JP2007322078A - Heat exchange ventilator - Google Patents

Heat exchange ventilator Download PDF

Info

Publication number
JP2007322078A
JP2007322078A JP2006153709A JP2006153709A JP2007322078A JP 2007322078 A JP2007322078 A JP 2007322078A JP 2006153709 A JP2006153709 A JP 2006153709A JP 2006153709 A JP2006153709 A JP 2006153709A JP 2007322078 A JP2007322078 A JP 2007322078A
Authority
JP
Japan
Prior art keywords
temperature
temperature sensor
air
passage
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006153709A
Other languages
Japanese (ja)
Other versions
JP5164343B2 (en
Inventor
Masashi Ashino
正史 芦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006153709A priority Critical patent/JP5164343B2/en
Publication of JP2007322078A publication Critical patent/JP2007322078A/en
Application granted granted Critical
Publication of JP5164343B2 publication Critical patent/JP5164343B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchange ventilator capable of expanding the lower limit of a usable temperature of a heat exchanger by using accurate temperature information concerning the outside air as control information to carry out control operation. <P>SOLUTION: In the heat exchange ventilator carrying out heat exchange through a heat exchanger 1 between supply and exhaust air flows, a temperature sensor 6 outputting temperature information to a control circuit 12 is provided in a supply air passage 3 of an inlet side portion of a secondary passage of the heat exchanger 1, and operation is controlled by the control circuit 12. In the control circuit 12, the temperature information of the temperature sensor 6 is not fetched during stoppage of a supply air blower 5 forming the supply air flow, and until a time until a temperature of a detection target space provided with the temperature sensor 6 is stabilized, a response time of the temperature sensor 6, and a time responding to an operation stabilization time of an air-blowing related apparatus relevant to air supply have passed from an operation start of the supply air blower 5, the temperature information of the temperature sensor 6 is not used as the control information. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、給気と排気を同時に行い、給排気流間で連続的な熱交換を行う熱交換換気装置に関するものである。   The present invention relates to a heat exchange ventilator that performs supply and exhaust at the same time, and performs continuous heat exchange between supply and exhaust flows.

給気と排気を同時に行い、給排気流間で連続的な熱交換を行う熱交換換気装置について、冬季に熱交換器が結露したり結霜したりするのを防ぐために給気流を昇温するヒータを備えたものがある(例えば、特許文献1参照)。   For heat exchange ventilators that supply and exhaust air at the same time and perform continuous heat exchange between the air supply and exhaust streams, the air supply temperature is raised to prevent condensation and frost formation on the heat exchanger in winter Some have a heater (see, for example, Patent Document 1).

実開昭60―182629号公報Japanese Utility Model Publication No. 60-182629

上記した従来の空調換気扇においては、給気送風機と熱交換器の間に設けられた温度センサが一定の温度以下の温度を検知すると、制御回路は、給気口と給気送風機との間に設けられたヒータを動作させ、吸込み外気を暖めるようにし、熱交換器が結露するのを防いでいる。しかしながら、給気送風機が停止しているときには、温度センサの設置されている雰囲気は、実際の外気雰囲気より室内雰囲気に近づいているため、給気送風機の運転とともに得た温度センサの温度情報は、正確な外気の温度情報ではない。従って、実際には結露や結霜の恐れのある外気温度であっても、ヒータは動作せず結露や結霜を招いてしまう。逆に外気温度は結露や結霜の恐れはなく、なんらかの要因で温度センサの置かれている雰囲気が結露や結霜の恐れのあるような場合、ヒータが動作して無駄な電力を消費してしまうことになる。そのため、温度センサの出力値の設定を少し高めに設定して対応しているのが現状である。   In the conventional air-conditioning ventilation fan described above, when a temperature sensor provided between the air supply fan and the heat exchanger detects a temperature below a certain temperature, the control circuit is interposed between the air supply port and the air supply fan. The provided heater is operated so as to warm the outside air to prevent the heat exchanger from condensing. However, when the air supply blower is stopped, the atmosphere in which the temperature sensor is installed is closer to the indoor atmosphere than the actual outside air atmosphere, so the temperature information of the temperature sensor obtained along with the operation of the air supply blower is It is not accurate outside air temperature information. Therefore, even at an outside temperature at which condensation or frost may actually occur, the heater does not operate and causes condensation or frost. On the other hand, there is no risk of condensation or frost on the outside air temperature. If the atmosphere in which the temperature sensor is placed may cause condensation or frost for some reason, the heater operates and wastes power. Will end up. Therefore, the current situation is that the output value of the temperature sensor is set slightly higher.

本発明は、上記した問題点を解決するためになされたものであり、その課題とするところは、外気についての正確な温度情報を、制御情報として制御動作をさせ、熱交換器の使用可能な温度の下限を広げることができる熱交換換気装置を得ることであり、無駄な電力を消費しない熱交換換気装置を得ることである。   The present invention has been made to solve the above-described problems, and the problem is that the accurate temperature information about the outside air is controlled as control information, and the heat exchanger can be used. It is to obtain a heat exchange ventilator that can expand the lower limit of the temperature, and to obtain a heat exchange ventilator that does not consume useless power.

上記課題を解決するために本発明は、経路の一部が熱交換器の一次通路と二次通路で構成された排気通路と給気通路を備え、排気通路には室内から室外へ向かう排気流を形成する送風機が組込まれ、給気通路には室外から室内へ向かう給気流を形成する送風機が組込まれ、熱交換器の二次通路の入口側部分の給気通路には制御手段に温度情報を出力する温度センサを設け、制御手段によって運転を制御するようにした熱交換換気装置について、その制御手段は、給気流を形成する送風機の停止中は温度センサの温度情報を取込まず、送風機が運転を始めたときから、温度センサの設けられた検出対象空間の温度が安定するまでの時間と、温度センサの応答時間と、給気に関する送風関連機器の動作安定時間に応じた時間の経つまでは、温度センサの温度情報を制御情報として使わないようにする手段を採用する。   In order to solve the above-described problems, the present invention provides an exhaust passage and an air supply passage, part of which is composed of a primary passage and a secondary passage of a heat exchanger, and the exhaust passage has an exhaust flow from the room to the outside. The air supply passage incorporates a blower that forms a supply air flow from the outside to the room, and the air supply passage in the inlet side portion of the secondary passage of the heat exchanger has temperature information sent to the control means. The heat exchanging ventilator is provided with a temperature sensor that outputs the air temperature and the operation is controlled by the control means. The control means does not take in the temperature information of the temperature sensor while the blower that forms the supply airflow is stopped. After the start of the operation, the time until the temperature of the detection target space provided with the temperature sensor stabilizes, the response time of the temperature sensor, and the time corresponding to the operation stabilization time of the blower-related equipment related to supply air Until the temperature Employing means to avoid using the temperature information of the service as control information.

本発明によれば、温度センサのおかれた検出対象空間に滞っていた空気が一掃され、実際の外気雰囲気になってから、温度センサの温度情報が制御情報として使われるため、正確な温度情報による的確な制御動作をすることができる。そして、熱交換器の使用可能な温度の下限を広げることができ、無駄な電力を消費しない熱交換換気装置が得られる。   According to the present invention, the temperature information of the temperature sensor is used as the control information after the air stagnated in the detection target space where the temperature sensor is placed is swept away and becomes an actual outside air atmosphere. Therefore, it is possible to perform an accurate control operation. And the lower limit of the temperature which can use a heat exchanger can be extended, and the heat exchange ventilation apparatus which does not consume useless electric power is obtained.

