JP2007320799A - Hydrogen occluding carbon - Google Patents

Hydrogen occluding carbon Download PDF

Info

Publication number
JP2007320799A
JP2007320799A JP2006151783A JP2006151783A JP2007320799A JP 2007320799 A JP2007320799 A JP 2007320799A JP 2006151783 A JP2006151783 A JP 2006151783A JP 2006151783 A JP2006151783 A JP 2006151783A JP 2007320799 A JP2007320799 A JP 2007320799A
Authority
JP
Japan
Prior art keywords
carbon
hydrogen
hydrogen storage
koh
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006151783A
Other languages
Japanese (ja)
Inventor
Emi Kato
惠美 加藤
Shinji Oshima
伸司 大島
Osamu Kato
攻 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2006151783A priority Critical patent/JP2007320799A/en
Publication of JP2007320799A publication Critical patent/JP2007320799A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon-based hydrogen occluding material which can occlude a large amount of hydrogen efficiently at ambient temperature. <P>SOLUTION: Hydrogen occluding carbon can be obtained by adding one or more kinds of bases selected from KOH, LiOH and NaOH to a fiber-like carbon material in an amount of 0.02-0.3 mol per 1g of the fiber-like carbon material and subjecting the resulting carbon material to an activation treatment at 400-1,100°C in an inert gas atmosphere. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、繊維状炭素材料を出発原料とする水素貯蔵材料に関する。   The present invention relates to a hydrogen storage material using a fibrous carbon material as a starting material.

水素は石油精製、化学産業などをはじめとしてあらゆる産業分野において広く用いられているが、特に燃焼後に発生する物質が水のみであるため、環境を汚染しないクリーンな燃料として注目されてきており、燃料電池を中心に研究が進められている。しかし、水素ガスは熱量あたりの体積が大きく、また液化に必要なエネルギーも大きいため、そのまま貯蔵、輸送することは難しいという問題がある(非特許文献1参照)。従って、燃料電池自動車のような移動体および分散電源として燃料電池を用いる場合など、水素を効率的に輸送し貯蔵する技術が求められていた。現在、水素を輸送、貯蔵する技術としては、高圧ガス、液体水素、水素貯蔵合金、水素吸蔵材料などが提案されている。   Hydrogen is widely used in various industrial fields including the petroleum refining and chemical industries, but since water is the only material generated after combustion, it has been attracting attention as a clean fuel that does not pollute the environment. Research is progressing mainly on batteries. However, hydrogen gas has a problem that it is difficult to store and transport the hydrogen gas as it is because of its large volume per calorie and large energy required for liquefaction (see Non-Patent Document 1). Accordingly, there has been a demand for a technology for efficiently transporting and storing hydrogen, such as when a fuel cell is used as a mobile body such as a fuel cell vehicle and a distributed power source. Currently, high-pressure gas, liquid hydrogen, hydrogen storage alloys, hydrogen storage materials, and the like have been proposed as technologies for transporting and storing hydrogen.

(1)高圧ガス
この方法は危険な高圧ガスを取り扱うこと、35MPaなどのきわめて高圧にしても体積が過大になり小型化が困難なことなどの問題がある(非特許文献2参照)。また、ボンベは高圧に耐えるために厚肉化され重量が増大するという問題を抱えている。
(2)液体水素
液化水素は、気体と比べて体積が約800分の1であるため水素の優れた貯蔵方法である。しかし、水素の気化熱が小さいことに起因する気化(ボイルオフ)、超低温に耐える容器を要する点などが課題となる。また、液化温度が−253℃という極低温であるため取り扱いにくい、液化に必要なエネルギーが膨大でありトータルとしてのエネルギー効率が低いという問題がある(非特許文献3参照)。
(3)水素吸蔵合金
水素吸蔵合金への吸蔵も有力な方法である。しかし、水素吸蔵量は通常3%程度であり、移動体などに用いるためには不十分であるばかりか重量が重くなりすぎる。さらに、水素放出時に多くの熱が必要であるためエネルギー効率が低くなる、システムが複雑になるなどの欠点を有している(非特許文献4参照)。
(4)水素吸蔵材料
この技術は、水素放出が常温で可能であるのでシステムがシンプルである上、一般に水素放出に熱を必要とせずエネルギー効率が高いなどの特徴があるため、材料の開発が盛んになされている。その中で、カーボンナノチューブやカーボンナノファイバーなどの材料が高い吸蔵量を示すとの報告があるが(非特許文献5参照)、再現性が疑問視されており、十分な再現性を持ちながら高い吸蔵性能を持つ水素吸蔵材料の開発は未だ実現したとは言えない状況である。したがって、高い吸蔵性能を持つ材料の開発が求められており、高い吸蔵能を持つ材料として、水素と同レベルのサイズの細孔を持つ材料が検討されている。その例が前述のカーボンナノチューブやカーボンナノファイバーであるが、その他に炭素系を中心として様々な材料が試みられている。また、カーボン以外の材料として、窒化ホウ素ナノチューブ(非特許文献6参照)や多孔性錯体(非特許文献7参照)などが報告されている。しかし、一部に高い吸蔵量を示す材料の報告があるものの信頼に足り得るデータとは言えないのが現状である。
小林,「季報エネルギー総合工学」,第25巻,第4号,2003年,p.73−87 秋山ら,「エンジンテクノロジー」,第5巻,第3号,2003年,p.43−47 栗山,「エネルギー資源」,第24巻,第6号,2003年,p.23−27 秋葉,「エンジンテクノロジー」,第5巻,第3号,2003年,p.36−42頁 エー・チャンバース(A. Chambers)外,「ジャーナル・オブ・フィジカル・ケミストリー・B(J. Phys. Chem. B)」,(米国),102巻,1998年,p.4253−4256 レンツヒ・マ(Renzhi Ma)外,「ジャーナル・オブ・アメリカン・ケミカル・ソウサイアティー(J. Am. Chem. Soc.)」,(米国),124巻,2002年,p.7672−7673 ナタニール・エル・ロシ(Nathaniel. L. Rosi)外,「サイエンス(Science)」,(米国),300巻,2003年,p.1127−1129
(1) High-pressure gas This method has problems such as handling dangerous high-pressure gas and being difficult to miniaturize even if the pressure is extremely high such as 35 MPa (see Non-Patent Document 2). In addition, the cylinder has a problem that it is thickened to withstand high pressure and the weight increases.
(2) Liquid hydrogen Liquefied hydrogen is an excellent storage method of hydrogen because its volume is about 1/800 compared with gas. However, there are problems such as vaporization (boil-off) due to the small heat of vaporization of hydrogen and the need for a container that can withstand ultra-low temperatures. In addition, since the liquefaction temperature is an extremely low temperature of −253 ° C., it is difficult to handle, the energy required for liquefaction is enormous, and the total energy efficiency is low (see Non-Patent Document 3).
(3) Hydrogen storage alloy Occlusion in the hydrogen storage alloy is also an effective method. However, the amount of hydrogen occlusion is usually about 3%, which is not sufficient for use in a moving body and the weight is too heavy. Furthermore, since a large amount of heat is required when releasing hydrogen, the energy efficiency is lowered and the system is complicated (see Non-Patent Document 4).
(4) Hydrogen storage material Since this technology can release hydrogen at room temperature, the system is simple and, in general, it does not require heat for hydrogen release and has high energy efficiency. It has been actively done. Among them, there are reports that materials such as carbon nanotubes and carbon nanofibers show a high occlusion amount (see Non-Patent Document 5), but reproducibility has been questioned and it is high while having sufficient reproducibility. The development of hydrogen storage materials with storage performance has not yet been realized. Therefore, development of a material having a high storage performance is demanded, and a material having pores of the same size as hydrogen is being studied as a material having a high storage capacity. Examples thereof are the above-mentioned carbon nanotubes and carbon nanofibers, but various other materials have been tried centering on carbon. As materials other than carbon, boron nitride nanotubes (see Non-Patent Document 6), porous complexes (see Non-Patent Document 7), and the like have been reported. However, although there is a report of a material showing a high occlusion amount in part, it is not the data that can be said to be reliable.
Kobayashi, “Quarterly Energy Engineering,” Vol. 25, No. 4, 2003, p. 73-87 Akiyama et al., “Engine Technology”, Vol. 5, No. 3, 2003, p. 43-47 Kuriyama, “Energy Resources”, Vol. 24, No. 6, 2003, p. 23-27 Akiba, “Engine Technology”, Vol. 5, No. 3, 2003, p. Pages 36-42 A. Chambers et al., "Journal of Physical Chemistry B (J. Phys. Chem. B)" (USA), 102, 1998, p. 4253-4256 Renzhi Ma et al., “J. Am. Chem. Soc.” (USA), 124, 2002, p. 7672-7673 Nathaniel. L. Rosi et al., “Science” (USA), 300, 2003, p. 1127-1129

以上のような炭素系材料は、貯蔵・放出条件によっては水素貯蔵合金よりも高い水素吸蔵能を示すが、吸蔵メカニズム上、繰り返し使用に対する再現性がなかったり、製法上、大量生産ができない等問題が多い。本発明はかかる問題点を解決し、室温で大量の水素を効率的に吸蔵させることができる炭素系水素吸蔵材を提供するものである。   The above carbon-based materials show higher hydrogen storage capacity than hydrogen storage alloys depending on the storage and release conditions, but the storage mechanism is not reproducible for repeated use, and the production method prevents mass production. There are many. The present invention solves such problems and provides a carbon-based hydrogen storage material capable of efficiently storing a large amount of hydrogen at room temperature.

本発明者らは、前記課題について鋭意研究を行った結果、繊維状炭素材料を出発原料とし、これにKOH、LiOHおよびNaOHから選択される1種または2種以上の塩基を加えて、特定条件下に賦活処理して得られる炭素が上記問題を解決できることを見出し本発明を完成するに至ったものである。
すなわち、本発明は、繊維状炭素材料に、繊維状炭素材料1gあたり0.02〜0.3molのKOH、LiOHおよびNaOHから選択される1種または2種以上の塩基を加えて、不活性ガス雰囲気下、400〜1100℃で賦活処理して得られることを特徴とする水素吸蔵炭素に関する。
また、本発明は、BET法による比表面積が500〜4000m/gであることを特徴とする前記記載の水素吸蔵炭素に関する。
As a result of intensive studies on the above problems, the inventors have made a fibrous carbon material as a starting material, and added one or more bases selected from KOH, LiOH and NaOH to the specific conditions. The inventors have found that carbon obtained by the activation treatment can solve the above problems and have completed the present invention.
That is, the present invention adds an inert gas by adding one or more bases selected from 0.02 to 0.3 mol of KOH, LiOH and NaOH to 1 g of fibrous carbon material. The present invention relates to a hydrogen storage carbon obtained by activation treatment at 400 to 1100 ° C. in an atmosphere.
The present invention also relates to the above-described hydrogen storage carbon, wherein the BET method has a specific surface area of 500 to 4000 m 2 / g.

繊維状炭素材料を特定条件下にKOH、LiOHおよびNaOHから選択される1種または2種以上の塩基で賦活処理して得られる本発明の水素吸蔵炭素は室温で水素吸蔵用材料として優れた性能を示す。   The hydrogen storage carbon of the present invention obtained by activating a fibrous carbon material with one or more bases selected from KOH, LiOH and NaOH under specific conditions is an excellent performance as a hydrogen storage material at room temperature. Indicates.

以下に本発明を詳述する。
本発明において、出発原料として用いる繊維状炭素材料としては特に限定されないが、例えば、PAN系炭素繊維、絹糸、木綿糸、ケブラーなどを用いることができる。これらを直接賦活処理することもできるし、前処理として不活性ガス下で400〜1200℃で処理することによって炭化したあとに賦活処理を行っても良い。炭化時に溶解してしまう材料に関しては、不融化処理を行った後に炭化処理を行い、その後賦活処理を行っても良い。
用いる繊維状炭素材料の平均径は、通常1〜1000μmであり、好ましくは2〜500μmである。
The present invention is described in detail below.
In the present invention, the fibrous carbon material used as a starting material is not particularly limited, and for example, PAN-based carbon fiber, silk thread, cotton thread, Kevlar and the like can be used. These can be directly activated or activated as a pretreatment after carbonization by treatment at 400 to 1200 ° C. under an inert gas. For materials that dissolve during carbonization, carbonization treatment may be performed after infusibilization treatment, and then activation treatment may be performed.
The average diameter of the fibrous carbon material to be used is usually 1 to 1000 μm, preferably 2 to 500 μm.

賦活処理は、繊維状炭素材料にKOH、LiOHおよびNaOHから選択される1種または2種以上の塩基を加えて、不活性ガス雰囲気下で行なう。賦活処理に用いる塩基としてはKOHがより好ましい。不活性ガスとしては特に限定されないが、例えば、窒素、アルゴンなどを用いることができる。
賦活処理前の繊維状炭素材料1gに対し、加える塩基の量は0.02〜0.3molであることが必要であり、好ましくは0.03〜0.2molである。なお、二種以上の塩基を用いる場合においても、賦活処理前の繊維状炭素材料1gに対し、塩基の合計量が0.02〜0.3molであることが必要である。前記塩基量が賦活処理前の繊維状炭素材料1gに対し0.02molより少ないと賦活が十分に進まず、水素吸蔵量が少ない。一方、前記塩基量が賦活処理前の繊維状炭素材料1gに対し0.3molより多いと、賦活収率が低下するため、実用的でない。
賦活処理の温度は400〜1100℃であることが必要である。400℃より低いと反応が十分に進行せず、水素吸蔵量が少ない。1100℃より高いと賦活後の得られる水素吸蔵炭素の収率が著しく低下し、実用的でない。なお、賦活処理の温度は500〜1000℃であることが好ましく、650〜900℃であることがさらに好ましい。
The activation treatment is performed in an inert gas atmosphere by adding one or more bases selected from KOH, LiOH and NaOH to the fibrous carbon material. As the base used for the activation treatment, KOH is more preferable. Although it does not specifically limit as an inert gas, For example, nitrogen, argon, etc. can be used.
The amount of the base to be added needs to be 0.02 to 0.3 mol, preferably 0.03 to 0.2 mol, relative to 1 g of the fibrous carbon material before the activation treatment. In addition, also when using 2 or more types of bases, it is necessary for the total amount of a base to be 0.02-0.3 mol with respect to 1 g of fibrous carbon materials before an activation process. When the amount of the base is less than 0.02 mol with respect to 1 g of the fibrous carbon material before the activation treatment, activation does not proceed sufficiently and the hydrogen storage amount is small. On the other hand, when the amount of the base is more than 0.3 mol with respect to 1 g of the fibrous carbon material before the activation treatment, the activation yield is lowered, which is not practical.
The temperature of activation processing needs to be 400-1100 degreeC. If it is lower than 400 ° C., the reaction does not proceed sufficiently and the hydrogen storage amount is small. If it is higher than 1100 ° C., the yield of the hydrogen storage carbon obtained after activation is remarkably lowered, which is not practical. In addition, it is preferable that the temperature of an activation process is 500-1000 degreeC, and it is more preferable that it is 650-900 degreeC.

得られた水素吸蔵炭素のBET法による比表面積は500〜4000m/gであることが好ましく、より好ましくは1000〜3800m/gである。比表面積が500m/gより小さいと有効な水素吸蔵量を確保できない。また、比表面積が4000m/gより大きいと賦活後の得られる水素吸蔵炭素の収率が著しく低下し、実用的でない。 It is preferable that the specific surface area by BET method of the obtained hydrogen storage carbon is 500-4000 m < 2 > / g, More preferably, it is 1000-3800 m < 2 > / g. If the specific surface area is smaller than 500 m 2 / g, an effective hydrogen storage amount cannot be ensured. On the other hand, if the specific surface area is larger than 4000 m 2 / g, the yield of hydrogen storage carbon obtained after activation is remarkably lowered, which is not practical.

水素吸蔵炭素は、水素を吸蔵させる前に、真空またはアルゴンなどの不活性ガス雰囲気中で、150℃以上、かつ炭素化温度よりも下の温度で加熱処理するのが望ましい。加熱処理を行わない、または加熱処理の温度が150℃より低い場合は、吸着している水などの分子が水素吸蔵反応を阻害するため好ましくない。一方、加熱温度が炭素化時の温度以上となると炭素の結晶構造が変化してしまい、水素吸蔵能が低下してしまうおそれがある。より望ましい熱処理温度は、150℃以上1500℃以下である。   The hydrogen storage carbon is desirably heat-treated at 150 ° C. or higher and lower than the carbonization temperature in an inert gas atmosphere such as vacuum or argon before storing hydrogen. When the heat treatment is not performed or the temperature of the heat treatment is lower than 150 ° C., molecules such as water adsorbed inhibit the hydrogen storage reaction, which is not preferable. On the other hand, if the heating temperature is equal to or higher than the temperature at the time of carbonization, the carbon crystal structure may change, and the hydrogen storage capacity may be reduced. A more desirable heat treatment temperature is 150 ° C. or higher and 1500 ° C. or lower.

以下に実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの例に限定されるものではない。
なお、以下の実施例および比較例においては、炭素繊維の原料を炭素原料、炭化後の炭素繊維を炭化材料、賦活後の炭素繊維を賦活物と称する。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
In the following Examples and Comparative Examples, the carbon fiber raw material is referred to as a carbon raw material, the carbonized carbon fiber is referred to as a carbonized material, and the activated carbon fiber is referred to as an activated material.

(実施例1)
炭素原料としてPAN系炭素繊維(東邦テナックス社製 PYROMEX)2gを用いて、Ar気流中で炭化し(500℃、3時間)、1.6gの炭化材料を得た。得られた炭化材料にKOHを6.4g(炭化材料1gに対しKOH=0.07mol)を加え、Ar気流中で700℃、1時間賦活処理を行ったところ、得られた賦活物のBET比表面積は、2892m/gであった。
得られた賦活物0.5gを容積10mlのステンレス製耐圧容器にとり、150℃で2時間真空乾燥した後、9.4MPa、30℃の条件で、容量法により水素吸蔵量をもとめたところ、水素吸蔵量は1.04質量%であった。
Example 1
Using 2 g of PAN-based carbon fiber (PYROMEX manufactured by Toho Tenax Co., Ltd.) as a carbon raw material, carbonization was performed in an Ar stream (500 ° C., 3 hours) to obtain 1.6 g of a carbonized material. When 6.4 g of KOH (KOH = 0.07 mol per 1 g of carbonized material) was added to the obtained carbonized material and activated at 700 ° C. for 1 hour in an Ar stream, the BET ratio of the obtained activated material was The surface area was 2892 m 2 / g.
0.5 g of the activated product thus obtained was placed in a stainless steel pressure vessel with a volume of 10 ml, vacuum-dried at 150 ° C. for 2 hours, and the hydrogen storage amount was determined by the volumetric method under the conditions of 9.4 MPa and 30 ° C. The occlusion amount was 1.04% by mass.

(実施例2)
炭素原料として市販の絹糸10gを用いて、Ar気流中で炭化し(900℃、3時間)、2gの炭化材料を得た。得られた炭化材料にKOHを14g(炭化材料1gに対しKOH=0.125mol)を加え、Ar気流中で800℃、1時間賦活処理を行ったところ、得られた賦活物のBET比表面積は3417m/gであった。
得られた賦活物を実施例1と同様の方法で水素吸蔵量をもとめたところ、水素吸蔵量は1.12質量%であった。
(Example 2)
Using 10 g of a commercially available silk thread as a carbon raw material, carbonization was performed in an Ar stream (900 ° C., 3 hours) to obtain 2 g of a carbonized material. When 14 g of KOH (KOH = 0.125 mol with respect to 1 g of the carbonized material) was added to the obtained carbonized material and activated at 800 ° C. for 1 hour in an Ar stream, the BET specific surface area of the obtained activated material was It was 3417 m 2 / g.
The obtained activated product was determined for the amount of hydrogen occluded in the same manner as in Example 1. As a result, the amount of occlusion of hydrogen was 1.12% by mass.

(比較例1)
加えるKOHを0.96g(炭化材料1gに対しKOH=0.011mol)とした以外は実施例1と同様の方法で賦活処理を行ったところ、得られた賦活物のBET比表面積は1114m/gであった。
得られた賦活物を実施例1と同様の方法で水素吸蔵量をもとめたところ、水素吸蔵量は0.2質量%であった。
(Comparative Example 1)
When the activation treatment was performed in the same manner as in Example 1 except that 0.96 g of KOH to be added (KOH = 0.111 mol with respect to 1 g of the carbonized material), the BET specific surface area of the obtained activated material was 1114 m 2 / g.
The obtained activated product was determined for the amount of hydrogen occluded in the same manner as in Example 1. As a result, the amount of occlusion of hydrogen was 0.2% by mass.

(比較例2)
加えるKOHを36g(炭化材料1gに対しKOH=0.32mol)とした以外は実施例2と同様の方法で賦活処理を行ったところ、得られた賦活物のBET比表面積は3520m/gであった。
得られた賦活物を実施例1と同様の方法で水素吸蔵量をもとめたところ、水素吸蔵量は0.98質量%であったが、賦活収率は3%ときわめて低かった。
(Comparative Example 2)
When the activation treatment was performed in the same manner as in Example 2 except that 36 g of KOH to be added (KOH = 0.32 mol with respect to 1 g of carbonized material), the BET specific surface area of the obtained activated product was 3520 m 2 / g. there were.
When the hydrogen absorption amount of the obtained activation product was determined in the same manner as in Example 1, the hydrogen absorption amount was 0.98% by mass, but the activation yield was very low at 3%.

(比較例3)
加えるKOHを3.2g(炭化材料1gに対しKOH=0.036mol)とし、賦活処理の温度を350℃とした以外は実施例1と同様の方法で賦活処理を行ったところ、得られた賦活物のBET比表面積は15m/gであった。
得られた賦活物を実施例1と同様の方法で水素吸蔵量をもとめたところ、水素吸蔵量は0.17質量%であった。
(Comparative Example 3)
When the activation treatment was performed in the same manner as in Example 1 except that 3.2 g of KOH to be added (KOH = 0.036 mol with respect to 1 g of the carbonized material) and the temperature of the activation treatment was 350 ° C., the obtained activation was obtained. The BET specific surface area of the product was 15 m 2 / g.
The obtained activated product was determined for the amount of hydrogen occluded in the same manner as in Example 1. The hydrogen occlusion amount was 0.17% by mass.

Claims (3)

繊維状炭素材料に、繊維状炭素材料1gあたり0.02〜0.3molのKOH、LiOHおよびNaOHから選択される1種または2種以上の塩基を加えて、不活性ガス雰囲気下、400〜1100℃で賦活処理して得られることを特徴とする水素吸蔵炭素。   One or two or more bases selected from 0.02 to 0.3 mol of KOH, LiOH and NaOH per 1 g of fibrous carbon material are added to the fibrous carbon material, and 400 to 1100 in an inert gas atmosphere. Hydrogen storage carbon obtained by activation treatment at ° C. 該塩基がKOHであることを特徴とする請求項1に記載の水素吸蔵炭素。   The hydrogen storage carbon according to claim 1, wherein the base is KOH. BET法による比表面積が500〜4000m/gであることを特徴とする請求項1又は請求項2に記載の水素吸蔵炭素。
3. The hydrogen storage carbon according to claim 1, wherein a specific surface area according to a BET method is 500 to 4000 m 2 / g.
JP2006151783A 2006-05-31 2006-05-31 Hydrogen occluding carbon Pending JP2007320799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006151783A JP2007320799A (en) 2006-05-31 2006-05-31 Hydrogen occluding carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006151783A JP2007320799A (en) 2006-05-31 2006-05-31 Hydrogen occluding carbon

Publications (1)

Publication Number Publication Date
JP2007320799A true JP2007320799A (en) 2007-12-13

Family

ID=38853928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006151783A Pending JP2007320799A (en) 2006-05-31 2006-05-31 Hydrogen occluding carbon

Country Status (1)

Country Link
JP (1) JP2007320799A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292670A (en) * 2008-06-03 2009-12-17 Toshinori Kokubu Method for producing high specific surface area activated carbon
JP2011057457A (en) * 2009-09-04 2011-03-24 Nagaoka Univ Of Technology Hydrogen occlusion method, hydrogen occlusion apparatus and hydrogen occluding carbon material
JP2011084432A (en) * 2009-10-15 2011-04-28 Jx Nippon Oil & Energy Corp Hydrogen storage material
JP2012106883A (en) * 2010-11-17 2012-06-07 Jx Nippon Oil & Energy Corp Hydrogen storage material
JP2020158414A (en) * 2019-03-25 2020-10-01 炭プラスラボ株式会社 Beauty and health composition and methods for manufacturing beauty and health composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571613A (en) * 1978-11-27 1980-05-29 Toho Rayon Co Ltd Production of fibrous activated carbon
JP2000103612A (en) * 1998-09-30 2000-04-11 Toshiba Corp Hydrogen absorbing carbon
JP2002053301A (en) * 2000-05-31 2002-02-19 Nippon Mitsubishi Oil Corp Hydrogen occluding agent, hydrogen occluding method and hydrogen occluding carbon
JP2003160323A (en) * 2001-09-11 2003-06-03 Showa Denko Kk Activated carbon, method for production thereof and use thereof
WO2004011371A1 (en) * 2002-07-30 2004-02-05 Kuraray Chemical Co.,Ltd. Activated carbon, method for production thereof, polarized electrode and electrical double layer capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571613A (en) * 1978-11-27 1980-05-29 Toho Rayon Co Ltd Production of fibrous activated carbon
JP2000103612A (en) * 1998-09-30 2000-04-11 Toshiba Corp Hydrogen absorbing carbon
JP2002053301A (en) * 2000-05-31 2002-02-19 Nippon Mitsubishi Oil Corp Hydrogen occluding agent, hydrogen occluding method and hydrogen occluding carbon
JP2003160323A (en) * 2001-09-11 2003-06-03 Showa Denko Kk Activated carbon, method for production thereof and use thereof
WO2004011371A1 (en) * 2002-07-30 2004-02-05 Kuraray Chemical Co.,Ltd. Activated carbon, method for production thereof, polarized electrode and electrical double layer capacitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292670A (en) * 2008-06-03 2009-12-17 Toshinori Kokubu Method for producing high specific surface area activated carbon
JP2011057457A (en) * 2009-09-04 2011-03-24 Nagaoka Univ Of Technology Hydrogen occlusion method, hydrogen occlusion apparatus and hydrogen occluding carbon material
JP2011084432A (en) * 2009-10-15 2011-04-28 Jx Nippon Oil & Energy Corp Hydrogen storage material
US8980788B2 (en) 2009-10-15 2015-03-17 Jx Nippon Oil & Energy Corporation Hydrogen storage material
JP2012106883A (en) * 2010-11-17 2012-06-07 Jx Nippon Oil & Energy Corp Hydrogen storage material
JP2020158414A (en) * 2019-03-25 2020-10-01 炭プラスラボ株式会社 Beauty and health composition and methods for manufacturing beauty and health composition
JP7223408B2 (en) 2019-03-25 2023-02-16 炭プラスラボ株式会社 BEAUTY AND HEALTH COMPOSITION AND METHOD FOR MANUFACTURING BEAUTY AND HEALTH COMPOSITION

Similar Documents

Publication Publication Date Title
CA2363456C (en) Hydrogen storage using carbon-metal hybrid compositions
Rashidi et al. Modification of single wall carbon nanotubes (SWNT) for hydrogen storage
Sreedhar et al. A Bird's Eye view on process and engineering aspects of hydrogen storage
Bai et al. Storage of mechanical energy based on carbon nanotubes with high energy density and power density
Wu et al. Effects of SWNT and metallic catalyst on hydrogen absorption/desorption performance of MgH2
Zhou Progress and problems in hydrogen storage methods
JP2007320799A (en) Hydrogen occluding carbon
JP5019829B2 (en) Hydrogen storage device and hydrogen supply method
CN106517090A (en) High-performance hydrogen storage material and preparation method thereof
JP5154746B2 (en) Porous material and method for producing the same
JP5481648B2 (en) Hydrogen storage method, hydrogen storage device, and carbon material for hydrogen storage
CN114107776A (en) Hydrogen storage alloy with high hydrogen storage capacity and preparation method thereof
JP2013112572A (en) Hydrogen occlusion method, and hydrogen occluding material
Lazzarini et al. Boronation of biomass-derived materials for hydrogen storage
Luxembourg et al. Hydrogen storage capacity at high pressure of raw and purified single wall carbon nanotubes produced with a solar reactor
KR101273495B1 (en) Tuning method of interlayer spacing in graphene oxide composites for hydrogen storage
WO2009057127A1 (en) A system for effective storing and fuelling of hydrogen
Xuesong et al. Effects of structure and surface properties on carbon nanotubes’ hydrogen storage characteristics
JP2007302487A (en) Hydrogen occlusion material and its production method
JP5653025B2 (en) Hydrogen storage material
JP5623879B2 (en) Hydrogen storage material
JP4557562B2 (en) Amorphous carbon nanocapsule and method for producing the same
CN115591533B (en) Graphene-based targeted hydrogen absorption nanocomposite and preparation method thereof
JP2004025012A (en) Gas storage material, and method of storing and discharging gas
JP4596985B2 (en) Porous material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025