JP2007322891A - Method and apparatus for manufacturing cold mirror - Google Patents

Method and apparatus for manufacturing cold mirror Download PDF

Info

Publication number
JP2007322891A
JP2007322891A JP2006154862A JP2006154862A JP2007322891A JP 2007322891 A JP2007322891 A JP 2007322891A JP 2006154862 A JP2006154862 A JP 2006154862A JP 2006154862 A JP2006154862 A JP 2006154862A JP 2007322891 A JP2007322891 A JP 2007322891A
Authority
JP
Japan
Prior art keywords
sputtering
manufacturing
cold mirror
film
film formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006154862A
Other languages
Japanese (ja)
Other versions
JP5075361B2 (en
Inventor
Hidenori Ito
秀則 伊藤
Yoshio Ide
由夫 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2006154862A priority Critical patent/JP5075361B2/en
Publication of JP2007322891A publication Critical patent/JP2007322891A/en
Application granted granted Critical
Publication of JP5075361B2 publication Critical patent/JP5075361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Filters (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for manufacturing a cold mirror having excellent illuminance, heat resistance and durability and facilitating the control of vapor deposition rate and film thickness. <P>SOLUTION: The cold mirror is manufactured by sputtering two or more kinds of sputtering materials each having different refractive index respectively in a separated film deposition zone while introducing oxidation reactive gas and a sputtering gas to deposit oxide films each having different refractive index on the surface of a processed material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、反応性スパッタリングによる高照度、高耐熱性及び高耐久性のコールドミラーの製造方法及びその製造装置に関する。   The present invention relates to a method of manufacturing a cold mirror having high illuminance, high heat resistance, and high durability by reactive sputtering and a manufacturing apparatus thereof.

液晶プロジェクター等の映像機器や医療機器に使用されるコールドミラー(例えば、特許文献1参照)は、熱を持ちすぎないようにするために、赤外領域の波長を透過させ、可視領域の波長を反射させることができるように構成される。
このコールドミラーは、被加工物の表面に、例えば、SiO2の低屈折率の酸化膜と、Nb25の高屈折率の酸化膜とを交互に形成することにより得られる。前記酸化膜の形成には、真空蒸着により行われるのが一般的である。
しかしながら、真空蒸着により酸化膜を形成してコールドミラーを製造すると、照度が低く、耐熱性及び耐久性が低くなるということがわかった。また、酸化膜の形成過程において、蒸着レートの制御が困難であり、交互に形成される酸化膜の膜厚の制御が容易でないという問題があった。
Cold mirrors used in video equipment such as liquid crystal projectors and medical equipment (see, for example, Patent Document 1) transmit wavelengths in the infrared region and reduce wavelengths in the visible region so as not to have too much heat. It is configured so that it can be reflected.
This cold mirror is obtained by alternately forming, for example, an oxide film having a low refractive index of SiO 2 and an oxide film having a high refractive index of Nb 2 O 5 on the surface of the workpiece. The oxide film is generally formed by vacuum deposition.
However, it has been found that when a cold mirror is manufactured by forming an oxide film by vacuum deposition, the illuminance is low and the heat resistance and durability are low. In addition, in the process of forming the oxide film, it is difficult to control the deposition rate, and there is a problem that it is not easy to control the thickness of the oxide film formed alternately.

特開2000−195332号公報JP 2000-195332 A

そこで、本発明は、照度、耐熱性及び耐久性に優れ、蒸着レート及び膜厚の制御が容易なコールドミラー製造方法及びその製造装置を提供することを目的とする。   Then, an object of this invention is to provide the cold mirror manufacturing method and its manufacturing apparatus which are excellent in illumination intensity, heat resistance, and durability, and are easy to control a vapor deposition rate and a film thickness.

上記課題を解決するために、本発明者等は、鋭意検討の結果、反応性スパッタリングにより、コールドミラーの酸化膜を形成することにより、照度、耐熱性及び耐久性において優れ、しかも、膜厚の制御が容易であるという知見に基づき、下記の通り解決手段を見いだした。
即ち、本発明のコールドミラーの製造方法は、請求項1に記載の通り、酸化反応性ガスとスパッタリングガスを導入しながら、屈折率が異なる2種以上のスパッタリング材料を、別々の成膜ゾーンでスパッタリングすることにより、被加工物の表面に屈折率の異なる酸化膜を成膜してコールドミラーとすることを特徴とする。
また、本発明のコールドミラーの製造方法は、請求項2に記載の通り、酸化反応性ガスとスパッタリングガスを導入しながら、屈折率が異なる2種以上のスパッタリング材料を、交互にスパッタリングすることにより、被加工物の表面に屈折率の異なる酸化膜を交互に成膜してコールドミラーとすることを特徴とする。
また、請求項3に記載の本発明は、請求項1又は2に記載のコールドミラーの製造方法において、前記スパッタリング材料のうち、一つの材料の屈折率は2以上であり、他の何れか一つの材料の屈折率は1.5以下であることを特徴とする。
また、請求項4に記載の本発明は、請求項1に記載のコールドミラーの製造方法において、前記各成膜ゾーンにおいて、同種のスパッタリング材料を偶数枚配設し、前記同種のスパッタリング材料間に100V〜800Vの範囲内で、且つ、20kHz〜100kHzの範囲内で電圧を交番して印加することを特徴とする。
また、請求項5に記載の本発明は、請求項1乃至4の何れかに記載のコールドミラーの製造方法において、前記屈折率の異なる2種以上の材料間で、一つの材料に対して、スパッタリングを行う間、残りの材料に対して、前記電圧を印加しないことを特徴とする。
また、請求項6に記載の本発明は、請求項1乃至5の何れかに記載のコールドミラーの製造方法において、前記スパッタリング材料を切り替える際に、前記被加工物の周囲から前記酸化反応性ガスと前記スパッタリングガスとを排気することを特徴とする。
また、請求項7に記載の本発明は、請求項1乃至6の何れかに記載のコールドミラーの製造方法において、前記スパッタリングは、マグネトロンスパッタリングであることを特徴とする。
また、本発明のコールドミラーの製造装置は、請求項8に記載の通り、被加工物をその周面に保持可能な回転ドラムを備え、前記回転ドラムに保持された被加工物に対して酸化膜を形成してコールドミラーを製造するための製造装置であって、前記回転ドラムの周方向に第1の成膜ゾーンと第2の成膜ゾーンとを配置し、前記各成膜ゾーンに同種のスパッタリング材料を偶数枚配置できるようにし、前記偶数枚配置されたスパッタリング材料間に所定の電圧範囲内で正電位と負電位を、所定の周波数で交番して印加できるように構成したことを特徴とする。
また、請求項9に記載の本発明は、請求項8に記載のコールドミラーの製造装置において、前記各成膜ゾーンにおいて、前記回転ドラムと前記スパッタリング材料との間にシャッターを設け、一方の前記成膜ゾーンにおいて成膜している間、前記シャッターは、他方の前記成膜ゾーンにおける前記回転ドラムと前記スパッタリング材料との間に移動可能に構成したことを特徴とする。
In order to solve the above-mentioned problems, the present inventors, as a result of intensive studies, formed an oxide film of a cold mirror by reactive sputtering, thereby being excellent in illuminance, heat resistance and durability, and having a film thickness. Based on the knowledge that control is easy, we have found a solution as follows.
That is, according to the method for manufacturing a cold mirror of the present invention, two or more kinds of sputtering materials having different refractive indexes are introduced in different film formation zones while introducing an oxidation reactive gas and a sputtering gas. By sputtering, an oxide film having a different refractive index is formed on the surface of the workpiece to form a cold mirror.
Moreover, the manufacturing method of the cold mirror of this invention is carrying out sputtering of two or more types of sputtering materials from which a refractive index differs alternately, introducing an oxidation reactive gas and sputtering gas as described in Claim 2. A feature of the invention is that a cold mirror is formed by alternately forming oxide films having different refractive indexes on the surface of a workpiece.
Further, according to a third aspect of the present invention, in the method of manufacturing a cold mirror according to the first or second aspect, one of the sputtering materials has a refractive index of 2 or more, and any one of the other. One material has a refractive index of 1.5 or less.
According to a fourth aspect of the present invention, in the method for manufacturing a cold mirror according to the first aspect, an even number of the same kind of sputtering material is disposed in each of the film formation zones, and the same kind of the sputtering material is disposed. A voltage is alternately applied within a range of 100 V to 800 V and within a range of 20 kHz to 100 kHz.
Further, the present invention according to claim 5 is the method for manufacturing a cold mirror according to any one of claims 1 to 4, wherein one material is between two or more materials having different refractive indexes. During the sputtering, the voltage is not applied to the remaining material.
Further, according to a sixth aspect of the present invention, in the method for manufacturing a cold mirror according to any one of the first to fifth aspects, the oxidation reactive gas is generated from around the workpiece when the sputtering material is switched. And the sputtering gas are exhausted.
Further, according to a seventh aspect of the present invention, in the method for manufacturing a cold mirror according to the first to sixth aspects, the sputtering is magnetron sputtering.
The cold mirror manufacturing apparatus according to the present invention includes a rotating drum capable of holding a workpiece on its peripheral surface, and oxidizes the workpiece held on the rotating drum. A manufacturing apparatus for manufacturing a cold mirror by forming a film, wherein a first film formation zone and a second film formation zone are arranged in a circumferential direction of the rotating drum, and the same kind of film is formed in each film formation zone. An even number of sputtering materials can be arranged, and a positive potential and a negative potential can be alternately applied at a predetermined frequency within a predetermined voltage range between the even number of sputtering materials. And
Further, according to a ninth aspect of the present invention, in the cold mirror manufacturing apparatus according to the eighth aspect, in each of the film formation zones, a shutter is provided between the rotating drum and the sputtering material. During film formation in the film formation zone, the shutter is configured to be movable between the rotating drum and the sputtering material in the other film formation zone.

本発明の製造方法及び製造装置によれば、照度を真空蒸着に比べて3〜5%向上させることができる。また、真空蒸着に比べて酸化膜の酸化が充分に行われるので、高耐久性の製品が得られる。また、交番して電圧を印加することにより、酸化反応ガスが存在しても異常放電なしにスパッタすることができる。更に、この膜厚制御は、各材料に対してスパッタリングの時間を制御するだけでよいため極めて容易となる。
また、本発明の製造方法において、一方の材料により、スパッタリングを行う間、他方の材料に電圧を印加しないようにした場合には、スパッタリングを行わない材料の減少を防ぐことができる。また、消費電力も抑えることができる。
また、本発明の製造方法において、スパッタリング材料を切り替える際に、酸化反応性ガスとスパッタリングガスとを排気することにより、異なるガス条件のスパッタリング材料を使用する場合でも安定に成膜することができる。
According to the manufacturing method and the manufacturing apparatus of the present invention, the illuminance can be improved by 3 to 5% as compared with vacuum deposition. Further, since the oxide film is sufficiently oxidized as compared with vacuum deposition, a highly durable product can be obtained. Further, by alternately applying a voltage, sputtering can be performed without abnormal discharge even in the presence of an oxidation reaction gas. Furthermore, this film thickness control is extremely easy because it is only necessary to control the sputtering time for each material.
Moreover, in the manufacturing method of this invention, when it is made not to apply a voltage to the other material during sputtering with one material, the reduction | decrease of the material which does not perform sputtering can be prevented. In addition, power consumption can be suppressed.
Further, in the manufacturing method of the present invention, when the sputtering material is switched, the oxidation reactive gas and the sputtering gas are exhausted, so that the film can be stably formed even when the sputtering material under different gas conditions is used.

次に、本発明の製造装置の一実施の形態について図1を参照して説明する。尚、本発明は、本実施の形態について制限されるものではない。
図示した製造装置は、マグネトロンスパッタリング方式を採用するもので、真空チャンバー1の内には、被加工物に成膜を行うための2つの成膜ゾーンと、真空排気時及びスパッター中に被加工物(図示せず。)を加熱するためのハロゲンヒータ(図示せず)が設けられている。
真空チャンバー1は、バルブ4を介して排気部に連通されている。この排気部には、真空チャンバー1内を粗引きするための、メカニカルブースターポンプ8及びロータリーポンプ9と、本引き(高真空化)するためのターボ分子ポンプ15、メカニカルブースターポンプ5及びロータリーポンプ6が設けられる。また、排気部には、コンダクタンスバルブ7が設けられ、これを介して酸化反応性ガスが排気される。
Next, an embodiment of the manufacturing apparatus of the present invention will be described with reference to FIG. The present invention is not limited to the present embodiment.
The illustrated manufacturing apparatus employs a magnetron sputtering method, and in the vacuum chamber 1, there are two deposition zones for forming a film on the workpiece, and the workpiece during vacuum evacuation and sputtering. A halogen heater (not shown) for heating (not shown) is provided.
The vacuum chamber 1 communicates with the exhaust part via the valve 4. The exhaust section includes a mechanical booster pump 8 and a rotary pump 9 for roughing the inside of the vacuum chamber 1, a turbo molecular pump 15, a mechanical booster pump 5, and a rotary pump 6 for main pulling (high vacuum). Is provided. Further, a conductance valve 7 is provided in the exhaust part, and the oxidation reactive gas is exhausted through the conductance valve 7.

各成膜ゾーンには、第1の成膜装置2と第2の成膜装置3が配置される。各成膜装置2、3は、スパッタリング材料12、13が回転ドラム10の周面に対向して配置できるように構成される。また、図示されるものでは、各スパッタリング材料12、13は、同種の板材を2枚隣接することにより構成される。そして、第1の成膜装置2と第2の成膜装置3の何れもが、各2枚の材料に対して、所定の周波数で所定の電位の電圧が交互に印加できるように構成される。   In each film forming zone, a first film forming apparatus 2 and a second film forming apparatus 3 are arranged. Each of the film forming apparatuses 2 and 3 is configured such that the sputtering materials 12 and 13 can be arranged to face the peripheral surface of the rotating drum 10. Further, in the illustrated example, each of the sputtering materials 12 and 13 is configured by adjoining two same-type plate materials. Each of the first film forming apparatus 2 and the second film forming apparatus 3 is configured such that a voltage having a predetermined potential can be alternately applied to each of the two materials at a predetermined frequency. .

回転ドラム10と、第1の成膜装置2及び第2の成膜装置3との間には、回転ドラム10の外周形状に沿うようにして形成された円弧状のシャッター14が、一方の成膜装置による成膜の際に、他方の成膜装置と回転ドラム10との間に移動できるように設けられている。   Between the rotating drum 10 and the first film forming apparatus 2 and the second film forming apparatus 3, an arcuate shutter 14 formed along the outer peripheral shape of the rotating drum 10 is provided on one side. It is provided so that it can move between the other film forming apparatus and the rotating drum 10 during film formation by the film apparatus.

上記構成の製造装置を使用して、以下にコールドミラーの製造方法について説明する。
まず、バルブ4を閉じた状態で、メカニカルブースターポンプ8及びロータリーポンプ9により、真空チャンバー1内を20Paまで減圧する。その後、バルブ4を開けてターボ分子ポンプ15で4×10-3まで減圧を行う。被加工物にパーティクルが付着しないように、スパッタリングを行う成膜装置2又は3の前にシャッター14を移動させる。そして、ハロゲンヒータにより被加工物を、その温度が200℃〜300℃になるまで加熱し、回転ドラム10を所定の回転速度で回転させる。
次に、真空チャンバー1内に、スパッタリングガスと酸化反応性ガスを所定の流量で導入し、第1の成膜装置2の放電を5kWから徐々に上昇させて規定の電圧に安定するまで、所定の時間シャッター14に向かってプレスパッターを行う。その後、スパッタリング材料12の成膜レートに基づいて成膜を行う。尚、第1の成膜装置2により成膜をしている間、シャッター14は第2の成膜装置3の前に移動させるようにすることが好ましい。第2の成膜装置3でのプレスパッタを速やかに行うことができ、また、第2の成膜装置3に電圧が印加されていても成膜されないからである。
A method for manufacturing a cold mirror will be described below using the manufacturing apparatus having the above configuration.
First, the vacuum chamber 1 is depressurized to 20 Pa by the mechanical booster pump 8 and the rotary pump 9 with the valve 4 closed. Thereafter, the valve 4 is opened and the pressure is reduced to 4 × 10 −3 by the turbo molecular pump 15. The shutter 14 is moved in front of the film forming apparatus 2 or 3 that performs sputtering so that particles do not adhere to the workpiece. Then, the workpiece is heated by the halogen heater until the temperature reaches 200 ° C. to 300 ° C., and the rotary drum 10 is rotated at a predetermined rotation speed.
Next, a sputtering gas and an oxidation reactive gas are introduced into the vacuum chamber 1 at a predetermined flow rate, and the discharge of the first film forming apparatus 2 is gradually increased from 5 kW until the voltage is stabilized to a predetermined voltage. Pre-sputtering is performed toward the shutter 14 for a period of time. Thereafter, film formation is performed based on the film formation rate of the sputtering material 12. It should be noted that the shutter 14 is preferably moved in front of the second film forming apparatus 3 while the first film forming apparatus 2 is forming a film. This is because the pre-sputtering in the second film forming apparatus 3 can be performed quickly, and no film is formed even when a voltage is applied to the second film forming apparatus 3.

次に、シャッター14を第1の成膜装置2の前に移動させ、同様にして、第2の成膜装置3により成膜を行う。その際、第1の成膜装置2のスパッタリング材料12への電圧を0とすることが好ましい。成膜装置の切り替え時にスパッタリング材料への電圧の印加をしないことにより、成膜をしていない側のスパッタリング材料が減少することを防ぎ、省電力化を図ることができるからである。
上記第1の成膜装置2による成膜と、第2の成膜装置3による成膜を繰り返し、被加工物に、酸化膜を交互に形成する。
Next, the shutter 14 is moved in front of the first film formation apparatus 2, and film formation is performed by the second film formation apparatus 3 in the same manner. At that time, the voltage to the sputtering material 12 of the first film forming apparatus 2 is preferably set to zero. This is because by not applying a voltage to the sputtering material at the time of switching the film forming apparatus, it is possible to prevent a reduction in the sputtering material on the side where no film is formed and to save power.
The film formation by the first film formation apparatus 2 and the film formation by the second film formation apparatus 3 are repeated, and oxide films are alternately formed on the workpiece.

上記装置による成膜は、直流の電圧を使用することも可能である。
同種の材料を偶数枚用意して、これらの間に100V〜800Vの範囲で正電位と負電位を、20kHz〜100kHzの範囲の電位の電圧を交番して印加することにより成膜を行うことが好ましい。アーク放電が生じにくくなり、安定した成膜を行うことができるからである。
The film formation by the above apparatus can also use a DC voltage.
An even number of the same type of material is prepared, and a film is formed by applying a positive potential and a negative potential in the range of 100 V to 800 V alternately and a voltage in the range of 20 kHz to 100 kHz alternately between them. preferable. This is because arc discharge hardly occurs and stable film formation can be performed.

以上により、コールドミラーを製造したが、その他の条件について説明する。
本発明のコールドミラーの基材となる被加工物については、石英やガラス、或いは、PET、ポリカーボネート、アクリル等の樹脂等を使用できるが、本発明の方法により酸化膜を形成できるものであれば特に制限するものではない。
Although the cold mirror was manufactured by the above, other conditions are demonstrated.
For the workpiece to be the base material of the cold mirror of the present invention, quartz, glass, or resin such as PET, polycarbonate, acrylic, etc. can be used as long as an oxide film can be formed by the method of the present invention. There is no particular limitation.

また、本発明において、屈折率が異なる2種以上の材料により酸化膜を形成するものであるが、これらの材料の中でも屈折率が2以上の材料により構成された材料と、屈折率が1.5以下の材料から構成された低屈折率材料とを使用することが好ましい。その例を挙げると、前者にはNbやTi、後者にはSi等がある。尚、被加工物には、最初に低屈折率材料のSiO2等酸化膜を30nm以上形成することが好ましい。基材との密着力が高くなり、剥離を防ぐことができるからである。 In the present invention, the oxide film is formed of two or more materials having different refractive indexes. Among these materials, a material composed of a material having a refractive index of 2 or more and a refractive index of 1. It is preferable to use a low refractive index material composed of 5 or less materials. For example, the former includes Nb and Ti, and the latter includes Si. Note that it is preferable to first form an oxide film such as SiO 2 of a low refractive index material on the workpiece at 30 nm or more. This is because the adhesion to the base material is increased and peeling can be prevented.

次に、上記実施の形態で説明した製造装置を使用して、コールドミラーの製造方法の一実施例について説明する。
被加工物は、ガラス製の底部開口を備える碗状の部材を使用した。第1の成膜装置2のスパッタリング材料として、Si板を2枚使用し、第2の成膜装置3のスパッタリング材料として、Nb板を2枚使用した。
まず、被加工物を、回転ドラム10の支持部材11に設け、回転ドラム10を回転速度60rpmで回転させ、真空チャンバー1内を、250℃になるようにハロゲンヒータで加熱し、真空チャンバー1内の圧力が4.0×10-3になるまで排気したところで、加熱をやめ、下記表1に示す成膜条件で、第1の成膜装置2、第2の成膜装置3を使用して、SiO2及びTiO2膜を交互に積層して、図2に示す膜構成のコールドミラーを得た。尚、図2中の層数は、被加工物側を第1層として、合計27層積層したものであることを示している。
Next, an example of a method for manufacturing a cold mirror will be described using the manufacturing apparatus described in the above embodiment.
The workpiece used was a bowl-shaped member having a glass bottom opening. As the sputtering material of the first film forming apparatus 2, two Si plates were used, and as the sputtering material of the second film forming apparatus 3, two Nb plates were used.
First, the workpiece is provided on the support member 11 of the rotary drum 10, the rotary drum 10 is rotated at a rotation speed of 60 rpm, and the inside of the vacuum chamber 1 is heated with a halogen heater so as to be 250 ° C. When the pressure is exhausted to 4.0 × 10 −3 , the heating is stopped and the first film formation apparatus 2 and the second film formation apparatus 3 are used under the film formation conditions shown in Table 1 below. , SiO 2 and TiO 2 films were alternately laminated to obtain a cold mirror having the film configuration shown in FIG. The number of layers in FIG. 2 indicates that a total of 27 layers are laminated with the workpiece side as the first layer.

上記説明した条件で、サンプルを3個作製し、得られたコールドミラーの波長と透過率の関係を図3に示す。
図3から本実施例により得られたコールドミラーは、赤外域の波長を90%以上透過でき、可視領域の波長を90%〜100%反射させることができることがわかる。
Three samples were produced under the conditions described above, and the relationship between the wavelength and transmittance of the obtained cold mirror is shown in FIG.
It can be seen from FIG. 3 that the cold mirror obtained by this example can transmit infrared wavelengths of 90% or more and reflect visible wavelengths of 90% to 100%.

本発明の一実施の形態の製造装置を説明するための上部断面図Sectional drawing for demonstrating the manufacturing apparatus of one embodiment of this invention 本発明の一実施例のコールドミラーの膜厚の説明図Explanatory drawing of the film thickness of the cold mirror of one Example of this invention 同実施例の波長と透過率の関係を示すグラフThe graph which shows the relationship between the wavelength and the transmittance | permeability of the Example

符号の説明Explanation of symbols

1 真空チャンバー
2 第1の成膜装置
3 第2の成膜装置
4 バルブ
5 メカニカルブースターポンプ
6 ロータリーポンプ
7 コンダクタンスバルブ
8 メカニカルブースターポンプ
9 ロータリーポンプ
10 回転ドラム
12 スパッタリング材料
13 スパッタリング材料
14 シャッター
15 ターボ分子ポンプ
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 1st film-forming apparatus 3 2nd film-forming apparatus 4 Valve 5 Mechanical booster pump 6 Rotary pump 7 Conductance valve 8 Mechanical booster pump 9 Rotary pump 10 Rotating drum 12 Sputtering material 13 Sputtering material 14 Shutter 15 Turbo molecule pump

Claims (9)

酸化反応性ガスとスパッタリングガスを導入しながら、屈折率が異なる2種以上のスパッタリング材料を、別々の成膜ゾーンでスパッタリングすることにより、被加工物の表面に屈折率の異なる酸化膜を成膜してコールドミラーとすることを特徴とするコールドミラーの製造方法。   Sputtering two or more types of sputtering materials with different refractive indexes while introducing an oxidation reactive gas and a sputtering gas in different deposition zones, thereby forming oxide films with different refractive indexes on the surface of the workpiece. And manufacturing a cold mirror. 酸化反応性ガスとスパッタリングガスを導入しながら、屈折率が異なる2種以上のスパッタリング材料を、交互にスパッタリングすることにより、被加工物の表面に屈折率の異なる酸化膜を交互に成膜してコールドミラーとすることを特徴とするコールドミラーの製造方法。   While introducing an oxidation reactive gas and a sputtering gas, two or more types of sputtering materials having different refractive indexes are alternately sputtered, whereby oxide films having different refractive indexes are alternately formed on the surface of the workpiece. A method of manufacturing a cold mirror, characterized by being a cold mirror. 前記スパッタリング材料のうち、一つの材料の屈折率は2以上であり、他の何れか一つの材料の屈折率は1.5以下であることを特徴とする請求項1又は2に記載のコールドミラーの製造方法。   3. The cold mirror according to claim 1, wherein one of the sputtering materials has a refractive index of 2 or more, and any one of the other materials has a refractive index of 1.5 or less. Manufacturing method. 前記各成膜ゾーンにおいて、同種のスパッタリング材料を偶数枚配設し、前記同種のスパッタリング材料間に100V〜800Vの範囲内で、且つ、20kHz〜100kHzの範囲内で電圧を交番して印加することを特徴とする請求項1に記載のコールドミラーの製造方法。   In each of the film forming zones, an even number of the same type of sputtering material is arranged, and a voltage is alternately applied between the same type of sputtering material within a range of 100 V to 800 V and within a range of 20 kHz to 100 kHz. The manufacturing method of the cold mirror of Claim 1 characterized by these. 前記屈折率の異なる2種以上の材料間で、一つの材料に対して、スパッタリングを行う間、残りの材料に対して、前記電圧を印加しないことを特徴とする請求項1乃至4の何れかに記載のコールドミラーの製造方法。   5. The device according to claim 1, wherein during the sputtering of one material between two or more materials having different refractive indexes, the voltage is not applied to the remaining material. 6. The manufacturing method of the cold mirror described in 2. 前記スパッタリング材料を切り替える際に、前記被加工物の周囲から前記酸化反応性ガスと前記スパッタリングガスとを排気することを特徴とする請求項1乃至5の何れかに記載のコールドミラーの製造方法。   6. The method of manufacturing a cold mirror according to claim 1, wherein when the sputtering material is switched, the oxidation reactive gas and the sputtering gas are exhausted from the periphery of the workpiece. 前記スパッタリングは、マグネトロンスパッタリングであることを特徴とする請求項1乃至6の何れかに記載のコールドミラーの製造方法。   The method of manufacturing a cold mirror according to claim 1, wherein the sputtering is magnetron sputtering. 被加工物をその周面に保持可能な回転ドラムを備え、前記回転ドラムに保持された被加工物に対して酸化膜を形成してコールドミラーを製造するための製造装置であって、前記回転ドラムの周方向に第1の成膜ゾーンと第2の成膜ゾーンとを配置し、前記各成膜ゾーンに同種のスパッタリング材料を偶数枚配置できるようにし、前記偶数枚配置されたスパッタリング材料間に所定の電圧範囲内で正電位と負電位を、所定の周波数で交番して印加できるように構成したことを特徴とするコールドミラーの製造装置。   A manufacturing apparatus for manufacturing a cold mirror by forming an oxide film on a workpiece held on the rotating drum, the rotating drum having a rotating drum capable of holding the workpiece on a peripheral surface thereof, A first film formation zone and a second film formation zone are arranged in the circumferential direction of the drum so that an even number of the same kind of sputtering material can be arranged in each film formation zone, and between the even number of sputtering materials arranged An apparatus for manufacturing a cold mirror, wherein a positive potential and a negative potential can be alternately applied at a predetermined frequency within a predetermined voltage range. 前記各成膜ゾーンにおいて、前記回転ドラムと前記スパッタリング材料との間にシャッターを設け、一方の前記成膜ゾーンにおいて成膜している間、前記シャッターは、他方の前記成膜ゾーンにおける前記回転ドラムと前記スパッタリング材料との間に移動可能に構成したことを特徴とする請求項8に記載のコールドミラーの製造装置。   In each of the film formation zones, a shutter is provided between the rotary drum and the sputtering material, and while the film is formed in one of the film formation zones, the shutter is connected to the rotary drum in the other film formation zone. The apparatus for manufacturing a cold mirror according to claim 8, wherein the apparatus is movable between the sputtering material and the sputtering material.
JP2006154862A 2006-06-02 2006-06-02 Cold mirror manufacturing method and manufacturing apparatus thereof Active JP5075361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006154862A JP5075361B2 (en) 2006-06-02 2006-06-02 Cold mirror manufacturing method and manufacturing apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006154862A JP5075361B2 (en) 2006-06-02 2006-06-02 Cold mirror manufacturing method and manufacturing apparatus thereof

Publications (2)

Publication Number Publication Date
JP2007322891A true JP2007322891A (en) 2007-12-13
JP5075361B2 JP5075361B2 (en) 2012-11-21

Family

ID=38855738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006154862A Active JP5075361B2 (en) 2006-06-02 2006-06-02 Cold mirror manufacturing method and manufacturing apparatus thereof

Country Status (1)

Country Link
JP (1) JP5075361B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192919A (en) * 2008-02-15 2009-08-27 Agc Techno Glass Co Ltd Glass member with optical multilayer film and method of manufacturing the same
WO2016015746A1 (en) * 2014-07-28 2016-02-04 Osram Opto Semiconductors Gmbh Dbr mirror and optoelectronic component having a dbr mirror

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127464A (en) * 1985-11-26 1987-06-09 Nec Corp Sputtering device
JPH02103002A (en) * 1988-10-12 1990-04-16 Nippon Sheet Glass Co Ltd Wear resistant optical filter
JPH0445265A (en) * 1990-06-11 1992-02-14 Matsushita Electric Ind Co Ltd Sputtering system
JPH04295801A (en) * 1990-12-19 1992-10-20 Gte Prod Corp Dichroic coating having controlled heat reflection
JPH05148644A (en) * 1991-11-26 1993-06-15 Asahi Glass Co Ltd Sputtering apparatus
JP2000269568A (en) * 1999-03-17 2000-09-29 Fujitsu Ltd Manufacture of magnetoresistance effect device
JP2003193230A (en) * 2001-12-25 2003-07-09 Sanyo Shinku Kogyo Kk Method and apparatus for depositing thin film of oxide or the like
JP2004250784A (en) * 2003-01-29 2004-09-09 Asahi Glass Co Ltd Sputtering system, mixed film produced by the system, and multilayer film including the mixed film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127464A (en) * 1985-11-26 1987-06-09 Nec Corp Sputtering device
JPH02103002A (en) * 1988-10-12 1990-04-16 Nippon Sheet Glass Co Ltd Wear resistant optical filter
JPH0445265A (en) * 1990-06-11 1992-02-14 Matsushita Electric Ind Co Ltd Sputtering system
JPH04295801A (en) * 1990-12-19 1992-10-20 Gte Prod Corp Dichroic coating having controlled heat reflection
JPH05148644A (en) * 1991-11-26 1993-06-15 Asahi Glass Co Ltd Sputtering apparatus
JP2000269568A (en) * 1999-03-17 2000-09-29 Fujitsu Ltd Manufacture of magnetoresistance effect device
JP2003193230A (en) * 2001-12-25 2003-07-09 Sanyo Shinku Kogyo Kk Method and apparatus for depositing thin film of oxide or the like
JP2004250784A (en) * 2003-01-29 2004-09-09 Asahi Glass Co Ltd Sputtering system, mixed film produced by the system, and multilayer film including the mixed film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192919A (en) * 2008-02-15 2009-08-27 Agc Techno Glass Co Ltd Glass member with optical multilayer film and method of manufacturing the same
WO2016015746A1 (en) * 2014-07-28 2016-02-04 Osram Opto Semiconductors Gmbh Dbr mirror and optoelectronic component having a dbr mirror

Also Published As

Publication number Publication date
JP5075361B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
TWI703231B (en) Preparation method of high refractive index hydrogenated silicon film, high refractive index hydrogenated silicon film, optical filter stack and optical filter
JP4268938B2 (en) Layer and layer system and method for producing a coated substrate
JP3808917B2 (en) Thin film manufacturing method and thin film
JP5647924B2 (en) Manufacturing method of optical member
WO1997037051A1 (en) Method of manufacturing substrate with thin film, and manufacturing apparatus
CN110129749A (en) Gradient color coated basal plate and preparation method thereof, film coating jig
JP5194427B2 (en) Photocatalytic tungsten oxide thin film
JP5075361B2 (en) Cold mirror manufacturing method and manufacturing apparatus thereof
KR20060003890A (en) Method for producing silicon oxide film and method for producing optical multilayer film
TWI668862B (en) Sic part for semiconductor manufacturing comprising different transmittance multilayer and method of manufacturing the same
JP2008003390A (en) Antireflection film and optical filter
US8637148B2 (en) Coated article and method of making the same
CN104233235B (en) The method and its equipment of optical film are formed on workpiece
JP2007270279A (en) Sputtering film deposition method and antireflection film
JP5667896B2 (en) Anti-fingerprint decorative film and method for producing anti-fingerprint decorative film
JP7162867B2 (en) ND filter and its manufacturing method
US20120114950A1 (en) Coated article and method of making the same
JP2011102436A (en) Thin film deposition method and thin film deposition system
JP2006124767A (en) Sputtering method and sputtering system
JP2008217845A (en) Stamper, its manufacturing method, mold body, its molding method, and optical information recording medium
JP4895897B2 (en) Thin film structure and manufacturing method thereof
JP4678996B2 (en) Dielectric film forming method and film forming apparatus
JP7378114B2 (en) ND filter
JP2022036766A (en) Nd filter and manufacturing method for nd filter
JP4871771B2 (en) Optical thin film deposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R150 Certificate of patent or registration of utility model

Ref document number: 5075361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250