JP2007326125A - High conductive workpiece to be welded and resistance welding method therefor - Google Patents

High conductive workpiece to be welded and resistance welding method therefor Download PDF

Info

Publication number
JP2007326125A
JP2007326125A JP2006159098A JP2006159098A JP2007326125A JP 2007326125 A JP2007326125 A JP 2007326125A JP 2006159098 A JP2006159098 A JP 2006159098A JP 2006159098 A JP2006159098 A JP 2006159098A JP 2007326125 A JP2007326125 A JP 2007326125A
Authority
JP
Japan
Prior art keywords
projection
highly conductive
workpiece
welding
resistance welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006159098A
Other languages
Japanese (ja)
Other versions
JP4825056B2 (en
Inventor
Koji Sasaki
佐々木  広治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP2006159098A priority Critical patent/JP4825056B2/en
Publication of JP2007326125A publication Critical patent/JP2007326125A/en
Application granted granted Critical
Publication of JP4825056B2 publication Critical patent/JP4825056B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Resistance Welding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a workpiece to be welded, which has a projection of vertically two-staged structure for making it weldable even if the workpiece has high conductivity, such as a copper member, without forming a film of low-melting metal, and to provide a resistance welding method. <P>SOLUTION: The workpiece W1 to be welded having high conductivity is resistance-welded to another metal member by passing a welding current. The workpiece W1 has the projection of vertically two-staged structure that is composed of a first projection P1, which is projected from the joint surface of the workpiece W1, and a second projection P2, which is projected from part of the joint surface side of the first projection P1. The area of the joint surface of the second projection P2 is too small to obtain a desired weld strength, but large enough so that the projection P2 is not collapsed by a pressure applied in welding. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、様々な同種又は異種の金属材料からなる被溶接物、特に導電性が高い銅部材と銅部材など従来の抵抗溶接方法では接合が極めて困難とされていた高導電部材同士を抵抗溶接するのに適したプロジェクション構造を有する高導電性金属部材及びその抵抗溶接方法に関する。   The present invention provides resistance welding of high-conductivity members that have been extremely difficult to join with conventional resistance welding methods such as copper members and copper members having high conductivity, such as workpieces made of various kinds of the same or different metal materials. The present invention relates to a highly conductive metal member having a projection structure suitable for the above and a resistance welding method thereof.

同種の金属材料同士や、鉄系材料とステンレス材料、あるいは鉄系材料と銅部材、又は鉄系材料とアルミニウム材料など、融点や導電率など特性の異なる異種金属材料を接合する方法が種々提案されているが、異種金属材料の接合は硬ロウによる接合、あるいは超音波接合、又はかしめ、ボルト締めなど機械的な結合などによって、接合される場合が多かった。また、同種の金属材料同士の抵抗溶接でも、導電率が非常に良好な銅材料と銅材料同士、又はアルミニウム材料とアルミニウム材料同士の接合なども同様の手段で行われていたが、このような接合方法では、導電率が非常に良好な銅材料、アルミニウム材料を用いるという用途から見て、それらの接合部の抵抗を無視できるほどには小さくできない。このような理由もあって、導電率が非常に良好な銅材料同士、アルミニウム材料同士、又は銅材料とアルミニウム材料との抵抗溶接は特に難しいとされている中、界面抵抗を小さくできる抵抗溶接を行う努力が既に行われており、下記のような処理工程を予め行うことによって銅部材とアルミニウム材料との抵抗溶接を可能にする改良技術も開示されている(例えば、特許文献1参照)。   Various methods for joining dissimilar metal materials with different characteristics such as melting point and electrical conductivity, such as metal materials of the same kind, iron-based materials and stainless steel materials, iron-based materials and copper members, or iron-based materials and aluminum materials have been proposed. However, bonding of dissimilar metal materials is often performed by bonding with a hard solder, ultrasonic bonding, or mechanical bonding such as caulking or bolting. In addition, even in resistance welding between the same kind of metal materials, a copper material and a copper material having a very good electrical conductivity or an aluminum material and an aluminum material are joined by the same means. In the bonding method, from the viewpoint of using a copper material or an aluminum material having very good electrical conductivity, the resistance of the bonding portion cannot be made small enough to be ignored. For these reasons, resistance welding between copper materials with very good electrical conductivity, aluminum materials, or between copper materials and aluminum materials is considered to be particularly difficult. Efforts have already been made, and an improved technique is disclosed that enables resistance welding between a copper member and an aluminum material by performing the following processing steps in advance (see, for example, Patent Document 1).

この方法は、銅部材とアルミニウム部材とを直接抵抗溶接することはできないので、抵抗溶接前に予め銅部材の接合表面にスズ膜を形成し、更に処理を行ってその銅部材とスズとの界面に銅とスズとの固溶を生成させたスズ被覆層を形成した後に、そのスズ被覆層とアルミニウム部材とを接触させ、その固溶生成させたスズ被覆層を銅部材とアルミニウム部材との間に介在させた状態で加圧し、溶接電流を流して抵抗溶接を行うものである。この溶接方法を実現するのは、コンデンサ蓄勢式溶接機ではなくインバータ式溶接機を用いて、高周波の溶接電流を銅部材とアルミニウム部材とに流し、銅部材とアルミニウム部材との接合部を溶融させて互いの溶融した銅とアルミニウムとを混じり合わせたナゲットを形成して溶接を行うものである。また、異種金属の抵抗溶接に当たっては、予め異種金属の接合部を最適な特殊形状に加工することによって良好な溶接結果が得られる抵抗溶接方法、及び抵抗溶接装置が既に報告されている(例えば、特許文献2〜5参照)。また、拡散接合時にアルミニウム又はマグネシウムなどの接合面の酸化膜や汚れを除去する酸洗いなどの前処理を不要にするために、被溶接物双方にプロジェクションを形成し、それらプロジェクションの頂部同士を当接させて溶接する方法も開示されている(例えば、特許文献6参照)。更に、電気絶縁被膜又は高抵抗被膜が形成された鋼板同士を溶接するのに好都合なプロジェクション構造を有する被溶接物についても開示されている(例えば、特許文献7参照)。
特開2001−087866公報 特開平08−118040号公報 特開平10−128550号公報 特開平10−156548号公報 特開平11−033737号公報 特開2002−103056公報 特開平08−71766号公報
Since this method cannot directly resistance weld a copper member and an aluminum member, a tin film is previously formed on the bonding surface of the copper member before resistance welding, and further processing is performed to obtain an interface between the copper member and tin. After forming a tin coating layer in which a solid solution of copper and tin is formed, the tin coating layer is brought into contact with an aluminum member, and the tin coating layer formed in a solid solution is placed between the copper member and the aluminum member. Pressure is applied in a state of being interposed between the electrodes and resistance welding is performed by passing a welding current. This welding method is realized by using an inverter type welding machine, not a capacitor energy storage type welding machine, and passing a high-frequency welding current between the copper member and the aluminum member, and melting the joint between the copper member and the aluminum member. Thus, welding is performed by forming a nugget in which the molten copper and aluminum are mixed together. Further, in resistance welding of dissimilar metals, a resistance welding method and a resistance welding apparatus in which a good welding result can be obtained in advance by processing joints of dissimilar metals into an optimal special shape have already been reported (for example, (See Patent Documents 2 to 5). Also, in order to eliminate the need for pretreatment such as pickling to remove the oxide film and dirt on the joint surface such as aluminum or magnesium during diffusion bonding, projections are formed on both objects to be welded, and the tops of the projections are applied to each other. A method of welding in contact with each other is also disclosed (for example, see Patent Document 6). Furthermore, an object to be welded having a projection structure that is convenient for welding steel plates on which an electrical insulating coating or a high resistance coating is formed is also disclosed (for example, see Patent Document 7).
JP 2001-087866 A Japanese Patent Laid-Open No. 08-1118040 Japanese Patent Laid-Open No. 10-128550 Japanese Patent Laid-Open No. 10-156548 Japanese Patent Laid-Open No. 11-033737 JP 2002-103056 A Japanese Patent Application Laid-Open No. 08-71766

しかし、前掲特許文献1で開示された抵抗溶接方法にあっては、銅部材の接合表面にスズを形成し、銅部材とアルミニウム材料との接合部にナゲットを形成する溶接方法であるので、溶接前に低融点金属膜であるスズ膜を形成しなければならない。このことはスズ膜をメッキなどで形成する工程が必要であること、及び銅部材とアルミニウム材料との接合部にスズ材料が混入するために、接合部での抵抗が大きくなるという欠点がある。また、相互の金属が溶融することによって形成されるナゲットの熱によって接合部の周囲のスズがチリとなって飛散するという問題点がある。また、前掲の特許文献2〜5に記載されている接合部の構造は特定の構造の異種金属材料からなる被溶接物に適しているが、特に銅部材と銅部材、又はアルミニウム部材とアルミニウム部材、あるいは銅部材とアルミニウム部材との抵抗溶接にはそのまま適用することは難しく、前掲特許文献に開示されている抵抗溶接装置をもってしても安定な溶接結果が得られない。   However, in the resistance welding method disclosed in the above-mentioned Patent Document 1, since it is a welding method in which tin is formed on the bonding surface of the copper member and nugget is formed in the bonding portion between the copper member and the aluminum material, welding is performed. A tin film which is a low melting point metal film must be formed in advance. This has the disadvantages that a step of forming a tin film by plating or the like is necessary, and that the tin material is mixed into the joint between the copper member and the aluminum material, so that the resistance at the joint is increased. Further, there is a problem in that tin around the joint becomes dust and is scattered by the heat of the nugget formed by melting the mutual metals. Moreover, although the structure of the junction part described in the above-mentioned patent documents 2-5 is suitable for the to-be-welded object which consists of a dissimilar metal material of a specific structure, especially a copper member and a copper member, or an aluminum member and an aluminum member Alternatively, it is difficult to apply as it is to resistance welding between a copper member and an aluminum member, and a stable welding result cannot be obtained even with the resistance welding apparatus disclosed in the above-mentioned patent document.

また、前掲の特許文献6に記載されているように、銅部材とアルミニウム部材との双方にプロジェクションを設けて互いに突合せて溶接しても、アルミニウム部材に比べて銅部材の塑性流動化が遅いために安定な溶接結果は得られず、実際の製造ラインに特許文献6に記載されている抵抗溶接方法を用いることは今のところ難しい場合が多い。更にまた、前掲の特許文献7に記載されている被溶接物は、表面被覆鋼板のように被溶接物を覆う電気絶縁被膜又は高抵抗被膜を溶接時に突き破るのに好都合な鋭い断面3角形状突起を有するプロジェクションを備えているが、このような鋭い断面3角形状突起を有するプロジェクション構造の場合、電気絶縁被膜又は高抵抗被膜で表面が被覆されていない被溶接物同士の抵抗溶接にあっては、鋭い断面3角形状突起を有するプロジェクションが相手の金属材料に直接当接するので、溶接時に被溶接物間に加えられるか圧力によって前記鋭い断面3角形状突起が圧潰し、このような鋭い断面3角形状突起は表面被覆鋼板以外の溶接ではプロジェクションの役割を果たさない場合が多い。   Further, as described in the above-mentioned Patent Document 6, even if projections are provided on both the copper member and the aluminum member and they are butt-welded to each other, the plastic fluidization of the copper member is slower than the aluminum member. However, it is often difficult to use the resistance welding method described in Patent Document 6 in an actual production line so far. Furthermore, the workpiece to be welded described in the above-mentioned Patent Document 7 has a sharp cross-sectional triangular projection that is convenient for breaking through an electrical insulating coating or high-resistance coating covering the workpiece, such as a surface-coated steel plate, during welding. In the case of such a projection structure having a sharp cross-sectional projection, the resistance welding of the workpieces whose surfaces are not covered with an electrical insulating coating or a high resistance coating is used. Since the projection having the sharp cross-sectional projection comes into direct contact with the counterpart metal material, the sharp cross-sectional projection is crushed by the pressure applied between the workpieces during welding or by pressure. In many cases, the square protrusions do not play a role of projection in welding other than the surface-coated steel sheet.

本発明は前述の問題点を解決し、拡散接合面にスズ膜のような低融点金属膜を形成しなくても、銅部材のように導電率が非常に高い高導電性被溶接物同士の抵抗溶接を行うことができ、かつ簡単で安価に溶接品質の高い接合結果が得られる実際的な抵抗溶接を提供することを主目的としている。また、本発明によれば、低融点金属膜を形成しなくても2mm以下の板厚の銅材料又はアルミニウム材料からなる薄板を拡散接合することもできる。   The present invention solves the above-mentioned problems, and even if a low melting point metal film such as a tin film is not formed on the diffusion bonding surface, a highly conductive work piece having a very high conductivity such as a copper member can be obtained. The main object is to provide practical resistance welding that can perform resistance welding and that can obtain a joining result with high welding quality easily and inexpensively. Further, according to the present invention, a thin plate made of a copper material or an aluminum material having a thickness of 2 mm or less can be diffusion-bonded without forming a low melting point metal film.

第1の発明は、溶接電流を通電することにより他の金属部材と抵抗溶接される高導電性被溶接物において、前記高導電性被溶接物は、この高導電性被溶接物の接合面から突出する第1のプロジェクションと該第1のプロジェクションの接合面側の一部分から突出する第2のプロジェクションとからなる上下2段構造のプロジェクションを有することを特徴とする高導電性被溶接物を提供する。   In a first aspect of the present invention, there is provided a highly conductive work piece that is resistance-welded to another metal member by passing a welding current. The high conductive work piece is formed from a joint surface of the high conductive work piece. Provided is a highly conductive work-piece having an upper and lower two-stage projection comprising a projecting first projection and a second projection projecting from a part of the first projection on the joint surface side. .

第2の発明は、前記第1の発明において、前記第1のプロジェクションは任意の形状の小台座状又は小環状の突起であり、前記第2のプロジェクションは、接合面側の面積が前記第1のプロジェクションよりも小さい1個以上の突起であることを特徴とする高導電性被溶接物を提供する。   According to a second aspect, in the first aspect, the first projection is a small pedestal or small annular projection having an arbitrary shape, and the second projection has an area on the joint surface side of the first projection. A highly conductive object to be welded is characterized by being one or more projections smaller than the projection.

第3の発明は、前記第1の発明又は前記第2の発明において、前記第2のプロジェクションの初期の接合面積は、所望の接合強度を得るのには小さいが、溶接時に印加される加圧力に対して圧潰し難い大きさであることを特徴とする高導電性被溶接物を提供する。   According to a third invention, in the first invention or the second invention, the initial bonding area of the second projection is small to obtain a desired bonding strength, but the applied pressure applied during welding In contrast, the present invention provides a highly conductive work piece having a size that is difficult to crush.

第4の発明は、前記第1の発明ないし前記第3の発明のいずれかにおいて、前記第1のプロジェクションが中央部に中央孔を有する任意の環状の突起であるとき、前記中央孔は前記突起の高さよりも深いことを特徴とする高導電性被溶接物を提供する。   According to a fourth aspect of the present invention, in any one of the first to third aspects, when the first projection is an arbitrary annular protrusion having a central hole at a central portion, the central hole is the protrusion. The present invention provides a highly conductive workpiece characterized by being deeper than the height.

第5の発明は、前記第1の発明ないし前記第4の発明のいずれかにおいて、前記第1のプロジェクションの周りに外周溝が形成されていることを特徴とする高導電性被溶接物を提供する。   A fifth invention provides a highly conductive work piece according to any one of the first to fourth inventions, wherein an outer peripheral groove is formed around the first projection. To do.

第6の発明は、高導電性被溶接物と他の金属部材との間に電流を流して抵抗溶接する高導電性被溶接物の抵抗溶接方法において、前記高導電性被溶接物に上下2段構造のプロジェクションを形成する工程と、前記高導電性被溶接物に形成されている前記上下2段構造のプロジェクションを前記他の金属部材に当接させる工程と、互いに当接している前記高導電性被溶接物と前記他の金属部材とを、弾性力を含む加圧力で加圧した状態でパルス状溶接電流を通電する工程とを備えることを特徴とする高導電性被溶接物の抵抗溶接方法を提供する。   According to a sixth aspect of the present invention, there is provided a resistance welding method for a highly conductive workpiece that is resistance-welded by passing a current between the highly conductive workpiece and another metal member. A step of forming a projection having a step structure, a step of bringing the projection of the upper and lower two-step structure formed on the highly conductive workpiece into contact with the other metal member, and the high conductivity being in contact with each other. Resistance welding of a highly conductive workpiece comprising a step of applying a pulsed welding current in a state where the weldable workpiece and the other metal member are pressurized with an applied pressure including elastic force Provide a method.

第7の発明は、前記第6の発明において、前記上下2段構造のプロジェクションを前記高導電性被溶接物に形成する工程が、前記高導電性被溶接物に第1のプロジェクションとなる突起を形成すると共に、その突起上に第2のプロジェクションとなる小突起を1個以上形成することからなることを特徴とする高導電性被溶接物の抵抗溶接方法を提供するものである。   According to a seventh invention, in the sixth invention, the step of forming the projection of the upper and lower two-stage structure on the highly conductive work piece includes a protrusion serving as a first projection on the high conductive work piece. The present invention provides a resistance welding method for a highly conductive workpiece, characterized by comprising forming and forming at least one small projection serving as a second projection on the projection.

第8の発明は、前記第6の発明又は前記第7の発明において、前記他の金属部材が、前記上下2段構造のプロジェクションが形成されていない銅材料又はアルミニウム材料からなる薄板であるとき、該薄材の板厚は2mm以下であることを特徴とする高導電性被溶接物の抵抗溶接方法を提供する。   The eighth invention is the sixth invention or the seventh invention, wherein the other metal member is a thin plate made of a copper material or an aluminum material on which the projections of the upper and lower two-stage structures are not formed. Provided is a resistance welding method for a highly conductive workpiece, wherein the thickness of the thin material is 2 mm or less.

第9の発明は、前記第6の発明ないし前記第8の発明のいずれかにおいて、前記高導電性被溶接物は銅材料又はアルミニウム材料からなることを特徴とする高導電性被溶接物の抵抗溶接方法を提供する。   According to a ninth invention, in any one of the sixth to eighth inventions, the highly conductive work piece is made of a copper material or an aluminum material. Provide a welding method.

第10の発明は、前記第6の発明ないし前記第9の発明のいずれかにおいて、前記パルス状溶接電流は、電流がピーク値までに立ち上がるのに要する時間が10ms以下であることを特徴とする高導電性被溶接物の抵抗溶接方法を提供する。   According to a tenth aspect of the present invention, in any one of the sixth to ninth aspects, the pulsed welding current has a time required for the current to rise to a peak value of 10 ms or less. A resistance welding method for a highly conductive workpiece is provided.

前記第1の発明ないし前記第3の発明は、第1のプロジェクションの上に第2のプロジェクションを形成した上下2段構造のプロジェクションを有するので、スズのような低融点金属膜を接合面に形成することなく、簡便に大きな溶接強度を得ることのできる銅部材又はアルミニウム部材などの高導電性被溶接物を提供することができる。また、従来のように高導電性被溶接物よりも導電率の低い低融点金属膜を形成しなくても安定に抵抗溶接できるので、低融点金属がチリとして飛散することは無く、更に接合部に低融点金属が混入することがないので、接合部の抵抗が増大することはない。   Since the first to third inventions have a two-stage upper and lower projections in which the second projection is formed on the first projection, a low melting point metal film such as tin is formed on the bonding surface. Therefore, it is possible to provide a highly conductive workpiece such as a copper member or an aluminum member, which can easily obtain a large welding strength. In addition, since resistance welding can be stably performed without forming a low melting point metal film having a conductivity lower than that of a highly conductive work piece as in the prior art, the low melting point metal is not scattered as dust, and the joint portion Since the low melting point metal is not mixed in, the resistance of the joint portion does not increase.

また、前記第4の発明によれば、前記第1の発明ないし前記第3の発明で得られる効果の他に、抵抗溶接の際、上下2段構造のプロジェクションが塑性流動化する過程で、中央孔に対応する相手側被溶接物の部分が中央孔内に進入するので、接合面の面積を拡大することになり、特に高導電性被溶接物の抵抗溶接にあっては溶接強度を向上させることができる。   According to the fourth invention, in addition to the effects obtained in the first to third inventions, in the process in which the projection of the upper and lower two-stage structure plastically fluidizes during resistance welding, Since the part of the workpiece to be welded corresponding to the hole enters the central hole, the area of the joint surface will be enlarged, especially in resistance welding of highly conductive workpieces, improving the welding strength. be able to.

また、前記第5の発明によれば、前記第1の発明ないし前記第4の発明で得られる効果の他に、抵抗溶接の際、上下2段構造のプロジェクションが塑性流動化する過程で、外周側に拡がった上下2段構造のプロジェクションは外周溝内に納まるので、実質的にプロジェクションの接合面積はほとんど広がらず、したがって、特に高導電性被溶接物の抵抗溶接にあっては安定かつ良好な抵抗溶接結果につながる。   According to the fifth aspect of the invention, in addition to the effects obtained in the first to fourth aspects of the invention, in the process in which the projection of the upper and lower two-stage structure plastically fluidizes during resistance welding, Since the projection of the upper and lower two-stage structure that extends to the side fits in the outer peripheral groove, the joint area of the projection is practically almost not widened. Therefore, particularly in resistance welding of a highly conductive work piece, it is stable and good. This leads to resistance welding results.

前記第6の発明ないし前記第10の発明は、高導電性被溶接物が上下2段構造のプロジェクションを有するだけでなく、弾性力を含む加圧力で加圧した状態でパルス状溶接電流が通電されるので、スズのような低融点金属膜を接合面に形成することなく、銅部材又はアルミニウム部材などの高導電性被溶接物を簡便に抵抗溶接でき、安定かつ良好な溶接結果を得ることができる。特に導電率が非常に高い銅部材同士又はアルミニウム部材同士、あるいは銅部材とアルミニウム部材との抵抗溶接であって、一方の部材が2mm以下の薄板であっても、溶接電極との間で接合を生じることなく、安定かつ良好に抵抗溶接することができる。   In the sixth to tenth aspects of the present invention, not only a highly conductive workpiece has a two-stage upper and lower projection, but also a pulsed welding current is applied in a state of being pressurized with an applied pressure including elastic force. Therefore, without forming a low-melting-point metal film such as tin on the joint surface, it is possible to easily resistance-weld highly conductive workpieces such as copper members or aluminum members, and obtain stable and good welding results. Can do. Particularly, it is resistance welding between copper members or aluminum members with very high conductivity, or between copper members and aluminum members, and even if one member is a thin plate of 2 mm or less, it is joined between welding electrodes. Resistance welding can be performed stably and satisfactorily without occurring.

[実施形態1]
図1によって本発明に係る被溶接物の実施形態1について説明する。図1は実施形態1に係る高導電性被溶接物の上下2段構造のプロジェクションの基本的な構造を説明するための図である。先ず、本発明が適用できる範囲は一般的な様々な同種の金属材料同士、あるいは様々な異種の金属材料からなる被溶接物などの抵抗溶接であるが、特に実施形態1では抵抗溶接(本発明では拡散接合と同意義である。)が極めて難しいとされている銅又は銅合金同士の抵抗溶接を例として以下に説明する。本明細書においては、「銅部材」とは「銅又は銅合金」を意味する。銅部材又はアルミニウム部材は、一般に鋼板やステンレス材料に比べて導電率が高いので、銅部材同士又はアルミニウム部材同士、あるいは銅部材とアルミニウム部材との抵抗溶接は特に難しいとされており、実施形態1を説明する前にこの点について説明する。
[Embodiment 1]
Embodiment 1 of the workpiece to be welded according to the present invention will be described with reference to FIG. FIG. 1 is a diagram for explaining a basic structure of a two-stage projection of a highly conductive workpiece according to Embodiment 1. First, the range to which the present invention can be applied is resistance welding of various general metal materials of the same kind or welded objects made of various different kinds of metal materials. In the following description, resistance welding between copper or copper alloys, which is considered to be extremely difficult, is taken as an example. In this specification, “copper member” means “copper or copper alloy”. Since the copper member or the aluminum member generally has higher conductivity than the steel plate or the stainless steel material, resistance welding between the copper members or between the aluminum members, or between the copper member and the aluminum member is considered to be particularly difficult. Embodiment 1 This point will be described before description.

金属材料の抵抗溶接は、溶接電流が流れるときに金属材料の有する抵抗が生じる発熱によって双方の金属材料の当接面で塑性流動、つまり軟化が起こり、接合が行われる。しかしながら、銅部材の抵抗は極めて小さいためにその抵抗により発熱する発熱量が不足し、要求される接合強度が極めて小さい場合を除いて、満足の行く抵抗溶接結果を得るのは難しいというのが大きな理由である。要求される接合強度が極めて小さい拡散接合は可能であっても、現実に要求される接合強度を満足するには、高導電性被溶接物である銅部材の接合部の形状や表面状態、溶接電流の条件、溶接装置の諸々の特性など種々の制約が厳しい上に、予めスズ膜のような低融点金属膜を形成しておかなければならないために実際の製造ラインに適用することは難しかった。例えば、銅部材が純銅であるとすれば、広く使用されている銅合金からなる溶接電極の抵抗率は銅部材よりも高くなるので、銅部材における発熱よりも溶接電極での発熱の方が大きくなり、当然に銅部材間の接合面に比べて溶接電極と銅部材との界面でより大きな発熱が生じ、溶接電極と銅部材との間で接合が起こるという不都合が生じる。このことは、銅部材が数mm以下の厚みの薄板、特に2mm程度以下の薄板の場合、銅部材の厚み方向の抵抗が極めて小さくなるために顕著であり、銅部材のプロジェクション、溶接電流波形、抵抗溶接装置などの諸条件を選定しても、銅部材同士の接合面にスズ膜のような比較的抵抗の大きな低融点金属膜が介在しなければ、安定性も含めて満足の行く溶接結果は得られなかった。実施形態1では、銅部材同士の接合面にスズ膜のような低融点金属膜を形成しなくても、抵抗溶接工程を実際の製造ラインに容易かつ簡便に適用することを可能にする上下2段構造のプロジェクションを有する銅部材及びその抵抗溶接方法を提供する。   In resistance welding of metal materials, plastic flow, that is, softening occurs at the contact surfaces of both metal materials due to heat generated by the resistance of the metal materials when a welding current flows, and bonding is performed. However, since the resistance of the copper member is extremely small, the amount of heat generated by the resistance is insufficient, and it is difficult to obtain a satisfactory resistance welding result unless the required bonding strength is extremely small. That is why. Diffusion bonding with extremely low required bonding strength is possible, but in order to satisfy the actual required bonding strength, the shape and surface state of the joint of the copper member, which is a highly conductive workpiece, welding Various restrictions such as current conditions and various characteristics of the welding equipment are severe, and a low melting point metal film such as a tin film must be formed in advance, so it was difficult to apply to an actual production line. . For example, if the copper member is pure copper, the resistance of the widely used copper alloy welding electrode is higher than that of the copper member, so the heat generation at the welding electrode is larger than the heat generation at the copper member. Naturally, the heat generation at the interface between the welding electrode and the copper member is larger than that at the bonding surface between the copper members, and the welding electrode and the copper member are disadvantageously bonded. This is remarkable when the copper member is a thin plate having a thickness of several mm or less, particularly a thin plate having a thickness of about 2 mm or less because the resistance in the thickness direction of the copper member is extremely small. Even if various conditions such as resistance welding equipment are selected, if a low-melting point metal film with a relatively large resistance, such as a tin film, is not present on the joint surface between copper members, satisfactory welding results including stability will be achieved. Was not obtained. In the first embodiment, the upper and lower sides 2 that make it possible to easily and simply apply the resistance welding process to an actual production line without forming a low melting point metal film such as a tin film on the joint surfaces of the copper members. A copper member having a stepped projection and a resistance welding method thereof are provided.

図1(A)、(B)、(C)において、銅部材である第1の被溶接物W1の片面には上下2段構造のプロジェクションPが形成されている。上下2段構造のプロジェクションPは、第1の被溶接物W1の片面の小面域から突起するように形成されている第1のプロジェクションP1及び第1のプロジェクションP1の上面から突起するように形成されている複数個の第2のプロジェクションP2からなる。第1のプロジェクションP1は作り易い高さ、例えば一般的なプロジェクションと同程度である0.5〜1.0mmの高さを有する小円板状のものである。その面積は要求される接合強度などの条件によって決まり、要求される接合強度が得られる大きさであるので様々である。この第1のプロジェクションP1は溶接電流、つまり発熱が接合面で横方向に広がるのを制限する働きを行い、溶接時には塑性流動化する突起であるので、小円板状に限らず、形状は任意の形状の角形(菱形を含む)、環状などの突起であってもよい。ここでは小円板状又は小角形板状の突起を小台座状の突起と言う。この第1のプロジェクションP1は第1の被溶接物W1を加工して形成した突起であるから当然に第1の被溶接物W1と材質は同一である。なお、前記小台座状の突起は、その断面が図1(B)、(C)に示すような任意の台形状、あるいは図示されていない矩形状などであっても構わない。   1A, 1B, and 1C, a projection P having an upper and lower two-stage structure is formed on one surface of a first workpiece W1 that is a copper member. The projection P having the upper and lower two-stage structure is formed so as to project from the upper surface of the first projection P1 and the first projection P1 formed so as to project from the small surface area of one surface of the first workpiece W1. And a plurality of second projections P2. The first projection P1 is a small disk having a height that is easy to make, for example, a height of 0.5 to 1.0 mm, which is about the same as a general projection. The area is determined by conditions such as required bonding strength, and is various because the required bonding strength is obtained. The first projection P1 functions to limit the welding current, that is, the heat generation from spreading laterally at the joint surface, and is a projection that plastically fluidizes during welding. The projection may be a square shape (including a diamond shape) or an annular shape. Here, the small circular plate-shaped or small rectangular plate-shaped protrusion is referred to as a small pedestal-shaped protrusion. Since the first projection P1 is a projection formed by processing the first workpiece W1, the material of the first projection P1 is naturally the same as that of the first workpiece W1. The small pedestal-like protrusion may have an arbitrary trapezoidal shape as shown in FIGS. 1B and 1C or a rectangular shape not shown.

第1のプロジェクションP1の上には、図1(A)に示すように格子状模様の第2のプロジェクションP2が形成されている。格子状部分をPaで示し、格子状部分Paで囲まれている島状部分をPbで示す。格子状部分Paが突起部分なっていて、島状部分Pbが格子状部分Paよりも凹んでいるのが、図1(B)に示す格子状突起であり、格子状部分Paが溝になっていて、島状部分Pbが格子状部分Paよりも突出していて高くなっているのが、図1(C)に示す島状突起である。実施形態1においては、第2のプロジェクションP2が前述の格子状突起又は島状突起のいずれからなってもよい。ここで格子状模様とは、格子状部分Paで囲まれている島状部分Pbが図1(A)に示すような4角形に限られず、菱形、円形状、3角形状、あるいは5角形以上の任意の多角形状となるように、格子状部分Paが任意の形状で形成されていればよい。第2のプロジェクションP2の上端面が破線で示す第2の被溶接物W2に当接し、初期の接合面Aを形成する。   On the first projection P1, a second projection P2 having a lattice pattern is formed as shown in FIG. A lattice portion is indicated by Pa, and an island portion surrounded by the lattice portion Pa is indicated by Pb. The lattice-shaped portion Pa is a protruding portion, and the island-shaped portion Pb is recessed from the lattice-shaped portion Pa is the lattice-shaped protrusion shown in FIG. 1B, and the lattice-shaped portion Pa is a groove. Thus, the island-shaped protrusions shown in FIG. 1C are the island-shaped portions Pb protruding higher than the lattice-shaped portions Pa. In the first embodiment, the second projection P2 may be formed of any of the above-described lattice-shaped protrusions or island-shaped protrusions. Here, the lattice pattern is not limited to the quadrangular shape as shown in FIG. 1A, but the island-shaped portion Pb surrounded by the lattice-shaped portion Pa is a rhombus, a circular shape, a triangular shape, or a pentagon or more. It is sufficient that the lattice portion Pa is formed in an arbitrary shape so as to have an arbitrary polygonal shape. The upper end surface of the second projection P2 comes into contact with the second workpiece W2 indicated by a broken line, and the initial joining surface A is formed.

接合部にナゲットが形成される鋼板同士などの抵抗溶接の場合と違って、高導電性被溶接物の抵抗溶接は実質的にプロジェクションの面域で接合が行われるから、前述したように、第1のプロジェクションP1は要求される接合強度を得ることができる程度以上の大きさの面積を接合面側に有していなければならず、所望の接合強度を得るには従来のようにそれだけ大きな電流を流さなければならない。第2のプロジェクションP2は、第2の被溶接物W2との当接する初期の当接面積を低減するためのものである。例えば、第2のプロジェクションP2における第2の被溶接物W2との初期の当接面積が第1のプロジェクションP1の接合面側の面積に比べて1/3であるとすれば、第2のプロジェクションP2と第2の被溶接物W2との初期の当接面積を流れる溶接電流の電流密度をほぼ3倍にすることができ、第2のプロジェクションP2は大幅に塑性流動化し易くなる。しかし、一般的に抵抗溶接時には第1の被溶接物W1と第2の被溶接物W2との間に大きな加圧力(鍛圧)がかけられるので、第2のプロジェクションP2が溶接電流で塑性流動化する前に、その加圧力で変形するのは容認できるとしても、圧潰して、つまり潰れてしまっては第2のプロジェクションP2の役割を十分に果たせず、第2のプロジェクションP2を設けた効果が薄れてしまう。したがって、第2のプロジェクションP2は、前記初期の当接面積、つまり接合面積Aが所望の接合強度を得るのには小さいが、溶接時に印加される加圧力に対して圧潰し難い大きさの突起構造でなければならない。したがって、第2のプロジェクションP2を形成する突起の高さは制限されないが、第1の被溶接物W1と第2の被溶接物W2との間に大きな加圧力がかけられたときに、図1(B)に示す格子状突起のときには格子部分Paが変形しても島状部分Pbが第2の被溶接物W2に当接しない程度の高さを少なくとも持ち、また、図1(C)に示す島状突起のときには島状部分Pbが変形しても格子部分Paが第2の被溶接物W2に当接しない程度の高さを持たなければならない。   Unlike the case of resistance welding such as steel plates where nuggets are formed at the joint, resistance welding of highly conductive workpieces is substantially performed in the projection area. One projection P1 must have an area on the side of the bonding surface that is larger than the required bonding strength. To obtain a desired bonding strength, a current that is large as in the prior art is required. Must be washed away. The second projection P2 is for reducing the initial contact area that comes into contact with the second workpiece W2. For example, if the initial contact area with the second workpiece W2 in the second projection P2 is 1/3 as compared with the area on the joining surface side of the first projection P1, the second projection The current density of the welding current flowing through the initial contact area between P2 and the second workpiece W2 can be almost tripled, and the second projection P2 is greatly easily plasticized. However, generally, during resistance welding, a large pressure (forging pressure) is applied between the first workpiece W1 and the second workpiece W2, so that the second projection P2 is plastically fluidized by the welding current. Even if it is acceptable to be deformed by the applied pressure, the second projection P2 does not fully function if it is crushed, that is, crushed, and the effect of providing the second projection P2 is effective. It will fade. Therefore, in the second projection P2, the initial contact area, that is, the bonding area A is small to obtain a desired bonding strength, but the protrusion has a size that is difficult to be crushed against the applied pressure applied during welding. Must be a structure. Therefore, the height of the projections forming the second projection P2 is not limited, but when a large pressure is applied between the first workpiece W1 and the second workpiece W2, FIG. In the case of the grid-like projections shown in (B), at least the height is such that the island-like part Pb does not come into contact with the second workpiece W2 even if the grid part Pa is deformed, as shown in FIG. In the case of the island-shaped projections shown, the island-shaped portion Pb must have such a height that the lattice portion Pa does not come into contact with the second workpiece W2 even if the island-shaped portion Pb is deformed.

[実施形態2]
次に、図2によって別の上下2段構造のプロジェクションを有する実施形態2の被溶接物について説明する。図2は、上下2段構造のプロジェクションP近傍の断面を拡大して示している。図2において、図1で用いた記号と同じ記号は同一の名称を示すものとする。銅部材のような高導電性被溶接物である第1の被溶接物W1の片側の小面域に形成された上下2段構造のプロジェクションPの第1のプロジェクションP1は、図1に示したものと同じであるので説明を省略する。第1のプロジェクションP1上に形成された第2のプロジェクションP2は中央が第1のプロジェクションP1の上面に等しくなるよう凹んでいる環状の突起からなる。環状の第2のプロジェクションP2は円環状突起であっても良いし、あるいは任意の多角形状の環状突起であっても良い。また、環状突起は連続する環状でなくともよく、不図示の溝によって分断された環状の突起であっても良い。(ここで、第2のプロジェクションP2としては種々の構造のもので良いですよと主張しておくために、実施形態1と異なる具体的な構造例を簡単に述べておいた方がよいと思いますがいかがですか。)
任意の形状の環状突起である第2のプロジェクションP2は、実施形態1と同様にその上端面、つまり初期の接合面Aの面積が所望の接合強度を得るのには小さいが、溶接時に印加される加圧力に対して圧潰し難い大きさの突起構造でなければならない。第1のプロジェクションP1の周囲には環状の外周溝Xが形成されている。環状の外周溝Xの形状は、断面が台形状、V字形状、U字形状、角形状など任意の形状でよい。この環状の外周溝Xについては後述する抵抗溶接の一例の箇所で詳しく述べるが、溶接時に主に塑性流動化するプロジェクションPの一部分を受け入れるものであり、溶接時に塑性流動化して外側に拡がるプロジェクションPが外周溝Xに収容されるために、溶接の過程でプロジェクションPの面積の拡大が抑制されるので、溶接電流の電流密度が減少するのを抑えることができる。また、外周溝Xはその深さだけ実質的に第1のプロジェクションP1の高さを高くするので、溶接時の第1のプロジェクションP1における熱が横方向に四散する量を低減させる。このことは、特に導電率が極めて高く、熱伝導も極めて良好な高導電性被溶接物同士の抵抗溶接にとっては溶接強度などに影響を与えるので大切である。
[Embodiment 2]
Next, a workpiece to be welded of Embodiment 2 having another upper and lower two-stage projection will be described with reference to FIG. FIG. 2 shows an enlarged cross section near the projection P having a two-stage structure. In FIG. 2, the same symbols as those used in FIG. 1 indicate the same names. The first projection P1 of the projection P having the upper and lower two-stage structure formed in the small surface area on one side of the first workpiece W1, which is a highly conductive workpiece such as a copper member, is shown in FIG. Since it is the same as that, the description is omitted. The second projection P2 formed on the first projection P1 is formed of an annular protrusion that is recessed so that the center is equal to the upper surface of the first projection P1. The annular second projection P2 may be an annular protrusion, or may be an arbitrary polygonal annular protrusion. Further, the annular protrusion does not have to be a continuous annular shape, and may be an annular protrusion divided by a groove (not shown). (Here, in order to argue that the second projection P2 may have various structures, it is better to briefly describe a specific structural example different from that of the first embodiment. How about you?)
The second projection P2, which is an annular protrusion having an arbitrary shape, is applied at the time of welding, although the upper end surface thereof, that is, the area of the initial joining surface A is small to obtain a desired joining strength, as in the first embodiment. The protrusion structure must be of a size that is difficult to crush against the applied pressure. An annular outer circumferential groove X is formed around the first projection P1. The shape of the annular outer peripheral groove X may be an arbitrary shape such as a trapezoidal shape, a V shape, a U shape, or a square shape in cross section. The annular outer circumferential groove X will be described in detail in an example of resistance welding to be described later. However, the annular outer groove X accepts a part of the projection P that mainly plastically fluidizes during welding, and the projection P that plastically fluidizes during welding and spreads outward. Since the outer circumferential groove X is accommodated in the outer circumferential groove X, the expansion of the area of the projection P is suppressed during the welding process, so that it is possible to prevent the current density of the welding current from decreasing. Further, since the outer circumferential groove X substantially increases the height of the first projection P1 by the depth, the amount of heat scattered in the first projection P1 during welding is reduced in the lateral direction. This is particularly important for resistance welding of highly conductive workpieces having extremely high electrical conductivity and extremely good thermal conductivity because they affect the welding strength.

[実施形態3]
次に、図3によって別の上下2段構造のプロジェクションを有する実施形態3の被溶接物について説明する。図3は、上下2段構造のプロジェクションP近傍の断面を拡大して示している。図3において、図1、図2で用いた記号と同じ記号は同一の名称を示すものとする。銅部材のような高導電性被溶接物である第1の被溶接物W1の片側の小面域に形成された上下2段構造のプロジェクションPの第1のプロジェクションP1の中央には中央孔Yが形成されている。したがって、この実施形態3の第1のプロジェクションP1は環状の突起からなる。その環状の突起は円環状又は任意の多角形状の突起で構わない。環状の第1のプロジェクションP1の上面には複数の島状の突起である第2のプロジェクションP2が形成されている。第1のプロジェクションP1が環状の突起からなる場合、第1のプロジェクションP1の接合側の上面の面積が環状でない従来の台座形状のプロジェクションと同程度の大きさであるとき、溶接電流の電流密度を低減せずに中央孔Yの面積分だけ環状の第1のプロジェクションP1の外径を台座形状のプロジェクションに比べて大きくできる。
[Embodiment 3]
Next, a workpiece to be welded of Embodiment 3 having another upper and lower two-stage projection will be described with reference to FIG. FIG. 3 shows an enlarged cross section near the projection P having a two-stage upper and lower structure. In FIG. 3, the same symbols as those used in FIGS. 1 and 2 indicate the same names. A central hole Y is formed in the center of the first projection P1 of the upper and lower two-stage projection P1 formed in the small surface area on one side of the first workpiece W1 which is a highly conductive workpiece such as a copper member. Is formed. Therefore, the first projection P1 of the third embodiment is composed of an annular protrusion. The annular protrusion may be an annular or arbitrary polygonal protrusion. A plurality of island-shaped projections second projections P2 are formed on the upper surface of the annular first projection P1. When the first projection P1 is formed of an annular protrusion, the current density of the welding current is determined when the area of the upper surface on the joining side of the first projection P1 is the same as that of a conventional pedestal-shaped projection that is not annular. The outer diameter of the annular first projection P1 can be increased by the area of the central hole Y without being reduced as compared with the pedestal-shaped projection.

そして、溶接時における第2のプロジェクションP2と第1のプロジェクションP1と図示しない第2の被溶接物の接合箇所との塑性流動化の過程で、第2の被溶接物も同じ銅部材であるときには、第2のプロジェクションP2と第1のプロジェクションP1との塑性流動化した一部分は中央孔Yに収容される。また、接合面を微視的に観察すると、プロジェクションPが塑性流動化する過程で、プロジェクションPが第2の被溶接物に食い込み、中央孔Yに対応する第2の被溶接物の面域部分は溶接電流がほとんど流れないので塑性流動化しないから、プロジェクションPの塑性流動化に伴って第2の被溶接物の前記面域部分が中央孔Y内に進入する。このことは、第1のプロジェクションP1における中央孔Yを囲む内周部分で少なくとも接合を生じ、この結果、台座形状のプロジェクションに比べて接合面積が大きくなるので、台座形状のプロジェクションよりも接合強度を向上させることができる。第2の被溶接物がアルミニウム部材からなる場合には、アルミニウムは銅に比べて硬度が小さくかつ抵抗率が大きいから、第2被溶接物は塑性流動化し易いので、プロジェクションPは第2の被溶接物により食い込み易い。   In the process of plastic fluidization between the second projection P2 and the first projection P1 during welding and the joint portion of the second workpiece to be welded (not shown), when the second workpiece is also the same copper member A part of the second projection P2 and the first projection P1 which are plastically fluidized is accommodated in the central hole Y. When the joint surface is observed microscopically, the projection P bites into the second work piece in the process of plastic fluidization of the projection P, and the surface area portion of the second work piece corresponding to the center hole Y. Since the welding current hardly flows, plastic fluidization does not occur. Therefore, as the projection P plastic fluidizes, the surface area portion of the second work piece enters the central hole Y. This results in at least bonding at the inner peripheral portion surrounding the central hole Y in the first projection P1, and as a result, the bonding area is larger than that of the pedestal-shaped projection, so that the bonding strength is higher than that of the pedestal-shaped projection. Can be improved. When the second workpiece is made of an aluminum member, since aluminum has a lower hardness and higher resistivity than copper, the second workpiece is more likely to be plastically fluidized, so that the projection P is the second workpiece. It is easy to bite by the welded material.

中央孔Yは、プロジェクションPの高さよりも深いこと、つまり第1の被溶接物W1の上面Bよりも深く形成されることが望ましい。このように深い場合には、図示しない第2の被溶接物の前記面域部分が第1のプロジェクションP1の塑性流動化の過程で中央孔Y内に、第1の被溶接物W1の上面Bよりも深く進入できるから、より一層接合強度を向上させることができる。また、図示しない第2の被溶接物の前記面域部分が中央孔Yに進入する過程で、プロジェクションPの塑性流動化した一部分も中央孔Y内に収まるので、より抵抗溶接(拡散接合)面積を拡大し、溶接強度をさらに向上させる。なお、前述したように、第2のプロジェクションP2はその上端面、つまり初期の接合面Aが所望の接合強度を得るのには小さいが、溶接時に印加される加圧力に対して圧潰し難い大きさの突起構造である。   The center hole Y is desirably deeper than the height of the projection P, that is, deeper than the upper surface B of the first workpiece W1. In such a deep case, the surface area portion of the second workpiece to be welded (not shown) enters the central hole Y in the process of plastic fluidization of the first projection P1, and the upper surface B of the first workpiece W1. Since it can penetrate more deeply, the bonding strength can be further improved. Further, in the process in which the surface area portion of the second workpiece (not shown) enters the central hole Y, the plastic fluidized part of the projection P is also accommodated in the central hole Y, so that the resistance welding (diffusion bonding) area is further increased. To further improve the welding strength. As described above, the second projection P2 is small in that the upper end surface, that is, the initial joining surface A, is small in order to obtain a desired joining strength, but is difficult to be crushed against the applied pressure applied during welding. This is the protrusion structure.

[実施形態4]
次に、図4によって好ましい別の上下2段構造のプロジェクションを有する実施形態4の被溶接物について説明する。図4は、上下2段構造のプロジェクションP近傍の断面を拡大して示している。図4において、図1ないし図3で用いた記号と同じ記号は同一の名称を示すものとする。銅部材のような高導電性被溶接物である第1の被溶接物W1の片側の小面域に形成された上下2段構造のプロジェクションPの第1のプロジェクションP1の周りには、環状の外周溝Xが形成されていると共に、第1のプロジェクションP1の中央には中央孔Yが形成されている。したがって、実施形態4の第1のプロジェクションP1も環状の突起からなる。環状の第1のプロジェクションP1の上面には複数の島状又は任意の形状の細い環状、格子状などの突起からなる第2のプロジェクションP2が形成されている。環状の第1のプロジェクションP1は断面が台形状であり、したがって、外周溝X及び中央孔Yの断面は作り易くかつ塑性流動化したプロジェクションPが進入し易い逆の台形状となる。
[Embodiment 4]
Next, a workpiece to be welded according to Embodiment 4 having another upper and lower two-stage projection that is preferable with reference to FIG. 4 will be described. FIG. 4 shows an enlarged cross section near the projection P having a two-stage structure. In FIG. 4, the same symbols as those used in FIGS. 1 to 3 indicate the same names. Around the first projection P1 of the upper and lower two-stage projection P1 formed in the small surface area on one side of the first workpiece W1 which is a highly conductive workpiece such as a copper member, An outer peripheral groove X is formed, and a central hole Y is formed in the center of the first projection P1. Therefore, the first projection P1 of the fourth embodiment also includes an annular protrusion. On the upper surface of the annular first projection P1, a plurality of island-shaped or arbitrary-shaped thin annular, grid-like second projections P2 are formed. The annular first projection P1 has a trapezoidal cross section. Therefore, the cross section of the outer peripheral groove X and the central hole Y is easy to make and has an inverted trapezoidal shape into which the plastic fluidized projection P easily enters.

環状の第1のプロジェクションP1の周囲に形成された外周溝Xは、実施形態2で説明したのと同様な働きを行い、溶接時に主に塑性流動化するプロジェクションPの一部分を受け入れ、溶接強度などを改善する。また、中央孔Yは実施形態3で説明したのと同様な働きを行い、図示しない第2の被溶接物における中央孔Yに対応する面域部分が第1のプロジェクションP1の塑性流動化の過程で、中央孔Y内に第1の被溶接物W1の上面Bよりも深く進入することも可能であるから、より一層溶接強度を向上させ得る。中央孔Yは、プロジェクションPの高さよりも深く、つまり第1の被溶接物W1の上面Bよりも深くまで形成されるのが好ましい。   The outer peripheral groove X formed around the annular first projection P1 performs the same function as described in the second embodiment, accepts a part of the projection P mainly plastically fluidized at the time of welding, weld strength, etc. To improve. Further, the central hole Y performs the same function as described in the third embodiment, and the surface area portion corresponding to the central hole Y in the second work piece (not shown) is the process of plastic fluidization of the first projection P1. Thus, since it is possible to enter the center hole Y deeper than the upper surface B of the first workpiece W1, the welding strength can be further improved. The central hole Y is preferably formed deeper than the height of the projection P, that is, deeper than the upper surface B of the first workpiece W1.

[実施形態5]
次に、このような環状の2段構造のプロジェクションPが形成された銅部材のような高導電性被溶接物である第1の被溶接物W1と銅部材のような高導電性被溶接物である第2の被溶接物W2との抵抗溶接(拡散接合)を実現するのに好適なコンデンサ蓄勢式の抵抗溶接装置の一例を図5によって簡潔に説明する。この抵抗溶接装置が設置される床又はベース部材1に支持機構2が固定されている。支持機構2にはシリンダ装置などからなる加圧機構3が取り付けられ、加圧機構3の先端部には金属材料からなる可動ブロック4が取り付けられている。スプリング又は電磁加圧装置のような加圧補助部材5が可動ブロック4と支持部材6との間に備えられ、溶接電極の加圧応答を向上させる補助的な役割を行っている。高導電性部材同士、特に銅部材と銅部材との抵抗溶接ではこの加圧補助部材5の働きは大きい。ここで、支持部材6は直接又は間接的に加圧補助部材5の下端部に結合され、給電部としても作用する銅のような金属材料からなる。上部溶接電極7は支持部材6に支承されており、上部溶接電極7と向かい合った位置には下部溶接電極8が配置されている。加圧補助部材5の伸縮の影響を受けない高さに位置する可動ブロック4にはL字形の中間接続部材9が固定されている。支持部材6とL字形中間接続部材9との間を接続する撓み易い第1のフレキシブル導電部材10が備えられ、L字形の中間接続部材9と一方の給電導体12との間は第2のフレキシブル導電部材11によって接続されている。上部溶接電極7と下部溶接電極8とは、例えば銅合金からなる。
[Embodiment 5]
Next, the first workpiece W1 which is a highly conductive workpiece such as a copper member on which such an annular two-stage projection P is formed, and the highly conductive workpiece such as a copper member. An example of a capacitor accumulating type resistance welding apparatus suitable for realizing resistance welding (diffusion bonding) with the second workpiece W2 as described above will be briefly described with reference to FIG. A support mechanism 2 is fixed to a floor or base member 1 on which the resistance welding apparatus is installed. A pressurizing mechanism 3 made of a cylinder device or the like is attached to the support mechanism 2, and a movable block 4 made of a metal material is attached to the tip of the pressurizing mechanism 3. A pressurizing auxiliary member 5 such as a spring or an electromagnetic pressurizing device is provided between the movable block 4 and the support member 6 and plays an auxiliary role to improve the pressurization response of the welding electrode. In the resistance welding between the highly conductive members, particularly the copper member and the copper member, the function of the pressure assisting member 5 is great. Here, the supporting member 6 is made of a metal material such as copper which is directly or indirectly coupled to the lower end portion of the pressure assisting member 5 and also functions as a power feeding portion. The upper welding electrode 7 is supported by the support member 6, and the lower welding electrode 8 is disposed at a position facing the upper welding electrode 7. An L-shaped intermediate connection member 9 is fixed to the movable block 4 located at a height that is not affected by the expansion and contraction of the pressure assisting member 5. A flexible first flexible conductive member 10 that connects between the support member 6 and the L-shaped intermediate connection member 9 is provided, and a second flexible conductor is provided between the L-shaped intermediate connection member 9 and one power supply conductor 12. They are connected by a conductive member 11. The upper welding electrode 7 and the lower welding electrode 8 are made of, for example, a copper alloy.

給電導体12と、下部溶接電極8に接続された他方の給電導体13との間に溶接トランス14の2次巻線N2が接続され、これに磁気的に結合された1次巻線N1にはインバータ回路又は半導体スイッチ回路のような放電回路15が接続される。放電回路15にはエネルギー蓄積用コンデンサ16とそのコンデンサを充電する充電回路17とが接続されている。抵抗溶接にあっては、溶接に寄与する溶接電流のほとんどは立ち上がりからピーク値近傍までの電流であるので、実施形態5の抵抗溶接では溶接電流がピーク値近傍まで立ち上がる時間が10ms程度以下であり、7msであることが好ましい。このようなパルス幅の狭い急峻なパルス状電流が銅部材と銅部材との間に流れることができるように、放電回路15、溶接トランス14及び給電導体12、13など、エネルギー蓄積用コンデンサ16の放電電流が流れる通電路はインダクタンスを最小にする回路構成になっている。そして、この構造では上部溶接電極7は僅かな外力で上下方向に上下動できる支持部材6に支えられていると同時に、即応性の高い弾性力を与えることができる加圧補助部材5に結合されているので、第1の被溶接物W1の上下2段構造のプロジェクションPとこれに当接する面域の第2の被溶接物W2との塑性流動による上部溶接電極7と第2の被溶接物W2との間の微妙な加圧力の変化に対して、上部溶接電極7が即応することができる。なお、記号18〜20は3相交流入力端子を示す。   The secondary winding N2 of the welding transformer 14 is connected between the power supply conductor 12 and the other power supply conductor 13 connected to the lower welding electrode 8, and the primary winding N1 magnetically coupled thereto is connected to the primary winding N1. A discharge circuit 15 such as an inverter circuit or a semiconductor switch circuit is connected. Connected to the discharge circuit 15 are an energy storage capacitor 16 and a charging circuit 17 for charging the capacitor. In resistance welding, since most of the welding current that contributes to welding is current from the rise to the vicinity of the peak value, in the resistance welding of the fifth embodiment, the time for the welding current to rise to the vicinity of the peak value is about 10 ms or less. 7 ms is preferable. In order to allow such a steep pulse current with a narrow pulse width to flow between the copper members, the discharge circuit 15, the welding transformer 14, the power supply conductors 12 and 13, etc. The energization path through which the discharge current flows has a circuit configuration that minimizes inductance. In this structure, the upper welding electrode 7 is supported by a supporting member 6 that can move up and down with a slight external force, and at the same time, is coupled to a pressurizing auxiliary member 5 that can provide highly responsive elastic force. Therefore, the upper welding electrode 7 and the second workpiece to be welded by plastic flow between the projection P having the upper and lower two-stage structure of the first workpiece W1 and the second workpiece W2 in the surface area in contact therewith. The upper welding electrode 7 can immediately respond to a slight change in the applied pressure between W2 and W2. Symbols 18 to 20 represent three-phase AC input terminals.

次に、抵抗溶接回路の概略を示す図6も用いて実施形態5に係る抵抗溶接について説明する。先ず、第1の被溶接物W1を下部溶接電極8上に載置し、その上に第2の被溶接物W2を載置する。次に、図5における加圧機構3が下方向に動作し、これに伴い、可動ブロック4、加圧補助部材5、支持部材6及び上部溶接電極7からなる上部溶接ヘッド全体が下降し、上部溶接電極7が第2の被溶接物W2に所定の加圧力を加える。このとき、第2の被溶接物W2の下面の一部面域は第1の被溶接物W1の第2のプロジェクションP2の初期の接合面A(図1〜図4)に加圧される。この所定の加圧力を加えている途中、あるいは加圧力がほぼ一定になった段階で、放電回路15がオンして、充電回路17により既にエネルギー蓄積用コンデンサ16に充電されている電荷を、溶接トランス14の1次巻線N1に放出する。これに伴い、1次巻線N1に比べて巻数が大幅に少ない1ターン又2ターン程度の2次巻線N2に大きな電流が発生し、上部溶接電極7と下部溶接電極8とその間に挟まれている第1の被溶接物W1と第2の被溶接物W2とを介して急峻なパルス状の溶接電流が流れる。   Next, resistance welding according to the fifth embodiment will be described with reference to FIG. 6 showing an outline of a resistance welding circuit. First, the first workpiece W1 is placed on the lower welding electrode 8, and the second workpiece W2 is placed thereon. Next, the pressurizing mechanism 3 in FIG. 5 operates downward, and accordingly, the entire upper welding head composed of the movable block 4, the pressurizing auxiliary member 5, the support member 6, and the upper welding electrode 7 descends, The welding electrode 7 applies a predetermined pressing force to the second workpiece W2. At this time, the partial surface area of the lower surface of the second workpiece W2 is pressurized to the initial joining surface A (FIGS. 1 to 4) of the second projection P2 of the first workpiece W1. During the application of the predetermined pressure, or when the pressure becomes substantially constant, the discharge circuit 15 is turned on, and the charge already charged in the energy storage capacitor 16 by the charging circuit 17 is welded. It is discharged to the primary winding N1 of the transformer 14. Along with this, a large current is generated in the secondary winding N2 having one or two turns which is significantly smaller than the primary winding N1, and is sandwiched between the upper welding electrode 7 and the lower welding electrode 8. A steep pulsed welding current flows through the first workpiece W1 and the second workpiece W2 that are being welded.

溶接時に印加される前記加圧力によって第1の被溶接物W1の第2のプロジェクションP2は変形しても圧潰することはないから、前述のようなパルス状の溶接電流は、先ず第1の被溶接物W1の第2のプロジェクションP2の初期の接合面Aとこれに当接している第1の被溶接物W1の面域とに集中して短時間流れる。前述したように、第1の被溶接物W1の第1のプロジェクションP1に比べて面積の小さな第2のプロジェクションP2の初期の接合面Aは、上部溶接電極7と第2の被溶接物W2との当接面積、及び下部溶接電極8と第1の被溶接物W1との当接面積に比べて大幅に小さいので、それら当接面積を流れる溶接電流の電流密度に比べて、第1の被溶接物W1における第2のプロジェクションP2の初期の接合面Aと第2の被溶接物W2とが当接する当接面域を流れる溶接電流の電流密度は大幅に大きい。したがって、導電率が非常に高い銅部材同士、特に第2の被溶接物W2が2mm以下の厚みの薄板であっても、上部溶接電極7と第2の被溶接物W2との当接面、及び下部溶接電極8と第1の被溶接物W1との当接面で生じる発熱に比べて、第1の被溶接物W1における第2のプロジェクションP2の初期の接合面Aと第2の被溶接物W2との当接面で生じる発熱は大幅に大きくなる。また、その発熱は接合面において横方向に伝達されないので、先ずその発熱によって第2のプロジェクションP2が塑性流動し、そして第2のプロジェクションP2の塑性流動に伴い、その熱が第1のプロジェクションP1に伝達されると共に、第1のプロジェクションP1でも発熱するから、第1のプロジェクションP1が塑性流動を開始する。同様に、第2のプロジェクションP2に当接している第2の被溶接物W2の小面域、さらには第1のプロジェクションP1に当接する第2の被溶接物W2の当接面で塑性流動が生じる。   Since the second projection P2 of the first workpiece W1 is not crushed by the applied pressure applied during welding, the pulsed welding current as described above is first applied to the first workpiece. It flows for a short time in a concentrated manner on the initial joining surface A of the second projection P2 of the welded article W1 and the surface area of the first workpiece W1 in contact therewith. As described above, the initial joining surface A of the second projection P2 having a smaller area than the first projection P1 of the first workpiece W1 is formed by the upper welding electrode 7 and the second workpiece W2. And the contact area between the lower welding electrode 8 and the first workpiece W1 are much smaller than the current density of the welding current flowing through these contact areas. The current density of the welding current flowing in the contact surface area where the initial joining surface A of the second projection P2 in the welded product W1 contacts the second workpiece W2 is significantly large. Therefore, even if the copper members having very high electrical conductivity, particularly the second workpiece W2 is a thin plate having a thickness of 2 mm or less, the contact surface between the upper welding electrode 7 and the second workpiece W2; In addition, compared with the heat generated at the contact surface between the lower welding electrode 8 and the first workpiece W1, the initial joining surface A of the second projection P2 and the second welding target in the first workpiece W1 are compared. The heat generated at the contact surface with the object W2 is greatly increased. Further, since the heat generation is not transmitted in the lateral direction on the joint surface, first, the second projection P2 is plastically flowed by the heat generation, and the heat is transferred to the first projection P1 along with the plastic flow of the second projection P2. Since the first projection P1 is transmitted and also generates heat, the first projection P1 starts plastic flow. Similarly, the plastic flow occurs in the small surface area of the second workpiece W2 that is in contact with the second projection P2, and further in the contact surface of the second workpiece W2 that is in contact with the first projection P1. Arise.

この塑性流動の過程で、第2のプロジェクションP2のほとんどは外周溝X及び中央孔Yに流入し、第1のプロジェクションP1の一部分は第2の被溶接物W2に食い込み、他の部分は外周溝X及び中央孔Yに収容され、良好な抵抗溶接(拡散接合)が行われる。仮に第2の被溶接物W2が2mm以下の厚みの銅の薄板であっても、その薄板と上部溶接電極7との当接面で接合が生じることはない。第1の被溶接物W1と第2の被溶接物W2との抵抗溶接で、良好な溶接品質及び溶接強度が得られるのは前述したように、上下2段構造のプロジェクションPに拠るところが大きいが、図5で述べた抵抗溶接装置の特性に負うところも大きい。したがって、図5に示した抵抗溶接装置を用いた抵抗溶接方法について更に詳しく説明する。   In the process of plastic flow, most of the second projection P2 flows into the outer peripheral groove X and the central hole Y, a part of the first projection P1 bites into the second workpiece W2, and the other part is the outer peripheral groove. X and the central hole Y are accommodated, and good resistance welding (diffusion bonding) is performed. Even if the second workpiece W2 is a copper thin plate having a thickness of 2 mm or less, joining does not occur at the contact surface between the thin plate and the upper welding electrode 7. As described above, the resistance welding between the first workpiece W1 and the second workpiece W2 can provide good welding quality and welding strength largely due to the projection P having a two-stage structure. 5 is also greatly affected by the characteristics of the resistance welding apparatus described in FIG. Therefore, the resistance welding method using the resistance welding apparatus shown in FIG. 5 will be described in more detail.

先ず、加圧機構3が動作して下方向に動作すると、これに伴い、可動ブロック4、加圧補助部材5、支持部材6及び上部溶接電極7からなる上部溶接ヘッド全体が下降する。一方、図5には示さないが、図6を用いて前述したように、第1、第2の被溶接物W1、W2が下部溶接用電極8上にセットされ、上部溶接電極7下降して第2の被溶接物W2に当接される。上部溶接電極7と支持部材6とはその位置で停止するが、加圧機構3がさらに下降するのに伴い、加圧補助部材5が収縮され、可動ブロック4は加圧機構3と一緒に下降する。また、可動ブロック4が下降するのに伴い、第2のフレキシブル導電部材11は大きく撓み、第1のフレキシブル導電部材10は可動ブロック4と支持部材6と一緒に動くので最初の状態で下降するが、前述のように支持部材6が停止し、可動ブロック4が加圧補助部材5を収縮させながら下降するとき、最初の状態から少し変形する。しかし、前述のように第1のフレキシブル導電部材10は第2のフレキシブル導電部材11に比べて撓み易く作られているから、支持部材6と上部溶接電極7との動きに対する抵抗が軽減される。したがって、上部溶接電極7の即応性が改善される。   First, when the pressurizing mechanism 3 operates and operates in the downward direction, the entire upper welding head including the movable block 4, the pressurizing auxiliary member 5, the support member 6 and the upper welding electrode 7 is lowered. On the other hand, although not shown in FIG. 5, as described above with reference to FIG. 6, the first and second workpieces W1 and W2 are set on the lower welding electrode 8 and the upper welding electrode 7 is lowered. It abuts on the second workpiece W2. The upper welding electrode 7 and the support member 6 stop at that position, but as the pressurizing mechanism 3 further descends, the pressurizing auxiliary member 5 is contracted, and the movable block 4 descends together with the pressurizing mechanism 3. To do. Further, as the movable block 4 is lowered, the second flexible conductive member 11 is greatly bent, and the first flexible conductive member 10 is moved together with the movable block 4 and the support member 6, so that it is lowered in the initial state. As described above, when the support member 6 is stopped and the movable block 4 is lowered while the pressurizing auxiliary member 5 is contracted, it is slightly deformed from the initial state. However, as described above, the first flexible conductive member 10 is made to be more easily bent than the second flexible conductive member 11, so that resistance to movement of the support member 6 and the upper welding electrode 7 is reduced. Therefore, the responsiveness of the upper welding electrode 7 is improved.

このように、加圧機構3が動作して下降運動を行っている過程で加圧補助部材5が収縮し、そして上部溶接電極7と下部溶接電極8間の圧力が予め決められたレベルに達すると、溶接トランス14及び給電導体12、13から上部溶接電極7と下部溶接電極8とに短いパルス幅のパルス状溶接電流が供給され、前述したように第1の被溶接物W1の2段構造のプロジェクションPと第2の被溶接物W2との当接部分が塑性流動化して抵抗溶接が行われる。ここで、溶接断面を観察すると、第1の被溶接物W1と第2の被溶接物W2との接合面にはナゲットは形成されておらず、この抵抗溶接は拡散接合であることを確認している。   As described above, the pressure assisting member 5 contracts during the downward movement of the pressure mechanism 3 and the pressure between the upper welding electrode 7 and the lower welding electrode 8 reaches a predetermined level. Then, a pulse welding current having a short pulse width is supplied from the welding transformer 14 and the power supply conductors 12 and 13 to the upper welding electrode 7 and the lower welding electrode 8, and as described above, the two-stage structure of the first workpiece W1. The contact portion between the projection P and the second workpiece W2 is plastic fluidized and resistance welding is performed. Here, when the weld cross section is observed, it is confirmed that no nugget is formed on the joint surface between the first workpiece W1 and the second workpiece W2, and this resistance welding is diffusion bonding. ing.

説明が少し戻るが、第1の被溶接物W1の上下2段構造のプロジェクションPの塑性流動化、さらにはプロジェクションPに当接している第2の被溶接物W2の当接部分の塑性流動化が始まるのに伴ってその接合部分が先ず膨張するが、図5に示した加圧補助部材5がスプリングのような弾性部材であるときには、その溶接初期の接合部分の膨張を弾性部材が瞬時に吸収すると共に、常時、弾性部材が接合部分に加圧力を与えているので、第1の被溶接物W1と第2の被溶接物W2との塑性流動による沈みに対しても極めて応答の速い加圧を与えることができる。この加圧補助部材5の応答速度が速ければ速いほど、パルス幅の短いパルス溶接電流を、つまり短時間に電流エネルギーを集中して第1の被溶接物W1と第2の被溶接物W2との間に流すことができ、銅部材のような熱伝導の極めて良好なものでも、好ましい状態に塑性流動化させることができ、このことが銅部材同士でも満足の行く抵抗接合をできる一因となっている。このように、前述の上下2段構造のプロジェクションPを一方の高導電性被溶接物に形成し、かつ溶接電極の応答速度が速く、ピーク値までに立ち上がるのに要する時間Tが10ms程度以下と幅の狭いパルス状の溶接電流を用いているので、銅部材同士であっても低融点金属膜を形成することなくより安定に、かつ良好に抵抗溶接することができる。   Although the explanation will return a little, plastic fluidization of the projection P having the upper and lower two-stage structure of the first workpiece W1 and further plastic fluidization of the contact portion of the second workpiece W2 that is in contact with the projection P. As the pressure assisting member 5 shown in FIG. 5 is an elastic member such as a spring, the elastic member instantly expands the joint at the initial stage of welding. Since the elastic member constantly applies pressure to the joint portion, the elastic member is constantly applied to the sink due to plastic flow between the first workpiece W1 and the second workpiece W2. Pressure can be applied. As the response speed of the pressure assisting member 5 increases, the pulse welding current with a short pulse width, that is, the current energy is concentrated in a short time to concentrate the first workpiece W1 and the second workpiece W2 Even if it has a very good thermal conductivity such as a copper member, it can be plastically fluidized to a desirable state, which is one reason that satisfactory resistance bonding can be achieved even between copper members. It has become. In this way, the above-described upper and lower two-stage projection P is formed on one highly conductive work piece, the response speed of the welding electrode is fast, and the time T required to rise to the peak value is about 10 ms or less. Since a narrow pulsed welding current is used, resistance welding can be performed more stably and satisfactorily without forming a low melting point metal film even between copper members.

なお、実施形態5では銅部材同士の抵抗溶接について述べたが、第1の被溶接物W1と第2の被溶接物W2とがアルミウム材料、あるいは第1の被溶接物W1が銅材料で、第2の被溶接物W2がアルミウム材料であっても同様に抵抗溶接できる。銅材料とアルミニウム材料とを溶接する場合には、前述の上下2段構造のプロジェクションを、硬度及び導電率が高い銅材料に形成することが大切である。前述の上下2段構造のプロジェクションは高導電性被溶接物同士の抵抗溶接に限ることなく、高導電性被溶接物とそれ以外の金属材料、又は通常の鋼板同士、あるいはステンレス部材と鋼板などの同種、異種の金属材料などにも適用でき、満足の行く抵抗溶接結果を得ることができるので、必要があればこれらにも本発明を適用できる。また、高導電性被溶接物は板状の部材に限られず、パイプ状、丸棒状、角棒状など種々の形状であっても同様に安定にかつ良好な溶接結果を得ることができる。   In the fifth embodiment, resistance welding between copper members has been described. However, the first workpiece W1 and the second workpiece W2 are aluminum materials, or the first workpiece W1 is a copper material. Even if the second workpiece W2 is an aluminum material, resistance welding can be similarly performed. When welding a copper material and an aluminum material, it is important to form the above-described upper and lower two-stage projection on a copper material having high hardness and conductivity. The above-described two-stage upper and lower projections are not limited to resistance welding between highly conductive workpieces, such as highly conductive workpieces and other metal materials, normal steel plates, or stainless steel members and steel plates. The present invention can be applied to the same or different metal materials, and satisfactory resistance welding results can be obtained. Therefore, the present invention can be applied to these as required. Further, the highly conductive work piece is not limited to a plate-like member, and stable and good welding results can be obtained even in various shapes such as a pipe shape, a round bar shape, and a square bar shape.

本発明の実施形態1に係る上下2段構造のプロジェクションを有する高導電性被溶接物を示す図である。It is a figure which shows the highly conductive to-be-welded object which has a projection of the upper and lower two steps structure concerning Embodiment 1 of this invention. 本発明の実施形態2に係る上下2段構造のプロジェクションを説明するための図である。It is a figure for demonstrating the projection of the 2 steps | paragraphs of upper and lower structures concerning Embodiment 2 of this invention. 本発明の実施形態3に係る上下2段構造のプロジェクションを説明するための図である。It is a figure for demonstrating the projection of the 2 steps | paragraphs of upper and lower structures which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る上下2段構造のプロジェクションを説明するための図である。It is a figure for demonstrating the projection of the 2 steps | paragraphs of upper and lower structures concerning Embodiment 4 of this invention. 本発明の実施形態5に係る抵抗溶接方法を実現するための抵抗溶接装置の一例を示す図である。It is a figure which shows an example of the resistance welding apparatus for implement | achieving the resistance welding method which concerns on Embodiment 5 of this invention. 本発明の実施形態5に係る抵抗溶接方法を説明するための図である。It is a figure for demonstrating the resistance welding method which concerns on Embodiment 5 of this invention.

符号の説明Explanation of symbols

W1・・・第1の被溶接物(高導電性被溶接物)
W2・・・第2の被溶接物
P・・・上下2段構造のプロジェクション
P1・・・第1のプロジェクション
P2・・・第2のプロジェクション
Pa・・・格子状部分
Pb・・・島状部分
X・・・第1のプロジェクションP1の周囲に形成された外周溝
Y・・・第1のプロジェクションP1の中央部に形成された中央孔
A・・・第2のプロジェクションP2の初期の接合面
B・・・第1の被溶接物W1の上面
1・・・ベース部材
2・・・支持機構
3・・・加圧機構
4・・・可動ブロック
5・・・加圧補助部材
6・・・支持部材
7・・・上部溶接電極
8・・・下部溶接電極
9・・・L字形の中間接続部材
10・・・第1のフレキシブル導電部材
11・・・第2のフレキシブル導電部材
12、13・・・給電導体
14・・・溶接トランス
15・・・放電回路
16・・・エネルギー蓄積用コンデンサ
17・・・充電回路
18〜20・・・3相交流入力端子
W1 ... first workpiece (highly conductive workpiece)
W2 ... second workpiece P ... upper and lower two-stage projection P1 ... first projection P2 ... second projection Pa ... lattice part Pb ... island part X: outer peripheral groove formed around the first projection P1 Y: central hole formed in the center of the first projection P1 A: initial joint surface B of the second projection P2 ... Upper surface of first workpiece W1 1 ... Base member 2 ... Support mechanism 3 ... Pressure mechanism 4 ... Movable block 5 ... Pressurizing auxiliary member 6 ... Support Member 7 ... Upper welding electrode 8 ... Lower welding electrode 9 ... L-shaped intermediate connecting member 10 ... First flexible conductive member 11 ... Second flexible conductive member 12, 13, ...・ Feeding conductor 14 ... welding transformer 15 ... Discharge circuit 16 ... Capacitor for energy storage 17 ... Charging circuit 18-20 ... 3-phase AC input terminal

Claims (10)

溶接電流を通電することにより他の金属部材と抵抗溶接される高導電性被溶接物において、
前記高導電性被溶接物は、該高導電性被溶接物の接合面から突出する第1のプロジェクションと該第1のプロジェクションの接合面側の一部分から突出する第2のプロジェクションとからなる上下2段構造のプロジェクションを有することを特徴とする高導電性被溶接物。
In highly conductive workpieces that are resistance-welded to other metal members by passing a welding current,
The highly conductive work piece includes an upper and lower 2 formed of a first projection projecting from a joint surface of the highly conductive work piece and a second projection projecting from a part of the joint surface side of the first projection. A highly conductive workpiece having a stepped projection.
請求項1において、
前記第1のプロジェクションは任意の形状の小台座状又は小環状の突起であり、
前記第2のプロジェクションは、接合面側の面積が前記第1のプロジェクションよりも小さい1個以上の突起であることを特徴とする高導電性被溶接物。
In claim 1,
The first projection is a small pedestal-shaped or small annular projection of any shape,
The high-conductivity welding object, wherein the second projection is one or more protrusions having an area on the joint surface side smaller than that of the first projection.
請求項1又は請求項2において、
前記第2のプロジェクションの初期の接合面積は、所望の接合強度を得るのには小さいが、溶接時に印加される加圧力に対して圧潰し難い大きさであることを特徴とする高導電性被溶接物。
In claim 1 or claim 2,
The initial bonding area of the second projection is small in order to obtain a desired bonding strength, but is not easily crushed against the applied pressure applied during welding. Weldment.
請求項1ないし請求項3のいずれかにおいて、
前記第1のプロジェクションが中央部に中央孔を有する任意の環状の突起であるとき、前記中央孔は前記突起の高さよりも深いことを特徴とする高導電性被溶接物。
In any one of Claims 1 thru | or 3,
A highly conductive work piece characterized in that, when the first projection is an arbitrary annular protrusion having a central hole in a central portion, the central hole is deeper than the height of the protrusion.
請求項1ないし請求項4のいずれかにおいて、
前記第1のプロジェクションの周りに外周溝が形成されていることを特徴とする高導電性被溶接物。
In any one of Claim 1 thru | or 4,
A highly conductive object to be welded, wherein an outer peripheral groove is formed around the first projection.
高導電性被溶接物と他の金属部材との間に電流を流して抵抗溶接する高導電性被溶接物の抵抗溶接方法において、
前記高導電性被溶接物に上下2段構造のプロジェクションを形成する工程と、
前記高導電性被溶接物に形成されている前記上下2段構造のプロジェクションを前記他の金属部材に当接させる工程と、
互いに当接している前記高導電性被溶接物と前記他の金属部材とを、弾性力を含む加圧力で加圧した状態でパルス状溶接電流を通電する工程と、
を備えることを特徴とする高導電性被溶接物の抵抗溶接方法。
In a resistance welding method for a highly conductive workpiece to be resistance welded by passing a current between the highly conductive workpiece and another metal member,
Forming a projection with a two-stage structure on the highly conductive work piece;
Contacting the other metal member with the projection of the upper and lower two-stage structure formed on the highly conductive workpiece;
Applying a pulsed welding current in a state where the highly conductive work piece and the other metal member that are in contact with each other are pressurized with a pressure including elastic force;
A resistance welding method for a highly conductive workpiece, comprising:
請求項6において、
前記上下2段構造のプロジェクションを前記高導電性被溶接物に形成する工程が、前記高導電性被溶接物に第1のプロジェクションとなる突起を形成すると共に、該突起上に第2のプロジェクションとなる小突起を1個以上形成することからなることを特徴とする高導電性被溶接物の抵抗溶接方法。
In claim 6,
The step of forming the upper and lower two-stage projection on the highly conductive workpiece includes forming a projection as a first projection on the highly conductive workpiece, and a second projection on the projection. A method for resistance welding of a highly conductive workpiece, comprising forming one or more small protrusions.
請求項6又は請求項7において、
前記他の金属部材が、前記上下2段構造のプロジェクションが形成されていない銅材料又はアルミニウム材料からなる薄板であるとき、該薄材の板厚は2mm以下であることを特徴とする高導電性被溶接物の抵抗溶接方法。
In claim 6 or claim 7,
When the other metal member is a thin plate made of a copper material or an aluminum material on which the projection of the upper and lower two-stage structure is not formed, the thickness of the thin material is 2 mm or less. Resistance welding method for workpieces.
請求項6ないし請求項8のいずれかにおいて、
前記高導電性被溶接物は銅材料又はアルミニウム材料からなることを特徴とする高導電性被溶接物の抵抗溶接方法。
In any of claims 6 to 8,
The resistance welding method for a highly conductive workpiece, wherein the highly conductive workpiece is made of a copper material or an aluminum material.
請求項6ないし請求項9のいずれかにおいて、
前記パルス状溶接電流は、電流がピーク値までに立ち上がるのに要する時間が10ms以下であることを特徴とする高導電性被溶接物の抵抗溶接方法。
In any one of Claims 6 thru | or 9,
The pulse welding current has a time required for the current to rise to a peak value of 10 ms or less, and is a resistance welding method for a highly conductive workpiece.
JP2006159098A 2006-06-07 2006-06-07 Highly conductive workpiece and resistance welding method thereof Expired - Fee Related JP4825056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006159098A JP4825056B2 (en) 2006-06-07 2006-06-07 Highly conductive workpiece and resistance welding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006159098A JP4825056B2 (en) 2006-06-07 2006-06-07 Highly conductive workpiece and resistance welding method thereof

Publications (2)

Publication Number Publication Date
JP2007326125A true JP2007326125A (en) 2007-12-20
JP4825056B2 JP4825056B2 (en) 2011-11-30

Family

ID=38926975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006159098A Expired - Fee Related JP4825056B2 (en) 2006-06-07 2006-06-07 Highly conductive workpiece and resistance welding method thereof

Country Status (1)

Country Link
JP (1) JP4825056B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159907A1 (en) * 2014-04-17 2015-10-22 日本精工株式会社 Resistance welding device, resistance welding method, and protrusion shape for projection welding
WO2016129337A1 (en) * 2015-02-09 2016-08-18 オリジン電気株式会社 Method for manufacturing welded article and welded article
US20220010828A1 (en) * 2019-04-19 2022-01-13 Panasonic Intellectual Property Management Co., Ltd. Joining structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233076A (en) * 1985-07-31 1987-02-13 Kyocera Corp Fixing pin for ceramics sheet and fixing method using it
JPH0871766A (en) * 1994-09-09 1996-03-19 Origin Electric Co Ltd Projection welding method and projection forming device
JPH10128550A (en) * 1996-09-03 1998-05-19 Origin Electric Co Ltd Work to be welded, and its resistance welding method
JPH1133737A (en) * 1997-07-22 1999-02-09 Origin Electric Co Ltd Welding material and welding method thereof
JP2003503206A (en) * 1999-06-28 2003-01-28 ニューコール インク. Projection welding structure of aluminum sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233076A (en) * 1985-07-31 1987-02-13 Kyocera Corp Fixing pin for ceramics sheet and fixing method using it
JPH0871766A (en) * 1994-09-09 1996-03-19 Origin Electric Co Ltd Projection welding method and projection forming device
JPH10128550A (en) * 1996-09-03 1998-05-19 Origin Electric Co Ltd Work to be welded, and its resistance welding method
JPH1133737A (en) * 1997-07-22 1999-02-09 Origin Electric Co Ltd Welding material and welding method thereof
JP2003503206A (en) * 1999-06-28 2003-01-28 ニューコール インク. Projection welding structure of aluminum sheet

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106132623B (en) * 2014-04-17 2018-11-16 日本精工株式会社 The shape of welder and resistance welding method and the protrusion for protruding welding
US9937582B2 (en) 2014-04-17 2018-04-10 Nsk Ltd. Resistance welding device and resistance welding method
WO2015159907A1 (en) * 2014-04-17 2015-10-22 日本精工株式会社 Resistance welding device, resistance welding method, and protrusion shape for projection welding
CN106132623A (en) * 2014-04-17 2016-11-16 日本精工株式会社 Welder and method for resistance welding and for protruding the shape of the projection of welding
JP6065157B2 (en) * 2014-04-17 2017-01-25 日本精工株式会社 Resistance welding apparatus, resistance welding method, and projection shape for projection welding
JPWO2015159907A1 (en) * 2014-04-17 2017-04-13 日本精工株式会社 Resistance welding apparatus, resistance welding method, and projection shape for projection welding
CN107405716B (en) * 2015-02-09 2018-09-18 欧利生电气株式会社 Weld the manufacturing method and welding article of article
WO2016129337A1 (en) * 2015-02-09 2016-08-18 オリジン電気株式会社 Method for manufacturing welded article and welded article
CN107405716A (en) * 2015-02-09 2017-11-28 欧利生电气株式会社 Weld the manufacture method and welding article of article
JP5993110B1 (en) * 2015-02-09 2016-09-14 オリジン電気株式会社 Method for manufacturing welded article and welded article
KR101920588B1 (en) * 2015-02-09 2018-11-20 오리진 일렉트릭 캄파니 리미티드 METHOD OF MANUFACTURING WELDED GOODS
EP3257614A4 (en) * 2015-02-09 2019-01-23 Origin Electric Company, Limited Method for manufacturing welded article and welded article
US10369654B2 (en) 2015-02-09 2019-08-06 Origin Company, Limited Welded article and method for manufacturing welded article
US20190299323A1 (en) * 2015-02-09 2019-10-03 Origin Electric Company, Limited Welded article and method for manufacturing welded article
US20220010828A1 (en) * 2019-04-19 2022-01-13 Panasonic Intellectual Property Management Co., Ltd. Joining structure

Also Published As

Publication number Publication date
JP4825056B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP5064688B2 (en) Resistance welding equipment
US10532420B2 (en) Resistance spot welding of copper workpieces
CN101234453A (en) Projection weld and method for creating the same
KR20170045337A (en) Arc spot welding method and welding device for performing same
JP4825056B2 (en) Highly conductive workpiece and resistance welding method thereof
JP2019136748A (en) Resistance spot welding method
KR20180120910A (en) Apparatus and Method for Hybrid-Jointing of stacked metal plates
JP4550086B2 (en) Projection welding method for highly conductive workpieces
JP4757651B2 (en) Resistance welding method for highly conductive metal materials
JP7353329B2 (en) Welding device and method for friction stir welding and resistance welding
JP6094079B2 (en) Resistance spot welding method
JP2023013803A (en) Joining device and joining method for friction stir joining and resistance welding
JP4940334B2 (en) Projection welding method for highly conductive workpieces
JP2013078806A (en) Resistance spot welding method
JP5040269B2 (en) Laser welding method
JP3647577B2 (en) Workpiece and resistance welding method thereof
JP5491093B2 (en) Resistance welding equipment
JP4994982B2 (en) Diffusion bonding method for copper thin-walled pipe
JP5037102B2 (en) Diffusion bonding method for highly conductive workpieces
JP2009193928A (en) Connecting method and connecting structure of electric component, and power conversion device using the connection structure
JP6060579B2 (en) Resistance spot welding method
JP5906618B2 (en) Resistance spot welding method
JP4785768B2 (en) Highly conductive object and diffusion bonding method thereof
JPH1133737A (en) Welding material and welding method thereof
JP5094948B2 (en) Resistance welding method for highly conductive metal materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080910

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees