JP2007319092A - Method for degrading biodegradable resin - Google Patents

Method for degrading biodegradable resin Download PDF

Info

Publication number
JP2007319092A
JP2007319092A JP2006153643A JP2006153643A JP2007319092A JP 2007319092 A JP2007319092 A JP 2007319092A JP 2006153643 A JP2006153643 A JP 2006153643A JP 2006153643 A JP2006153643 A JP 2006153643A JP 2007319092 A JP2007319092 A JP 2007319092A
Authority
JP
Japan
Prior art keywords
biodegradable resin
amino acid
protein
acid sequence
degrading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006153643A
Other languages
Japanese (ja)
Inventor
Masashi Toyama
将史 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2006153643A priority Critical patent/JP2007319092A/en
Publication of JP2007319092A publication Critical patent/JP2007319092A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/105Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with enzymes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive polylactic acid-degrading enzyme which can be produced in a large amount and exhibits a polylactic acid-degrading activity even at temperature below 30°C. <P>SOLUTION: This method for degrading a biodegradable resin is characterized by culturing Streptomyces coelicolor A3(2) and then bringing the obtained culture product into contact with the biodegradable resin. A biodegradable resin-degrading protein precursor comprises the following amino acid sequences. (1) An amino acid sequence constituting a chaperone region, (2) an amino acid sequence necessary for cleaving a chaperone region, and (3) an amino acid sequence which is originated from Streptomyces coelicolor A3(2) and gives a protein comprising the amino acid sequence and having a biodegradable resin-degrading activity. A gene encoding the precursor, a vector containing the gene, and a host cell containing the vector are provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、生分解性樹脂の分解方法に関するものである。   The present invention relates to a method for decomposing a biodegradable resin.

現在、包装容器の廃棄が問題となっている。汎用樹脂と同様な焼却処理は、二酸化炭素を環境へ直接排出するため、良い方法とは言えない。埋め立て等の環境中の微生物に分解させる方法は、環境への付加が低減されると期待できるが、分解に時間が掛かるだけでなく用地の確保も難しい。また、環境中から単離してきた生分解性樹脂分解微生物を用いても酵素量が少ない等の問題から迅速に分解できない。
一方、ポリ乳酸は水溶液中で加水分解する高分子であり、医療及び医薬用材料として応用されている。ポリ乳酸は、澱粉等の再生可能な資源から乳酸醗酵を通して合成できることから、環境分解が困難である汎用樹脂に代わる生分解性樹脂の素材として注目されている。ポリ乳酸としては、その構成モノマーの種類によって、ポリL−乳酸、ポリD−乳酸、ポリDL−乳酸又は他のモノマーとの共重合体などが挙げられる。また、ポリ乳酸は、酵素によって加水分解が促進されていることが知られている。このような酵素としては、放線菌Amycolatopsis sp. K104-1の分解酵素が知られている(非特許文献1)。しかしながら、前記の酵素は30℃未満では、ポリ乳酸分解活性を示さない。また、生分解性樹脂分解酵素を大量に精製・抽出し、分解に用いる方法では、コストが高く実現は難しい。このことから、生分解性酵素を大量に取得する方法や生分解性樹脂分解酵素の大量取得方法を応用した環境に優しいシステム開発等が求められている。
Currently, disposal of packaging containers is a problem. Incineration treatment similar to general-purpose resins is not a good method because it emits carbon dioxide directly to the environment. The method of decomposing into microorganisms in the environment such as landfill can be expected to reduce the addition to the environment, but it takes time to decompose and it is difficult to secure a site. Further, even when a biodegradable resin-degrading microorganism isolated from the environment is used, it cannot be rapidly decomposed due to problems such as a small amount of enzyme.
On the other hand, polylactic acid is a polymer that hydrolyzes in an aqueous solution and is applied as a medical and pharmaceutical material. Since polylactic acid can be synthesized from a renewable resource such as starch through lactic acid fermentation, it has attracted attention as a material for biodegradable resins that can replace general-purpose resins that are difficult to environmentally decompose. Examples of polylactic acid include poly L-lactic acid, poly D-lactic acid, poly DL-lactic acid, and copolymers with other monomers, depending on the type of constituent monomers. Polylactic acid is known to be hydrolyzed by enzymes. As such an enzyme, a degrading enzyme of the actinomycete Amycolatopsis sp. K104-1 is known (Non-patent Document 1). However, the enzyme does not exhibit polylactic acid-degrading activity below 30 ° C. In addition, a method of purifying and extracting a large amount of biodegradable resin-degrading enzyme and using it for decomposition is expensive and difficult to realize. For this reason, environmentally friendly system development that applies a method for acquiring a large amount of biodegradable enzyme and a method for acquiring a large amount of biodegradable resin-degrading enzyme is required.

J Bacteriol. 2005 Nov;187(21):7333-40.、Appl Environ Microbiol. 2001 Jan;67(1):345-53.J Bacteriol. 2005 Nov; 187 (21): 7333-40., Appl Environ Microbiol. 2001 Jan; 67 (1): 345-53.

したがって、本発明の目的は、大量生産が可能で、安価なポリ乳酸分解酵素を提供することである。また、本発明の目的は、30℃未満の温度であっても、ポリ乳酸分解活性を示す分解酵素を提供することである。   Accordingly, an object of the present invention is to provide an inexpensive polylactic acid degrading enzyme that can be mass-produced. Another object of the present invention is to provide a degrading enzyme exhibiting polylactic acid-degrading activity even at a temperature below 30 ° C.

本発明は、Streptomyces coelicolor A3(2)を培養し、得られる培養物を生分解性樹脂と接触させることを含む生分解性樹脂の分解方法を提供する。
また、本発明は、以下のアミノ酸配列からなる生分解性樹脂分解タンパク質の前駆物質を提供する:
(1)シャペロン領域を構成するアミノ酸配列、
(2)シャペロン領域を切断するために必要なアミノ酸配列、及び
(3)(i)配列番号2で表されるアミノ酸配列又は
(ii)配列番号2で表されるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列であって、このアミノ酸配列からなるタンパク質が生分解性樹脂分解活性を有するアミノ酸配列。
また、本発明は、前記前駆物質をコードする遺伝子、この遺伝子を含むベクター、及びこのベクターを含む宿主を提供する。
また、本発明は、前記前駆物質又はこの前駆物質から誘導され得る活性化した生分解性樹脂分解タンパク質を含む生分解性樹脂の可溶化剤を提供する。
また、本発明は、前記可溶化剤に、生分解性樹脂を接触させることを含む生分解性樹脂の可溶化方法を提供する。
The present invention provides a method for degrading a biodegradable resin comprising culturing Streptomyces coelicolor A3 (2) and contacting the resulting culture with a biodegradable resin.
The present invention also provides a biodegradable resin-degrading protein precursor comprising the following amino acid sequence:
(1) an amino acid sequence constituting the chaperone region,
(2) an amino acid sequence necessary for cleaving the chaperone region, and (3) (i) an amino acid sequence represented by SEQ ID NO: 2 or (ii) one or several amino acids in the amino acid sequence represented by SEQ ID NO: 2 An amino acid sequence in which an amino acid is deleted, substituted or added, and a protein comprising this amino acid sequence has biodegradable resin degrading activity.
The present invention also provides a gene encoding the precursor, a vector containing the gene, and a host containing the vector.
The present invention also provides a biodegradable resin solubilizer comprising the precursor or an activated biodegradable resin-degraded protein that can be derived from the precursor.
The present invention also provides a method for solubilizing a biodegradable resin, which comprises bringing a biodegradable resin into contact with the solubilizer.

本発明の生分解性樹脂の分解方法は、Streptomyces coelicolor A3(2)を培養し、得られる培養物を生分解性樹脂と接触させることを含む。
生分解性樹脂は、生分解性を有する樹脂であればよく、化学合成系樹脂、微生物系樹脂、天然物利用系樹脂などであってもよく、例えば脂肪族ポリエステル、ポリビニルアルコール(PVA)、セルロース類などが挙げられる。脂肪族ポリエステルとしては、例えばポリ乳酸(PLA)樹脂及びその誘導体、ポリブチレンサクシネート(PBS)樹脂及びその誘導体、ポリカプロラクトン(PCL)、ポリヒドロキシブチレート(PHB)及びその誘導体、ポリエチレンアジペート(PEA)、ポリグリコール酸(PGA)、ポリテトラメチレンアジペート、ジオールとジカルボン酸の縮合物などが挙げられる。セルロース類としては、例えばメチルセルロース、エチルセルロース、アセチルセルロースなどが挙げられる。また、上記生分解性樹脂の修飾体や上記生分解性樹脂同士及び汎用化学樹脂との混合体であっても良い。好ましくは、ポリ乳酸樹脂である。
ポリ乳酸樹脂は、ポリマーの主要な構成単位として乳酸を有する樹脂である。例えば、ポリL−乳酸やポリD−乳酸などの乳酸ホモポリマー、L−乳酸及びD−乳酸の少なくとも1種とアラニン、グリコリド、グリシン、グリコール酸、グルコール、ポリエチレングリコール、ポリプロピレングリコール、ε−カプロラクトン、ポリビニルアルコール、糖類、多価アルコールの少なくとも1種との乳酸コポリマー、ポリD,L−乳酸などが挙げられる。好ましくは、乳酸ホモポリマー、L−乳酸及びD−乳酸の少なくとも1種とアラニン若しくはグリコリドとの乳酸コポリマー、ポリD,L−乳酸であり、さらに好ましくはL−乳酸及びD−乳酸の少なくとも1種とグリコリドとの乳酸コポリマー、ポリL−乳酸である。ポリ乳酸の数平均分子量は特に制限されないが、好ましくは5000〜1×106、さらに好ましくは50000〜4×105である。ポリ乳酸中の乳酸単位の重量比率は特に制限されないが、好ましくは10%以上、さらに好ましくは30%以上である。
The method for degrading a biodegradable resin of the present invention includes culturing Streptomyces coelicolor A3 (2) and contacting the resulting culture with the biodegradable resin.
The biodegradable resin may be a resin having biodegradability, and may be a chemically synthesized resin, a microbial resin, a natural product-based resin, or the like. For example, aliphatic polyester, polyvinyl alcohol (PVA), cellulose And the like. Examples of the aliphatic polyester include polylactic acid (PLA) resin and derivatives thereof, polybutylene succinate (PBS) resin and derivatives thereof, polycaprolactone (PCL), polyhydroxybutyrate (PHB) and derivatives thereof, polyethylene adipate (PEA) ), Polyglycolic acid (PGA), polytetramethylene adipate, condensates of diol and dicarboxylic acid, and the like. Examples of celluloses include methyl cellulose, ethyl cellulose, and acetyl cellulose. Moreover, the modified body of the said biodegradable resin, the said biodegradable resin and the mixture with general purpose chemical resin may be sufficient. Polylactic acid resin is preferable.
The polylactic acid resin is a resin having lactic acid as a main constituent unit of the polymer. For example, lactic acid homopolymers such as poly L-lactic acid and poly D-lactic acid, at least one of L-lactic acid and D-lactic acid, and alanine, glycolide, glycine, glycolic acid, glycol, polyethylene glycol, polypropylene glycol, ε-caprolactone, Examples thereof include lactic acid copolymers with at least one of polyvinyl alcohol, saccharides and polyhydric alcohol, and poly D, L-lactic acid. Preferably, it is a lactic acid homopolymer, a lactic acid copolymer of at least one of L-lactic acid and D-lactic acid and alanine or glycolide, and poly D, L-lactic acid, more preferably at least one of L-lactic acid and D-lactic acid. Polylactic acid copolymer of glyceride and glycolide, poly-L-lactic acid. The number average molecular weight of polylactic acid is not particularly limited, but is preferably 5000 to 1 × 10 6 , more preferably 50000 to 4 × 10 5 . The weight ratio of lactic acid units in polylactic acid is not particularly limited, but is preferably 10% or more, more preferably 30% or more.

Streptomyces coelicolor A3(2)を培養する培地としては、従来から用いられている培地などを使用することができる。例えば、PYM培地、CFMM培地などである。
培養温度は、ポリ乳酸分解酵素が産生される限り特に制限されないが、好ましくは10〜40℃であり、より好ましくは20〜30℃である。
培地のpHは、好ましくは5.0〜9.0であり、より好ましくは6.0〜8.0である。
培養時間は、特に制限されず、使用する菌量、培地などに応じて適宜選択される。例えばCFMM培地では、50〜100時間、好ましくは60〜70時間である。
また、培養時には、必ずしも必要ではないが、撹拌することが好ましい。他の培養条件については、本発明の目的を考慮して適宜選択される。
As a medium for culturing Streptomyces coelicolor A3 (2), a conventionally used medium or the like can be used. For example, PYM medium and CFMM medium.
The culture temperature is not particularly limited as long as polylactic acid-degrading enzyme is produced, but is preferably 10 to 40 ° C, more preferably 20 to 30 ° C.
The pH of the medium is preferably 5.0 to 9.0, more preferably 6.0 to 8.0.
The culture time is not particularly limited and is appropriately selected according to the amount of bacteria used, the medium, and the like. For example, in CFMM medium, it is 50 to 100 hours, preferably 60 to 70 hours.
Moreover, at the time of culture, it is not always necessary, but stirring is preferable. Other culture conditions are appropriately selected in view of the object of the present invention.

次いで、得られた培養物に生分解性樹脂を接触、好ましくは浸漬する。このときの温度は、好ましくは10〜60℃であり、より好ましくは20〜50℃である。また、上述のようにして得られた培養物から酵素を採取して、この酵素を含む処理剤を生分解性樹脂と接触させてもよい。酵素を採取する方法としては、例えば常法により培養液を濾過等によって菌体を除去し、必要により透析、塩析、イオン交換樹脂によるイオン交換、ゲル濾過、アフィニティークロマトグラフィーなどにより精製する方法などが挙げられる。   The biodegradable resin is then contacted, preferably immersed, in the resulting culture. The temperature at this time is preferably 10 to 60 ° C, more preferably 20 to 50 ° C. Alternatively, an enzyme may be collected from the culture obtained as described above, and a treatment agent containing this enzyme may be brought into contact with the biodegradable resin. Examples of the method for collecting the enzyme include, for example, a method in which the culture is removed by filtration or the like by a conventional method, and if necessary, purified by dialysis, salting out, ion exchange with an ion exchange resin, gel filtration, affinity chromatography, etc. Is mentioned.

また、本発明の生分解性樹脂分解タンパク質の前駆物質は、以下のアミノ酸配列からなる。
(1)シャペロン領域を構成するアミノ酸配列、
(2)シャペロン領域を切断するために必要なアミノ酸、及び
(3)(i)配列番号2で表されるアミノ酸配列又は
(ii)配列番号2で表されるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列であって、このアミノ酸配列からなるタンパク質が生分解性樹脂分解活性を有するアミノ酸配列。
シャペロン領域は発現されるタンパク質の構造を正常な構造にするために必要な配列である。シャペロン領域を構成するアミノ酸配列としては、例えばD−−PQP(−は任意のアミノ酸)が挙げられ、好ましくはDGGPQP(配列番号4)である。
シャペロン領域を切断するために必要なアミノ酸としては、Ser、Gly、Thr、Ala、Valなどが挙げられ、好ましくはSerである。
配列番号2で表されるアミノ酸配列からなるタンパク質は、すでに蛋白質加水分解能を有するタンパク質として公知である(National Center for Biotechnology Information 、登録番号CAC36053)。しかしながら、これをコードする遺伝子を大腸菌などに導入して前記タンパク質を発現させても、産生されるタンパク質は可溶化せず、生分解性樹脂の分解活性を示さない。また、配列番号2で表されるアミノ酸配列にシャペロン領域を付加した配列からなるポリペプチドをコードする遺伝子を大腸菌などに導入して前記タンパク質を発現させても、産生されるタンパク質は可溶化するが、生分解性樹脂の分解活性を示さない。一方、配列番号2で表されるアミノ酸配列からなるタンパク質は、配列番号2で表されるアミノ酸配列にシャペロン領域及びシャペロン領域を切断するために必要なアミノ酸を付加した配列からなるポリペプチドをコードする遺伝子を大腸菌などに導入して前記タンパク質を発現させると、産生されるタンパク質は可溶化し、生分解性樹脂の分解活性を示すものとなることが本発明者らによる研究により始めて見いだされた。可溶化のメカニズムにおいては、DGGPQP(配列番号4)の6残基がシャペロンとして機能しており、可溶化を促進する。活性化のメカニズムにおいては、前駆物質の最初のDのN末端側が切り離された状態になると、自己反応によりDGGPQPSのSのC末端側を切断する。
なお、本発明において、生分解性樹脂分解タンパク質は、生分解性樹脂分解活性を有する限り、当業者に公知の方法で、配列番号2で表されるアミノ酸配列において1若しくは数個のアミノ酸を欠失、置換若しくは付加させてもよい。
前記前駆物質をコードする遺伝子としては、例えば配列番号5が挙げられる。
The precursor of the biodegradable resin-degrading protein of the present invention consists of the following amino acid sequences.
(1) an amino acid sequence constituting the chaperone region,
(2) amino acids necessary for cleaving the chaperone region, and (3) (i) the amino acid sequence represented by SEQ ID NO: 2 or (ii) one or several amino acids in the amino acid sequence represented by SEQ ID NO: 2 Is an amino acid sequence in which is deleted, substituted or added, and a protein comprising this amino acid sequence has biodegradable resin degrading activity.
The chaperone region is a sequence necessary for making the structure of the expressed protein a normal structure. Examples of the amino acid sequence constituting the chaperone region include D--PQP (-is an arbitrary amino acid), and DGGPQP (SEQ ID NO: 4) is preferable.
Examples of amino acids necessary for cleaving the chaperone region include Ser, Gly, Thr, Ala, Val and the like, and preferably Ser.
The protein consisting of the amino acid sequence represented by SEQ ID NO: 2 is already known as a protein having protein hydrolytic ability (National Center for Biotechnology Information, registration number CAC36053). However, even when a gene encoding this is introduced into Escherichia coli or the like to express the protein, the protein produced is not solubilized and does not exhibit the degradation activity of the biodegradable resin. In addition, even when a gene encoding a polypeptide consisting of a sequence obtained by adding a chaperone region to the amino acid sequence represented by SEQ ID NO: 2 is introduced into Escherichia coli or the like to express the protein, the protein produced is solubilized. It does not show the biodegradable resin degradation activity. On the other hand, the protein consisting of the amino acid sequence represented by SEQ ID NO: 2 encodes a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 added with a chaperone region and an amino acid necessary for cleaving the chaperone region. It has been found for the first time by research by the present inventors that when a gene is introduced into Escherichia coli or the like to express the protein, the protein produced is solubilized and exhibits the degradation activity of the biodegradable resin. In the solubilization mechanism, 6 residues of DGGPQP (SEQ ID NO: 4) function as a chaperone and promote solubilization. In the activation mechanism, when the N-terminal side of the first D of the precursor is cut off, the C-terminal side of S of DGGPQPS is cleaved by self-reaction.
In the present invention, the biodegradable resin-degrading protein lacks one or several amino acids in the amino acid sequence represented by SEQ ID NO: 2 by a method known to those skilled in the art as long as it has biodegradable resin-degrading activity. It may be lost, replaced or added.
Examples of the gene encoding the precursor include SEQ ID NO: 5.

本発明において、前記タンパク質は、ポリ乳酸分解活性を有するものであればよく、天然のタンパク質でも組み換えタンパク質でも、あるいは化学合成タンパク質でもよく、その起源は特に限定されない。天然のタンパク質を得る方法としては、目的タンパク質を発現する微生物を出発原料として、それを培養し、次いで必要に応じて培養して得られた微生物体から目的タンパク質を溶出させて、得られた培養物を塩析、アフィニティークロマトグラフィー、イオン交換クロマトグラフィーまたはゲル濾過などのタンパク質の単離、精製のための公知の方法に供して、ポリ乳酸分解活性を指標として目的タンパク質を単離、精製する方法を例示することができる。ここで、例えばアフィニティークロマトグラフィーを利用する場合には、本発明のタンパク質に対する抗体を結合させた担体を用いることにより目的タンパク質を精製することができる。
また、組み換えタンパク質を得る方法としては、上記のように目的タンパク質をコードする本発明の遺伝子を好適な発現ベクター中にクローニングして得られた組み換え発現ベクターを宿主(大腸菌、酵母など)に形質転換し、形質転換体を好適な条件下で培養することにより目的とするタンパク質を産生させることができる。目的タンパク質の単離のためには、目的タンパク質を培養上清中に分泌させることが一般には好ましく、これは、組み換えベクター/宿主の組み合わせや培養条件などを適宜選択することによって行うことができる。また、本発明によって開示されたポリ乳酸分解活性を有するタンパク質のアミノ酸配列に従って、所望のアミノ酸配列を有する該タンパク質を化学合成的に製造することも当業者ならば適宜行うことができる。
In the present invention, the protein may be any protein as long as it has polylactic acid-degrading activity, and may be a natural protein, a recombinant protein, or a chemically synthesized protein, and its origin is not particularly limited. As a method for obtaining a natural protein, a microorganism that expresses a target protein is used as a starting material, cultured, and then, if necessary, the target protein is eluted from a microorganism obtained by culturing the target protein. A method for isolating and purifying a target protein using polylactic acid degradation activity as an index by subjecting the product to known methods for protein isolation and purification such as salting out, affinity chromatography, ion exchange chromatography or gel filtration Can be illustrated. Here, for example, when affinity chromatography is used, the target protein can be purified by using a carrier to which an antibody against the protein of the present invention is bound.
As a method for obtaining a recombinant protein, a recombinant expression vector obtained by cloning the gene of the present invention encoding the target protein as described above into a suitable expression vector is transformed into a host (E. coli, yeast, etc.). The target protein can be produced by culturing the transformant under suitable conditions. In order to isolate the target protein, it is generally preferable to secrete the target protein into the culture supernatant, and this can be performed by appropriately selecting the combination of the recombinant vector / host, the culture conditions, and the like. In addition, a person skilled in the art can appropriately perform the chemical synthesis of a protein having a desired amino acid sequence according to the amino acid sequence of the protein having polylactic acid-degrading activity disclosed by the present invention.

本発明によれば、ポリ乳酸分解活性を有するタンパク質をコードする遺伝子を含有するベクターが提供される。ここで、上記遺伝子を組み込むベクターの種類は特に限定されず、その後の操作の目的に応じて適当なベクターを選択できる。一般的には、プラスミドベクター、ファージベクターなどが使用でき、これらは多くの業者から市販されている。また、本発明の遺伝子がコードする組み換えタンパク質(ポリ乳酸分解活性を有するタンパク質)を産生させる場合には、発現ベクターが好適に使用される。
かかる発現ベクターは、例えば、(1)本発明のポリ乳酸分解活性を有するタンパク質をコードするDNAを切り出し、(2)該DNAを適当な発現ベクター中のプロモーターの下流に連結することにより製造することができる。ベクターとしては、大腸菌由来のプラスミド(pBR322等)、枯草菌由来のプラスミド(pUB110等)、放線菌Streptomyces lividans由来のプラスミド(pIJ702等)、酵母由来プラスミド(pSH19等)、λファージなどのバクテリオファージ、レトロウイルス,ワクシニアウイルス,バキュロウイルスなどの動物ウイルスなどが用いられる。本発明で用いられるプロモーターとしては、遺伝子の発現に用いる宿主に対応して適切なプロモーターであればいかなるものでもよい。
According to the present invention, a vector containing a gene encoding a protein having polylactic acid-degrading activity is provided. Here, the type of the vector into which the gene is incorporated is not particularly limited, and an appropriate vector can be selected according to the purpose of the subsequent operation. In general, plasmid vectors, phage vectors and the like can be used, and these are commercially available from many vendors. Moreover, when producing a recombinant protein (protein having polylactic acid degradation activity) encoded by the gene of the present invention, an expression vector is preferably used.
Such an expression vector can be produced, for example, by (1) cutting out a DNA encoding a protein having polylactic acid-degrading activity of the present invention and (2) ligating the DNA downstream of a promoter in an appropriate expression vector. Can do. Examples of vectors include plasmids derived from E. coli (pBR322, etc.), plasmids derived from Bacillus subtilis (pUB110, etc.), plasmids derived from Streptomyces lividans (pIJ702, etc.), plasmids derived from yeast (pSH19, etc.), bacteriophages such as λ phage, Animal viruses such as retrovirus, vaccinia virus and baculovirus are used. The promoter used in the present invention may be any promoter as long as it is suitable for the host used for gene expression.

また本発明によれば、上記組み換えベクターを宿主に形質転換することによって作製される形質転換体が提供される。宿主としては任意の好適な生物体を選択でき、微生物、真核微生物(動物細胞、植物細胞、酵母など)、原核微生物(大腸菌など)等が使用可能である。例えば、大腸菌(Escherichia coli等)、バチルス属菌(Bacillus subtilis、Brevibacillus brevis等)、放線菌(Streptomyces lividans等)、酵母(Saccaromyces cerevisiae等)、昆虫または昆虫細胞、動物細胞(マウス細胞、ハムスター細胞、サル細胞、ヒト細胞等)などが用いられる。好ましくは、Brevibacillus brevisである。形質転換の方法は当業者に公知の方法を使用することができ、具体的には、リン酸カルシウム法、エレクトロポレーション、マイクロインジェクション、リポフェクション法などを適宜使用できる。
かくして得られる形質転換体を好適な条件下で培養することにより、本発明のポリ乳酸分解活性を有するタンパク質を産生することができる。培養は、形質転換体(宿主)に応じて慣用の方法を使用することができる。培養に使用する培地の種類や組成についても形質転換体(宿主)に応じて慣用の方法を使用することができる。目的タンパク質の単離のためには、ポリ乳酸分解活性タンパク質を培養上清中に分泌させることが好ましく、これを目して組み換えベクター/宿主の組み合わせや培養条件などを適宜選択することができる。
次いで得られた培養物からポリ乳酸分解活性を有するタンパク質を回収し、単離し、必要に応じて精製する工程に供せられる。タンパク質は、目的タンパク質が培養物に分泌される場合は培養液(遠心分離処理後の上清)から、また菌体に蓄積される場合は培養物(菌体)を粉砕または溶解した後に得られる培養液(遠心分離処理後の上清)から回収することができる。得られた培養液は塩析、アフィニティ−クロマトグラフィー、イオン交換クロマトグラフィーまたはゲル濾過などのタンパク質の単離、精製のための公知の方法に供され、これによってポリ乳酸分解活性を指標として目的タンパク質を単離、精製することができる。なお、ここで例えばアフィニティークロマトグラフィーを利用する場合には、本発明のタンパク質に対する抗体を結合させた担体を用いることにより目的タンパク質を精製することができる。
Moreover, according to this invention, the transformant produced by transforming the said recombinant vector to a host is provided. Any suitable organism can be selected as the host, and microorganisms, eukaryotic microorganisms (animal cells, plant cells, yeast, etc.), prokaryotic microorganisms (E. coli etc.) and the like can be used. For example, E. coli (Escherichia coli, etc.), Bacillus subtilis (Brevibacillus brevis, etc.), actinomycetes (Streptomyces lividans, etc.), yeast (Saccaromyces cerevisiae, etc.), insect or insect cells, animal cells (mouse cells, hamster cells, Monkey cells, human cells, etc.) are used. Brevibacillus brevis is preferable. As a method for transformation, methods known to those skilled in the art can be used, and specifically, calcium phosphate method, electroporation, microinjection, lipofection method and the like can be appropriately used.
By culturing the transformant thus obtained under suitable conditions, the protein having polylactic acid-degrading activity of the present invention can be produced. For the culture, a conventional method can be used depending on the transformant (host). As for the type and composition of the medium used for the culture, a conventional method can be used depending on the transformant (host). For the purpose of isolating the target protein, it is preferable to secrete the polylactic acid-degrading active protein into the culture supernatant, and the recombinant vector / host combination, culture conditions, and the like can be appropriately selected in view of this.
Next, a protein having polylactic acid-degrading activity is recovered from the obtained culture, isolated, and subjected to a step of purification as necessary. The protein is obtained from the culture solution (supernatant after centrifugation) when the target protein is secreted into the culture, or after pulverizing or dissolving the culture (cells) when accumulating in the cells. It can collect | recover from a culture solution (supernatant after a centrifugation process). The obtained culture broth is subjected to a known method for protein isolation and purification such as salting out, affinity chromatography, ion exchange chromatography or gel filtration. Can be isolated and purified. Here, for example, when affinity chromatography is used, the target protein can be purified by using a carrier to which an antibody against the protein of the present invention is bound.

本発明の生分解性樹脂の可溶化方法は、前記前駆物質又はこの前駆物質から誘導され得る活性化した生分解性樹脂分解タンパク質を含む生分解性樹脂の可溶化剤に、生分解性樹脂を接触させることを含む。前記可溶化剤は、前記前駆物質又はこの前駆物質から誘導され得る活性化した生分解性樹脂分解タンパク質が溶媒中に溶解又は懸濁しているものであってもよい。適した溶媒としては、生分解性樹脂の可溶化に必要な水を含んでいるものであれば特に限定されないが、具体的にはPYM培地、CFMM培地等の培地やBugBuster Protein Extraction Reagent等の酵素活性が保たれる溶液などが挙げられる。水溶液であることが好ましい。また、前記前駆物質又はこの前駆物質から誘導され得る活性化した生分解性樹脂分解タンパク質は細粒体に担持させたものであってもよい。細粒体としては、接触させる生分解性樹脂との接触面積がある程度大きくなるものであれば特に限定されないが、粒状、粉末状などの形状において、土やコンポストに用いられる堆肥などを用いることができる。例えば、本発明の遺伝子のC末端側に他物質への吸着配列(His-tag)や結合配列等を融合させて発現し、各々と結合する物質および結合を触媒する物質等により固定化する方法が挙げられる。具体的には、本発明の酵素または固定化材にアミノ酸のGlnまたはLysのどちらかを付加もしくは融合発現させ、GlnとLysの結合を触媒するトランスグルミナーゼを用いることにより得られる(Biotechnol. Bioeng. 2004 May 20;86(4):399-404)。または、微生物等の細胞膜上に発現させる方法(Appl Microbiol Biotechnol. 2004 Mar;64(1):28-40. Epub 2004 Jan 10.)や微生物等を用いて無機物質に吸着させる方法(Biotechnol Bioeng. 2000 Dec 20;70(6):704-9.)等により得られる担持体でもよい。   The biodegradable resin solubilization method of the present invention comprises a biodegradable resin as a solubilizer for a biodegradable resin containing the precursor or an activated biodegradable resin-degradable protein that can be derived from the precursor. Including contacting. The solubilizer may be one in which the precursor or an activated biodegradable resin-degraded protein that can be derived from the precursor is dissolved or suspended in a solvent. A suitable solvent is not particularly limited as long as it contains water necessary for solubilization of the biodegradable resin. Specifically, a medium such as PYM medium or CFMM medium, or an enzyme such as BugBuster Protein Extraction Reagent. Examples thereof include solutions that maintain activity. An aqueous solution is preferred. In addition, the precursor or the activated biodegradable resin-degraded protein that can be derived from the precursor may be supported on fine particles. The fine particles are not particularly limited as long as the contact area with the biodegradable resin to be brought into contact is increased to some extent, but in the shape of granules, powders, etc., it is possible to use compost used for soil or compost. it can. For example, a method in which an adsorption sequence (His-tag) or binding sequence to another substance is fused to the C-terminal side of the gene of the present invention and expressed, and immobilized by a substance that binds to each other, a substance that catalyzes binding, or the like Is mentioned. Specifically, it is obtained by adding or fusion-expressing either the amino acid Gln or Lys to the enzyme or immobilization material of the present invention, and using transglutaminase that catalyzes the binding of Gln and Lys (Biotechnol. Bioeng 2004 May 20; 86 (4): 399-404). Alternatively, a method of expressing on a cell membrane of a microorganism (Appl Microbiol Biotechnol. 2004 Mar; 64 (1): 28-40. Epub 2004 Jan 10.) or a method of adsorbing to an inorganic substance using a microorganism or the like (Biotechnol Bioeng. 2000 Dec 20; 70 (6): 704-9.) And the like.

前記可溶化剤は、本発明の宿主を含むものであってもよく、この場合、前記前駆物質又はこの前駆物質から誘導され得る活性化した生分解性樹脂分解タンパク質は宿主から継続して産生される。また、前記可溶化剤には、本発明の宿主から産生された前記前駆物質又はこの前駆物質から誘導され得る活性化した生分解性樹脂分解タンパク質を分離して添加してもよい。この場合、生分解性樹脂を接触させる前の除菌処理や、可溶化後に組み換え体の拡散防止などの目的で行う殺菌処理などを省略することができる。これらの方法は、宿主の性質や生分解性樹脂などを考慮して適宜選択すればよい。
生分解性樹脂を接触させる方法としては、例えば生分解性樹脂を本発明の可溶化剤に浸漬する方法、水との接触を避ける処理をして樹脂に混入する方法、上記の坦持体等を混在させる方法などが挙げられる。
生分解性樹脂は、そのままの形状で本発明の可溶化剤と接触させてもよいが、分解時間を短くすることなどを目的として予め細分化してもよい。例えば、機械的な粉砕や切断又は加熱などで流体としてから細分化してもよい。
なお、本発明の生分解性樹脂の可溶化方法は、生分解性樹脂の可溶化を阻害しない内容物、例えば食品などを含む状態で生分解性樹脂を可溶化することが可能である。また、生分解性樹脂分解酵素を発現する微生物の培養温度と生分解性樹脂の可溶化温度が異なる場合は、別工程にしても良い(図6)。
The solubilizer may comprise the host of the present invention, in which case the precursor or an activated biodegradable resin-degrading protein that can be derived from the precursor is continuously produced from the host. The Further, the precursor produced from the host of the present invention or an activated biodegradable resin-degraded protein that can be derived from the precursor may be separately added to the solubilizer. In this case, sterilization treatment before contacting the biodegradable resin, sterilization treatment performed for the purpose of preventing the diffusion of the recombinant after solubilization, and the like can be omitted. These methods may be appropriately selected in consideration of the properties of the host and the biodegradable resin.
Examples of the method of bringing the biodegradable resin into contact include a method of immersing the biodegradable resin in the solubilizing agent of the present invention, a method of mixing the resin with a treatment that avoids contact with water, the above carrier And a method of mixing them.
The biodegradable resin may be brought into contact with the solubilizer of the present invention as it is, but may be subdivided in advance for the purpose of shortening the decomposition time. For example, the fluid may be subdivided after being mechanically pulverized, cut or heated.
In addition, the biodegradable resin solubilization method of the present invention can solubilize the biodegradable resin in a state including contents that do not inhibit solubilization of the biodegradable resin, such as food. In addition, when the culture temperature of the microorganism that expresses the biodegradable resin-degrading enzyme is different from the solubilization temperature of the biodegradable resin, a separate process may be used (FIG. 6).

以下、本発明を実施例により具体的に説明する。なお、薬品名後に会社名を記していないものは、和光純薬工業社製である。また、特別に記さない限り、溶媒は水であり、培地は培養前に121℃、20分加圧・加熱処理を行っている。
(CFMM培地)

Figure 2007319092
(PYM培地)
Figure 2007319092
(2×YT培地)
Figure 2007319092
(TEバッファー)
4mmol/l Tris-HCl(トリス−ヒドロキシメチル−アミノメタン)塩酸
1mmol/l エチレンジアミン四酢酸2ナトリウム2水和物(EDTA)
pH8.0に調整
(CTAB溶液)
10%/l 臭化セチルトリメチルアンモニウム(CTAB)
1mol/l 塩化ナトリウム
60℃で溶解
(TAE電気泳動用ゲル)
1.5%アガロース
4mmol/l Tris-HCl
1mmol/l EDTA
1mmol/l 酢酸
(2×YT+G培地)
Figure 2007319092
(M9培地)
Figure 2007319092
Hereinafter, the present invention will be specifically described by way of examples. In addition, what does not write the company name after the chemical name is manufactured by Wako Pure Chemical Industries. Unless otherwise specified, the solvent is water, and the medium is subjected to pressure and heat treatment at 121 ° C. for 20 minutes before culturing.
(CFMM medium)
Figure 2007319092
(PYM medium)
Figure 2007319092
(2 x YT medium)
Figure 2007319092
(TE buffer)
4mmol / l Tris-HCl (Tris-hydroxymethyl-aminomethane) hydrochloric acid
1mmol / l Disodium ethylenediaminetetraacetic acid dihydrate (EDTA)
Adjust to pH 8.0 (CTAB solution)
10% / l cetyltrimethylammonium bromide (CTAB)
1mol / l Sodium chloride dissolved at 60 ° C (TAE electrophoresis gel)
1.5% agarose
4mmol / l Tris-HCl
1mmol / l EDTA
1mmol / l acetic acid (2xYT + G medium)
Figure 2007319092
(M9 medium)
Figure 2007319092

(実施例1)
(1.Streptomyces coelicolor A3(2)である ATCC BAA-471 の培養方法)
PYM培地を用い、28℃、24時間培養した。
(2.Streptomyces coelicolor ATCC BAA-471 のゲノム抽出方法)
菌体を6000×g、5分で遠心分離し、得られた菌体をTEバッファーに懸濁し、1/5量の5mol/lの塩化ナトリウム水溶液を添加、攪拌し、その後1/10量のCTAB溶液を添加、攪拌後、60℃、30分インキュベーションした。クロロホルムを上記混合液の等量添加、攪拌し、15,000×gで5分遠心分離を行い、水溶液層を取り除いた。この操作を2回繰り返した。その後、2−プロパノールを等量添加し、沈殿物を回収後、100%、80%エタノールで各1回ずつ洗浄、室温で乾燥後、TEバッファーに溶解し、ゲノム溶液を得た。
Example 1
(1. Culture method of ATCC BAA-471, Streptomyces coelicolor A3 (2))
PYM medium was used and cultured at 28 ° C. for 24 hours.
(2. Genomic extraction method of Streptomyces coelicolor ATCC BAA-471)
The bacterial cells are centrifuged at 6000 × g for 5 minutes, the obtained bacterial cells are suspended in TE buffer, 1/5 volume of 5 mol / l sodium chloride aqueous solution is added and stirred, and then 1/10 volume of 1/10 volume. CTAB solution was added, stirred, and incubated at 60 ° C. for 30 minutes. Chloroform was added in an equal amount of the above mixture and stirred, and centrifuged at 15,000 × g for 5 minutes to remove the aqueous solution layer. This operation was repeated twice. Thereafter, an equal amount of 2-propanol was added, and the precipitate was collected, washed once with 100% and 80% ethanol, dried at room temperature, and then dissolved in TE buffer to obtain a genome solution.

(3.遺伝子の調製方法)
下記に示す酵素製品、Kit製品は、特別に記さない限り取扱説明書に従った。また、ベクター、宿主においても各々選別に必要な抗生物質は添加している。
PCR(Polymerase Chain Reaction)には、DNA Polymerase Z-taq(タカラバイオ社)を使用し、プライマー(下記に記載)は、Invitrogen社製を用いた。鋳型として、上記で調製したStreptomyces coelicolor ATCC BAA-471のゲノム溶液を用いた。
下記に示した温度でPCR反応を行った。また、反応に用いたアニール温度は、プラスミド(I)、(II)及び(III)について、それぞれ62℃(Forward:Reverse)、65℃(H-F:Reverse)、68℃(SH-F:Reverse)。
98℃、2分間 −(i)
98℃、5秒間 −(ii)
各アニール温度、5秒間 −(iii) (ii)〜(iv)を30サイクル
72℃、10秒間 −(iv)
72℃、2分間 −(v)
4℃、∞ −(vi)
(3. Gene preparation method)
The enzyme products and Kit products shown below were in accordance with the instruction manual unless otherwise specified. Antibiotics necessary for selection are also added to vectors and hosts.
For PCR (Polymerase Chain Reaction), DNA Polymerase Z-taq (Takara Bio) was used, and primers (described below) were used from Invitrogen. As a template, the genome solution of Streptomyces coelicolor ATCC BAA-471 prepared above was used.
PCR reaction was performed at the temperature shown below. The annealing temperatures used for the reaction were 62 ° C. (Forward: Reverse), 65 ° C. (HF: Reverse), and 68 ° C. (SH-F: Reverse) for plasmids (I), (II), and (III), respectively. .
98 ° C, 2 minutes-(i)
98 ° C, 5 seconds-(ii)
Each annealing temperature, 5 seconds − (iii) (ii) to (iv) 30 cycles at 72 ° C., 10 seconds − (iv)
72 ° C, 2 minutes-(v)
4 ℃, ∞-(vi)

Figure 2007319092
Figure 2007319092

反応終了後、TAE電気泳動用ゲルを使用し、電気泳動漕であるMupid-ex(アドバンス社)を用いて電気泳動(100V、50分)を行った。
その後、核酸染色試薬SYBR GreenI(タカラバイオ社)で染色、ゲルからの目的DNA断片の抽出をDNA抽出キットNucleoSpin Extract Kit(MACHEREY-NAGEL社)を用いて回収した。
上記のDNA断片をクローニングベクターpT7 Blue2 T-vector(Novagen社)とDNA結合酵素Ligation Convenience Kit(ニッポンジーン社)を用いて結合させ、宿主Escherichia coli DH5α(タカラバイオ社)へ形質転換し(図1)、2×YT培地を用い、37℃で培養した。プラスミドの回収は、NucleoSpin plasmid Kit(MACHEREY-NAGEL社)を用いて行った。
DNA配列は、同一性が100%であることを確認後(タカラバイオ社に委託)、発現用ベクターpET26b(+)(Novagen社)とDNA配列を確認したプラスミドを制限酵素NcoI/XhoI(両制限酵素ともタカラバイオ社)で処理(37℃、2時間)し、電気泳動後、Nucleospin plasmid Kitを用いてDNA断片を回収した。両者をLigation Convenience Kit処理後、Escherichia coli DH5α(タカラバイオ社)へ形質転換し、2×YT培地を用い、37℃で培養した。
得られたプラスミドを発現用宿主Rosetta2(Novagen社)へ形質転換させた。
After completion of the reaction, TAE electrophoresis gel was used, and electrophoresis (100 V, 50 minutes) was performed using Mupid-ex (advanced company) which is an electrophoresis basket.
Thereafter, the sample was stained with a nucleic acid staining reagent SYBR GreenI (Takara Bio), and the target DNA fragment was extracted from the gel using a DNA extraction kit NucleoSpin Extract Kit (MACHEREY-NAGEL).
The above DNA fragment was ligated with the cloning vector pT7 Blue2 T-vector (Novagen) using the DNA-binding enzyme Ligation Convenience Kit (Nippon Gene) and transformed into the host Escherichia coli DH5α (Takara Bio) (FIG. 1). The culture was performed at 37 ° C. using 2 × YT medium. The plasmid was collected using NucleoSpin plasmid Kit (MACHEREY-NAGEL).
After confirming that the DNA sequence is 100% identical (consigned to Takara Bio Inc.), the expression vector pET26b (+) (Novagen) and the plasmid whose DNA sequence was confirmed were restricted with the restriction enzymes NcoI / XhoI (both restriction) Both enzymes were treated with Takara Bio Inc. (37 ° C., 2 hours), and after electrophoresis, DNA fragments were collected using Nucleospin plasmid Kit. Both were treated with Ligation Convenience Kit, transformed into Escherichia coli DH5α (Takara Bio), and cultured at 37 ° C. using 2 × YT medium.
The resulting plasmid was transformed into the expression host Rosetta2 (Novagen).

発現の有無については、SDSポリアクリルアミドゲル電気泳動法(SDS-PAGE)で確認した。各プラスミド((I)、(II)、(III)、pET26b(+))をRosetta2に形質転換し、抗生物質を含む2×YT+G培地プレートで37℃、16〜24時間生育させた。その後、液体の2×YT+G培地で37℃、12〜16時間で生育させた。その後、液体のM9培地に菌体の培地を0.1%植菌し、600nmの吸光度(O.D.(600))= 0.6〜0.8まで37℃で生育させ、イソプロピル-β-D(-)-チオガラクトシド(IPTG)(終濃度1mM)を添加し、20℃、24時間振とうした。その後、遠心分離(15,000×g、1分)により各大腸菌を回収、培地上精を取り除いた後、細胞破砕液BugBuster Protein Extraction Reagent(Novagen社)で溶菌させ、遠心分離(15,000×g、15分)によって上精を得た。この上精10μlとLaemmli Sample Buffer(BIO-RAD社)−メルカプトエタノール(95:5)混合液20μlを混合し、98℃、4分間インキュベーションした。その後、室温になるまで放置した。プラスミド(I)については、不溶性画分において発現したタンパク質が含まれることを確認したが、可溶性画分にはタンパク質は含まれなかった。プラスミド(II)及び(III)については、可溶性画分において発現したタンパク質が含まれていることが確認できた。
電気泳動用のゲルにはCriterionレディーゲルJ(BIO-RAD社)、電気泳動層にはCriterionセル(BIO-RAD社)、電気泳動試薬には10×Tris/Glycine/SDS Buffer(BIO-RAD社)、電源にはパワーサプライBasic(BIO-RAD社)を用いて、各サンプルについて電気泳動(40mA、120分)を行った。その後、染色液SimplyBlue SafeStain(Invitrogen社)で染色した。
活性の評価方法においては、以下のような重層培地を作成し、蛋白質分解活性として評価した。
上層:2%スキムミルク、1.5%アガロース、0.1mmol/l IPTGを懸濁させた2×YT培地5ml
下層:1.5%アガロース、0.1mmol/l IPTGを含んだ2×YT培地15ml
この重層培地に以下の組み換え大腸菌を20℃で生育させた。pET26b(+)、(II)、(III)の遺伝子をRosetta2へ形質転換し、組み換え大腸菌を得た。結果は、図3に示す。
The presence or absence of expression was confirmed by SDS polyacrylamide gel electrophoresis (SDS-PAGE). Each plasmid ((I), (II), (III), pET26b (+)) was transformed into Rosetta2 and grown on 2 × YT + G medium plate containing antibiotics at 37 ° C. for 16-24 hours. Thereafter, the cells were grown in a liquid 2 × YT + G medium at 37 ° C. for 12 to 16 hours. Thereafter, 0.1% of the cell culture medium was inoculated into a liquid M9 medium and grown at 37 ° C. until the absorbance at 600 nm (OD (600) ) = 0.6 to 0.8, and isopropyl-β-D (-)-thiogalactoside ( IPTG) (final concentration 1 mM) was added and shaken at 20 ° C. for 24 hours. After that, each E. coli was recovered by centrifugation (15,000 × g, 1 minute), the supernatant on the medium was removed, lysed with the cell disruption solution BugBuster Protein Extraction Reagent (Novagen), and centrifuged (15,000 × g, 15 minutes) ) Got a fine. 10 μl of this supernatant and 20 μl of Laemmli Sample Buffer (BIO-RAD) -mercaptoethanol (95: 5) mixture were mixed and incubated at 98 ° C. for 4 minutes. Then, it was left to reach room temperature. Regarding the plasmid (I), it was confirmed that the protein expressed in the insoluble fraction was contained, but the protein was not contained in the soluble fraction. It was confirmed that the plasmids (II) and (III) contained the protein expressed in the soluble fraction.
Criterion Ready Gel J (BIO-RAD) for electrophoresis gel, Criterion cell (BIO-RAD) for electrophoresis layer, and 10 × Tris / Glycine / SDS Buffer (BIO-RAD) for electrophoresis reagent ), Power Supply Basic (BIO-RAD) was used as the power source, and each sample was subjected to electrophoresis (40 mA, 120 minutes). Thereafter, staining was performed with a staining solution SimplyBlue SafeStain (Invitrogen).
In the activity evaluation method, the following multilayer medium was prepared and evaluated as proteolytic activity.
Upper layer: 2% YT medium suspended in 2% skim milk, 1.5% agarose, and 0.1 mmol / l IPTG
Lower layer: 15 ml of 2 × YT medium containing 1.5% agarose and 0.1 mmol / l IPTG
The following recombinant Escherichia coli was grown at 20 ° C. in this overlay medium. The genes of pET26b (+), (II) and (III) were transformed into Rosetta 2 to obtain recombinant E. coli. The results are shown in FIG.

Figure 2007319092
Figure 2007319092

(4.低分子量ポリ乳酸(PLA)溶液の調整法)
撹拌装置、窒素導入管、Dean-Stark型水分離器を備えた300mlのセパラブルフラスコにDL−乳酸200g、180℃反応させ、生成する水を除きながら窒素雰囲気中で約4時間反応後、200℃に昇温して3時間反応させることにより得た。
得られたポリ乳酸を0.5mol/lのビス(2−ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタンに溶解させ、溶解後pHを7.2に調整した。
(4. Preparation method of low molecular weight polylactic acid (PLA) solution)
A 300-ml separable flask equipped with a stirrer, a nitrogen introduction tube, and a Dean-Stark type water separator was reacted with 200 g of DL-lactic acid at 180 ° C., and reacted for about 4 hours in a nitrogen atmosphere while removing the produced water. It was obtained by raising the temperature to 0 ° C. and reacting for 3 hours.
The obtained polylactic acid was dissolved in 0.5 mol / l bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane, and the pH was adjusted to 7.2 after dissolution.

(5.ポリ乳酸分解活性検出)
各プラスミド((I)、(II)、(III)(図2))をRosetta2に形質転換し、2×YT+G培地プレートで37℃、16〜24時間生育させた。
その後、液体の2×YT+G培地で37℃、12〜16時間で生育させた。
その後、液体のM9培地に菌体の培地を0.1%植菌し、O.D.(600)=0.6〜0.8まで37℃で生育させ、IPTG(終濃度1mM)、ポリ乳酸溶液(終濃度0.1%)を添加し、20℃、24時間振とうした。
上精を回収後、リン酸(終濃度1%)を添加し、試料液を調整した。高速液体クロマトグラフィー(High Performance Liquid Chromatography;HPLC:日本分光ガリバー社)により検出した。
(5. Detection of polylactic acid degradation activity)
Each plasmid ((I), (II), (III) (FIG. 2)) was transformed into Rosetta2 and grown on 2 × YT + G medium plate at 37 ° C. for 16-24 hours.
Thereafter, the cells were grown in a liquid 2 × YT + G medium at 37 ° C. for 12 to 16 hours.
Thereafter, 0.1% of the cell culture medium was inoculated into a liquid M9 medium. D. (600) = 0.6 to 0.8, grown at 37 ° C., IPTG (final concentration 1 mM) and polylactic acid solution (final concentration 0.1%) were added, and shaken at 20 ° C. for 24 hours.
After recovering the supernatant, phosphoric acid (final concentration 1%) was added to prepare a sample solution. Detection was performed by high performance liquid chromatography (HPLC: JASCO Gulliver).

試料液2mlを0.45μmのメンブレンフィルターで濾過し試料液とした。カラムにWARTERS Atlantis 4.6×250mmを用い、試料液50μlを注入してUV210nmで検出した。溶離液はカラム温度40℃で表3に示す濃度勾配をつけ分離を行った。乳酸を用いて標準曲線を作成した。図4および5において、その結果を示す。横軸は乳酸の重合数を示し、縦軸はポリ乳酸の濃度である。左棒グラフは、IPTGで誘導していないRosetta2であり、ポリ乳酸との反応時間は0時間である。中央の棒グラフは、IPTGで誘導していないRosetta2であり、ポリ乳酸と24時間反応させた。右棒グラフは、IPTGで本発明の遺伝子の発現を誘導させたRosetta2であり、ポリ乳酸と24時間反応させた。その結果、3量体以下は増加し、4量体以上は減少した。このことは、より高分子量のポリ乳酸が低分子量へと変化したことを示し、ポリ乳酸の分解活性を検出したと言える。図4と5は、本質的に同じ図であり、図4は、縦軸の濃度が0〜800mg/l、横軸が乳酸1量体〜12量体であり、図5は、縦軸の濃度が0〜50mg/l、横軸が乳酸9量体〜12量体である。また、Rosetta2の生成物質により乳酸6量体と8量体は検出できなかった。

Figure 2007319092
2 ml of the sample solution was filtered through a 0.45 μm membrane filter to obtain a sample solution. WATERS Atlantis 4.6 × 250 mm was used for the column, 50 μl of the sample solution was injected, and detection was performed at UV 210 nm. The eluent was separated with a concentration gradient shown in Table 3 at a column temperature of 40 ° C. A standard curve was prepared using lactic acid. The results are shown in FIGS. The horizontal axis represents the polymerization number of lactic acid, and the vertical axis represents the concentration of polylactic acid. The left bar graph is Rosetta2 not induced by IPTG, and the reaction time with polylactic acid is 0 hour. The center bar graph is Rosetta 2 not induced with IPTG, and reacted with polylactic acid for 24 hours. The right bar graph is Rosetta2 in which the expression of the gene of the present invention was induced with IPTG, which was reacted with polylactic acid for 24 hours. As a result, the trimer and lower were increased and the tetramer and higher were decreased. This indicates that the higher molecular weight polylactic acid has changed to a lower molecular weight, and it can be said that the degradation activity of polylactic acid was detected. 4 and 5 are essentially the same diagram, FIG. 4 shows the concentration of 0 to 800 mg / l on the vertical axis, the lactic acid monomer to 12 monomer on the horizontal axis, and FIG. The concentration is 0 to 50 mg / l, and the horizontal axis is lactic acid 9-mer to 12-mer. Also, lactic acid hexamer and octamer could not be detected by the Rosetta2 product.
Figure 2007319092

実施例1で使用したプラスミドの模式図を示す。The schematic diagram of the plasmid used in Example 1 is shown. 目的酵素の詳細とプラスミドの名称を示す。Details of the target enzyme and the name of the plasmid are shown. 図2のプラスミドにおけるプロテイナーゼ活性検出Proteinase activity detection in the plasmid of FIG. 大腸菌発現時におけるポリ乳酸の分解挙動(1〜12量体)Degradation behavior of polylactic acid during E. coli expression (1-12mer) 大腸菌発現時におけるポリ乳酸の分解挙動(9〜12量体)Degradation behavior of polylactic acid during E. coli expression (9-12mer) 分解・可溶化システムの概要Overview of decomposition and solubilization system

Claims (7)

Streptomyces coelicolor A3(2)を培養し、得られる培養物を生分解性樹脂と接触させることを含む生分解性樹脂の分解方法。   A method for degrading a biodegradable resin comprising culturing Streptomyces coelicolor A3 (2) and contacting the resulting culture with a biodegradable resin. 以下のアミノ酸配列からなる生分解性樹脂分解タンパク質の前駆物質:
(1)シャペロン領域を構成するアミノ酸配列、
(2)シャペロン領域を切断するために必要なアミノ酸配列、及び
(3)(i)配列番号2で表されるアミノ酸配列又は
(ii)配列番号2で表されるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列であって、このアミノ酸配列からなるタンパク質が生分解性樹脂分解活性を有するアミノ酸配列。
A biodegradable resin-degrading protein precursor consisting of the following amino acid sequences:
(1) an amino acid sequence constituting the chaperone region,
(2) an amino acid sequence necessary for cleaving the chaperone region, and (3) (i) an amino acid sequence represented by SEQ ID NO: 2 or (ii) one or several amino acids in the amino acid sequence represented by SEQ ID NO: 2 An amino acid sequence in which an amino acid is deleted, substituted or added, and a protein comprising this amino acid sequence has biodegradable resin degrading activity.
請求項2に記載の前駆物質をコードする遺伝子。   A gene encoding the precursor according to claim 2. 請求項3に記載の遺伝子を含むベクター。   A vector comprising the gene according to claim 3. 請求項4に記載のベクターを含む宿主。   A host comprising the vector according to claim 4. 請求項2に記載の前駆物質又はこの前駆物質から誘導され得る活性化した生分解性樹脂分解タンパク質を含む生分解性樹脂の可溶化剤。   A biodegradable resin solubilizer comprising the precursor according to claim 2 or an activated biodegradable resin degradable protein that can be derived from the precursor. 請求項6に記載の可溶化剤に、生分解性樹脂を接触させることを含む生分解性樹脂の可溶化方法。   A method for solubilizing a biodegradable resin, comprising bringing the biodegradable resin into contact with the solubilizer according to claim 6.
JP2006153643A 2006-06-01 2006-06-01 Method for degrading biodegradable resin Pending JP2007319092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006153643A JP2007319092A (en) 2006-06-01 2006-06-01 Method for degrading biodegradable resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006153643A JP2007319092A (en) 2006-06-01 2006-06-01 Method for degrading biodegradable resin

Publications (1)

Publication Number Publication Date
JP2007319092A true JP2007319092A (en) 2007-12-13

Family

ID=38852402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006153643A Pending JP2007319092A (en) 2006-06-01 2006-06-01 Method for degrading biodegradable resin

Country Status (1)

Country Link
JP (1) JP2007319092A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013144239A1 (en) * 2012-03-27 2013-10-03 Carbios Recombinant microorganism
US10287561B2 (en) 2014-10-21 2019-05-14 Carbios Polypeptide having a polyester degrading activity and uses thereof
US10385183B2 (en) 2014-05-16 2019-08-20 Carbios Process of recycling mixed PET plastic articles
US10508269B2 (en) 2015-03-13 2019-12-17 Carbios Polypeptide having a polyester degrading activity and uses thereof
US10626242B2 (en) 2014-12-19 2020-04-21 Carbios Plastic compound and preparation process
US10717996B2 (en) 2015-12-21 2020-07-21 Carbios Recombinant yeast cells producing polylactic acid and uses thereof
US10723848B2 (en) 2015-06-12 2020-07-28 Carbios Masterbatch composition comprising a high concentration of biological entities
US10767026B2 (en) 2016-05-19 2020-09-08 Carbios Process for degrading plastic products

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2988733A1 (en) * 2012-03-27 2013-10-04 Carbios RECOMBINANT MICROORGANISM
CN104364372A (en) * 2012-03-27 2015-02-18 卡拜耳公司 Recombinant microorganism
US9476073B2 (en) 2012-03-27 2016-10-25 Carbios Recombinant microorganism
WO2013144239A1 (en) * 2012-03-27 2013-10-03 Carbios Recombinant microorganism
US10385183B2 (en) 2014-05-16 2019-08-20 Carbios Process of recycling mixed PET plastic articles
US10287561B2 (en) 2014-10-21 2019-05-14 Carbios Polypeptide having a polyester degrading activity and uses thereof
US10626242B2 (en) 2014-12-19 2020-04-21 Carbios Plastic compound and preparation process
US10508269B2 (en) 2015-03-13 2019-12-17 Carbios Polypeptide having a polyester degrading activity and uses thereof
US10723848B2 (en) 2015-06-12 2020-07-28 Carbios Masterbatch composition comprising a high concentration of biological entities
US11198767B2 (en) 2015-06-12 2021-12-14 Carbios Process for preparing a biodegradable plastic composition
US11802185B2 (en) 2015-06-12 2023-10-31 Carbios Masterbatch composition comprising a high concentration of biological entities
US10717996B2 (en) 2015-12-21 2020-07-21 Carbios Recombinant yeast cells producing polylactic acid and uses thereof
US10767026B2 (en) 2016-05-19 2020-09-08 Carbios Process for degrading plastic products
US11377533B2 (en) 2016-05-19 2022-07-05 Carbios Process for degrading plastic products

Similar Documents

Publication Publication Date Title
JP2007319092A (en) Method for degrading biodegradable resin
CN110088276B (en) Proteases to increase plastic degradation
US10508269B2 (en) Polypeptide having a polyester degrading activity and uses thereof
ES2842236T3 (en) Polypeptide that has a degrading activity of polyester and its uses
EP3143075B1 (en) Process of recycling mixed pet plastic articles
CN114891766A (en) Novel esterases and their use
KR20200103757A (en) Novel protease and uses thereof
JP4658244B2 (en) Gene for producing 2-pyrone-4,6-dicarboxylic acid by fermentation, plasmid containing said gene, transformant containing said plasmid, and method for producing 2-pyrone-4,6-dicarboxylic acid
JP6853549B2 (en) Modified meso-diaminopimelic acid dehydrogenase
JP2014512814A (en) A novel expression and secretion vector system for heterologous protein production in E. coli
JP2023546505A (en) Novel esterases and their uses
US20130116412A1 (en) Production of Post-Translationally Hydroxylated Recombinant Proteins in Bacteria
Ihssen et al. Use of extracellular medium chain length polyhydroxyalkanoate depolymerase for targeted binding of proteins to artificial poly [(3-hydroxyoctanoate)-co-(3-hydroxyhexanoate)] granules
CN110062807B (en) Process for producing polyhydroxyalkanoate and microorganism
US20170240878A1 (en) Higher performance proteases for scarless tag removal
JP5763920B2 (en) Method for producing recombinant protein by recombinant Brevibacillus bacterium
JP2023546500A (en) Novel esterases and their uses
JP2023546506A (en) Novel esterases and their uses
JP2019511926A (en) Beta-lactamase mutant
US20240018501A1 (en) Higher performance proteases for scarless peptide tag removal
WO2024031065A2 (en) Modified subtilisin proteins &amp; uses thereof
RU2408726C1 (en) RECOMBINANT PROTEIN Collbd-CBD, RECOMBINANT PLASMID pOC-Collbd, STRAIN Escherichia coli-PRODUCER OF RECOMBINANT PROTEIN Collbd-CBD, METHOD TO PRODUCE RECOMBINANT PROTEIN Collbd-CBD
CN118159651A (en) Enzyme agent for producing collagen tripeptide or decomposing cartilage
JP4670048B2 (en) Method for obtaining gene encoding biodegradable plastic degrading enzyme, novel gene and enzyme obtained thereby
KR20240013747A (en) Optimization of thermophilic PHB depolymerase for industrial applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110