本発明に係る熱交換換気装置は、経路の一部が熱交換器の一次通路と二次通路で構成された相互に独立した排気通路と給気通路とを備えている。排気通路には室内から室外へ向かう排気流を形成する排気送風機が組込まれている。給気通路には室外から室内へ向かう給気流を形成する給気送風機が組込まれている。熱交換器の二次通路の入口側部分の給気通路にはサーミスタ等の温度センサが設けられている。また、給気通路の給気ダクトの室外吸込口近傍には、給気ダクトを流れる給気流を昇温するヒータが設けられている。給気ダクトのヒータの上流側には、給気ダクトを開閉する常閉式の電動シャッタが設けられ、排気ダクトの室外出口近傍には、排気ダクトを開閉する常閉式の電動シャッタが設けられている。給気送風機と排気送風機及びヒータ並びに各電動シャッタは、制御回路によって制御される。温度センサの温度情報は、制御回路に制御情報として取込まれる。制御回路は、給気送風機の停止中は温度センサの温度情報を取込まず、給気送風機が運転を始めたときから、温度センサの設けられた検出対象空間(給気通路)の温度が安定するまでの時間と、温度センサの応答時間と、給気送風機のファンや電動シャッタの動作が安定するまでの時間に応じた時間の経つまでは、温度センサの温度情報を制御情報として使わないようにする。検出対象空間の温度が安定するまでの時間は、給気通路の断面積が大きいほど長くなる。この熱交換換気装置では、温度センサのおかれた検出対象空間が、実際の外気雰囲気になってから、温度センサの温度情報が制御情報として使われ、ヒータの通電の要否が決定されるため、正確な外気温度情報による的確な制御動作をすることができる。温度センサの出力値を予め高めに設定しておくこともないので、熱交換器の使用可能な温度の下限を広げることができ、無駄な電力を消費しない熱交換換気装置が得られる。   The heat exchanging ventilator according to the present invention includes an exhaust passage and an air supply passage which are partially independent of each other, and are constituted by a primary passage and a secondary passage of the heat exchanger. The exhaust passage incorporates an exhaust blower that forms an exhaust flow from the room to the outside. A supply air blower for forming a supply air flow from the outside to the room is incorporated in the supply passage. A temperature sensor such as a thermistor is provided in the air supply passage at the inlet side portion of the secondary passage of the heat exchanger. In addition, a heater is provided in the vicinity of the outdoor suction port of the air supply duct in the air supply passage to raise the temperature of the air supply flowing through the air supply duct. A normally closed electric shutter that opens and closes the air supply duct is provided upstream of the heater of the air supply duct, and a normally closed electric shutter that opens and closes the exhaust duct is provided in the vicinity of the outdoor outlet of the exhaust duct. . The air supply blower, the exhaust blower, the heater, and each electric shutter are controlled by a control circuit. The temperature information of the temperature sensor is taken into the control circuit as control information. The control circuit does not capture the temperature information of the temperature sensor while the supply air blower is stopped, and the temperature of the detection target space (supply passage) where the temperature sensor is provided is stable after the supply air blower starts operation. Do not use the temperature information of the temperature sensor as control information until the time corresponding to the response time of the temperature sensor, the response time of the temperature sensor, and the time until the operation of the fan or electric shutter of the air supply blower stabilizes To. The time until the temperature of the detection target space is stabilized becomes longer as the cross-sectional area of the air supply passage is larger. In this heat exchanging ventilator, since the detection target space where the temperature sensor is placed becomes an actual outside air atmosphere, the temperature information of the temperature sensor is used as control information and the necessity of energizing the heater is determined. Therefore, it is possible to perform an accurate control operation based on accurate outside air temperature information. Since the output value of the temperature sensor is not set to a high value in advance, the lower limit of the usable temperature of the heat exchanger can be expanded, and a heat exchange ventilator that does not consume useless power can be obtained.

実施の形態1.
図1は本実施の形態の熱交換換気装置を示すブロック構成図、図2は制御回路の温度検出処理を示すフローチャート、図3は温度検出処理を示すタイムチャート、図4は他の温度検出処理を示すフローチャート。本実施の形態の熱交換換気装置は、図1に示すように経路の一部が熱交換器1の一次通路と二次通路で構成された相互に独立した排気通路2と給気通路3とを備えている。排気通路2には室内から室外へ向かう排気流を形成する排気送風機4が組込まれている。給気通路3には室外から室内へ向かう給気流を形成する給気送風機5が組込まれている。熱交換器1の二次通路の入口側部分の給気通路3にはサーミスタ等の温度センサ6が設けられている。また、給気通路3の給気ダクト7の室外吸込口近傍には、給気ダクト7を流れる給気流を昇温するヒータ8が設けられている。給気ダクト7のヒータ8の上流側には、給気ダクト7を開閉する常閉式の電動シャッタ9が設けられ、排気ダクト10の室外出口近傍には、排気ダクト10を開閉する常閉式の電動シャッタ11が設けられている。
Embodiment 1 FIG.
1 is a block diagram showing a heat exchange ventilator according to the present embodiment, FIG. 2 is a flowchart showing temperature detection processing of the control circuit, FIG. 3 is a time chart showing temperature detection processing, and FIG. 4 is another temperature detection processing. The flowchart which shows. As shown in FIG. 1, the heat exchange ventilator of the present embodiment includes an exhaust passage 2 and an air supply passage 3 which are independent from each other, part of which is composed of a primary passage and a secondary passage of the heat exchanger 1. It has. The exhaust passage 2 incorporates an exhaust blower 4 that forms an exhaust flow from the room to the outside. The air supply passage 3 incorporates an air supply blower 5 that forms an air supply air flow from the outdoor to the indoor. A temperature sensor 6 such as a thermistor is provided in the supply passage 3 at the inlet side portion of the secondary passage of the heat exchanger 1. A heater 8 is provided in the vicinity of the outdoor suction port of the air supply duct 7 in the air supply passage 3 to raise the temperature of the air supply flowing through the air supply duct 7. A normally closed electric shutter 9 for opening and closing the air supply duct 7 is provided upstream of the heater 8 in the air supply duct 7, and a normally closed electric motor for opening and closing the exhaust duct 10 is provided near the outdoor outlet of the exhaust duct 10. A shutter 11 is provided.

給気送風機5と排気送風機4及びヒータ8並びに各電動シャッタ9,11は、マイコンを有する制御回路12によって制御される。制御回路12には、給気送風機5と排気送風機4の各駆動回路とともに、各電動シャッタ9,11のオン/オフを行う駆動接点が設けられていて、この駆動接点によって各電動シャッタ9,11の電源が入り切りされる。また、制御回路12には、ヒータ8のオン/オフを行う駆動接点が設けられていて、この駆動接点によってヒータ8の電源が入り切りされる。制御回路12の入力側には温度センサ6と、リモコン13が信号線で接続されている。   The supply blower 5, the exhaust blower 4, the heater 8, and the electric shutters 9 and 11 are controlled by a control circuit 12 having a microcomputer. The control circuit 12 is provided with drive contacts for turning on / off the electric shutters 9 and 11 together with the drive circuits of the air supply blower 5 and the exhaust blower 4, and the electric shutters 9 and 11 are driven by the drive contacts. Is turned on and off. Further, the control circuit 12 is provided with a drive contact for turning on / off the heater 8, and the power of the heater 8 is turned on and off by this drive contact. The temperature sensor 6 and the remote controller 13 are connected to the input side of the control circuit 12 by signal lines.

制御回路12は、電源が投入されると図2に示すフローチャートに従って温度検出処理を行う。即ち、ステップ♯1で遅延時間Tの演算を行う。遅延時間Tは、給気送風機5のファンや電動シャッタ9の動作が安定するまでの時間T1と、給気送風機5が運転を始めたときから、温度センサ6の設けられた検出対象空間(給気通路)の滞留した空気が一掃され、温度が安定するまでの時間T2と、温度センサ6の応答時間T3とを照合し、それらを加算して重複する時間を減算することにより求められる。そして、ステップ♯2に進み、給気送風機5がオンしているか否かを判定し、オンしていればステップ♯3へ進み、オフしていれば給気通路3に外気は侵入しないため温度検出は行わない。   When the power is turned on, the control circuit 12 performs a temperature detection process according to the flowchart shown in FIG. That is, the delay time T is calculated in step # 1. The delay time T includes a time T1 until the operation of the fan of the air supply fan 5 and the electric shutter 9 is stabilized, and a detection target space (supply) in which the temperature sensor 6 is provided from when the air supply fan 5 starts operation. The time T2 until the air staying in the air passage) is swept away and the temperature is stabilized is compared with the response time T3 of the temperature sensor 6 and added to subtract the overlapping time. Then, the process proceeds to step # 2, and it is determined whether or not the supply air blower 5 is turned on. If it is turned on, the process proceeds to step # 3, and if it is turned off, the outside air does not enter the supply passage 3, so that the temperature is increased. No detection is performed.

ステップ♯3では、運転モードの変更の有無を判定し、運転モードの変更があれば、ステップ♯5で温度検知の遅延タイマのクリアを行い、運転モードの変更がなければ、ステップ♯4で遅延タイマと遅延時間Tとの比較を行い、遅延タイマが遅延時間T以下の場合には、ステップ♯7で遅延タイマのカウントを行うが、温度センサ6による温度検出は行わない。遅延タイマが遅延時間Tを越えている場合には、ステップ♯6で温度センサ6による温度検出を行いこれを制御情報として運転モードの制御を行い、ステップ♯8へ進み前回の運転モードを現在の運転モードに置き換えて、処理を終了する。図3は、こうした温度検出処理のタイムチャートである。また、図4のフローチャートに示すように、最初に温度検知を行い、検知した温度による運転モードの制御を行うか否かを判断するようにしてもよい。この場合、前項と同様に遅延時間Tを算出し、給気送風機5がオンと運転モードの変更が無く、温度検知の遅延タイマと遅延時間Tを比較し、遅延タイマが遅延時間Tを越えていれば温度センサ6により検知した温度による運転モードの制御を行う。   In step # 3, it is determined whether or not the operation mode has been changed. If there is a change in the operation mode, the temperature detection delay timer is cleared in step # 5. If there is no change in the operation mode, a delay is made in step # 4. The timer is compared with the delay time T. If the delay timer is equal to or shorter than the delay time T, the delay timer is counted in step # 7, but the temperature sensor 6 does not detect the temperature. If the delay timer exceeds the delay time T, the temperature is detected by the temperature sensor 6 in step # 6, and the operation mode is controlled using this as control information. Replace with the operation mode to finish the process. FIG. 3 is a time chart of such temperature detection processing. Further, as shown in the flowchart of FIG. 4, temperature detection may be performed first, and it may be determined whether or not to control the operation mode based on the detected temperature. In this case, the delay time T is calculated in the same manner as in the previous section, the supply air blower 5 is turned on and the operation mode is not changed, the temperature detection delay timer is compared with the delay time T, and the delay timer exceeds the delay time T. Then, the operation mode is controlled based on the temperature detected by the temperature sensor 6.

このように、給気送風機5のオン時間が遅延時間T以上経過したときにのみ、温度測定と運転モードの制御を行うことで、運転モードの変更時などの不安定なタイミングでの温度測定と、それによる制御を行わないようにすることができる。これにより、温度測定の精度の向上と、実温度の確実な測定により誤動作の防止とともに、正確な外気温度情報による的確な制御動作をすることができる。   Thus, temperature measurement and control of the operation mode are performed only when the ON time of the air supply blower 5 has exceeded the delay time T, so that temperature measurement at an unstable timing such as when the operation mode is changed can be performed. , It is possible not to perform control by it. As a result, the accuracy of temperature measurement can be improved, the malfunction can be prevented by the reliable measurement of the actual temperature, and an accurate control operation based on accurate outside air temperature information can be performed.

遅延時間Tについては、給気通路3の径が小さく、温度センサ6の応答時間に比べ検出対象空間の温度安定時間が極めて短時間の場合には、検出対象空間の温度安定時間を無視してもよい。また、給気通路3の給気に係る構成部品の多少や有無に応じてT1,T2を可変できるようにすることにより、給気送風機5の動作応答性をよくすることができる。   Regarding the delay time T, when the diameter of the air supply passage 3 is small and the temperature stabilization time of the detection target space is extremely short compared to the response time of the temperature sensor 6, the temperature stabilization time of the detection target space is ignored. Also good. In addition, by making T1 and T2 variable according to the number of components related to the supply of air in the supply passage 3, the operation responsiveness of the supply blower 5 can be improved.

この発明に係る温度センサの温度検知についての遅延時間Tを設定する仕方は、空調装置に対しても利用することができる。ファンや圧縮機など空調装置を構成する部材が起動して、安定動作するまでの時間をT1とし、室内温度が安定するまでの時間をT2とし、温度センサの応答時間をT3として、遅延時間Tを算出するようにする。   The method of setting the delay time T for temperature detection of the temperature sensor according to the present invention can also be used for an air conditioner. The time until the stable operation of the members constituting the air conditioner such as the fan and compressor is T1, the time until the room temperature is stabilized is T2, the response time of the temperature sensor is T3, and the delay time T Is calculated.

熱交換換気装置を示すブロック構成図である。(実施の形態1)It is a block block diagram which shows a heat exchange ventilation apparatus. (Embodiment 1) 制御回路の温度検出処理を示すフローチャートである。(実施の形態1)It is a flowchart which shows the temperature detection process of a control circuit. (Embodiment 1) 温度検出処理を示すタイムチャートである。(実施の形態1)It is a time chart which shows a temperature detection process. (Embodiment 1) 他の温度検出処理を示すフローチャートである。(実施の形態1)It is a flowchart which shows another temperature detection process. (Embodiment 1)

符号の説明Explanation of symbols

1 熱交換器、 2 排気通路、 3 給気通路、 4 排気送風機、 5 給気送風機、 6 温度センサ、 12 制御回路。   1 heat exchanger, 2 exhaust passage, 3 air supply passage, 4 exhaust air blower, 5 air supply air blower, 6 temperature sensor, 12 control circuit.

Claims (2)

経路の一部が熱交換器の一次通路と二次通路で構成された排気通路と給気通路を備え、その排気通路には室内から室外へ向かう排気流を形成する送風機が組込まれ、その給気通路には室外から室内へ向かう給気流を形成する送風機が組込まれ、前記熱交換器の二次通路の入口側部分の前記給気通路には制御手段に温度情報を出力する温度センサを設け、前記制御手段によって運転を制御するようにした熱交換換気装置であって、前記制御手段は、給気流を形成する前記送風機の停止中は前記温度センサの温度情報を取込まず、その送風機が運転を始めたときから、前記温度センサの設けられた検出対象空間の温度が安定するまでの時間と、前記温度センサの応答時間と、給気に関する送風関連機器の動作安定時間に応じた時間の経つまでは、前記温度センサの温度情報を制御情報として使わないようにした熱交換換気装置。   A part of the path is provided with an exhaust passage and an air supply passage composed of a primary passage and a secondary passage of a heat exchanger, and a blower for forming an exhaust flow from the room to the outside is incorporated in the exhaust passage. The air passage incorporates a blower that forms a supply air flow from the outside to the room, and a temperature sensor that outputs temperature information to the control means is provided in the supply passage in the inlet side portion of the secondary passage of the heat exchanger. The heat exchange ventilator is configured to control the operation by the control means, and the control means does not take in the temperature information of the temperature sensor while the blower that forms the supply airflow is stopped. The time from the start of operation until the temperature of the detection target space provided with the temperature sensor stabilizes, the response time of the temperature sensor, and the time corresponding to the operation stabilization time of the blower-related equipment related to supply air Until then, Heat exchange ventilator to not use the temperature information as the control information of the serial temperature sensor. 請求項1に記載の熱交換換気装置であって、温度センサの設けられた検出対象空間の温度が安定するまでの時間と、前記温度センサの応答時間と、給気に関する送風関連機器の動作安定時間に応じた時間を可変できるようにした熱交換換気装置。   It is a heat exchange ventilation apparatus of Claim 1, Comprising: Time until the temperature of the detection object space in which the temperature sensor was provided becomes stable, Response time of the said temperature sensor, Operation stability of the ventilation related apparatus regarding air supply A heat exchange ventilator that can change the time according to the time.
JP2006153709A 2006-06-01 2006-06-01 Heat exchange ventilator Expired - Fee Related JP5164343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006153709A JP5164343B2 (en) 2006-06-01 2006-06-01 Heat exchange ventilator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006153709A JP5164343B2 (en) 2006-06-01 2006-06-01 Heat exchange ventilator

Publications (2)

Publication Number Publication Date
JP2007322078A true JP2007322078A (en) 2007-12-13
JP5164343B2 JP5164343B2 (en) 2013-03-21

Family

ID=38855053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006153709A Expired - Fee Related JP5164343B2 (en) 2006-06-01 2006-06-01 Heat exchange ventilator

Country Status (1)

Country Link
JP (1) JP5164343B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900401A (en) * 2010-07-28 2010-12-01 李仁良 Indoor energy-saving fresh air temperature control system with heat insulation function
WO2016056141A1 (en) * 2014-10-10 2016-04-14 三菱電機株式会社 Heat exchanger ventilating device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288426A (en) * 1991-02-21 1992-10-13 Mitsubishi Electric Corp Condition parameter indicator for ventilator
JPH0566044A (en) * 1991-06-18 1993-03-19 Daikin Ind Ltd Air conditioner
JPH06323593A (en) * 1993-05-19 1994-11-25 Sekisui Chem Co Ltd Heat exchange type ventilator
JP2002188841A (en) * 2000-12-18 2002-07-05 Mitsubishi Electric Corp Outdoor air treating unit
JP2002188843A (en) * 2000-12-18 2002-07-05 Mitsubishi Electric Corp Outdoor air treating unit
JP2003307331A (en) * 2002-04-15 2003-10-31 Yamatake Corp Operation control device for air-conditioning machine
JP2004340467A (en) * 2003-05-15 2004-12-02 Mitsubishi Electric Corp Heat exchange ventilating device
JP2005127636A (en) * 2003-10-24 2005-05-19 Kyoritsu Air Tech Inc Air-conditioning system and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288426A (en) * 1991-02-21 1992-10-13 Mitsubishi Electric Corp Condition parameter indicator for ventilator
JPH0566044A (en) * 1991-06-18 1993-03-19 Daikin Ind Ltd Air conditioner
JPH06323593A (en) * 1993-05-19 1994-11-25 Sekisui Chem Co Ltd Heat exchange type ventilator
JP2002188841A (en) * 2000-12-18 2002-07-05 Mitsubishi Electric Corp Outdoor air treating unit
JP2002188843A (en) * 2000-12-18 2002-07-05 Mitsubishi Electric Corp Outdoor air treating unit
JP2003307331A (en) * 2002-04-15 2003-10-31 Yamatake Corp Operation control device for air-conditioning machine
JP2004340467A (en) * 2003-05-15 2004-12-02 Mitsubishi Electric Corp Heat exchange ventilating device
JP2005127636A (en) * 2003-10-24 2005-05-19 Kyoritsu Air Tech Inc Air-conditioning system and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900401A (en) * 2010-07-28 2010-12-01 李仁良 Indoor energy-saving fresh air temperature control system with heat insulation function
CN101900401B (en) * 2010-07-28 2012-09-19 李仁良 Indoor energy-saving fresh air temperature control system with heat insulation function
WO2016056141A1 (en) * 2014-10-10 2016-04-14 三菱電機株式会社 Heat exchanger ventilating device
JPWO2016056141A1 (en) * 2014-10-10 2017-04-27 三菱電機株式会社 Heat exchange ventilator
US10094587B2 (en) 2014-10-10 2018-10-09 Mitsubishi Electric Corporation Heat-exchange ventilation device

Also Published As

Publication number Publication date
JP5164343B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
KR101034936B1 (en) Ventilation apparatus of heat exchanging type and controlling method thereof
KR101572889B1 (en) Ventilation System and Controlling Method of the Same
JP6253459B2 (en) Ventilator for air conditioning
EP2345855A1 (en) Heat-exchange ventilation device
WO2019146121A1 (en) Air conditioning system and ventilation device
JP2016169913A (en) Heat exchange ventilator
JP2013113473A (en) Heat exchange ventilator
US20190203971A1 (en) Heat exchange-type ventilation device
JP2013203196A (en) Air conditioner for vehicle
JP5237782B2 (en) Heat exchange ventilator
JP5164343B2 (en) Heat exchange ventilator
JP2007032998A (en) Air conditioner
JP4391125B2 (en) Heat exchange ventilator
JP2015068544A (en) Heat exchange ventilator
JP2007071495A (en) Air conditioner
JP3755365B2 (en) Heat exchange ventilator
JPH11230600A (en) Air conditioning ventilator
JP2004301350A (en) Ventilator
CN110736142B (en) Air conditioner and rapid dehumidification control method without cooling
JP2006317113A (en) Indoor unit and air conditioner
KR101243227B1 (en) Ventilation System and control Method of the same of
JPH08145432A (en) Air conditioner
WO2022249299A1 (en) Heat exchanging-type ventilation device and heat exchanging-type ventilation system
KR100520702B1 (en) A duct split typed air conditioning system
JPH1019337A (en) Operation control device for air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees