JP2007319986A - Throw-away rotary tool - Google Patents

Throw-away rotary tool Download PDF

Info

Publication number
JP2007319986A
JP2007319986A JP2006153173A JP2006153173A JP2007319986A JP 2007319986 A JP2007319986 A JP 2007319986A JP 2006153173 A JP2006153173 A JP 2006153173A JP 2006153173 A JP2006153173 A JP 2006153173A JP 2007319986 A JP2007319986 A JP 2007319986A
Authority
JP
Japan
Prior art keywords
outer peripheral
tool
cutting edge
tip
throw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006153173A
Other languages
Japanese (ja)
Other versions
JP4952068B2 (en
Inventor
Ryuichi Saji
龍一 佐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2006153173A priority Critical patent/JP4952068B2/en
Publication of JP2007319986A publication Critical patent/JP2007319986A/en
Application granted granted Critical
Publication of JP4952068B2 publication Critical patent/JP4952068B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling Processes (AREA)
  • Drilling Tools (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a throw-away rotary tool, performing machining under a high cutting condition by heightening the rigidity of a tool body and a tip especially in a small-diameter throw-away rotary tool. <P>SOLUTION: In this throw-away rotary tool 1, a substantially plate-like tip 30 including cutting edges 31A, 31B is inserted in a fitting groove 20 of the tool body 10, and pressed by screw members 40A, 40B to be fixed. The wall surface side of the fitting groove 20 facing the top face 30a of the tip is provided with female screw holes 13A, 13B where the screw members 40A, 40B are screwed, and the top face 30a of the tip is provided with recessed parts 35A, 35B having bases pressed to the screw members 40A, 40B. The perpendiculars P of the bases of the recessed parts and the central axes CLs of the female screw holes are gradually inclined to approach constrained surfaces 37, 38 formed on the side pointing the tool inner peripheral side or the side pointing the tool base end side as they approach a seating surface 34 opposite to the top face of the tip 30. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、フライス、エンドミル、ドリル、ボーリングカッタ、リーマ等のスローアウェイ回転工具に関し、特に外周切刃の直径が小さいスローアウェイ式回転工具の工具剛性及び切削性能を向上させる技術に関するものである。   The present invention relates to a throw-away rotary tool such as a milling cutter, an end mill, a drill, a boring cutter, and a reamer, and particularly to a technique for improving the tool rigidity and cutting performance of a throw-away rotary tool having a small outer peripheral cutting edge diameter.

この種のスローアウェイ式回転工具に関する公知技術を図7〜図9に例示する。図7に示す切削インサートは平行6面体の基本形状をしていて、フライス盤で回転させるために、フライス本体に装着させるものである。図8に示すフライス本体は、平行6面体の切削インサートを受容するために、少なくとも一つのポケットを含んでなる。切削インサート10が、補側部13、14ならびに上面15と下面16と一体化する二つの実質的に平行な主側部11、12とを含む。上面15は、主側部11、12との交差線で主切れ刃17、18を形成する。主切れ刃は、各切れ刃が下面16に対して鋭角を形成するので、対向する方向に傾斜する。それによって、それらが切削インサートの対向する側部を与えられ、増加するが、軸角を対向する方向に向かわせる。それぞれの主切れ刃は、フライス本体の切削インサートポケットに装着されたときに、その工具の作用ポジ軸角を増加する。さらにその上に、上面15が、それぞれの補側部13、14の比較的小さな部分での交差線で補切れ刃またはワイパーは19、20を形成する。主切れ刃17、18と、それぞれと協働する補切れ刃19、20とが、フライス加工の際に別の対が作動していないときに、作動する一対の切れ刃を形成する。二つの接する切れ刃は、切削コーナの領域で交差する。切削コーナは、このコーナを二つの等しい角に分割する2等分線を規定する。2等分線は、コーナの半径の中心とは交差しない。一対の切れ刃が磨耗したときに、この切削インサートは別の一対の切れ刃が作用位置になるように割り出される。上面が切れ刃領域に切り屑面を構成し且つ主側部と補側部とともに刃先角を形成し、この角度は90度より小さくて、すなわちこの切削インサートはポジ型基本形状である。さらに、切り屑面15は、加工部材を容易に切削するために、好ましくは増加傾向でポジ型すくい角を形成する。下面16は、補側部と主側部の協働部分とともに鈍角の内角を形成する。中央に配置される孔21は、フライス本体に装着するときにネジのような締結手段を受容するために備えられる。フライスカッターは90度コーナの肩付きフライスに好ましく装着される(例えば、特許文献1参照)。   Known techniques relating to this type of throw-away rotary tool are illustrated in FIGS. The cutting insert shown in FIG. 7 has a parallelepipedal basic shape, and is attached to a milling body to be rotated by a milling machine. The milling body shown in FIG. 8 comprises at least one pocket for receiving a parallelepiped cutting insert. The cutting insert 10 includes complementary side portions 13, 14 and two substantially parallel main side portions 11, 12 that are integral with the upper surface 15 and the lower surface 16. The upper surface 15 forms main cutting edges 17 and 18 at intersection lines with the main side portions 11 and 12. The main cutting edges are inclined in opposite directions because each cutting edge forms an acute angle with respect to the lower surface 16. Thereby they are provided with opposing sides of the cutting insert and increase, but the axial angle is directed in the opposite direction. Each main cutting edge increases the working positive axis angle of the tool when mounted in the cutting insert pocket of the milling body. Furthermore, a top cutting edge or wiper forms 19, 20 with the top surface 15 intersecting at a relatively small part of the respective complementary side 13,13. The main cutting edges 17, 18 and the complementary cutting edges 19, 20 cooperating with each form a pair of cutting edges that operate when another pair is not operating during milling. Two adjacent cutting edges intersect at the area of the cutting corner. The cutting corner defines a bisector that divides the corner into two equal corners. The bisector does not intersect the center of the corner radius. When a pair of cutting edges are worn, the cutting insert is indexed so that another pair of cutting edges is in the working position. The upper surface forms a chip surface in the cutting edge region and forms a cutting edge angle together with the main side portion and the auxiliary side portion, and this angle is smaller than 90 degrees, that is, the cutting insert has a positive basic shape. Further, the chip surface 15 preferably forms a positive rake angle with an increasing tendency to easily cut the workpiece. The lower surface 16 forms an obtuse internal angle together with the cooperating portions of the complementary side portion and the main side portion. A centrally located hole 21 is provided for receiving fastening means such as screws when mounted on the milling body. The milling cutter is preferably mounted on a shoulder milling cutter at a 90-degree corner (see, for example, Patent Document 1).

図9に示す回転切粉除去機械加工用のフライス工具は、切削ヘッド10、保持手段11及びシャンク12を含んでいて、前記切削ヘッド10はそれと一体の少なくとも1つの切れ刃27を備え、前記切削ヘッド及び前記保持手段は前記切削ヘッドを前記シャンクに取り付けるための部分的に重なり合う非対称手段15、19を含み、前記工具は回転軸を有している。そして、前記切削ヘッド10は1〜6個の主切れ刃27を含んでいて、各々の主切れ刃27は本質的に直線状の刃27A及び凸状に湾曲した好ましくは部分的な円形の刃27Bを含み、前記凸状の刃27Bは前記の本質的に直線状の刃27Aの半径方向外側に備わっていることを特徴とするものである(例えば、特許文献2参照)。   The milling tool for rotary chip removal machining shown in FIG. 9 includes a cutting head 10, a holding means 11, and a shank 12, and the cutting head 10 includes at least one cutting edge 27 integral therewith, and the cutting tool The head and the holding means include partially overlapping asymmetric means 15, 19 for attaching the cutting head to the shank, and the tool has an axis of rotation. The cutting head 10 comprises 1 to 6 main cutting edges 27, each main cutting edge 27 being essentially a straight edge 27A and a convexly curved, preferably partially circular edge. 27B, and the convex blade 27B is provided on the radially outer side of the essentially linear blade 27A (see, for example, Patent Document 2).

特表2002−524275号公報Special table 2002-524275 gazette 特表2001−505137号公報Special table 2001-505137

図7及び図8に示すフライス工具は、切削インサートの中央に配置される孔21に受容されるネジによってフライス本体に取り付ける形態のものであり、図6の(b)に模式的に示すように、ネジの中心付近を通り前記フライス本体の中心軸線に直交する平面で切断したときの断面形状は、工具径(外周切刃の直径)を小さくした場合、2枚の切削インサートが接近するため前記フライス本体の中央部の肉厚(芯厚)が小さくなり、該フライス本体の剛性を確保できなくなる。一方、この問題を解消するために切削インサートを小型化した場合、孔21まわりの肉厚が薄くなり、切削インサートの剛性を確保できなくなる。あるいは、工具の作用ポジ軸角を増加させた場合には、フライス本体における切削インサートポケットのバックメタルの断面積が非常に小さくなるため、前記ネジのかかりが浅くなって緩むおそれがあるほか、切削抵抗(主に主分力)による塑性変形や破損が生じるおそれがあることから、同一工具径のソリッドエンドミルにくらべ切削条件をかなり落とさなければ使用することができないという問題があった。   The milling tool shown in FIGS. 7 and 8 is configured to be attached to the milling body by a screw received in the hole 21 arranged at the center of the cutting insert, and is schematically shown in FIG. 6B. The cross-sectional shape when cut by a plane that passes through the vicinity of the center of the screw and that is perpendicular to the center axis of the milling body is such that when the tool diameter (diameter of the outer peripheral cutting edge) is reduced, the two cutting inserts approach each other. The thickness (core thickness) of the center portion of the milling body is reduced, and the rigidity of the milling body cannot be ensured. On the other hand, when the cutting insert is downsized to solve this problem, the thickness around the hole 21 becomes thin, and the rigidity of the cutting insert cannot be secured. Alternatively, when the working positive shaft angle of the tool is increased, the cross-sectional area of the back metal of the cutting insert pocket in the milling body becomes very small, so that there is a risk that the screw will become shallow and loosen, Since there is a risk of plastic deformation and breakage due to resistance (mainly the main component force), there is a problem that it cannot be used unless the cutting conditions are considerably reduced compared to a solid end mill of the same tool diameter.

図9に示すフライス工具は、上述した工具剛性の問題は大きくないものの、切削ヘッドの切れ刃27、30の形状がソリッドエンドミルやソリッドドリルの先端部の切刃形状の如く複雑化し、保持手段の形状についても複雑化するため、該切削ヘッドを製作するのが困難であるとともに製作に要するコストが非常に高くなる問題があった。   In the milling tool shown in FIG. 9, although the problem of the tool rigidity described above is not large, the shape of the cutting edges 27 and 30 of the cutting head is complicated as the shape of the cutting edge at the tip of the solid end mill or the solid drill, and the holding means Since the shape is also complicated, there is a problem that it is difficult to produce the cutting head and the cost required for the production becomes very high.

本発明は、上記問題を解決するためになされたもので、工具本体及びチップの剛性を高めることにより、この種の従来工具よりも高い切削条件で加工を行うことができるスローアウェイ式回転工具を提供することを目的とする。   The present invention has been made in order to solve the above-described problem. By increasing the rigidity of the tool main body and the tip, a throw-away rotary tool capable of processing under higher cutting conditions than this type of conventional tool is provided. The purpose is to provide.

上記課題を解決するために、本発明は以下の手段を採用する。請求項1に係る発明は、中心軸線(CL)まわりに回転させられる工具本体(10)と、該工具本体(10)の先端部外周面に切欠き形成された少なくとも1つの取付溝(20)に、ねじ部材(40A、40B)によって着脱自在に取り付けられるチップ(30)と、を備えたスローアウェイ式回転工具であって、前記チップ(30)は、略板状をなし、工具回転方向(K)を向く上面(30a)に形成されたすくい面(32A、32B)と、前記上面(30a)に対向する下面(30b)に形成された着座面(34)と、前記すくい面(32A、32B)に隣接し工具外周側を向く側面に形成された逃げ面(33A、33B)と、これらすくい面(32A、32B)と逃げ面(33A、33B)の交差稜線部に形成され、少なくとも工具本体の外周面(10b)から突出した切刃(31A、31B)と、工具内周側を向く側面又は工具基端側を向く側面の少なくとも一方に形成された被拘束面(37、38)と、
を備え、前記チップの上面(30a)に面する取付溝(20)の壁面側には、前記ねじ部材(40A、40B)がねじ込まれる少なくとも1つの雌ねじ孔(13A、13B)が設けられ、前記チップの上面(30a)には、前記ねじ部材(40A、40B)に押圧される底面を備えた少なくとも1つの凹部(35A、35B)が形成され、前記雌ねじ孔の中心軸線(CLs)及び前記凹部の底面の垂線(P)が、前記着座面(34)の垂線を基準にして、前記着座面(34)に近づくにしたがって前記被拘束面(37、38)に漸次近づくように傾斜していることを特徴とするスローアウェイ式回転工具である。
請求項1に係る発明は、図7及び図8に図示した従来工具と対比して次のような技術的効果がある。
チップを工具本体に固定するねじ部材が該チップの上下面を貫通しない構成を採用しているので、チップの小型化が可能になり、該チップを装着する工具本体の芯厚部及び取付溝周辺の肉厚が十分確保される。チップが着座する取付面側に雌ねじ孔を要しないので、前記取付面の剛性がとりわけ高くなる。以上のことから、切削抵抗による工具本体の撓みが小さく抑えられるため、前記従来工具より高い切削条件の加工を行うことができる。
図9に図示した従来工具と対比すると、チップの外形や切刃形状が複雑化することがないので、チップの製作が容易且つ低コストになる。
チップの上面の表面から陥没する凹部を形成し、該凹部の底面の垂線及びねじ部材の中心軸線を、着座面に近づくにしたがって被拘束面に漸次近づくように傾斜させ、前記ねじ部材が前記凹部の底面を押圧するようにしたことから、チップは、その着座面及び被拘束面が取付溝の取付面及び拘束面にそれぞれ押し付けられて、前記取付溝内にしっかりとクランプされる。そのため、切削抵抗によるチップの動きを防止し、高い加工精度を実現する。
In order to solve the above problems, the present invention employs the following means. The invention according to claim 1 is a tool main body (10) rotated around a central axis (CL), and at least one mounting groove (20) formed in a notch on the outer peripheral surface of the tip end of the tool main body (10). And a tip (30) that is detachably attached by a screw member (40A, 40B). The tip (30) is substantially plate-shaped and has a tool rotation direction ( K) the rake face (32A, 32B) formed on the upper surface (30a), the seating surface (34) formed on the lower face (30b) facing the upper face (30a), and the rake face (32A, 32B) is formed on the flank face (33A, 33B) formed on the side surface facing the outer peripheral side of the tool, and at the intersecting ridge line portion of these rake face (32A, 32B) and flank face (33A, 33B), and at least the tool Book Cutting edge (31A, 31B) projecting from an outer peripheral surface (10b) with, restrained surface formed on at least one side surface facing the side surface or the tool base side facing the tool peripheral side (37, 38),
And at least one female screw hole (13A, 13B) into which the screw member (40A, 40B) is screwed is provided on the wall surface side of the mounting groove (20) facing the upper surface (30a) of the chip, At least one recess (35A, 35B) having a bottom surface pressed against the screw member (40A, 40B) is formed on the upper surface (30a) of the chip, and the central axis (CLs) of the female screw hole and the recess The vertical line (P) of the bottom surface of the base plate is inclined so as to gradually approach the restrained surface (37, 38) as the seat surface (34) is approached with respect to the normal line of the seat surface (34). This is a throw-away rotary tool.
The invention according to claim 1 has the following technical effect as compared with the conventional tool shown in FIGS.
Since the screw member that fixes the tip to the tool body does not penetrate the upper and lower surfaces of the tip, it is possible to reduce the size of the tip. The wall thickness is sufficiently secured. Since no female screw hole is required on the mounting surface side on which the chip is seated, the rigidity of the mounting surface is particularly high. From the above, since the bending of the tool body due to the cutting resistance is suppressed to be small, it is possible to perform machining under higher cutting conditions than the conventional tool.
Compared with the conventional tool shown in FIG. 9, the outer shape of the chip and the shape of the cutting edge are not complicated, so that the chip can be manufactured easily and at low cost.
A recess recessed from the top surface of the chip is formed, and the perpendicular of the bottom surface of the recess and the central axis of the screw member are inclined so as to gradually approach the restrained surface as the seating surface is approached, and the screw member is Since the bottom surface of the chip is pressed, the seating surface and the restrained surface of the chip are pressed against the mounting surface and the restraining surface of the mounting groove, respectively, and are firmly clamped in the mounting groove. Therefore, the movement of the chip due to cutting resistance is prevented, and high machining accuracy is realized.

請求項2に係る発明は、請求項1に係る発明において、前記雌ねじ孔の中心軸線(CLs)及び前記凹部の底面の垂線(P)と、前記着座面(34)の垂線とのなす角度が5°〜20°の範囲内にあることを特徴とする。
請求項2に係る発明によれば、前記凹部の底面の垂線及び前記ねじ部材の中心軸線と、着座面の垂線とのなす角度を5°〜20°の範囲内に設定したことから、チップのクランプ性がいっそう良好となる。前記の範囲に限定したのは、前記角度を5°未満にするとチップを拘束面側に押し付ける力が不足し、前記角度が20°を超えるとチップが拘束面側に強く押し付けられ、チップが取付面から浮き上がるおそれがあるため、切削加工中にチップが動いて加工精度の悪化、場合によってはチップの欠損が生じるおそれがあるからである。
The invention according to claim 2 is the invention according to claim 1, wherein the angle formed by the central axis (CLs) of the female screw hole and the perpendicular (P) of the bottom surface of the recess and the perpendicular of the seating surface (34) is It exists in the range of 5 degrees-20 degrees.
According to the second aspect of the present invention, the angle formed by the perpendicular of the bottom surface of the recess and the central axis of the screw member and the perpendicular of the seating surface is set within a range of 5 ° to 20 °. Clamping performance is even better. The above range is limited because when the angle is less than 5 °, the force for pressing the tip against the restraint surface is insufficient, and when the angle exceeds 20 °, the tip is strongly pressed against the restraint surface and the tip is attached. This is because the tip may move during the cutting process and the processing accuracy may be deteriorated, and the chip may be lost in some cases.

請求項3に係る発明は、請求項1又は2に係る発明において、前記切刃(31A、31B)が工具本体の先端面(10a)及び外周面(10b)からそれぞれ突出するように形成した外周切刃(31A)及び副切刃(31B)を備え、工具本体の中心軸線(CL)方向における前記外周切刃の長さ(L)が該外周切刃の直径(D)の1倍以上且つ2倍以下の範囲内にあることを特徴とする。
請求項3に係る発明によれば、本発明のスローアウェイ式回転工具がスローアウェイ式エンドミルであり、その切刃が工具本体の外周面及び先端面からそれぞれ突出するように形成した外周切刃と副切刃を備え、前記外周切刃の中心軸線方向の長さが前記スローアウェイ式エンドミルの外周切刃の直径の1倍以上且つ2倍以下の範囲内としたことから、前記中心軸線方向の切込みを大きくした高能率加工が可能となる。さらに、被拘束面及び拘束面が前記中心軸線方向に長くなるため取付け精度がいっそう良好となる。
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the cutting edges (31A, 31B) are formed so as to protrude from the tip surface (10a) and the outer peripheral surface (10b) of the tool body, respectively. A cutting edge (31A) and a secondary cutting edge (31B), wherein the length (L) of the outer peripheral cutting edge in the direction of the central axis (CL) of the tool body is at least one time the diameter (D) of the outer peripheral cutting edge; It is characterized by being in the range of 2 times or less.
According to the invention according to claim 3, the throw-away rotary tool of the present invention is a throw-away end mill, and an outer peripheral cutting edge formed so that its cutting edge protrudes from the outer peripheral surface and the tip end surface of the tool body, respectively. A secondary cutting edge is provided, and the length in the central axis direction of the outer peripheral cutting edge is in the range of 1 to 2 times the diameter of the outer peripheral cutting edge of the throw-away end mill. High-efficiency machining with a large depth of cut becomes possible. Furthermore, since the constrained surface and the constraining surface are elongated in the direction of the central axis, the mounting accuracy is further improved.

請求項4に係る発明は、請求項1〜3のいずれか1項に係る発明において、前記外周切刃(31A)がねじれ角(α)を有するねじれ刃であることを特徴とする。
請求項4に係る発明によれば、請求項3に係るスローアウェイ式回転工具において、外周切刃をねじれ刃としたことから、前記外周切刃の各位置における切れ味が良好且つ均一になるため、前記中心軸線方向の切込みを大きくした高能率加工において、工具本体及びチップに作用する切削抵抗が低減する。
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the outer peripheral cutting edge (31A) is a twisting blade having a twist angle (α).
According to the invention according to claim 4, in the throw-away rotary tool according to claim 3, since the outer peripheral cutting edge is a twisted blade, the sharpness at each position of the outer peripheral cutting edge is good and uniform, In high-efficiency machining with a large cut in the central axis direction, cutting resistance acting on the tool body and the insert is reduced.

請求項5に係る発明は、請求項4に係る発明において、前記外周切刃のねじれ角(α)が10°〜20°の範囲内にあり且つ外周すくい角(β)が−5°〜15°の範囲内にあることを特徴とする。
請求項5に係る発明によれば、前記外周切刃のねじれ角が10°〜20°の範囲内にあり且つ外周すくい角が−5°〜15°の範囲内としたことから、いっそう外周切刃の切れ味が良くなり切削抵抗が小さくなるため、切込み及び送りをさらに大きくした高能率加工が可能となる。
The invention according to claim 5 is the invention according to claim 4, wherein the torsion angle (α) of the outer peripheral cutting edge is in the range of 10 ° to 20 °, and the outer peripheral rake angle (β) is −5 ° to 15 °. It is in the range of °.
According to the invention which concerns on Claim 5, since the torsion angle of the said outer periphery cutting edge exists in the range of 10 degrees-20 degrees, and the outer periphery rake angle was set in the range of -5 degrees-15 degrees, the outer periphery cutting is further performed. Since the sharpness of the blade is improved and the cutting resistance is reduced, high-efficiency machining with further increased cutting and feeding becomes possible.

請求項6に係る発明は、請求項1〜5のいずれか1項に係る発明において、前記外周切刃の直径(D)が6mm〜20mmの範囲内にあることを特徴とする。
請求項6に係る発明のように、前記スローアウェイ式エンドミルの外周切刃の直径を6mm〜20mmの範囲とすることが好ましい。これは、本エンドミルがチップの小型化に適した構成を有し、外周切刃の直径の小径化に有効であるからである。前記直径にかかわらず、工具本体及びチップの剛性を高める効果を有するが、上述の範囲において、前記効果が顕著である。
The invention according to claim 6 is the invention according to any one of claims 1 to 5, characterized in that a diameter (D) of the outer peripheral cutting edge is in a range of 6 mm to 20 mm.
As in the invention according to claim 6, it is preferable that the diameter of the outer peripheral cutting edge of the throw-away end mill is in the range of 6 mm to 20 mm. This is because the present end mill has a configuration suitable for reducing the size of the chip, and is effective in reducing the diameter of the outer peripheral cutting edge. Regardless of the diameter, it has the effect of increasing the rigidity of the tool body and the tip, but the effect is remarkable in the above-mentioned range.

本発明は、図7及び図8に図示した従来工具と対比して次のような技術的効果がある。
チップを工具本体に固定するねじ部材が該チップの上下面を貫通しない構成を採用しているので、チップの小型化が可能になり、該チップを装着する工具本体の芯厚部及び取付溝周辺の肉厚が十分確保される。チップが着座する取付面側に雌ねじ孔を要しないので、前記取付面の剛性がとりわけ高くなる。以上のことから、切削抵抗による工具本体の撓みが小さく抑えられるため、前記従来工具より高い切削条件の加工を行うことができる。
図9に図示した従来工具と対比すると、チップの外形や切刃形状が複雑化することがないので、チップの製作が容易且つ低コストになる。
チップの上面の表面から陥没する凹部を形成し、該凹部の底面の垂線及びねじ部材の中心軸線を、着座面に近づくにしたがって被拘束面に漸次近づくように傾斜させ、前記ねじ部材が前記凹部の底面を押圧するようにしたことから、チップは、その着座面及び被拘束面が取付溝の取付面及び拘束面にそれぞれ押し付けられて、前記取付溝内にしっかりとクランプされる。そのため、切削抵抗によるチップの動きを防止し、高い加工精度を実現する。
The present invention has the following technical effects as compared with the conventional tool shown in FIGS.
Since the screw member that fixes the tip to the tool body does not penetrate the upper and lower surfaces of the tip, it is possible to reduce the size of the tip. The wall thickness is sufficiently secured. Since no female screw hole is required on the mounting surface side on which the chip is seated, the rigidity of the mounting surface is particularly high. From the above, since the bending of the tool body due to the cutting resistance is suppressed to be small, it is possible to perform machining under higher cutting conditions than the conventional tool.
Compared with the conventional tool shown in FIG. 9, the outer shape of the chip and the shape of the cutting edge are not complicated, so that the chip can be manufactured easily and at low cost.
A recess recessed from the top surface of the chip is formed, and the perpendicular of the bottom surface of the recess and the central axis of the screw member are inclined so as to gradually approach the restrained surface as the seating surface is approached, and the screw member is Since the bottom surface of the chip is pressed, the seating surface and the restrained surface of the chip are pressed against the mounting surface and the restraining surface of the mounting groove, respectively, and are firmly clamped in the mounting groove. Therefore, the movement of the chip due to cutting resistance is prevented, and high machining accuracy is realized.

以下に、本発明に係るスローアウェイ式回転工具の一実施形態について、図面を参照して説明する。
図1は本実施形態に係るスローアウェイ式エンドミルの斜視図である。図2は図1に示すエンドミルの分解斜視図である。図3の(a)〜(c)はそれぞれ図1に示すエンドミルの平面図、正面図、先端視側面図である。図4は図1に示すエンドミルに装着されるチップの斜視図である。図5の(a)〜(e)は順に図4に示すチップの背面図、平面図、正面図、左側面図、右側面図である。図6はねじ部材の中心部においてエンドミルの中心軸線に直角な平面で切断した断面形状を示す図であり、図6の(a)は本発明を適用したエンドミルの断面形状であり、図6の(b)は従来工具の断面形状である。
Hereinafter, an embodiment of a throw-away rotary tool according to the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view of a throw-away end mill according to this embodiment. FIG. 2 is an exploded perspective view of the end mill shown in FIG. 3A to 3C are a plan view, a front view, and a front view side view of the end mill shown in FIG. 1, respectively. FIG. 4 is a perspective view of a tip attached to the end mill shown in FIG. 5A to 5E are a rear view, a plan view, a front view, a left side view, and a right side view of the chip shown in FIG. 4 in order. FIG. 6 is a diagram showing a cross-sectional shape cut by a plane perpendicular to the center axis of the end mill at the center of the screw member, and FIG. 6A is a cross-sectional shape of the end mill to which the present invention is applied. (B) is a cross-sectional shape of a conventional tool.

図1〜図3に示すように、スローアウェイ式エンドミル1は、略丸棒状をなす工具本体10の先端外周面に設けた2つの取付溝20に、切刃を備えたチップ30がそれぞれ挿入され、2つのねじ部材40A、40Bを利用して着脱自在に固定されてなる。前記工具本体10は、工具先端部側に形成された頭部10Aと、この頭部10Aに連なって工具基端部側に形成されたやや径大のシャンク部10Bとを備えている。さらに、前記頭部10Aの先端部外周面には、先端面10aから工具基端部側に延在する取付溝20が工具本体10の中心軸線CLを基準としてほぼ対称的に形成されている。取付溝20の工具回転方向K後方側に位置する壁面には、チップ30を着座するための平坦な取付面21が形成され、この取付面21に隣接する底面及び工具基端部側の端面には、平坦な拘束面22、23がそれぞれ形成されている。   As shown in FIGS. 1 to 3, in the throw-away end mill 1, a tip 30 having a cutting edge is inserted into two mounting grooves 20 provided on the outer peripheral surface of the tip of a tool body 10 having a substantially round bar shape. It is detachably fixed using two screw members 40A and 40B. The tool main body 10 includes a head portion 10A formed on the tool distal end side, and a slightly larger shank portion 10B formed on the tool base end portion side in connection with the head portion 10A. Furthermore, an attachment groove 20 extending from the distal end surface 10 a to the tool proximal end side is formed substantially symmetrically with respect to the central axis CL of the tool body 10 on the outer peripheral surface of the distal end portion of the head portion 10 </ b> A. A flat mounting surface 21 for seating the tip 30 is formed on the wall surface of the mounting groove 20 on the rear side in the tool rotation direction K, and the bottom surface adjacent to the mounting surface 21 and the end surface on the tool base end side are formed. Are formed with flat constraining surfaces 22 and 23, respectively.

超硬合金、サーメット、セラミックス等の硬質材料からなるチップ30は、図4及び図5に示すように、略矩形板状を呈し、その上面30aの一つのコーナ部を挟んで鋭角に交差する一対の長辺部及び短辺部に、研削砥石を用いた研削加工又は粉末プレス成形等によって切欠き形成された湾曲面状の外周切刃すくい面32A及び副切刃すくい面32Bがそれぞれ形成され、下面30bには平坦な着座面34が形成されている。外周切刃すくい面32Aと隣接する側面には外周切刃逃げ面33Aが形成されるとともに、これら外周切刃すくい面32Aと外周切刃逃げ面33Aとの交差稜線部には外周切刃31Aが形成されている。副切刃すくい面32Bと隣接する平坦な側面には副切刃逃げ面33Bが形成され、これら副切刃すくい面32Bと副切刃逃げ面33Bとの交差稜線部には直線状の副切刃31Bが形成されている。
工具本体10にチップ30が装着された状態において、中心軸線CL方向における外周切刃31Aの長さは、本スローアウェイ式エンドミル1の外周切刃の直径Dの1倍〜2倍の範囲に設定されている。外周切刃逃げ面33Aは外周切刃31Aに沿う方向において外側に凸で所定の曲率半径を有する曲面により形成されるとともに、この外周切刃逃げ面33Aに対応する外周切刃31Aもまた平面視で外側に凸で所定の曲率半径を有する曲線状に形成されている。さらに、外周切刃逃げ面33Aと副切刃逃げ面33Bの交差するコーナ刃逃げ面33Cは前記外周切刃逃げ面33Aより曲率半径が小さめの凸曲面状に形成されるとともに、このコーナ刃逃げ面33Cに対応するコーナ刃31Cは前記外周切刃31Aより曲率半径が小さめの凸曲線状に形成されている。外周切刃逃げ面33A、副切刃逃げ面33B及びコーナ刃逃げ面33Cは、着座面34に対して鈍角をなすように交差しており、ポジの逃げ角が付与されている。
As shown in FIGS. 4 and 5, the chip 30 made of a hard material such as cemented carbide, cermet, or ceramic has a substantially rectangular plate shape and intersects at an acute angle with one corner portion of the upper surface 30a interposed therebetween. On the long side portion and the short side portion, a curved outer peripheral cutting edge rake face 32A and a secondary cutting edge rake face 32B, which are notched by grinding using a grinding wheel or powder press molding, are formed, respectively. A flat seating surface 34 is formed on the lower surface 30b. An outer peripheral cutting edge flank 33A is formed on a side surface adjacent to the outer peripheral cutting edge rake face 32A, and an outer peripheral cutting edge 31A is formed on the crossing ridge line portion between the outer peripheral cutting edge rake face 32A and the outer peripheral cutting edge flank 33A. Is formed. A secondary side flank 33B is formed on the flat side surface adjacent to the secondary cutting edge rake face 32B, and a straight secondary side cutting is formed at the intersection ridge line between the secondary cutting edge rake face 32B and the secondary cutting edge relief face 33B. A blade 31B is formed.
In a state where the tip 30 is mounted on the tool body 10, the length of the outer peripheral cutting edge 31A in the direction of the central axis CL is set in a range of 1 to 2 times the diameter D of the outer peripheral cutting edge of the present throw-away end mill 1. Has been. The outer peripheral cutting edge flank 33A is formed by a curved surface that protrudes outward in the direction along the outer peripheral cutting edge 31A and has a predetermined radius of curvature, and the outer peripheral cutting edge 31A corresponding to the outer peripheral cutting edge flank 33A is also a plan view. And is formed in a curved shape having a predetermined radius of curvature. Further, a corner blade flank 33C where the outer peripheral blade flank 33A and the auxiliary cutting flank 33B intersect is formed in a convex curved surface having a smaller radius of curvature than the outer peripheral blade flank 33A. The corner blade 31C corresponding to the surface 33C is formed in a convex curve shape having a smaller radius of curvature than the outer peripheral cutting edge 31A. The outer peripheral cutting edge relief surface 33A, the auxiliary cutting edge relief surface 33B, and the corner blade relief surface 33C intersect with the seating surface 34 so as to form an obtuse angle, and a positive relief angle is given.

図3の(a)〜(c)に示すように、チップ30は、上面30aを工具回転方向Kに向けるとともに着座面34を取付面21に着座し、且つ外周切刃31A及び副切刃31Bに対向する一対の長辺及び短辺から延びる側面にそれぞれ設けられた平坦な被拘束面37、38を対応する拘束面22、23にそれぞれ当接するようにして取付溝20に挿入される。このとき、外周切刃31A及び副切刃31Bは、工具本体10の外周面10b及び先端面10aからそれぞれ若干突出している。   As shown in FIGS. 3A to 3C, the tip 30 has the upper surface 30a oriented in the tool rotation direction K, the seating surface 34 seated on the mounting surface 21, and the outer peripheral cutting edge 31A and the auxiliary cutting edge 31B. The flat constrained surfaces 37 and 38 provided on the side surfaces extending from the pair of long sides and short sides, respectively, are inserted into the mounting grooves 20 so as to contact the corresponding constraining surfaces 22 and 23, respectively. At this time, the outer peripheral cutting edge 31A and the auxiliary cutting edge 31B slightly protrude from the outer peripheral surface 10b and the distal end surface 10a of the tool body 10, respectively.

チップ30の上面30aのうち、外周切刃31Aに対向する長辺側には、前記上面30aの表面からわずかに陥没し、平面視、略半円形状をなす2つの凹部35A、35Bが長辺側の被拘束面37の一部を切欠くとともに、外周切刃31Aにほぼ平行に、該外周切刃31A方向でチップ30の中間点を挟んで両側に間隔をあけて並列して形成されている。これら凹部35A、35Bの底面36A、36Bは平坦面をなすとともに、これら底面36A、36Bの垂線Pは、着座面34に近づくにしたがって2つの被拘束面37、38側に近づくように、着座面34の垂線に対して傾斜しており、その傾斜角が5°〜20°の範囲内となっている。   Of the upper surface 30a of the chip 30, on the long side facing the outer peripheral cutting edge 31A, two concave portions 35A and 35B that are slightly depressed from the surface of the upper surface 30a and have a substantially semicircular shape in plan view are long sides. A part of the constrained surface 37 on the side is notched, and is formed substantially in parallel with the outer peripheral cutting edge 31A and in parallel with a gap on both sides of the intermediate point of the tip 30 in the direction of the outer peripheral cutting edge 31A. Yes. The bottom surfaces 36A and 36B of the recesses 35A and 35B form a flat surface, and the perpendicular P of the bottom surfaces 36A and 36B approaches the two restrained surfaces 37 and 38 as the seating surface 34 is approached. It inclines with respect to 34 perpendicular | vertical, The inclination-angle is in the range of 5 degrees-20 degrees.

取付溝20の工具回転方向K側に位置する壁面側には、チップ30の各凹部35A、35Bを臨む位置に、各凹部の底面36A、36Bの垂線Pと平行に延びる中心軸線CLsを有した雌ねじ孔13A、13Bがそれぞれ穿設されている。これら雌ねじ孔13A、13Bにねじ込まれたねじ部材40A、40Bがその先端面41A、41Bで前記底面36A、36Bをその垂線P方向に押圧することにより、各チップ30は、主に取付面21側に押圧されるとともに各拘束面22、23にも押圧されて、少なくとも2つ以上の被拘束面が、本実施形態では3つの被拘束面が拘束され、取付溝20内に安定的にクランプされる。
しかも、各ねじ部材40A、40Bは、外周切刃31A方向でチップ30の中間点の両側に間隔をあけた2箇所で底面36A、36Bをそれぞれ押圧していることから、均等且つ大きなクランプ力が得られるため、外周切刃31A方向の切込みが小さく、外周切刃31Aの先端部側付近に局所的な切削抵抗が作用する場合にも、チップ30が取付溝20内で動くことがなく、チップ30の位置決め精度がきわめて良好となる。
凹部の底面36A、36Bの垂線P及び雌ねじ孔13A、13Bの中心軸線CLsと、着座面34の垂線とのなす角度は、5°未満になるとチップ30を拘束面22、23側に押し付ける力が不足し、20°を超えるとチップ30が拘束面22、23側に強く押し付けられ、チップ30が取付面21から浮き上がり、切削加工中にチップ30が動いて加工精度の悪化、場合によっては切刃の欠損やチップ30の破損といった問題を招くおそれがあるため、5°〜20°の範囲内にあることが望ましい。
ねじ部材40A、40Bは、例えば、六角穴付き止めねじ、六角穴付きボルト、皿小ねじ等の公知のねじ部材から適宜選択可能であり、ねじ回し工具と係合する穴部の形状については、六角形状穴や十字形状穴に限定されず公知の形状穴に適宜変更可能であることは言うまでもない。なお、ねじ部材40A、40Bは、一般的な合金鋼等から製作されたものが使用されるが、硬質材料からなるチップ30を押圧する先端面41A、41Bを含む先端部については、耐摩耗性の向上に配慮して、前記合金鋼より硬度の高い材料をろう付け、溶接により接合するか又は肉盛りするのが望ましい。
On the wall surface side of the mounting groove 20 on the tool rotation direction K side, a central axis CLs extending parallel to the perpendicular P of the bottom surfaces 36A and 36B of the recesses is provided at a position facing the recesses 35A and 35B of the chip 30. Female screw holes 13A and 13B are formed, respectively. When the screw members 40A and 40B screwed into the female screw holes 13A and 13B press the bottom surfaces 36A and 36B in the direction of the perpendicular P with the front end surfaces 41A and 41B, each chip 30 is mainly attached to the mounting surface 21 side. And at least two restrained surfaces are also restrained, and in this embodiment, three restrained surfaces are restrained and stably clamped in the mounting groove 20. The
Moreover, each screw member 40A, 40B presses the bottom surface 36A, 36B at two locations spaced on both sides of the midpoint of the tip 30 in the direction of the outer peripheral cutting edge 31A, so that an even and large clamping force is obtained. Therefore, even when the cutting in the direction of the outer peripheral cutting edge 31A is small and local cutting resistance acts near the tip end side of the outer peripheral cutting edge 31A, the chip 30 does not move in the mounting groove 20, and the chip The positioning accuracy of 30 is very good.
When the angle formed between the perpendicular P of the bottom surfaces 36A and 36B of the recesses and the central axis CLs of the female screw holes 13A and 13B and the perpendicular of the seating surface 34 is less than 5 °, the force for pressing the chip 30 against the restraining surfaces 22 and 23 is exerted. When the angle exceeds 20 °, the chip 30 is strongly pressed against the restraining surfaces 22 and 23, the chip 30 is lifted from the mounting surface 21, and the chip 30 is moved during the cutting process to deteriorate the machining accuracy. Therefore, it is desirable to be within a range of 5 ° to 20 °.
The screw members 40A, 40B can be appropriately selected from known screw members such as hexagon socket set screws, hexagon socket bolts, countersunk screws, etc., and for the shape of the hole that engages with the screwdriver tool, Needless to say, the hole is not limited to a hexagonal hole or a cross-shaped hole, and can be appropriately changed to a known shape hole. The screw members 40A and 40B are made of general alloy steel or the like, but the tip portions including the tip surfaces 41A and 41B that press the tip 30 made of a hard material are wear resistant. In consideration of improvement of the above, it is desirable to braze and weld or build up a material having a hardness higher than that of the alloy steel.

このように、本実施形態は、ねじ部材40A、40Bがチップ30の上面30aからわずかに陥没する凹部の底面36A、36Bを押圧して前記チップ30をクランプするようにしたことから、図6の(b)に図示する従来工具1´のように、チップ30´の中央部を上下面に貫通するねじ部材40´を受容する孔35´が設けられたものにくらべて、チップ30の剛性が高くなるため、チップ30の上面及び下面のサイズや厚みを小さくすることができる。
チップ30を小型化することにより、工具本体の頭部10Aは、2つのチップ30に挟まれた芯厚部及び取付溝20周辺の肉厚が十分確保され工具本体10の剛性が高くなる。したがって、切削抵抗による工具本体10の撓みが前記従来工具1´よりも大幅に抑制されるため、送りや切込みといった切削条件の高い加工を行うことができるうえに、加工精度も向上する。
さらに、本実施形態は、取付溝20の取付面21側(工具回転方向K後方側の部位)に、雌ねじ孔等の肉厚を低下させるものが一切形成されないため、特に取付面21の剛性が高くなる。よって、前記従来工具1´にくらべチップ30を強固に支持するとともに、前記取付面21の変形及び破損といった問題が解消する。
Thus, in this embodiment, since the screw members 40A and 40B press the bottom surfaces 36A and 36B of the recesses slightly recessed from the top surface 30a of the chip 30, the chip 30 is clamped. Like the conventional tool 1 ′ shown in FIG. 5B, the tip 30 has a rigidity higher than that provided with a hole 35 ′ for receiving the screw member 40 ′ that penetrates the center of the tip 30 ′ in the upper and lower surfaces. Since the height is increased, the size and thickness of the upper and lower surfaces of the chip 30 can be reduced.
By reducing the size of the tip 30, the head portion 10 </ b> A of the tool body has sufficient thickness around the core thickness portion and the mounting groove 20 sandwiched between the two tips 30, and the rigidity of the tool body 10 is increased. Therefore, since the bending of the tool body 10 due to the cutting resistance is greatly suppressed as compared with the conventional tool 1 ′, it is possible to perform processing with high cutting conditions such as feeding and cutting, and improve processing accuracy.
Furthermore, in the present embodiment, since there is not formed anything that reduces the thickness of the female screw hole or the like on the mounting surface 21 side (part on the rear side in the tool rotation direction K) of the mounting groove 20, the rigidity of the mounting surface 21 is particularly high. Get higher. Therefore, the tip 30 is more firmly supported than the conventional tool 1 ′, and the problem of deformation and breakage of the mounting surface 21 is solved.

そのうえ、チップ30は、単純な略矩形板状を呈し、その切刃形状や凹部の底面36A、36Bの形状も複雑化しないので、図9に示すように複雑形状の切削ヘッドを備えた従来工具にくらべ、チップ30の製作が容易且つ低コストになる。副次的な効果として、ねじ部材40A、40Bを工具本体10から完全に抜き取らなくても所定量だけ緩めることによりチップ30の着脱が行えるので、チップ30の交換が迅速且つ容易になり作業効率が向上する。しかも、交換作業時、ねじ部材40A、40Bを紛失する問題が解消する。   In addition, since the tip 30 has a simple substantially rectangular plate shape, and the shape of the cutting edge and the bottom surfaces 36A and 36B of the recesses are not complicated, the conventional tool having a cutting head having a complicated shape as shown in FIG. In contrast, the chip 30 can be manufactured easily and at a low cost. As a secondary effect, the chip 30 can be attached and detached by loosening the screw members 40A and 40B by a predetermined amount without completely removing the screw members 40A and 40B from the tool body 10, so that the replacement of the chip 30 is quick and easy, and the work efficiency is improved. improves. Moreover, the problem of losing the screw members 40A and 40B during the replacement work is solved.

各取付溝20の工具回転方向K側には、工具本体10内部に向かって凹む湾曲面状に切欠く主チップポケット11A及び副チップポケット11Bがそれぞれ形成されている。前記主チップポケット11Aは工具本体10の中心軸線CL方向に長く延びることから、工具本体10の内部に向かって凹む深さを小さくするのが望ましい。
具体的には、図3の(a)に示すように、平面視で、副チップポケット11Bは、工具本体10の先端面10aの中心軸線CL付近から工具基端部側且つ半径方向外側に向かうように前記中心軸線CLに対して傾斜して形成され、主チップポケット11Aは、前記副チップポケット11Bに続いて前記中心軸線CLとほぼ平行で取付溝20の後端部よりも若干工具基端部側の位置まで延設されている。主チップポケット11Aの湾曲した壁面は、図6の(a)に示すように、前記中心軸線CLに直角な断面でみたとき、取付溝20の底面と取付面21の交差部において前記取付面21に直交する直線より工具外周側、好ましくは工具本体10の外周面10bから前記底面までの深さのおよそ50%の位置で取付面21に直交する直線より工具外周側に形成されている。
このように後部チップポケット11Bの径方向の深さが小さく設定されているため、取付溝20の前記回転方向K側に位置する壁面側の肉厚が十分に確保されるので、工具本体10の頭部10Aが高剛性となるうえに、ねじ部材40A、40Bの有効径及びピッチを大きくすることができ、該ねじ部材40A、40Bの耐久性及び軸力の向上が可能となる。
さらに、図1及び図6の(a)からわかるように、チップ30の外周切刃すくい面32Aと主チップポケット11Aとの境界部、及び、副切刃すくい面32Bと副チップポケット11Bとの境界部を、段差が生じないように滑らかにつなぐ湾曲面状に形成しているため、これらチップポケット11A、11Bの容積が小さいにもかかわらず切屑の排出を円滑にすることを可能としている。
A main chip pocket 11 </ b> A and a sub chip pocket 11 </ b> B that are notched in a curved surface shape that is recessed toward the inside of the tool main body 10 are formed on the tool rotation direction K side of each mounting groove 20. Since the main chip pocket 11 </ b> A extends long in the direction of the central axis CL of the tool body 10, it is desirable to reduce the depth of depression toward the inside of the tool body 10.
Specifically, as shown in FIG. 3A, the sub-chip pocket 11 </ b> B is directed from the vicinity of the central axis CL of the distal end surface 10 a of the tool body 10 toward the tool base end side and radially outward in plan view. The main chip pocket 11A has a tool base end that is substantially parallel to the central axis CL following the sub chip pocket 11B and slightly behind the rear end portion of the mounting groove 20. It extends to the position on the part side. As shown in FIG. 6A, the curved wall surface of the main chip pocket 11A has the mounting surface 21 at the intersection of the bottom surface of the mounting groove 20 and the mounting surface 21 when viewed in a cross section perpendicular to the central axis CL. Is formed on the outer periphery side of the tool from the straight line perpendicular to the mounting surface 21 at a position approximately 50% of the depth from the outer peripheral surface 10b of the tool body 10 to the bottom surface.
Since the depth in the radial direction of the rear tip pocket 11B is set small in this way, the wall thickness on the wall surface side of the mounting groove 20 located on the rotation direction K side is sufficiently secured. In addition to the high rigidity of the head 10A, the effective diameter and pitch of the screw members 40A and 40B can be increased, and the durability and axial force of the screw members 40A and 40B can be improved.
Further, as can be seen from FIG. 1 and FIG. 6A, the boundary between the outer peripheral cutting edge rake face 32A and the main chip pocket 11A of the chip 30, and the auxiliary cutting edge rake face 32B and the auxiliary chip pocket 11B. Since the boundary portion is formed in a curved surface shape that smoothly connects so as not to cause a step, it is possible to discharge chips smoothly even though the chip pockets 11A and 11B have a small volume.

図3の(b)及び(c)に示すように、チップ30は、その外周切刃31A及び副切刃31Bが工具本体10の外周面10a及び先端面10bからそれぞれ若干突出し、さらに、工具本体10の中心軸線CLに対して角度αで斜交する取付け溝20に沿って、その外周切刃31Aに所定のねじれ角α及び外周すくい角βが付されている。切れ味を高め切削抵抗を小さくすることに配慮して、外周切刃31Aは、そのねじれ角αが10°〜20°の範囲に且つ外周すくい角βが−5°〜15°の範囲に設定される。これは、ねじれ角αが10°未満では、切削抵抗の低減効果が不十分であり、20°を超えると取付溝20の後端部において肉厚を確保することが難しくなる。外周すくい角βが−5°未満では切削抵抗の低減効果が得られず、15°を超えると取付溝20の取付面21側の肉厚を確保できないからである。   As shown in FIGS. 3B and 3C, the tip 30 has an outer peripheral cutting edge 31A and an auxiliary cutting edge 31B slightly projecting from the outer peripheral surface 10a and the tip end surface 10b of the tool main body 10, respectively. A predetermined twist angle α and an outer peripheral rake angle β are given to the outer peripheral cutting edge 31A along the mounting groove 20 obliquely intersecting with the central axis CL of the ten at an angle α. In consideration of increasing the sharpness and reducing the cutting resistance, the outer peripheral cutting edge 31A is set to have a twist angle α in a range of 10 ° to 20 ° and an outer peripheral rake angle β in a range of −5 ° to 15 °. The This is because if the twist angle α is less than 10 °, the effect of reducing the cutting resistance is insufficient, and if it exceeds 20 °, it is difficult to ensure the thickness at the rear end of the mounting groove 20. This is because if the outer peripheral rake angle β is less than −5 °, the effect of reducing the cutting resistance cannot be obtained, and if it exceeds 15 °, the thickness on the mounting surface 21 side of the mounting groove 20 cannot be secured.

少なくとも外周切刃すくい面32Aをねじれ面にして外周切刃31Aをねじれ刃に形成すれば外周切刃31Aの各位置の切れ味が良好且つ均一になるため、外周切刃31A方向の切込みが増大したとき、工具本体10及びチップ30に作用する切削抵抗が低減する。
また、中心軸線CLを中心とした外周切刃31Aの回転半径がほぼ一定になることから、被削材の壁面の直角度及び真直度が良好となる。外周切刃31Aをねじれ刃としない場合にも、チップ30を平面視したとき、所定の曲率半径を有する凸曲線状とすれば、中心軸線CLを中心とした外周切刃31Aの回転半径をほぼ一定にすることができるので、被削材の壁面の直角度及び真直度を高精度にすることができる。
If at least the outer peripheral cutting edge rake face 32A is a twisted surface and the outer peripheral cutting edge 31A is formed into a twisted blade, the sharpness at each position of the outer peripheral cutting edge 31A becomes good and uniform, and the cutting in the direction of the outer peripheral cutting edge 31A increases. At this time, the cutting resistance acting on the tool body 10 and the chip 30 is reduced.
In addition, since the radius of rotation of the outer peripheral cutting edge 31A about the central axis CL is substantially constant, the perpendicularity and straightness of the wall surface of the work material are improved. Even when the outer peripheral cutting edge 31A is not a twisted blade, when the chip 30 is viewed in plan, the rotational radius of the outer peripheral cutting edge 31A about the central axis CL can be substantially reduced by forming a convex curve having a predetermined radius of curvature. Since it can be made constant, the perpendicularity and straightness of the wall surface of the work material can be made highly accurate.

工具本体の中心軸線CL方向における外周切刃31Aの長さLは、スローアウェイ式エンドミル1の外周切刃の直径Dの1倍以上且つ2倍以下の範囲内に設定される。そうすれば、前記中心軸線CL方向の切込みを大きくして高能率切削を行うことにより、工具本体10の剛性を向上させる効果を十分に発揮することができる。なお、前記長さLを前記外周切刃の直径Dの2倍以上にした場合、中心軸線CLに対して斜交する取付溝20の後端部において肉厚の低下が著しくなるため、工具本体10の剛性を高めるといった所期の効果が得られないおそれがある。   The length L of the outer peripheral cutting edge 31A in the central axis CL direction of the tool body is set within a range of 1 to 2 times the diameter D of the outer peripheral cutting edge of the throw-away end mill 1. If it does so, the effect which improves the rigidity of the tool main body 10 can fully be exhibited by enlarging the cutting | disconnection of the said center axis line CL direction, and performing highly efficient cutting. When the length L is twice or more the diameter D of the outer peripheral cutting edge, the thickness of the mounting groove 20 obliquely intersecting with the central axis CL is significantly reduced. The desired effect of increasing the rigidity of 10 may not be obtained.

このスローアウェイ式エンドミル1は、以上に説明したように、チップ30を小型化するのに好適な構成を有し、これにより小径工具における工具本体10の剛性向上にきわめて有効であることから、外周切刃の直径Dが6mm〜20mmの範囲に設定されたスローアウェイ式エンドミルに適用した場合、特に有益な効果が得られる。   As described above, the throw-away end mill 1 has a configuration suitable for reducing the size of the tip 30, and is extremely effective in improving the rigidity of the tool body 10 in a small-diameter tool. When applied to a throw-away end mill in which the diameter D of the cutting edge is set in the range of 6 mm to 20 mm, a particularly beneficial effect is obtained.

本発明のスローアウェイ式回転工具は、以上に説明した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で適宜変更可能である。例えば、チップ30は多角形板状又は円形板状のものであれば適宜変更可能であり、すくい面は、着座面34と平行な平坦面からなるすくい面又は切刃に沿ってポジすくい角を付与した傾斜すくい面に変更可能であり、逃げ面の逃げ角はネガ(0°)に変更可能であり、さらに、チップ30の上面の周縁部全体にわたって2つ以上の外周切刃31Aを設けることが可能である。また、ねじ部材の本数は、1つ又は2つ以上用いてもよく、チップ30のサイズや所望するクランプ強度に応じて適宜変更可能である。また、エンドミルに限らず、ドリル、ボーリングカッタ又はリーマ等の穴加工工具、もしくは、正面フライス又はサイドカッタ等のフライス工具に適用可能であることはいうまでもない。   The throw-away rotary tool of the present invention is not limited to the embodiment described above, and can be changed as appropriate without departing from the gist of the present invention. For example, the tip 30 can be appropriately changed as long as it has a polygonal plate shape or a circular plate shape, and the rake face has a positive rake angle along a rake face or cutting edge formed of a flat surface parallel to the seating face 34. It can be changed to the inclined rake face provided, the clearance angle of the flank can be changed to negative (0 °), and two or more outer peripheral cutting edges 31A are provided over the entire peripheral edge of the upper surface of the tip 30 Is possible. The number of screw members may be one or two or more, and can be appropriately changed according to the size of the chip 30 and the desired clamp strength. Moreover, it cannot be overemphasized that it is applicable not only to an end mill but to drilling tools, such as a drill, a boring cutter, or a reamer, or milling tools, such as a face mill or a side cutter.

本発明を適用したスローアウェイ式エンドミルの斜視図である。1 is a perspective view of a throw-away end mill to which the present invention is applied. 図1に示すスローアウェイ式エンドミルの一部分解斜視図である。FIG. 2 is a partially exploded perspective view of the throw-away end mill shown in FIG. 1. (a)〜(c)は順に図1に示すスローアウェイ式エンドミルの平面図、正面図、先端視側面図である。(A)-(c) is a top view of a throwaway type end mill shown in Drawing 1, a front view, and a tip view side view in order. 図1に示すスローアウェイ式エンドミルに装着されるチップの斜視図である。It is a perspective view of the chip | tip with which the throwaway type end mill shown in FIG. 1 is mounted | worn. (a)〜(e)は順に図4に示すチップの背面図、平面図、正面図、左側面図、右側面図である。(A)-(e) is the rear view of the chip | tip shown in FIG. 4, a top view, a front view, a left view, and a right view in order. ねじ部材の中心部においてスローアウェイ式エンドミルの中心軸線に直角な平面で切断した断面形状を示す図であり、(a)は本発明を適用したスローアウェイ式エンドミルの断面形状、(b)は従来工具の断面形状である。It is a figure which shows the cross-sectional shape cut | disconnected by the plane orthogonal to the central axis of a throw-away type end mill in the center part of a screw member, (a) is a cross-sectional shape of the throw-away type end mill to which this invention is applied, (b) is conventional. It is a cross-sectional shape of a tool. 従来のフライスカッターに装着される切削インサートの斜視図である。It is a perspective view of the cutting insert with which the conventional milling cutter is mounted. 図7に示す切削インサートを装着するフライスカッターの正面図である。It is a front view of the milling cutter which mounts | wears with the cutting insert shown in FIG. 他の従来フライス工具の一部断面正面図である。It is a partial cross section front view of another conventional milling tool.

符号の説明Explanation of symbols

1 スローアウェイ式エンドミル(スローアウェイ式回転工具)
10 工具本体
10a 工具本体の先端面
10b 工具本体の外周面
13A、13B 雌ねじ孔
20 取付溝
21 取付面
22、23 拘束面
30 チップ
30a 上面
30b 下面
31A 外周切刃
31B 副切刃
32A 外周切刃すくい面
32B 副切刃すくい面
33A 外周切刃逃げ面
33B 副切刃逃げ面
34 着座面
35A、35B 凹部
36A、36B 凹部の底面
37、38 被拘束面
40A、40B ねじ部材
CL 工具本体の中心軸線
CLs 雌ねじ孔の中心軸線
P 凹部の底面の垂線
D 外周切刃の直径
L 外周切刃の長さ
α ねじれ角
β 外周すくい角
1 Throw-away end mill (throw-away rotary tool)
10 Tool body 10a Tool body tip surface 10b Tool body outer peripheral surface 13A, 13B Female screw hole 20 Mounting groove 21 Mounting surface 22, 23 Constraining surface 30 Tip 30a Upper surface 30b Lower surface 31A Outer cutting edge 31B Sub cutting edge 32A Outer cutting edge scoop Surface 32B Secondary cutting edge rake surface 33A Peripheral cutting edge clearance surface 33B Secondary cutting edge clearance surface 34 Seating surface 35A, 35B Recess 36A, 36B Recess bottom surface 37, 38 Constrained surface 40A, 40B Screw member CL Center axis CLs of tool body Center axis P of female thread hole Perpendicular line D of bottom surface of recess D Diameter of outer peripheral cutting edge L Length of outer peripheral cutting edge α Torsion angle β External rake angle

Claims (6)

中心軸線(CL)まわりに回転させられる工具本体(10)と、
該工具本体(10)の先端部外周面に切欠き形成された少なくとも1つの取付溝(20)に、ねじ部材(40A、40B)によって着脱自在に取り付けられるチップ(30)と、
を備えたスローアウェイ式回転工具であって、
前記チップ(30)は、略板状をなし、
工具回転方向(K)を向く上面(30a)に形成されたすくい面(32A、32B)と、
前記上面(30a)に対向する下面(30b)に形成された着座面(34)と、
前記すくい面(32A、32B)に隣接し工具外周側を向く側面に形成された逃げ面(33A、33B)と、
これらすくい面(32A、32B)と逃げ面(33A、33B)の交差稜線部に形成され、少なくとも工具本体の外周面(10b)から突出した切刃(31A、31B)と、
工具内周側を向く側面又は工具基端部側を向く側面の少なくとも一方に形成された被拘束面(37、38)と、
を備え、
前記チップの上面(30a)に面する取付溝(20)の壁面側には、前記ねじ部材(40A、40B)がねじ込まれる少なくとも1つの雌ねじ孔(13A、13B)が設けられ、
前記チップの上面(30a)には、前記ねじ部材(40A、40B)に押圧される底面を備えた少なくとも1つの凹部(35A、35B)が形成され、
前記雌ねじ孔の中心軸線(CLs)及び前記凹部の底面の垂線(P)が、前記着座面(34)の垂線を基準にして、前記着座面(34)に近づくにしたがって前記被拘束面(37、38)に漸次近づくように傾斜していることを特徴とするスローアウェイ式回転工具。
A tool body (10) rotated about a central axis (CL);
A tip (30) removably attached to at least one attachment groove (20) formed in the outer peripheral surface of the tip of the tool body (10) by a screw member (40A, 40B);
A throw-away rotary tool with
The chip (30) has a substantially plate shape,
Rake surfaces (32A, 32B) formed on the upper surface (30a) facing the tool rotation direction (K);
A seating surface (34) formed on the lower surface (30b) facing the upper surface (30a);
Flank faces (33A, 33B) formed on the side faces adjacent to the rake face (32A, 32B) and facing the outer periphery of the tool;
Cutting edges (31A, 31B) that are formed at the intersection ridge line portion of the rake face (32A, 32B) and the flank face (33A, 33B) and protrude from at least the outer peripheral surface (10b) of the tool body,
A constrained surface (37, 38) formed on at least one of a side surface facing the tool inner peripheral side or a side surface facing the tool proximal end side;
With
At least one female screw hole (13A, 13B) into which the screw member (40A, 40B) is screwed is provided on the wall surface side of the mounting groove (20) facing the upper surface (30a) of the chip,
At least one recess (35A, 35B) having a bottom surface pressed against the screw member (40A, 40B) is formed on the upper surface (30a) of the chip,
The constrained surface (37) as the central axis (CLs) of the female screw hole and the perpendicular (P) of the bottom surface of the recess approach the seating surface (34) with respect to the perpendicular of the seating surface (34). , 38), which is inclined so as to gradually approach the throwaway rotary tool.
前記雌ねじ孔の中心軸線(CLs)及び前記凹部の底面の垂線(P)と、前記着座面(34)の垂線とのなす角度が5°〜20°の範囲内にあることを特徴とする請求項1記載のスローアウェイ式回転工具。 The angle between the central axis (CLs) of the female screw hole and the perpendicular (P) of the bottom surface of the recess and the perpendicular of the seating surface (34) is in the range of 5 ° to 20 °. Item 10. A throwaway rotary tool according to item 1. 前記切刃(31A、31B)が工具本体の先端面(10a)及び外周面(10b)からそれぞれ突出するように形成した外周切刃(31A)及び副切刃(31B)を備え、
工具本体の中心軸線(CL)方向における前記外周切刃の長さ(L)が該外周切刃の直径(D)の1倍以上且つ2倍以下の範囲内にあることを特徴とする請求項1又は2記載のスローアウェイ式回転工具。
The cutting blades (31A, 31B) include an outer peripheral cutting blade (31A) and a sub cutting blade (31B) formed so as to protrude from the tip surface (10a) and the outer peripheral surface (10b) of the tool body,
The length (L) of the outer peripheral cutting edge in the central axis (CL) direction of the tool body is in the range of 1 to 2 times the diameter (D) of the outer peripheral cutting edge. The throw-away rotary tool according to 1 or 2.
前記外周切刃(31A)がねじれ角(α)を有するねじれ刃であることを特徴とする請求項1〜3のいずれか1項記載のスローアウェイ式回転工具。 The throw-away rotary tool according to any one of claims 1 to 3, wherein the outer peripheral cutting edge (31A) is a helix blade having a helix angle (α). 前記外周切刃のねじれ角(α)が10°〜20°の範囲内にあり且つ外周すくい角(β)が−5°〜15°の範囲内にあることを特徴とする請求項4記載のスローアウェイ式回転工具。 The twist angle (α) of the outer peripheral cutting edge is in the range of 10 ° to 20 °, and the outer peripheral rake angle (β) is in the range of -5 ° to 15 °. A throwaway rotary tool. 前記外周切刃の直径(D)が6mm〜20mmの範囲内にあることを特徴とする請求項1〜5のいずれか1項記載のスローアウェイ式回転工具。
The throwaway rotary tool according to any one of claims 1 to 5, wherein a diameter (D) of the outer peripheral cutting edge is in a range of 6 mm to 20 mm.
JP2006153173A 2006-06-01 2006-06-01 Throw-away rotary tool Active JP4952068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006153173A JP4952068B2 (en) 2006-06-01 2006-06-01 Throw-away rotary tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006153173A JP4952068B2 (en) 2006-06-01 2006-06-01 Throw-away rotary tool

Publications (2)

Publication Number Publication Date
JP2007319986A true JP2007319986A (en) 2007-12-13
JP4952068B2 JP4952068B2 (en) 2012-06-13

Family

ID=38853202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006153173A Active JP4952068B2 (en) 2006-06-01 2006-06-01 Throw-away rotary tool

Country Status (1)

Country Link
JP (1) JP4952068B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110293381A1 (en) * 2009-02-13 2011-12-01 Tungaloy Corporation Cutting Edge-Replaceable Cutting Tool and Cutting Insert for Use Therein
JP2018501117A (en) * 2014-11-28 2018-01-18 サンドビック インテレクチュアル プロパティー アクティエボラーグ Milling inserts and milling tools
JPWO2020179538A1 (en) * 2019-03-05 2020-09-10
JP7383078B1 (en) 2022-05-26 2023-11-17 株式会社牧野フライス製作所 Processing methods, machine tools, cutting tools and cutting inserts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503219A (en) * 1999-06-29 2003-01-28 セコ ツールズ アクティエボラーグ(プブル) Thread milling cutter and thread milling insert
JP2004344984A (en) * 2003-05-20 2004-12-09 Tungaloy Corp End mill

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503219A (en) * 1999-06-29 2003-01-28 セコ ツールズ アクティエボラーグ(プブル) Thread milling cutter and thread milling insert
JP2004344984A (en) * 2003-05-20 2004-12-09 Tungaloy Corp End mill

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110293381A1 (en) * 2009-02-13 2011-12-01 Tungaloy Corporation Cutting Edge-Replaceable Cutting Tool and Cutting Insert for Use Therein
US8647024B2 (en) * 2009-02-13 2014-02-11 Tungaloy Corporation Cutting edge-replaceable cutting tool and cutting insert for use therein
JP2018501117A (en) * 2014-11-28 2018-01-18 サンドビック インテレクチュアル プロパティー アクティエボラーグ Milling inserts and milling tools
JPWO2020179538A1 (en) * 2019-03-05 2020-09-10
JP7281532B2 (en) 2019-03-05 2023-05-25 京セラ株式会社 Turning tool and manufacturing method of machined product
JP7383078B1 (en) 2022-05-26 2023-11-17 株式会社牧野フライス製作所 Processing methods, machine tools, cutting tools and cutting inserts
WO2023228882A1 (en) * 2022-05-26 2023-11-30 株式会社牧野フライス製作所 Machining method, machine tool, cutting tool, and cutting insert
JP2023173883A (en) * 2022-05-26 2023-12-07 株式会社牧野フライス製作所 Processing method, machine tool, cutting tool, and cutting insert

Also Published As

Publication number Publication date
JP4952068B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP6853442B2 (en) Cutting inserts and cutting tools with replaceable cutting edges
JP5007853B2 (en) Cutting inserts and cutting edge exchangeable cutting tools
EP2101947B1 (en) Cutting insert and cutting tool
RU2338630C2 (en) Cutting tool and method for producing cutting tool holder
JP5062336B2 (en) Cutting edge exchangeable cutting tool and cutting insert used therefor
CN101203346B (en) Cutting knife bit and rotary tool
US20100124465A1 (en) Double-sided ball end mill cutting insert and tool therefor
WO2016140333A1 (en) Cutting insert and cutting edge-replaceable rotary cutting tool
CN108602130B (en) Face grooving tool body for metal cutting
JP4639881B2 (en) Throw-away cutting tool
EP2511035B1 (en) Cutting tool with a replaceable blade edge
JP2014136264A (en) Cutting insert for face milling cutter and cutting edge replaceable face milling cutter
JP6361948B2 (en) Cutting inserts and cutting tools
KR20110003311A (en) Tool body of cutter for plunge cutting, cutter for plunge cutting, and plunge cutting method
CN109843484B (en) Turning insert
WO2014208513A1 (en) Cutting insert, cutting tool, and production method for cut workpiece
JP2006281433A (en) Insert and cutting tool
JP2014083667A (en) Cutting insert and tip replaceable cutting tool
WO2011062245A1 (en) Cutting insert and cutting tool
JP4952068B2 (en) Throw-away rotary tool
JP4456852B2 (en) Throw-away drill
JP4810902B2 (en) Inserts and turning tools
JP5152693B2 (en) Insert and cutting edge exchangeable cutting tool
JP4821244B2 (en) Throw-away tip and throw-away end mill
JP4940863B2 (en) Throw-away rotary tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R150 Certificate of patent or registration of utility model

Ref document number: 4952068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250