JP2007327899A - Ultraviolet detecting element, and apparatus and method for measuring ultraviolet ray - Google Patents

Ultraviolet detecting element, and apparatus and method for measuring ultraviolet ray Download PDF

Info

Publication number
JP2007327899A
JP2007327899A JP2006160650A JP2006160650A JP2007327899A JP 2007327899 A JP2007327899 A JP 2007327899A JP 2006160650 A JP2006160650 A JP 2006160650A JP 2006160650 A JP2006160650 A JP 2006160650A JP 2007327899 A JP2007327899 A JP 2007327899A
Authority
JP
Japan
Prior art keywords
light
detection
ultraviolet
sheet
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006160650A
Other languages
Japanese (ja)
Inventor
Takashi Miwa
貴志 三輪
Yoko Maruo
容子 丸尾
Seizo Sakata
晴三 阪田
Jiro Nakamura
二朗 中村
Tatsuya Kunioka
達也 國岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006160650A priority Critical patent/JP2007327899A/en
Publication of JP2007327899A publication Critical patent/JP2007327899A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To more easily detect ultraviolet rays, suppressing an influence of an oxidizing gas existing in the atmosphere. <P>SOLUTION: A detecting agent solution 101 wherein indigo carmine, citric acid, and glycerol are dissolved in water as coloring matters, is prepared, and the prepared detecting agent solution 101 is put in a container 102. A carrier sheet 103 composed of filter paper is dipped in the detecting agent solution 101 to impregnate the carrier sheet 103 with the detecting agent solution. Then, the carrier sheet 103 dipped in the detecting agent solution 101 for about thirty seconds is taken out from the detecting agent solution 101, and the taken-out carriage sheet 103 is dried by wind to produce a detecting sheet 103a. Then, the detecting sheet 103a is put in a resin bag 141, and the bag 141 is sealed, to form a detecting element 104 in a state that the detecting sheet 103a is enclosed in the bag 141. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、紫外線を検出するために用いられる紫外線の検知素子、紫外線の測定装置及び方法に関する。   The present invention relates to an ultraviolet ray detection element, an ultraviolet ray measuring apparatus and method used for detecting ultraviolet rays.

多量の紫外線に被爆すると重度の日焼けや皮膚がんを引き起こし、人体に悪影響を及ぼすことがよく知られている。また1970年代にオゾン層の減少が観測されて以来、全地球的にオゾン層は減少傾向にあり、地上に到達する紫外線量が増加しており、紫外線リスクの評価及び紫外線対策のために紫外線被爆量測定の必要性が高まっている。   It is well known that exposure to a large amount of ultraviolet rays causes severe sunburn and skin cancer, and has an adverse effect on the human body. In addition, since the ozone layer decrease was observed in the 1970s, the ozone layer has been decreasing globally, and the amount of ultraviolet rays reaching the ground has increased. There is a growing need for quantitative measurements.

従来より、UVフィルターにより太陽光から紫外光を分光し、分光した紫外光を受光器で電気信号に変換し、さらに変換した電気信号をデジタル変換して表示・記録する
紫外放射計が知られている。しかしながら、上記の紫外放射計は、構造が複雑で高価といった問題があり、個人向けにはあまり普及していない。また、紫外線により変色する色素を担体に保持させた紫外線インジケータ(例えば口油技研工業株式会社製紫外線インジケータ「UVラベル」など)が市販されている(非特許文献1参照)。
Conventionally, there has been known an ultraviolet radiometer that splits ultraviolet light from sunlight with a UV filter, converts the split ultraviolet light into an electrical signal with a light receiver, and converts the converted electrical signal into a digital signal for display and recording. Yes. However, the above ultraviolet radiometer has a problem that its structure is complicated and expensive, and it is not so popular for individuals. In addition, an ultraviolet indicator (for example, an ultraviolet indicator “UV label” manufactured by Kousui Giken Kogyo Co., Ltd.) in which a dye that changes color by ultraviolet rays is held on a carrier is commercially available (see Non-Patent Document 1).

春本大介 他、「紫外線インジケータ ”UVラベル”について」、日本防菌防ばい学会年次大会要旨集、Vol.27th,p.34、ライフサイエンス編、2000年。Daisuke Harumoto et al. “UV Indicator“ UV Label ””, Annual Meeting of the Japan Society for Antibacterial and Antifungal Society, Vol. 27th, p. 34, Life Sciences, 2000.

しかしながら、色素を利用して紫外線被爆により変色する機能を実現した製品は、オゾンなどの酸化性ガスによっても変色が起こるため、大気中のオゾン濃度が高い地域では正確に紫外線被爆量を評価できないという問題があった。   However, products that use dyes to achieve a function that changes color due to ultraviolet exposure can cause discoloration even with oxidizing gases such as ozone, so it is not possible to accurately assess the amount of UV exposure in areas with high ozone concentrations in the atmosphere. There was a problem.

本発明は、以上のような問題点を解消するためになされたものであり、大気中に存在する酸化性ガスの影響を抑制した状態で、より簡便に紫外線が検出できるようにすることを目的とする。   The present invention has been made to solve the above-described problems, and it is an object of the present invention to more easily detect ultraviolet rays while suppressing the influence of an oxidizing gas present in the atmosphere. And

本発明に係る紫外線の検知素子は、紫外線と反応して可視領域の光吸収が変化する色素を含む検知剤を担持したシート状の検知シートと、検知シートを覆い、紫外線を透過するプラスチックの膜とを備える。従って、検知紙に担持される色素は、検知素子が配置される雰囲気の気体に曝されることが抑制される。   The ultraviolet detection element according to the present invention includes a sheet-like detection sheet carrying a detection agent containing a dye that changes light absorption in the visible region in response to ultraviolet light, and a plastic film that covers the detection sheet and transmits ultraviolet light. With. Therefore, the dye carried on the detection paper is suppressed from being exposed to the gas in the atmosphere in which the detection element is arranged.

上記紫外線の検知素子において、色素は、インジゴやインジゴカルミンなどのインジゴ環を有するものであり、検知剤は、色素と、クエン酸などの酸と、グリセリンとを含むものであればよい。また、プラスチックの膜は、ポリエチレンから構成された膜厚40μmの膜であればよい。   In the ultraviolet detection element, the dye has an indigo ring such as indigo or indigo carmine, and the detection agent only needs to include a dye, an acid such as citric acid, and glycerin. The plastic film may be a film made of polyethylene and having a thickness of 40 μm.

また、本発明に係る紫外線の測定装置方法は、検知素子と、この検知素子に対して所定の波長の光を放出する発光部と、この発光部より放出されて検知素子を反射した反射光を受光し、この受光した光量に応じた電気信号を出力する光検出部と、光検出部が出力した電気信号の状態を測る電気計器とを少なくとも備え、検知素子は、紫外線と反応して可視領域の光吸収が変化する色素を含む検知剤を担持したシート状の検知シートと、検知シートを覆い、紫外線を透過するプラスチックの膜とから構成されたものである。   The ultraviolet ray measuring apparatus method according to the present invention includes a sensing element, a light emitting part that emits light of a predetermined wavelength to the sensing element, and reflected light that is emitted from the light emitting part and reflected by the sensing element. It has at least a light detection unit that receives light and outputs an electrical signal corresponding to the received light amount, and an electric meter that measures the state of the electrical signal output by the light detection unit, and the detection element reacts with ultraviolet rays to be visible region It comprises a sheet-like detection sheet carrying a detection agent containing a dye whose light absorption changes, and a plastic film that covers the detection sheet and transmits ultraviolet rays.

上記紫外線の測定装置において、発光部は発光ダイオードから構成され、光検出部はフォトトランジスタから構成され、加えて、発光ダイオード及びフォトトランジスタに電源を供給する電池と、発光ダイオード及びフォトトランジスタに電池からの電源の供給をオンオフするスイッチと、フォトトランジスタと電池との間に接続された電気計器としての電圧計と、発光ダイオード,フォトトランジスタ,電池,スイッチ,及び,電圧計の各々を結線するための端子を備えた端子板と、発光ダイオード,フォトトランジスタ,電池,スイッチ,電圧計,及び,端子板を配置した基板とを備えたものであればよい。   In the ultraviolet ray measuring apparatus, the light emitting unit is composed of a light emitting diode, the light detecting unit is composed of a phototransistor, and in addition, a battery for supplying power to the light emitting diode and the phototransistor, and a light emitting diode and a phototransistor from the battery A switch for turning on and off the power supply of the voltmeter, a voltmeter as an electric meter connected between the phototransistor and the battery, and a light emitting diode, a phototransistor, a battery, a switch, and a voltmeter What is necessary is just to provide the terminal board provided with the terminal and the board | substrate which has arrange | positioned the light emitting diode, the phototransistor, the battery, the switch, the voltmeter, and the terminal board.

また、本発明に係る紫外線の測定方法は、紫外線と反応して可視領域の光吸収が変化する色素を担持したシート状の検知シートが、紫外線を透過するプラスチックの膜に覆われた検知素子を用意するステップと、検知シートの反射光による第1の吸光度を求めるステップと、検知素子を紫外線が照射された環境に所定時間曝すステップと、紫外線に所定時間曝した検知素子の反射光による第2の吸光度を求めるステップと、第1の吸光度と第2の吸光度の差により検知素子に照射された紫外線の照射量を算出するステップとを備えるものである。   Further, the ultraviolet ray measuring method according to the present invention includes a detection element in which a sheet-like detection sheet carrying a dye that changes light absorption in the visible region in response to ultraviolet light is covered with a plastic film that transmits ultraviolet light. A step of preparing, a step of obtaining a first absorbance by the reflected light of the detection sheet, a step of exposing the detection element to an environment irradiated with ultraviolet light for a predetermined time, and a second of the reflected light of the detection element exposed to the ultraviolet light for a predetermined time And a step of calculating an irradiation amount of ultraviolet rays irradiated to the detection element based on a difference between the first absorbance and the second absorbance.

以上説明したように、本発明によれば、紫外線と反応して可視領域の光吸収が変化する色素を含む検知剤を担持した検知シートを、紫外線を透過するプラスチックの膜で覆うようにしたので、大気中に存在する酸化性ガスの影響を抑制した状態で、より簡便に紫外線が検出できるようになるという優れた効果が得られる。   As described above, according to the present invention, the detection sheet carrying the detection agent containing the dye that changes the light absorption in the visible region by reacting with the ultraviolet ray is covered with the plastic film that transmits the ultraviolet ray. In addition, an excellent effect that ultraviolet rays can be detected more easily in a state where the influence of an oxidizing gas present in the atmosphere is suppressed can be obtained.

以下、本発明の実施の形態について図を参照して説明する。なお、以降に示す図面において、同一機能を有するものは同一符号を用い、繰り返しの説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that, in the drawings shown below, the same reference numerals are used for those having the same function, and repeated description is omitted.

はじめに、図1(a)〜図1(e)を用い、本実施の形態に係る紫外線の検知素子の作製方法について説明する。先ず、図1(a)に示すように、色素としてインジゴカルミン,クエン酸,及びグリセリンを水に溶解した検知剤溶液101を作製し、作製した検知剤溶液101を容器102に収容する。例えば、インジゴカルミン0.045g,クエン酸3.5g,グリセリン12.5gを純水に溶解し、全量で50mlとなるようし、これを検知剤溶液101とすればよい。   First, a method for manufacturing an ultraviolet detection element according to the present embodiment will be described with reference to FIGS. First, as shown in FIG. 1A, a detection agent solution 101 in which indigo carmine, citric acid, and glycerin are dissolved in water as pigments is prepared, and the prepared detection agent solution 101 is stored in a container 102. For example, 0.045 g of indigo carmine, 3.5 g of citric acid, and 12.5 g of glycerin are dissolved in pure water so that the total amount becomes 50 ml, and this may be used as the detection agent solution 101.

次に、図1(b)に示すように、検知剤溶液101にろ紙よりなる担体シート103を浸漬し、担体シート103に検知剤溶液を含浸させる。例えば、担体シート103は、アドバンテック東洋社製のろ紙No.2であればよい。また、担体シート103は、検知剤溶液101に30秒間程度浸漬すればよい。次に、検知剤溶液101に30秒ほど浸漬した担体シート103を、検知剤溶液101より取り出し、取り出した担体シート103を風乾する。次に、図1(c)に示すように、取り出した担体シート103を、窒素ガス気流中に24時間以上放置して乾燥させ、検知シート103aを作製する。検知シート103aは、検知剤溶液101に溶解していた前述の各成分が、担体シート103に担持(保持)されて構成されたものである。なお、担体シート103は、ろ紙に限らず、布などの繊維が絡み合った構造を備えて検知剤を担持することが可能なものであればよい。   Next, as shown in FIG. 1B, a carrier sheet 103 made of filter paper is immersed in the detection agent solution 101, and the carrier sheet 103 is impregnated with the detection agent solution. For example, the carrier sheet 103 is filter paper No. manufactured by Advantech Toyo. 2 is sufficient. The carrier sheet 103 may be immersed in the detection agent solution 101 for about 30 seconds. Next, the carrier sheet 103 immersed in the detection agent solution 101 for about 30 seconds is taken out from the detection agent solution 101, and the taken out carrier sheet 103 is air-dried. Next, as shown in FIG. 1C, the taken-out carrier sheet 103 is left to dry in a nitrogen gas stream for 24 hours or more to produce a detection sheet 103a. The detection sheet 103 a is configured by supporting (holding) the above-described components dissolved in the detection agent solution 101 on the carrier sheet 103. The carrier sheet 103 is not limited to filter paper, and may be any sheet having a structure in which fibers such as cloth are entangled and capable of carrying a detection agent.

次に、図1(d)に示すように、検知シート103aを、例えば、紫外線が透過する樹脂製の袋141に収容し、袋141を封止することで、図1(e)に示すように、検知シート103aが袋141に封入された検知素子104が形成された状態とする。検知素子104は、検知シート103aがプラスチック膜としての袋141に覆われた状態とされたもものである。例えば、減圧された環境下で、袋141に検知シート103aを封入することで、袋141内に空気などの気体が混入することが抑制された状態とする。   Next, as shown in FIG. 1D, the detection sheet 103a is accommodated in, for example, a resin bag 141 that transmits ultraviolet rays, and the bag 141 is sealed, as shown in FIG. In addition, the detection element 104 in which the detection sheet 103a is sealed in the bag 141 is formed. The detection element 104 is a state in which the detection sheet 103a is covered with a bag 141 as a plastic film. For example, by enclosing the detection sheet 103a in the bag 141 under a reduced pressure environment, the bag 141 is prevented from being mixed with gas such as air.

また、袋141は、UVA領域(波長400〜320nm)及びUVB領域(波長320〜280nm)の紫外線が透過するシート状もしくはフィルム状の樹脂材料から構成されていればよい。例えば、厚さ40μmのポリエチレンフィルムより構成されたもの(株式会社生産日本社製「ユニパック A−4」)を用いればよい。厚さ40μmのポリエチレンフィルムより構成された袋141であれば、オゾンなどの酸化性ガスの透過が抑制された状態で、紫外線が透過する状態とすることができる。   Moreover, the bag 141 should just be comprised from the sheet-like or film-like resin material which the ultraviolet-ray of a UVA area | region (wavelength 400-320 nm) and a UVB area | region (wavelength 320-280 nm) permeate | transmits. For example, a film made of a polyethylene film having a thickness of 40 μm (“Unipack A-4” manufactured by Production Japan Co., Ltd.) may be used. If it is the bag 141 comprised from the polyethylene film of thickness 40 micrometers, it can be set as the state which permeate | transmits an ultraviolet-ray in the state which permeation | transmission of oxidizing gas, such as ozone, was suppressed.

次に、検知素子104を用いた紫外線の検出方法について、図1(f)及び図1(f’)を用いて説明する。検知素子104を用いた紫外線の測定では、先ず、図1(e)に示すように、所定の光源より光源光(入射光強度I0)を照射し、検知シート103aを反射した反射光の強度(反射光強度I)を測定する。この光学測定を、検知素子104の作製直後(紫外線に曝す前)と、検知素子104を紫外線に曝した後との2回行い、この2回の光学測定の結果を比較することで、紫外線の検出を行う。なお、紫外線への暴露は、検知シート103aが袋141に封入された検知素子104で行い、上記2回の光学測定は、図1(e’)に示すように、検知シート103a単体で行うようにしてもよい。なお、上述したような反射光による光学測定では、吸光度はlog 10(I0/I)により示される。 Next, an ultraviolet detection method using the detection element 104 will be described with reference to FIGS. 1 (f) and 1 (f ′). In the measurement of ultraviolet rays using the detection element 104, first, as shown in FIG. 1E, the intensity of the reflected light that is irradiated with light source light (incident light intensity I 0 ) from a predetermined light source and reflected from the detection sheet 103a. (Reflected light intensity I) is measured. This optical measurement is performed twice immediately after the detection element 104 is manufactured (before exposure to ultraviolet rays) and after the detection element 104 is exposed to ultraviolet rays. By comparing the results of these two optical measurements, Perform detection. The exposure to ultraviolet rays is performed by the detection element 104 in which the detection sheet 103a is enclosed in the bag 141, and the above two optical measurements are performed by the detection sheet 103a alone as shown in FIG. It may be. In the optical measurement using the reflected light as described above, the absorbance is indicated by log 10 (I 0 / I).

以下、検知素子104を用いた紫外線の測定結果について説明する。先ず、検知素子104を、UVA領域の紫外線に80ワット時/m2暴露し、また、UVB領域の紫外線に1.0ワット時/m2暴露し、暴露の前後に検知素子104の袋141から検知シート103aを取り出し、前述したように反射光を測定(2回)した。この2回の測定(吸光度分析)結果を図2に示す。なお、図2において、点線は紫外線に暴露する前の吸光度の測定結果であり、実線は、紫外線に暴露した後の測定結果である。なお、本測定では、光学測定を検知シート103a単独で行うようにしたが、これに限るものではない。袋141は、光学測定で用いられる波長域(500〜700nm)の光を透過するため、前述したように、検知素子104の状態で、光学測定を行うようにしてもよい。 Hereinafter, measurement results of ultraviolet rays using the detection element 104 will be described. First, the sensing element 104 is exposed to UV light in the UVA region at 80 watt hours / m 2, and exposed to UV light in the UVB region at 1.0 watt hour / m 2 , before and after exposure from the bag 141 of the sensing element 104. The detection sheet 103a was taken out and the reflected light was measured (twice) as described above. The results of these two measurements (absorbance analysis) are shown in FIG. In FIG. 2, the dotted line is the measurement result of the absorbance before exposure to ultraviolet rays, and the solid line is the measurement result after exposure to ultraviolet rays. In this measurement, the optical measurement is performed by the detection sheet 103a alone, but the present invention is not limited to this. Since the bag 141 transmits light in a wavelength region (500 to 700 nm) used for optical measurement, the optical measurement may be performed in the state of the detection element 104 as described above.

紫外線の検出結果について説明すると、図2に示すように、波長500〜700nmの範囲、特に620nm付近において、実線と点線の間に大きな違いが見られる。検知素子104を紫外線に暴露した後の吸光度の測定(実線)では、波長620nm付近における吸収が減少している。この結果より、検知素子104を紫外線に暴露することにより、検知素子104(検知シート103a)に含まれている色素(インジゴカルミン)が分解され、新たな分解物が生成されていることになる。この生成物は、インジゴカルミンの分子骨格に含まれるC=C結合が分解したものと推定できる。   Explaining the detection result of ultraviolet rays, as shown in FIG. 2, there is a large difference between the solid line and the dotted line in the wavelength range of 500 to 700 nm, particularly in the vicinity of 620 nm. In the measurement of the absorbance after exposing the detection element 104 to ultraviolet rays (solid line), the absorption near the wavelength of 620 nm decreases. From this result, when the detection element 104 is exposed to ultraviolet rays, the pigment (indigo carmine) contained in the detection element 104 (detection sheet 103a) is decomposed, and a new decomposition product is generated. This product can be presumed that the C═C bond contained in the molecular skeleton of indigo carmine was decomposed.

このように、分光光度計(吸光光度計)で検知素子104の吸収スペクトルを測定することで、色素が分解されたことにより生成された分子の定量測定を行うことができる。また、色素が分解される度合いは、暴露された紫外線の量によるため、生成された分子の定量測定により、間接的に紫外線被爆量の測定を行うことができる。ここで、図2に示したように、吸光度の測定(光学測定)の結果では、波長620nm付近において、紫外線暴露の前後で吸光度の変化が0.18程度と高く、屋外環境の紫外線の測定が、十分可能であることがわかる。   In this way, by measuring the absorption spectrum of the detection element 104 with a spectrophotometer (absorptiometer), it is possible to perform quantitative measurement of molecules generated by the decomposition of the dye. Moreover, since the degree to which the dye is decomposed depends on the amount of exposed ultraviolet rays, the amount of ultraviolet radiation exposure can be indirectly measured by quantitative measurement of the generated molecules. Here, as shown in FIG. 2, in the result of the measurement of the absorbance (optical measurement), the change in absorbance is as high as about 0.18 before and after the exposure to ultraviolet rays in the vicinity of a wavelength of 620 nm. It turns out that it is possible enough.

なお、上述では、紫外線と反応して可視領域の光吸収が変化する色素としてインジゴカルミンを用いる場合について説明したが、これに限るものではなく、インジゴなどのインジゴ環を備えた他の色素を用いるようにしてもよい。また、上述では、ポリエチレンから構成された袋を用いるようにしたが、これに限るものではなく、例えば、ポリスチレンやポリプロピレンなどの他のプラスチック材料の膜を用いるようにしてもよい。また、上述では、作製した検知剤溶液にろ紙を浸漬させ、ろ紙に検知剤溶液を含浸させるようにしたが、これに限らず、ろ紙に検知剤溶液を塗布することで、ろ紙に検知剤溶液を含浸させるようにしてもよい。   In the above description, the case where indigo carmine is used as a dye that changes the light absorption in the visible region by reacting with ultraviolet rays has been described. You may do it. In the above description, a bag made of polyethylene is used. However, the present invention is not limited to this. For example, a film made of another plastic material such as polystyrene or polypropylene may be used. Further, in the above description, the filter paper is immersed in the produced detection agent solution, and the filter paper is impregnated with the detection agent solution. However, the present invention is not limited to this. You may make it impregnate.

次に、検知素子104を用いた太陽光暴露実験について説明する。この実験では、検知素子104による測定とともに、UVAの光量を測定するUV計とUVBの光量を測定するUV計とで、照射されている太陽光のUVAの光量とUVBの光量とを同時の測定する。よく知られているように、太陽光は、UVA及びUVBの両領域の紫外線を含んでいる。これら光量の測定結果と、この光量における暴露前後における検知素子104の吸光度の差とを図3に示す。図3に示すように、UV計により計測される光量が多くなると、検知素子104の所定の波長(620nm)における暴露前後の吸光度の差が増加している。このことにより、紫外線の被爆量が大きくなると、検知素子104の所定の波長(620nm)における光の反射率が増加(吸光度が減少)していくことが判る。   Next, a sunlight exposure experiment using the detection element 104 will be described. In this experiment, in addition to the measurement by the detection element 104, the UV meter for measuring the UVA light amount and the UV meter for measuring the UVB light amount simultaneously measure the UVA light amount and the UVB light amount of the irradiated sunlight. To do. As is well known, sunlight contains ultraviolet radiation in both the UVA and UVB regions. FIG. 3 shows the measurement results of these light amounts and the difference in absorbance of the sensing element 104 before and after exposure at this light amount. As shown in FIG. 3, as the amount of light measured by the UV meter increases, the difference in absorbance between before and after exposure at a predetermined wavelength (620 nm) of the sensing element 104 increases. As a result, it can be seen that when the amount of exposure to ultraviolet rays increases, the reflectance of light at a predetermined wavelength (620 nm) of the detection element 104 increases (absorbance decreases).

次に、図に示す袋141の光透過特性について説明する。厚さ40μmのポリエチレンフィルムよりなる袋141の透過光の吸収スペクトルを測定し、この測定結果より透過率を算出すると、図4に示すように、UVA及びUVB領域の紫外線の約8割が透過している。紫外線透過率は、袋141を構成するフィルム(ポリエチレン)の厚さに依存するため、フィルムの厚さを変化させることにより、柔軟に感度の調整が可能になる。なお、フィルムの厚さを薄くするほど紫外線の透過率が向上して感度を向上させることが可能となるが、オゾンなどの酸化性ガスの進入を抑制しにくくなる。上記ポリエチレンフィルムを用いる場合、厚さ40μm程度であれば、所望とする紫外線透過率を保持した状態で、酸化性ガスの進入を抑制できる。   Next, the light transmission characteristics of the bag 141 shown in the figure will be described. When the absorption spectrum of the transmitted light of the bag 141 made of a polyethylene film having a thickness of 40 μm is measured and the transmittance is calculated from the measurement result, about 80% of the ultraviolet rays in the UVA and UVB regions are transmitted as shown in FIG. ing. Since the ultraviolet transmittance depends on the thickness of the film (polyethylene) constituting the bag 141, the sensitivity can be adjusted flexibly by changing the thickness of the film. In addition, although the transmittance | permeability of an ultraviolet-ray improves and it becomes possible to improve a sensitivity, so that the thickness of a film is thinned, it becomes difficult to suppress entrance of oxidizing gas, such as ozone. When the polyethylene film is used, if the thickness is about 40 μm, the entry of the oxidizing gas can be suppressed while maintaining the desired ultraviolet transmittance.

また、袋141の袋のガス透過実験を行った。このガス透過実験では、先ず、オゾン発生器より100ppbのオゾンガスをデシケーター内に供給し、これを24時間継続させて検知素子104をオゾンガスに暴露する。このようなオゾンガスの暴露の前後で、検知素子104の吸光度を測定する。このガス透過実験において、オゾンガス暴露の前後で、検知素子104における吸光度の差は検出限界以下であった。このことから、ポリエチレン製の袋141は、十分なガス遮断機能を有していることが確認された。従って、ポリエチレン製の袋(フィルム)を用いることで、大気中の酸化性ガスの影響を除去すること可能である。   Further, a gas permeation experiment of the bag 141 was performed. In this gas permeation experiment, first, 100 ppb of ozone gas is supplied into the desiccator from the ozone generator, and this is continued for 24 hours to expose the sensing element 104 to the ozone gas. The absorbance of the sensing element 104 is measured before and after such ozone gas exposure. In this gas permeation experiment, the difference in absorbance at the sensing element 104 was below the detection limit before and after exposure to ozone gas. From this, it was confirmed that the polyethylene bag 141 has a sufficient gas blocking function. Therefore, it is possible to remove the influence of the oxidizing gas in the atmosphere by using a polyethylene bag (film).

次に、上述した検知素子104を用いた紫外線の測定装置について説明する。図5は、検知素子104を用いた紫外線測定装置の構成例を示す構成図であり、例えば、所定の波長の光を発するLEDからなる発光部501からの発光光を検知素子104に照射し、検知素子104からの反射光を受光部503で受光する。受光部503では、反射光を受光し、受光した光を光電変換して信号電流を出力する。また、変換増幅部504では、受光部503より出力された信号電流を増幅して電流−電圧変換する。また、A/D変換部505では、変換像腹部504より出力された電圧信号をデジタル信号に変換する。A/D変換部505より出力されたデジタル信号が、出力検出部506より検出結果として出力される。   Next, an ultraviolet measurement device using the above-described sensing element 104 will be described. FIG. 5 is a configuration diagram illustrating a configuration example of an ultraviolet ray measuring apparatus using the detection element 104. For example, the detection element 104 is irradiated with light emitted from a light emitting unit 501 including an LED that emits light of a predetermined wavelength. Reflected light from the detection element 104 is received by the light receiving unit 503. The light receiving unit 503 receives reflected light, photoelectrically converts the received light, and outputs a signal current. The conversion amplification unit 504 amplifies the signal current output from the light receiving unit 503 and performs current-voltage conversion. The A / D conversion unit 505 converts the voltage signal output from the converted image antinode 504 into a digital signal. The digital signal output from the A / D conversion unit 505 is output from the output detection unit 506 as a detection result.

ここで、発光部501には、例えば、620nmの発光波長を有する赤色LEDを用いればよい。また、受光部503は、例えば、フォトダイオードである。このフォトダイオードとしては、例えば、500〜700nmの範囲の波長に感度のあるものを用いれば、検知素子104の吸収スペクトルの変化の大きい波長に対応したものとなる。図5に示す措置を用い、UVA領域80ワット時/m2、UVB領域1.0ワット時/m2の紫外線に暴露して紫外線の測定を行った。この測定の結果、図5に示す装置(出力検出部506)より、図2に示した結果と同様に、紫外線暴露の前後で異なった出力が得られる。このように、紫外線被爆量の定量装置を簡単に構成できる。 Here, for the light emitting unit 501, for example, a red LED having an emission wavelength of 620 nm may be used. The light receiving unit 503 is, for example, a photodiode. As this photodiode, for example, if a photodiode sensitive to a wavelength in the range of 500 to 700 nm is used, it corresponds to a wavelength with a large change in the absorption spectrum of the detection element 104. Using the measures shown in FIG. 5, the ultraviolet rays were measured by exposure to ultraviolet rays having a UVA region of 80 watt-hour / m 2 and a UVB region of 1.0 watt-hour / m 2 . As a result of this measurement, different outputs are obtained from before and after exposure to ultraviolet rays from the apparatus shown in FIG. 5 (output detection unit 506), similarly to the result shown in FIG. In this way, the ultraviolet exposure amount quantification device can be configured easily.

次に、本発明の実施の形態に係る紫外線の測定装置について、より詳細に説明する。図6は、紫外線の測定装置の構成例を示す構成図であり、先ず、12cm×6cm程度の基板601内に、波長620nmの赤色の光を発するLED602と、400〜1100nmの波長域に光感度を持つフォトトランジスタ603と、検知素子104とを配置する。LED602の発光面とフォトトランジスタ603の受光面とが、検知素子104の方向に向くように配置し、LED602からの発光光が、検知素子104で反射した後、フォトトランジスタ603に受光されるように、各々の角度を調整する。   Next, the ultraviolet ray measuring apparatus according to the embodiment of the present invention will be described in more detail. FIG. 6 is a configuration diagram showing a configuration example of an ultraviolet ray measuring apparatus. First, an LED 602 that emits red light having a wavelength of 620 nm and a photosensitivity in a wavelength range of 400 to 1100 nm in a substrate 601 of about 12 cm × 6 cm. The phototransistor 603 having the above and the detection element 104 are disposed. The light emitting surface of the LED 602 and the light receiving surface of the phototransistor 603 are arranged so as to face the direction of the sensing element 104 so that the light emitted from the LED 602 is reflected by the sensing element 104 and then received by the phototransistor 603. , Adjust each angle.

また、基板601の上には、端子板605、電池606、及びスイッチ607が設けられている。LED602及びフォトトランジスタ603には、端子板605を介し、直列に接続配置された2つの単3の電池606から電源が供給される構成となっている。また、電源の供給は、スイッチ607によりオンオフできるように構成されてる。このように、端子板605の端子を利用して回路が組み立てられている。例えば、端子番号T1にフォトトランジスタ603の配線が接続され、端子番号T2にスイッチ607の配線が接続され、端子番号T3にLED602の配線が接続され、端子番号T4にスイッチ607と電池606の配線が接続され、端子番号5に電池606とLED602とフォトトランジスタ603の配線が接続されている。また、フォトトランジスタ603からの出力電圧が、1桁(V)のオーダーとなるように、抵抗608が端子T2と端子T3との間に接続され、抵抗609が端子T1と端子T2との間に接続されている。   A terminal plate 605, a battery 606, and a switch 607 are provided on the substrate 601. The LED 602 and the phototransistor 603 are configured to be supplied with power from two AA batteries 606 connected in series via a terminal plate 605. The power supply is configured to be turned on / off by a switch 607. Thus, the circuit is assembled using the terminals of the terminal plate 605. For example, the wiring of the phototransistor 603 is connected to the terminal number T1, the wiring of the switch 607 is connected to the terminal number T2, the wiring of the LED 602 is connected to the terminal number T3, and the wiring of the switch 607 and the battery 606 is connected to the terminal number T4. A battery 606, LED 602, and a phototransistor 603 are connected to terminal number 5. The resistor 608 is connected between the terminal T2 and the terminal T3 so that the output voltage from the phototransistor 603 is on the order of one digit (V), and the resistor 609 is connected between the terminal T1 and the terminal T2. It is connected.

このように配線された状態で、端子板605の端子番号T1と端子番号T2との間に電圧計を接続して電圧を測定することで、図6に示す装置では、検知素子104が被爆した紫外線量の測定を行うようにしている。このように、図6に示す装置によれば、少ない面積中に紫外線の測定装置を構成できる。また、一般に市販されている電池を電源として使用できるので、より簡便に紫外線被爆量の定量ができる。   In the state shown in FIG. 6, the sensing element 104 was exposed in the apparatus shown in FIG. 6 by measuring the voltage by connecting a voltmeter between the terminal number T1 and the terminal number T2 of the terminal plate 605 in the wired state. The amount of ultraviolet rays is measured. As described above, according to the apparatus shown in FIG. 6, an ultraviolet ray measuring apparatus can be configured in a small area. In addition, since a commercially available battery can be used as a power source, the amount of ultraviolet radiation exposure can be determined more easily.

以上に説明したように、本発明に係る紫外線の検知素子は、紫外線と反応して分解する色素が担持されたろ紙などより構成された担体シートと、この担体シートを覆うプラスチック膜とから構成した。このように、本検知素子では、色素を担持した担体シートが、紫外線が透過するプラスチック膜に覆われているので、色素のところまで酸化性ガスが進入することが抑制され、色素が大気中の酸化性ガスの影響を受けることなく紫外線の検出ができる。また、紫外線検知素子は可視領域の吸収波長が変化するため、上記紫外線定量装置を使用せず、単独で用いても目視による観察で、おおまかな紫外線の被爆量を知ることができる。   As described above, the ultraviolet light detection element according to the present invention is composed of a carrier sheet made of filter paper or the like carrying a dye that reacts with ultraviolet light and decomposes, and a plastic film covering the carrier sheet. . As described above, in the present sensing element, the carrier sheet carrying the dye is covered with the plastic film through which the ultraviolet rays are transmitted, so that the oxidizing gas can be prevented from entering the dye, and the dye is in the atmosphere. Ultraviolet rays can be detected without being affected by oxidizing gas. In addition, since the absorption wavelength in the visible region changes, the ultraviolet ray detection element does not use the ultraviolet ray quantification device, and even if it is used alone, it is possible to know a rough ultraviolet ray exposure amount by visual observation.

本実施の形態に係る紫外線の検知素子及びこの検知素子の作製方法について説明する説明図である。It is explanatory drawing explaining the detection element of an ultraviolet ray concerning this Embodiment, and the manufacturing method of this detection element. 図1に示す検知素子による測定結果を示す特性図である。It is a characteristic view which shows the measurement result by the detection element shown in FIG. 太陽光が含んでいるUVA及びUVBの両領域の光量の測定結果と、この光量における暴露前後における検知素子104の吸光度の差とを示す特性図である。It is a characteristic view which shows the measurement result of the light quantity of both the area | region of UVA and UVB which sunlight contains, and the difference of the light absorbency of the detection element 104 before and behind the exposure in this light quantity. 厚さ40μmのポリエチレンフィルムよりなる袋141の透過光の吸収スペクトルを測定した結果より算出した透過率を示す特性図である。It is a characteristic view which shows the transmittance | permeability computed from the result of having measured the absorption spectrum of the transmitted light of the bag 141 which consists of a 40-micrometer-thick polyethylene film. 検知素子104を用いた紫外線測定装置の構成例を示す構成図である。It is a block diagram which shows the structural example of the ultraviolet-ray measuring apparatus using the detection element 104. FIG. 検知素子104を用いた紫外線測定装置の構成例を示す構成図である。It is a block diagram which shows the structural example of the ultraviolet-ray measuring apparatus using the detection element 104. FIG.

符号の説明Explanation of symbols

101…検知剤溶液、102…容器、103…担体シート、103a…検知シート、104…検知素子、141…袋。   DESCRIPTION OF SYMBOLS 101 ... Detection agent solution, 102 ... Container, 103 ... Carrier sheet, 103a ... Detection sheet, 104 ... Detection element, 141 ... Bag.

Claims (6)

紫外線と反応して可視領域の光吸収が変化する色素を含む検知剤を担持したシート状の検知シートと、
前記検知シートを覆い、紫外線を透過するプラスチックの膜と
を備えることを特徴とする紫外線の検知素子。
A sheet-like detection sheet carrying a detection agent containing a dye that changes its light absorption in the visible region in response to ultraviolet light; and
An ultraviolet detection element comprising: a plastic film that covers the detection sheet and transmits ultraviolet light.
請求項1記載の紫外線の検知素子において、
前記色素はインジゴ環を備え、前記検知剤は、前記色素と酸とグリセリンとを含むことを特徴とする紫外線の検知素子。
In the ultraviolet detection element according to claim 1,
The dye has an indigo ring, and the detection agent includes the dye, an acid, and glycerin.
請求項1又は2記載の紫外線の検知素子において、
前記プラスチックの膜は、ポリエチレンから構成された膜厚40nmの膜であることを特徴とする紫外線の検知素子。
In the ultraviolet detection element according to claim 1 or 2,
The ultraviolet ray detecting element, wherein the plastic film is a film made of polyethylene and having a thickness of 40 nm.
検知素子と、
この検知素子に対して所定の波長の光を放出する発光部と、
この発光部より放出されて前記検知素子を反射した反射光を受光し、この受光した光量に応じた電気信号を出力する光検出部と、
前記光検出部が出力した電気信号の状態を測る電気計器と
を少なくとも備え、
前記検知素子は、
紫外線と反応して可視領域の光吸収が変化する色素を含む検知剤を担持したシート状の検知シートと、
前記検知シートを覆い、紫外線を透過するプラスチックの膜と
から構成されたものであることを特徴とする紫外線の測定装置。
A sensing element;
A light emitting unit that emits light of a predetermined wavelength to the sensing element;
A light detection unit that receives reflected light emitted from the light emitting unit and reflected from the detection element, and outputs an electrical signal corresponding to the received light amount;
And at least an electric meter that measures the state of the electric signal output by the light detection unit,
The sensing element is
A sheet-like detection sheet carrying a detection agent containing a dye that reacts with ultraviolet rays to change light absorption in the visible region;
An ultraviolet ray measuring apparatus comprising: a plastic film that covers the detection sheet and transmits ultraviolet rays.
請求項4記載の紫外線の測定装置において、
前記発光部は発光ダイオードから構成され、
前記光検出部はフォトトランジスタから構成され、
加えて、
前記発光ダイオードおよびフォトトランジスタに電源を供給する電池と、
前記発光ダイオードおよびフォトトランジスタに前記電池からの電源の供給をオンオフするスイッチと、
前記フォトトランジスタと前記電池との間に接続された電気計器としての電圧計と、
前記発光ダイオード,前記フォトトランジスタ,前記電池,前記スイッチ,および,前記電圧計の各々を結線するための端子を備える端子板と、
前記発光ダイオード,前記フォトトランジスタ,前記電池,前記スイッチ,前記電圧計,および,前記端子板を配置した基板と
を備えることを特徴とする紫外線の測定装置。
The ultraviolet ray measuring apparatus according to claim 4,
The light emitting unit is composed of a light emitting diode,
The photodetection unit is composed of a phototransistor,
in addition,
A battery for supplying power to the light emitting diode and the phototransistor;
A switch for turning on and off the power supply from the battery to the light emitting diode and the phototransistor;
A voltmeter as an electric meter connected between the phototransistor and the battery;
A terminal plate comprising terminals for connecting each of the light emitting diode, the phototransistor, the battery, the switch, and the voltmeter;
An ultraviolet ray measuring apparatus comprising: the light emitting diode, the phototransistor, the battery, the switch, the voltmeter, and a substrate on which the terminal plate is disposed.
紫外線と反応して可視領域の光吸収が変化する色素を担持したシート状の検知シートが、紫外線を透過するプラスチックの膜に覆われた検知素子を用意するステップと、
前記検知シートの反射光による第1の吸光度を求めるステップと、
前記検知素子を紫外線が照射された環境に所定時間曝すステップと、
紫外線に所定時間曝した前記検知素子の反射光による第2の吸光度を求めるステップと、
前記第1の吸光度と前記第2の吸光度の差により前記検知素子に照射された紫外線の照射量を算出するステップと
を備えることを特徴とする紫外線の測定方法。
A step of preparing a detection element in which a sheet-like detection sheet carrying a dye that changes light absorption in the visible region by reacting with ultraviolet rays is covered with a plastic film that transmits ultraviolet rays;
Obtaining a first absorbance by reflected light of the detection sheet;
Exposing the sensing element to an environment irradiated with ultraviolet light for a predetermined time;
Obtaining a second absorbance due to the reflected light of the sensing element exposed to ultraviolet light for a predetermined time;
And a step of calculating an irradiation amount of ultraviolet rays irradiated to the detection element based on a difference between the first absorbance and the second absorbance.
JP2006160650A 2006-06-09 2006-06-09 Ultraviolet detecting element, and apparatus and method for measuring ultraviolet ray Pending JP2007327899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006160650A JP2007327899A (en) 2006-06-09 2006-06-09 Ultraviolet detecting element, and apparatus and method for measuring ultraviolet ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006160650A JP2007327899A (en) 2006-06-09 2006-06-09 Ultraviolet detecting element, and apparatus and method for measuring ultraviolet ray

Publications (1)

Publication Number Publication Date
JP2007327899A true JP2007327899A (en) 2007-12-20

Family

ID=38928460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006160650A Pending JP2007327899A (en) 2006-06-09 2006-06-09 Ultraviolet detecting element, and apparatus and method for measuring ultraviolet ray

Country Status (1)

Country Link
JP (1) JP2007327899A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272930A (en) * 1988-04-26 1989-10-31 Tomoegawa Paper Co Ltd Energy beam dosage measurement sheet
JPH0571733U (en) * 1991-03-29 1993-09-28 有限会社野々川商事 UV checker
JPH0612038U (en) * 1992-07-24 1994-02-15 タキロン株式会社 Photochromic resin plate
JP2001013075A (en) * 1999-06-28 2001-01-19 Riken Keiki Co Ltd Portable gas-measuring device and detection unit suited therefor
JP2002310785A (en) * 2001-02-27 2002-10-23 Questel Adhesives Sunlight dosage indicator
JP2005321371A (en) * 2004-04-09 2005-11-17 Sadao Yamamoto Sheet for measuring ultraviolet ray transmission amount, device for measuring ultraviolet ray transmission amount, and method for measuring ultraviolet ray transmission using the sheet
WO2006016623A1 (en) * 2004-08-11 2006-02-16 Nippon Telegraph And Telephone Corporation Ozone gas detecting element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272930A (en) * 1988-04-26 1989-10-31 Tomoegawa Paper Co Ltd Energy beam dosage measurement sheet
JPH0571733U (en) * 1991-03-29 1993-09-28 有限会社野々川商事 UV checker
JPH0612038U (en) * 1992-07-24 1994-02-15 タキロン株式会社 Photochromic resin plate
JP2001013075A (en) * 1999-06-28 2001-01-19 Riken Keiki Co Ltd Portable gas-measuring device and detection unit suited therefor
JP2002310785A (en) * 2001-02-27 2002-10-23 Questel Adhesives Sunlight dosage indicator
JP2005321371A (en) * 2004-04-09 2005-11-17 Sadao Yamamoto Sheet for measuring ultraviolet ray transmission amount, device for measuring ultraviolet ray transmission amount, and method for measuring ultraviolet ray transmission using the sheet
WO2006016623A1 (en) * 2004-08-11 2006-02-16 Nippon Telegraph And Telephone Corporation Ozone gas detecting element

Similar Documents

Publication Publication Date Title
JP3943008B2 (en) Ozone gas detection element, detection device, and detection method
Zou et al. Recent advances and a roadmap to wearable UV sensor technologies
US7895880B2 (en) Photoacoustic cell incorporating a quantum dot substrate
Huang et al. Review of wearable and portable sensors for monitoring personal solar UV exposure
CN110542667B (en) Portable rapid water quality detector and water quality detection method
US20010027926A1 (en) Ultraviolet light measuring chip and ultraviolet light sensor using the same
JP2670829B2 (en) Radiometer
Banerjee et al. Solid-state oxygen sensors based on phosphorescent diiodo-borondipyrromethene dye
CN210720145U (en) Portable quick water quality testing appearance
US6455320B1 (en) Solar cell sensors, process for their manufacture and their use
JP2007327899A (en) Ultraviolet detecting element, and apparatus and method for measuring ultraviolet ray
Hauser et al. A solid-state instrument for fluorescence chemical sensors using a blue light-emitting diode of high intensity
JP2000081426A (en) Method and element for detecting nitrogen dioxide gas and nitrogen dioxide gas detecting device using the same
Fujiwara et al. Thermal lensing colorimetry of nitrite ion with single-laser system
CN212111124U (en) NDIR (non-dispersive infrared radiation) detection water vapor concentration sensor and absolute humidity detector
JPH01118755A (en) Method for diagnosing coating film deterioration with laser beam
KR200409828Y1 (en) A portable gauge measuring ultraviolet index
JP2010276356A (en) Instrument and method for measuring concentration of gas
JP4891283B2 (en) Measuring method and measuring apparatus for oxidizing gas
JP3648105B2 (en) Nitrogen dioxide gas detection method and nitrogen dioxide gas detection device
Yusof et al. Measuring UV LEDs radiation dose using EBT3 film
JP2010243389A (en) Unsaturated hydrocarbon gas detection element, measuring method, and measuring instrument
JPS63133039A (en) Evaluation of material permeation performance of thin film
JPH05231929A (en) Measuring apparatus of illuminance of ultraviolet ray
US11366088B2 (en) System and method for ozone concentration measurement in ice

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911