatus
JPH05312938A (en) * 1992-05-14 1993-11-26 Ikuo Arai Variable-period correlation type searching apparatus and variable-period correlation type signal detecting apparatus
JP2001500621A (en) * 1996-09-18 2001-01-16 セルシウステク エレクトロニクス エービー A process for determining the relative velocity between two moving objects
JP2005249770A (en) * 2003-12-17 2005-09-15 Denso Corp Distance detecting apparatus and body detecting apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288844A (en) * 1992-04-08 1993-11-05 Ikuo Arai Correlation detection-type searching apparatus and correlation-type signal detection apparatus
JPH05288834A (en) * 1992-04-14 1993-11-05 Ikuo Arai Variable-cycle correlation-type detection apparatus and variable-cycle correlation-type signal detection apparatus
JPH05312938A (en) * 1992-05-14 1993-11-26 Ikuo Arai Variable-period correlation type searching apparatus and variable-period correlation type signal detecting apparatus
JP2001500621A (en) * 1996-09-18 2001-01-16 セルシウステク エレクトロニクス エービー A process for determining the relative velocity between two moving objects
JP2005249770A (en) * 2003-12-17 2005-09-15 Denso Corp Distance detecting apparatus and body detecting apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191073A (en) * 2010-03-11 2011-09-29 Jfe Steel Corp Device and method for measuring surface state of granular material deposit
JP2015143619A (en) * 2014-01-31 2015-08-06 株式会社デンソーウェーブ Distance measuring apparatus
KR101729953B1 (en) * 2014-08-12 2017-04-25 서울대학교산학협력단 Radar system for detecting a target in a clutter and target detecting method of the same
WO2016089175A1 (en) * 2014-12-05 2016-06-09 서울대학교산학협력단 Radar system and target detection method for detecting target located together with clutter
JP7045318B2 (en) 2016-01-07 2022-03-31 ブライトスペック,インコーポレイテッド Directly Multiplied Fourier Transform Millimeter Wave Spectroscopy Methods and Devices
US11029261B2 (en) 2016-01-07 2021-06-08 Brightspec, Inc. Methods and apparatus for direct multiplication Fourier transform millimeter wave spectroscopy
JP2019501395A (en) * 2016-01-07 2019-01-17 ブライトスペック,インコーポレイテッド Method and apparatus for direct multiplication Fourier transform millimeter wave spectroscopy
WO2019224880A1 (en) * 2018-05-21 2019-11-28 三菱電機株式会社 Radar device
JPWO2019224880A1 (en) * 2018-05-21 2020-10-01 三菱電機株式会社 Radar device
CN112204421A (en) * 2018-06-07 2021-01-08 三菱电机株式会社 Radar apparatus
CN112204421B (en) * 2018-06-07 2023-06-16 三菱电机株式会社 Radar apparatus, control circuit, and program storage medium
CN116027321A (en) * 2022-01-14 2023-04-28 北京中创恒益科技有限公司 High-precision real-time protection system and method for power transmission line
CN116027321B (en) * 2022-01-14 2024-01-30 北京中创恒益科技有限公司 High-precision real-time protection system and method for power transmission line

Also Published As

Publication number Publication date
JP4704968B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP4704968B2 (en) Correlation detector
CN100533171C (en) Radar apparatus
US7564400B2 (en) Spread spectrum radar apparatus
JP2990097B2 (en) Continuous-wave wide-band precision ranging radar equipment.
US9733345B2 (en) System and method for enhanced point-to-point direction finding
JP2009522575A5 (en)
EP2284565A1 (en) Continous wave radar
JP2005181180A (en) Radar system
JP5019316B2 (en) FM-CW polarization radar equipment
JP2008224595A (en) Light wave ranging method and ranging device
JP4976439B2 (en) Radar equipment
JP2006258709A (en) Radar device
JP2006226847A (en) Wireless sensing device and method
JP2005009979A (en) Pulse radar device and signal processing method therefor
JP2002014159A (en) Fm-cw radar apparatus
JP3397158B2 (en) ECM radar device
JP5892288B2 (en) Radar and object detection method
JP2009236717A (en) Radar distance measuring device
JPS5892877A (en) Ultrasonic distance measuring device
JP2006275758A (en) Radar system
JP6916141B2 (en) Distance measurement system
JP2005156393A (en) Radar equipment
RU2642430C1 (en) Method of distance measurement
JPH11352217A (en) Code correlation doppler radar apparatus
JP5382765B2 (en) POSITION INFORMATION DETECTING DEVICE AND POSITION INFORMATION DETECTING METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

R150 Certificate of patent or registration of utility model

Ref document number: 4704968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees