JP2007318782A - 通信システム - Google Patents

通信システム Download PDF

Info

Publication number
JP2007318782A
JP2007318782A JP2007175115A JP2007175115A JP2007318782A JP 2007318782 A JP2007318782 A JP 2007318782A JP 2007175115 A JP2007175115 A JP 2007175115A JP 2007175115 A JP2007175115 A JP 2007175115A JP 2007318782 A JP2007318782 A JP 2007318782A
Authority
JP
Japan
Prior art keywords
channel
data
communication
data channel
packet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007175115A
Other languages
English (en)
Inventor
Benoist Sebire
ベノイスト セビレ
Thierry Bellier
ティーエリ ベリエール
Markus Tapani Hakaste
マルクス タパニ ハカステ
Eero Nikula
エーロ ニクラ
Janne Parantainen
ヤンネ パランタイネン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Oyj
Original Assignee
Nokia Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0003892.7A external-priority patent/GB0003892D0/en
Priority claimed from FI20000415A external-priority patent/FI109570B/fi
Priority claimed from GBGB0031296.7A external-priority patent/GB0031296D0/en
Application filed by Nokia Oyj filed Critical Nokia Oyj
Publication of JP2007318782A publication Critical patent/JP2007318782A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2659Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for data rate control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Radio Relay Systems (AREA)
  • Optical Communication System (AREA)
  • Communication Control (AREA)
  • Selective Calling Equipment (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

【課題】従来の要求を少なくとも部分的に受け入れるGERAN無線アクセスベアラを提供すること。
【解決手段】第1ステーションがワイヤレスチャンネルを経て第2ステーションと通信することができ、データがワイヤレスチャンネルを経てスーパーフレームで搬送され、各スーパーフレームは複数のフレームより成りそして各フレームは複数のタイムスロットより成る通信システムにおいて、回路交換通信用のデータチャンネルが、各スーパーフレーム内のあるフレームの対応タイムスロットをそのチャンネルに割り当てることにより定義され、そしてパケット交換通信用のデータチャンネルが、各スーパーフレーム内の他のフレームの対応タイムスロットをそのチャンネルに割り当てることにより定義されるようなオペレーションモードを備える。
【選択図】図5

Description

本発明は、GSM/EDGE RAN(GERAN)及びUMTS RAN(UTRAN)の両方に整列される無線アクセスベアラに係る。
一般的に述べると、テレコミュニケーションサービスは、ベアラサービス及びテレサービスの2つの分類に分割される。ベアラサービスは、公衆交換電話ネットワーク(PSTN)とインターワーキングする非同期回路交換データサービスや、パケット交換公衆データネットワーク(PSPDN)とインターワーキングするパケット交換同期データサービスのような種々の形態の通信にユーザがアクセスできるようにする。他方、テレサービスは、スピーチの送信、ショートメッセージサービス及びファクシミリ送信のような種々の形態のアプリケーションにユーザがアクセスできるようにする。このようなベアラサービスは、ユニバーサル移動テレコミュニケーションシステム(UMTS)に現在採用されている。このUMTSネットワークは、アクセスネットワーク、コアネットワーク、サービス移動制御ネットワーク及びテレコミュニケーションマネージメントネットワークの4つのサブネットワークで構成される。これらの中で、アクセスネットワークは、移動ステーション(MS)が無線インターフェイス(Umインターフェイス)を経て固定ネットワークリソースにアクセスできるようにするために必要とされる基本的な送信及び交換機能を果たす。
ユーザがUMTS無線アクセスネットワーク(RAN)を介して種々の形態の通信にアクセスできるようにするベアラサービス(ベアラ)は、既に充分に定義されている。
UTRANに代わるものとして、GERANがある。GERANが開発されるにつれて、新規な無線アクセスベアラが定義された。GERANは、UMTSと共通のコアネットワークに接続されるので、GERANにより提供されるベアラがUTRANのベアラに整列される必要がある。従って、サービス要求を満足するためには、以下のトラフィッククラスがサポートされねばならない。これらのトラフィッククラスは、移動電話システムのコアネットワークとアクセスネットワークとの間でRANを経て生じるトラフィックの形式である。
会話トラフィック
リアルタイム会話構成は、その会話という性質上、転送時間が短くなければならないと同時に、ストリームの情報エンティティ間の時間関係(変化)がリアルタイムストリームと同様に保持されねばならないことを特徴とする。それ故、転送遅延を充分短くできないと、受け入れられないほどクオリティを欠くことになるので、受け入れられる転送遅延の限界が非常に厳密である。それ故、転送遅延要求は、以下に述べるインターアクティブトラフィックの場合の往復遅延よりも著しく短く且つ非常に厳格である。
ストリーミングトラフィック
この一方向構成は、ある流れの中の情報エンティティ(即ち、サンプル、パケット)間の時間関係(変化)を保持しなければならないことを特徴とするが、これは、短い転送遅延に何ら要求を課するものではない。ストリームの情報エンティティ間の時間関係(変化)を保持するためには、端−端流の遅延変化を制限しなければならない。
インターアクティブトラフィック
エンドユーザがリモート装置からデータをオンライン要求するとき、この構成が適用される。インターアクティブトラフィックは、エンドユーザの要求応答パターンを特徴とする。メッセージの行先には、ある時間内にメッセージ(応答)を予想するエンティティがある。それ故、ラウンドトリップ時間が重要な属性の1つとなる。別の特徴は、パケットの内容を透過的に(低いビットエラー率で)転送しなければならないことである。
バックグランドトラフィック
エンドユーザがバックグランドにおいてファイルを送受信するとき、この構成が適用される。その例としては、Eメールのバックグランド送付、SMS、データベースのダウンロード及び測定記録の受信が挙げられる。バックグランドトラフィックは、行先がある時間内にデータを予想しないことを特徴とする。従って、この構成は、送付時間にあまり敏感でない。別の特徴は、パケットの内容を透過的に(低いビットエラー率で)転送しなければならないことである。
これら種々のトラフィッククラス間を区別する主なファクタは、トラフィックがいかに遅延に敏感であるかである。会話クラストラフィックは、遅延に敏感なトラフィックを意味し、一方、バックグランドクラストラフィックは、最も遅延に敏感でないトラフィッククラスである。会話及びストリーミングクラスは、主として、リアルタイムトラフィック流の搬送に使用するよう意図される。インターアクティブクラストラフィック及びバックグランドトラフィックは、主に、WWW、Eメール、テレネット、FTP及びニュースのような従来のインターネットアプリケーションにより使用されることを意味する。会話クラスとストリーミングクラスとの間で比較すると遅延要求が緩いために、両クラスは、チャンネルコード化及び再送信により良好なエラー率を与える。これらのトラフィッククラスは、UMTS23.107に更に詳細に述べられている。
GERANを形成するのに使用される通信プロトコルにUMTSコアネットワークが通常に使用されるのに鑑み、1つの単一スタックにおける異なるプロトコルモードの組合せが大きな1組のベアラを形成するUMTSの場合と同様に無線アクセスベアラを構築しなければならない。
通信プロトコルは、サービスを確立しそしてデータを転送するときにユーザが採用するルールのセットである。プロトコルは、接続の設定及び管理を行えるようにし、そして信頼性ある通信を可能にするために必要とされる。通信プロトコルにより与えられる機能は、充分説明されているが、それらの実施はなされていない。通信プロトコルにより与えられる機能を記述するモデルは、多数の層を含む。これらは、プロトコルスタックと称される。
図1は、各層が異なるモードを含むGERANに用いるのに適したユーザ平面プロトコルスタック10を示す。このスタックは、UMTSアクセスネットワークプロトコルスタックの物理層と同様の物理層11と、標準的なUMTSスタックのデータリンク層に対応する媒体アクセス制御(MAC)層12と、UMTSスタックネットワーク層に対応する無線リンク制御(RLC)層13と、UMTSスタックモデルのアプリケーション層に対応するパケットデータ集中プロトコル(PDCP)層14とを備えている。
MSが完全なインターネットプロトコル(IP)ベースのものでない場合又はGSM回路モードを使用することが望ましい場合には、1つの要素が、IP/ユーザデータグラムプロトコル(UDP)/リアルタイムプロトコル(RTP)パケットへの/からの回路モードデータの変換、及びあるIPベースシグナリング(例えばH.323)への/からの04.08シグナリングの変換を処理しなければならない。このような機能は、おそらく、会話及びストリーミングトラフィッククラスに対してのみ必要とされる。接続のエンドポイント間に噴出データがデータパケットで送信される例について考える。アプリケーションにより発生されたデータブロックは、ある送信プロトコルのデータパケットにカプセル化することができる。リアルタイムプロトコル(RTP)は、遅延を許容しないアプリケーションに使用できるパケットデータプロトコルの一例である。データブロックは、データブロック自体をパケットのペイロードに入れそして適当なヘッダをデータブロックに追加することによりRTPプロトコルパケットへとカプセル化される。
RTPデータパケットは、インターネットプロトコル(IP)上で実行されるユーザデータグラムプロトコル(UDP)を使用して送信することができる。UDP及びIPは、それら自身のヘッダをデータパケットに追加する。それ故、リンク層プロトコルに供給されるデータパケットは、通常、オリジナルのペイロードと、多数のヘッダとで構成される。リンク層プロトコルは、ヘッダ剥離を行うことができ、例えば、プロトコルヘッダは、通常、パケットごとに内容が変化しない種々のフィールドを含む。ヘッダ剥離の結果をヘッダ剥離残余と称し、これは、受信端でパケットヘッダを再構成できるために、あるパケット又はパケットグループに対して送信されねばならない情報である。ヘッダ剥離は、各データパケットに対して同様に実行することもできるし、又は例えば第1データパケットに対してこれを実行し、次いで、第1データパケットのヘッダの情報を使用して次のデータパケットのヘッダ内容を決定することもできる。
プロトコル組合せRTP/UDP/IPの場合に、ヘッダ剥離の結果は、通常、少なくとも、RTPパケットのシーケンス番号(SN)と、RTPパケットのタイムスタンプ(TS)と、RTPパケットのマーカー(M)ビットとを含む。更新のためには、それらのあるオフセットを送信するだけでよいことが考えられる。UDP及びIPヘッダに関連した情報は、接続の第1UDP/IPパケットが受信端へ送信された後に簡単に決定することができる。ヘッダ剥離の残余及びデータパケットのペイロードが無線アクセスネットワークを経て送信されると、無線アクセスネットワークの他側のネットワーク要素は、ヘッダ剥離の残余及び送信されたペイロードを使用してRTP/UDP/IPパケットを再構成することができる。通常、プロトコルパケットは、無線インターフェイスを経てヘッダなしに送信され、ネットワーク要素がヘッダを再構成し、そしてプロトコルパケットは、例えば、送信方向に基づいて移動ステーション又はベースステーションコントローラ(BSC)のいずれかである。特に、通常データパケットを他のネットワーク要素へ転送しない受信側移動ステーションでは、ヘッダの再構成が、ヘッダに対応するデータ構造が明確に構成されることを意味しなくてよい。ヘッダ剥離の残余及びデータパケットのペイロードがIP/UDPプロトコル層を経てRTP層へ転送されれば充分である。例えば、IP/UDP層では、IP/UDPプロトコルパケットシーケンス番号に関連した幾つかのカウンタが増加されるだけでよい。
又、単一のユーザ装置と同時に使用できる多数の無線アクセスベアラを許すことも効果的である。これは、多数のサービスクオリティ(QoS)プロファイルを並列にサポートするのに使用できる。これは、種々のトラフィック条件のもとで通信クオリティを維持する助けをする。
GERANに対する無線アクセスベアラを与える場合には、多数のマルチプレクスシナリオも考慮しなければならない。
動作シナリオ1(OS1)
マルチプレクス能力をもたずに音声コール(会話)にチャンネルを永久的に割り当てる。
動作シナリオ2(OS2)
音声コール(会話トラフィッククラス)にチャンネルを永久的に割り当てそして同じユーザ(バックグランドトラフィッククラス)からのベスト・エフォートデータをマルチプレクシングする。
動作シナリオ3(OS3)
音声コール(会話トラフィッククラス)にチャンネルを永久的に割り当てそして異なるユーザ(バックグランドトラフィッククラス)からのベスト・エフォートデータをマルチプレクシングする。
動作シナリオ4(OS4)
2人以上の音声ユーザ(及び/又はデータユーザ)にチャンネルを動的に割り当てる。
GERAN及びUTRANの両方に整列した無線アクセスベアラを与えるために種々の試みが既になされている。しかしながら、これらのシステムは、多数の欠点がある。
1つの提案された解決策は、回路交換トラフィックチャンネルを再使用しないシステムを提供する。回路交換システムの独特の特徴は、コールの時間中に2人のユーザが専用に使用するプリセット帯域巾のチャンネルを排他的使用することである。例えば、移動通信用のグローバルシステム(GSM)の無線アクセスネットワークでは、両方向回路交換チャンネルが各コールに指定される。両方向チャンネルの送信容量は、アップリンク及びダウンリンクの両方向に同じである。音声コール中にチャンネルがアクティブであるのは約40ないし50%の時間だけであるから、これは、チャンネルの非効率的な使用である。
更に、情報の転送には対角的インターリーブが与えられない。これは、エラー修正コードの有効性を低減し、データロスが生じ易くする。
更に別の提案された解決策は、半レートパケット交換チャンネルを与えるものではない。パケット交換は、メッセージ交換の考え方をベースとする。メッセージ又はデータのグループは、ヘッダ及びメッセージ端部分と共に形成される。メッセージは、各交換機のバッファに記憶され、そこで、ヘッダがデコードされ、そしてルート上の次のノードが決定される。半レートのパケット交換チャンネルは、各チャンネルを2つのサブチャンネルに分割し、高いトラフィックポテンシャルを与えることができるようにする。これは、いわゆる半レートのコーデック(即ち、8kb/sの有料クオリティスピーチを与えるコーデック)を使用するもので、割り当てられたチャンネルスペクトルに対しスペクトル効率又はユーザ密度を改善する上で助けとなる。
同様に、四半レートの回路交換チャンネルも提供されていない。これは、開発された四半レートコーデックの効果を利用できないという欠点がある。
公知システムの別の欠点は、関連する制御チャンネル(ACCH)の考慮に欠けることである。これら制御チャンネルは、シグナリング又は同期データを搬送するもので、テレコミュニケーションシステムにおいて良く知られている。4つの分類の制御チャンネルが使用されている。これらは、ブロードキャスト制御チャンネル(BCCH)、共通制御チャンネル(CCCH)、スタンドアローン専用制御チャンネル(STDCCH)及び関連制御チャンネル(ACCH)として知られている。このACCHは、以下で詳細に説明する。
そこで、本発明の目的は、上述した要求を少なくとも部分的に受け入れるGERAN無線アクセスベアラを提供することである。本発明は、更に別の目的として、他の公知GERAN無線アクセスベアラにより生じる欠点を少なくとも部分的に回避するのが好都合である。
本発明の1つの特徴によれば、第1ステーションがワイヤレスチャンネルを経て第2ステーションと通信することができ、データがワイヤレスチャンネルを経てスーパーフレームで搬送され、各スーパーフレームは複数のフレームより成りそして各フレームは複数のタイムスロットより成る通信システムにおいて、回路交換通信用の全レートデータチャンネルが、各フレーム内の対応タイムスロットをそのデータチャンネルに割り当てることにより定義される第1オペレーションモードと、回路交換通信用の2つの半レートデータチャンネルが、各スーパーフレーム内のフレームの同数の対応タイムスロットをそれらの各データチャンネルに割り当てることにより定義される第2オペレーションモードと、回路交換通信用の4つの四半レートデータチャンネルが、各スーパーフレーム内のフレームの同数の対応タイムスロットをそれらの各データチャンネルに割り当てることにより定義される第3オペレーションモードとを備えた通信システムが提供される。
本発明の第2の特徴によれば、第1ステーションがワイヤレスチャンネルを経て第2ステーションと通信することができ、データがワイヤレスチャンネルを経てスーパーフレームで搬送され、各スーパーフレームは複数のフレームより成りそして各フレームは複数のタイムスロットより成る通信システムにおいて、回路交換通信用のデータチャンネルが、各スーパーフレーム内のあるフレームの対応タイムスロットをそのチャンネルに割り当てることにより定義され、そしてパケット交換通信用のデータチャンネルが、各スーパーフレーム内の他のフレームの対応タイムスロットをそのチャンネルに割り当てることにより定義されるようなオペレーションモードを備えた通信システムが提供される。
好ましくは、回路交換通信用のデータチャンネル及びパケット交換通信用のデータチャンネルに、各フレーム内の同数のタイムスロットが割り当てられる。或いは又、パケット交換通信用のデータチャンネルに割り当てられたタイムスロットの半数又は四半数が、回路交換通信用のデータチャンネルに割り当てられてもよい。
回路交換通信用のデータチャンネルは、半レートのデータチャンネル又は四半レートのデータチャンネルでよい。パケット交換通信用のデータチャンネルは、半レートのデータチャンネルである。
パケット交換通信用のデータチャンネルを制御するための制御データは、回路交換通信用のデータチャンネルにより搬送されるのが好ましい。この制御データは、チャンネルの送信電力及び/又はハンドオーバーを制御するためのものである。制御データは、高速アクセス制御チャンネル及び/又は低速アクセス制御チャンネルを含む。
回路交換通信用のデータチャンネルは、会話チャンネルである。回路交換通信用のデータチャンネルは、バックグランドチャンネルでもよい。パケット交換通信用のデータチャンネルには、回路交換通信用のデータチャンネルが相対的にインアクティブである時間周期中、例えば、回路交換通信用のデータチャンネルにより搬送されるスピーチデータの休止中に、タイムスロットが割り当てられる。
本発明の上記特徴において、回路交換通信用のデータチャンネルは、回路交換接続又はその他のものとしてデータを搬送してもよい。回路交換チャンネルは、通信システムの回路交換コアネットワークを経て動作できるのが好ましい。
本発明の第3の特徴によれば、第1ステーションがワイヤレスチャンネルを経て第2ステーションと通信することができ、データがワイヤレスチャンネルを経てスーパーフレームで搬送され、各スーパーフレームは複数のフレームより成りそして各フレームは複数のタイムスロットより成る通信システムにおいて、パケット交換通信用の全レートデータチャンネルが、各フレーム内の対応タイムスロットをそのデータチャンネルに割り当てることにより定義される第1オペレーションモードと、パケット交換通信用の2つの半レートデータチャンネルが、各スーパーフレーム内のフレームの同数の対応タイムスロットをそれらの各データチャンネルに割り当てることにより定義される第2オペレーションモードとを備えた通信システムが提供される。
パケット交換通信用の各全又は半レートデータチャンネルは、ストリーミングチャンネル、インターアクティブチャンネル又はバックグランドチャンネルである。回路交換通信用の各全、半又は四半レートデータチャンネルは、会話チャンネルである。
システムは、GSM仕様書に基づいて動作してもよいし、又はその派生物、例えば、GERANシステムであってもよい。
ワイヤレスチャンネルは、8倍の位相シフトキー変調(8PSK)によりデータを搬送するのが好ましい。
本発明の実施形態は、公知の解決策に勝る多数の効果を発揮する。第1に、無線アクセスベアラは、リリース2000の設計要求に適合し、従って、それを満足する。これは、次世代のテレコミュニケーションネットワークを表わす。
第2に、会話トラフィッククラスに対する適応マルチレート(AMR)スピーチトラフィックチャンネル及びストリーミングトラフィッククラスに対する回路交換データトラフィッククラスの既に指定されたチャンネルコードの再使用が与えられる。
第3に、本発明の実施形態は、回路交換及びパケット交換チャンネルを、同じタイムスロット内でマルチプレクスすることができる。これは、会話及びインターアクティブトラフィッククラスを同じタイムスロット内に共存できるようにする。
第4に、使用できる四半レートコーデックの利点を取り入れた四半レート回路交換トラフィックチャンネルに対する実施形態が形成される。
第5に、本発明の実施形態は、回路モードの既に指定された関連制御チャンネル(特に、会話及びストリーミングトラフィッククラスに対する低速関連制御チャンネル(SACCH)及び高速関連制御チャンネル(FACCH))を再使用することができる。
更に別の実施形態では、同じユーザのパケットデータがスピーチトラフィックチャンネル(会話トラフィッククラス)の無音周期内にマルチプレクスされるときに、パケットデータがスピーチトラフィックチャンネルのSACCH及びFACCHチャンネルも制御に使用する。
更に別の実施形態は、マルチプレクシング能力を高めるために半レートのパケット交換トラフィックチャンネルを与える。
以下、同じ部分が同じ参照番号で示された添付図面を参照して本発明の好ましい実施形態を詳細に説明する。
無線アクセスベアラを形成するのに使用されるプロトコルは、1つの単一スタックにおけるプロトコルの異なるモードの組み合わせが大きな1組のベアラを与えるUMTSの場合と同様に構築される。使用すべきプロトコルスタックは図1に示されており、その各層は異なるモードを含む。各層の異なるモードを以下に説明する。
パケットデータ集中プロトコル(PDCP)
透過的で、RTP/UDP/IPヘッダの除去を伴う。ベアラサービスは、透過的でも非透過的でもよい。透過的サービスは、順方向エラー修正(FEC)のみを経てエラー修正を与える。他方、非透過的サービスは、自動的繰り返し要求(ARQ)の追加保護を有する。これは、無線リンクプロトコルにおいて行われ、データ完全性の改善を与える。
非透過的で、ヘッダ適応(ヘッダ剥離又はヘッダ圧縮)を伴う。
非透過的で、ヘッダ適応を伴わない。
無線リンク制御(RLC)
透過的
非確認
確認
媒体アクセス制御(MAC)
専用:ユーザ識別が含まれず、チャンネル当たり1人のユーザしか許されない。しかしながら、この連続的な送信(DTX)が生じたときには、同じユーザからのデータパケットを送信することができる。DTXの機能は、スピーチチャンネルにおいて無音部分中に無線送信を保留にすることである。通常、これは、干渉の防止及びシステム容量の増加を助けるのに使用される。無音部分中にデータパケットを送信することにより、システム容量を更に増加することができる。
共用:同じチャンネルを多数のユーザ間で共用することができる。
物理的(PHYS)
変調:チャンネルコード化スピーチ又はデータを、無線チャンネルを経て送信するのに適した形式に変換するために、変調プロセスが使用される。変調は、アナログ搬送波で2進情報を効率的に送信できるようにする。変調の間に、ビット又はビットグループは、振幅又は周波数変化のような急速な状態変化に変換される。現在、ガウス最小シフトキーイング(GMSK)及び8位相シフトキーイング(8PSK)が、GERANに使用するものとして定義されている。スピーチ送信は、GMSKのみを使用し、一方、データは、8PSK又はGMSK変調を用いて搬送することができる。位相シフト変調では、信号の位相は、以前の位相に対して相対的に異なるようにシフトされる(例えば、0に対して+90%そして1に対して+270%)。
チャンネルコード化:電磁干渉があるので、無線インターフェイスを経て送信されるエンコードされたスピーチ及びデータ信号は、エラーから保護されねばならない。この保護を達成するために、コンボリューションエンコード及びブロックインターリーブが使用される。特に、GSM仕様には、コンボリューションエンコードを遂行する2つの異なるエラー保護メカニズムが存在する。その1つである不等エラー保護(UEP)は、信号のビットをビットのクラスに基づいて異なるチャンネルコードで処理する(クラス1aビットはビットエラーに最も敏感であり、クラス1bビットは中程度に敏感であり、一方、クラス2ビットはビットエラーに最も敏感でない)。もう1つの等エラー保護(EEP)は、全てのデータ情報に対して同じチャンネルコードを使用する。
チャンネルレート:トラフィックチャンネルは、スピーチ及びデータトラフィックを搬送するのに使用される。トラフィックチャンネルは、以下で詳細に述べるように、26フレームのマルチフレームを使用して定義される。26フレームのうち、24フレームがトラフィックに使用される。これらは、全レートのトラフィックチャンネルである。半レート及び四半レートのチャンネルも幾つか設けられる。本発明は、この構成のフレーム及びマルチフレームに限定されないことを理解されたい。
インターリーブ:上述したように、インターリーブは、送信中に発生するエラーからデータを保護するために使用される。エンコードの後に、インターリーブ段階を実行して、種々の信号ビットをエンコードインデックスデインターリーブし、インターリーブされたシーケンスを形成する。そのシーケンスの一部分にエラーが発生した場合には、残りの部分を使用して正しいデータを再構成することができる。インターリーブは、対角(diag)又は矩形(rect)のいずれでもよく、そして異なるインターリーブ深さを使用することができる(19、8、4、2)。インターリーブ深さが大きいほど、リンクレベルの性能が良くなるが、遅延が長くなる。
本発明による無線アクセスベアラは、申し出があった際に異なる層の組合せの中から選択される。
物理層における無線アクセスベアラのマッピングは、上述したように、2種類のトラフィックチャンネルを使用することができる。これらは、パケットチャンネル(PCH)及び回路交換チャンネル(TCH)である。ユーザデータは、これらチャンネルを通りエアインターフェイスを経て搬送されるべき唯一の情報ではない。シグナリングメッセージも搬送されねばならない。これらは、ネットワーク及びMSがリソース及びハンドオーバーのような多数の問題の管理について検討できるようにする。トラフィックが進行中であるときに、このシグナリングは、関連制御チャンネル(ACCH)を経て行われる。しかしながら、異なる要求があるために、ACCHをいかに遂行するかは、パケット又は回路交換トラフィックチャンネルに対して相違する。パケット及び回路交換チャンネルに対して種々のACCHが良好に定義され、その幾つかを以下に説明する。更に、本発明により実施されるGERAN無線アクセスベアラに対するACCHも説明する。
ACCHは、両方向性チャンネルである。ダウンリンクでは、これらチャンネルは、ベースステーションから移動ステーション(MS)へ制御コマンドを搬送してその送信電力レベルを制御する。アップリンクでは、これらチャンネルは、MSの状態をベースステーションへ搬送する。SACCHは、MSからネットワークへの送信中に少なくとも測定結果について層にシグナリングするのに使用される。SACCHは、両方向に連続送信を行わねばならないという特異性を有する。このため、MSからネットワークへの方向では、測定結果メッセージが、各々の考えられる場合に、他に何も送信する必要がないときに、送信される。同様に、システム情報形式5、6及び任意であるがこの技術で知られた5ビット及び5terメッセージが、他に何も送信する必要がないときに、ネットワークからMSへの方向にUIフレームで送信される。SACCHは、主として、ハンドオーバーの判断に必要な無線測定データを送信するために、非緊急手順用に使用される。
各SACCHダウンリンクブロックには、指令されたMS電力レベルと、指令されたタイミング進み情報とが存在する。各SACCHアップリンクブロックには、実際のMS電力レベルと、実際のタイミング進み情報とが存在する。
更に、SACCHは、添付資料Aに詳細に述べたメッセージを搬送する。各SACCHブロックは184個の情報ビットを含み、これらは、4つのバーストにわたってエンコードされそしてインターリーブされた456ビットである。1つのSACCHサイクルは、480msである。換言すれば、タイミングの進み、電力レベル及び測定レポートは、480msごとに更新できる。本発明は、この構成のブロック及びビットに限定されないことを理解されたい。
FACCH(メイン専用制御チャンネル(DCCH)としても知られている)は、ハンドオーバーコマンドや、イントラセルハンドオーバーにおけるチャンネル再指定のような緊急処置を容易にする。これは、それに関連したトラフィックチャンネル(TCH)のバーストの情報ビットの半分又は全部を先取りすることにより送信される。
GSMにおいて送信に使用されるバーストには4つの形態がある。それらは、通常バースト、Fバースト、Sバースト及びアクセスバーストである。それらの中で、通常バーストは、データ及びほとんどのシグナリングを搬送するのに使用される。通常バーストは、全長が156.25ビットで、これは、2つの57ビットの情報ビットと、受信器を到来情報に同期させそして多経路伝播により生じる否定的作用を回避するために使用される26ビットのトレーニングシーケンスと、各情報ブロックに対する1つのスチーリングビット(バーストにより搬送される情報がトラフィックに対応するかシグナリングデータに対応するかを受信器に指示する)と、各端の3つのテールビット(移動ステーションの電力の上昇及び下降周期をカバーするのに使用される)と、8.25ビットの保護シーケンス(上昇及び下降時間中に2つの移動ステーションの考えられる重畳を回避するのに使用される)とで構成される。FACCHは、コール確立の進行、ハンドオーバー、加入者認証、DTMF、通知(NCHではなく、VGCS及びVBSについて)、及びページング(PCHではなく)といった種々の目的に使用される。
FACCHは、添付資料Aに述べたメッセージを搬送することができる。各FACCHブロックは、184個の情報ビット(又はデータバースト)を含み、これらは、SACCHと同様にエンコードされた456ビットであり、インターリーブは、その関連チャンネル(全レート又は半レート)に依存する。
改善型高速関連制御チャンネル(E−FACCH)は、ECSDに対して導入された高速関連制御チャンネルである。各E−FACCHブロックは、FACCHと同じ情報(184ビット)を含み、そしてGMSK変調を使用する。しかしながら、E−FACCHは、全レートのFACCHに対する8個の半バーストではなく、全連続バーストにマップされる。
改善型インバンド関連制御チャンネル(E−IACCH)は、ECSDにおいて高速電力制御(FPC)に対して導入されたインバンドE−TCH/F関連制御チャンネルである。BSSは、SACCHチャンネルを経てMSにFPCの使用を指示する。電力制御情報は、長さ4TDMAフレーム(20ms)のFPCレポート周期ごとに送信される。3つの情報ビットが24ビットにコード化され、これらが、4つの連続する通常バーストのスチーリング記号にマップされる。
高速電力制御がアクチベートされても、通常電力制御(SACCHを経ての)が常に実行される。しかしながら、このとき、MSは、SACCHからの電力制御コマンドを無視する。
上述したACHは、回路交換トラフィックチャンネルに関連している。次の2つのACCHは、パケットトラフィックチャンネルに関連している。
パケット関連制御チャンネル(PACCH)は、所与のMSに関連したシグナリング情報を搬送する。このシグナリング情報は、例えば、確認及び電力制御情報を含む。又、PACCHは、PDTCHの容量及びPACCHの更なる発生についての指定を含むリソース指定及び再指定メッセージも搬送する。PACCHは、1つのMSに現在指定されているPDTCHとリソースを共用する。更に、パケット転送に現在含まれるMSは、PACCHにおける回路交換サービスに対してページングすることもできる。PACCHを経て送信できるメッセージが、添付資料Aにリストされている。
PACCHは、両方向性である。各ブロックは、184個の情報ビットを含み、これらは、4つのバーストにわたってエンコードされそしてインターリーブされた456ビットである(SACCHと同じコード)。しかし、PACCHは、SACCHのような連続的送信をもたない。
この連続的送信のために、GPRSには、連続更新タイミング進みメカニズムが定義されている。タイミング進みは、それ自身のチャンネルを経て更新することができる。これは、パケットタイミング進み制御チャンネル(PTCCH)と称される。パケット転送モードにあるMSは、タイミング進みの推定を許すためにアップリンクにランダムアクセスバーストを送信するように規則的に要求される。次いで、PTCCHがダウンリンクに使用され、タイミング進み情報の更新が多数のMSに送信される。以下のテーブル1は、種々の制御チャンネルを示している。
Figure 2007318782
このテーブルは、回路交換及びパケット交換の両トラフィックチャンネル用の種々の制御手順に対する関連制御チャンネル及び更新時間を示す。
上述した既存の例に若干類似したやり方で、GERAN無線アクセスベアラは、2つの異なる種類のトラフィックチャンネルを使用する。それらは、回路交換及びパケット交換チャンネルである。
回路交換チャンネルは、一定のリアルタイムデータ流が要求されるストリーミング及び会話トラフィッククラスに使用することができる。ストリーミングトラフィック形式は、遅延要求がより緩和したものであるので、これら2つのクラスの遅延要求間には、当然、若干の相違がある。物理層の観点から、これは、ストリーミングトラフィック形式の方が長いインターリーブを使用できることを意味する。
SACCHが物理的チャンネルにマップされる仕方は、データ転送に使用される変調にもトラフィッククラスにも依存しない。既存のトラフィックチャンネル(TCH)について上述したように、SACCHは、4つのGMSKバーストにわたってマップされる。
良く知られたマッピング手順に従う提案されたSACCHマッピングが図2に示されている。データバースト変調は、GMSKでも8PSKでもよい。
図2は、全レートトラフィックチャンネル(TCH/F)を定義するマルチフレーム(即ちスーパーフレーム)20を示す。各マルチフレームは、26個のTDMSフレーム210-25のグループより成る。無線スペクトルは、限定されたリソースであるから、この技術で良く知られたように、周波数分割多重アクセス(FDMA)及び時分割多重アクセス(TDMA)により帯域巾が分割される。特に、FDMAは、25MHz帯域巾を200KHz間隔の124個の搬送波周波数に分割することによるスプリット動作を含む。次いで、これらの各々がTDMA構成により時間的に分割される。TDMA構成における基本的な時間単位は、バースト周期として示され、約0.577ms持続する。各TDMAフレーム210-25は、これらバースト周期22の8つに分割される。それ故、各TDMAフレーム210-25は、8個のバースト周期22より成り、これは、論理的チャンネルのための基本的単位を形成する。1つの物理的チャンネルは、TDMAフレーム21当たり1つのバースト周期22である。これらチャンネルは、それに対応するバースト周期の数及び位置によって定義される。以下の説明を通して「マルチフレーム」という用語を使用するが、これは、スーパーフレーム、即ち多数のTDMAフレームで構成されたフレームであると理解されたい。同様に、「バースト周期」という語は、TDMAフレームのタイムスロットを表わすものと理解されたい。
TDMAフレームを構成する8個のバースト周期22の各々は、上述した2つのデータバーストを含む156.25ビットの通常バーストより成る。
26個のフレームのうち、フレーム21、24は、トラフィックに使用され、そしてデータを送信することができ、1つのフレーム即ちSACCHフレーム23は、SACCHに使用される。最後のフレーム25は、未使用であり、アイドル状態である。スピーチアプリケーションでは、デジタル化されたスピーチが、通常、あるスピーチコード方法を用いて圧縮され、その後、無線インターフェイスを経て送信される。コード化されるスピーチの量は、ターゲットスピーチクオリティ及びスピーチコード化方法の効率に依存する。
コード化されたスピーチは、通常、スピーチフレームで送信され、そしてスピーチフレームは、典型的に、4つのTDMAフレームの巾にほぼ対応する。全レートチャンネル内では、6個のスピーチフレーム(120ms)が、26個のTDMAフレーム(スピーチに対して24個と、SACCHに対して1個と、アイドル状態に対して1個)の巾に対応する。スピーチフレームは、適当なチャンネルコード化方法でチャンネルコード化され、即ちチャンネルコード化方法の選択は、通常、コールに指定された通信チャンネルの送信データレートにより左右される。全レートチャンネルの場合、チャンネルコード化スピーチフレームのビット数は、通常、4つの無線バーストにより搬送されるビット数以下である。あるコード化されたデータフレームがどれほどの数の無線バーストにわたってマップされるかを意味するインターリーブ深さは、通常、通信チャンネルの送信データレートに依存する。
これも既存のSACCHマッピングに従う既知の半レートトラフィックチャンネル(TCH/H)が図3に示されている。2つのサブチャンネル30、31が示されており、その各々は、各マルチフレーム32、33を経て与えられる。これらマルチフレーム(即ちスーパーフレーム)の各々は、26個のTDMAフレームを含むが、各々のサブチャンネルは、1つおきのTDMAフレーム21においてバースト周期(T)を経て与えられる。
この場合に、サブチャンネル31に対するSACCHは、アイドル状態である25番目のフレーム2125を使用する。
回路交換トラフィックチャンネルに使用される四半レートのトラフィックチャンネル(TCH/Q)が図4に示されている。4つのサブチャンネル40、41、42及び43が設けられ、その各々は、ほぼ4番目のTDMAフレームごとにバースト周期Tで形成される。各サブチャンネルに対してSACCHを与えるために、2つのマルチフレームごとに一度、1つのバースト周期が指定される。このため、エアインターフェイスを経て満足なデータレートで送信するために必要な条件は、屋内環境、好ましくは、マイクロセルにおいて使用することである。もちろん、本発明は、このような環境に限定されないことを理解されたい。このような環境では、ユーザの移動性が当然低下し、それ故、性能に悪影響を及ぼさずにSACCHレートを下げることができる。
図4から明らかなように、サブチャンネル0(44)のSACCHは、マルチフレーム440のTDMAフレーム2112において与えられる。そのチャンネルに対するTDMAフレームの後続マルチフレーム44は、SACCHバースト周期を含まない。同様に、TDMAフレーム0ないし51を与えるマルチフレーム450及び451により形成されたサブチャンネル1(41)については、SACCH周期がTDMAフレーム2138内にある。サブチャンネル2(42)については、SACCH周期がマルチフレーム460のTDMAフレーム2125において生じる。マルチフレーム461では、SACCH周期が必要とされない。サブチャンネル3(43)では、SACCH周期がマルチフレーム471のTDMAフレーム2151において生じる。マルチフレーム470ではSACCH周期が与えられない。
これら4つのサブチャンネルを設ける場合に、既存のSACCH及び他のアイドルチャンネルを除いて、特別なTDMAフレームを割り当てる必要はない。
FACCHは、指定、通知、ページング、ハンドオーバー又はETMF信号の送信のような遅延に敏感なメカニズムに含まれるので、遅延要求を緩和することはできない。例えば、ハンドオーバーの見込みが極めて低くても(例えば、良好な環境内にいて、ユーザの移動性が低くても)、FACCHの遅延を増加できることを意味するものではない。実際に、FACCHを使用する他のメカニズムも実施されねばならず、長い遅延は、このような状態において問題を引き起こす。従って、FACCHは、先取りを2つの異なるレベルで実行できる既存のスチーリング(盗用)メカニズムをベースとする。これらは、各FACCHブロックがデータフレーム(1つ又は複数)を置き換えるフレームレベルと、各FACCHブロックが4つの連続するデータバーストを4つのGMSKバースト(ECSDの場合のみ)に置き換えるバーストレベルである。
トラフィックを実行する方法は、使用するインターリーブに依存する。緩和された遅延要求が長いインターリーブを許すECSDでは、スチーリングメカニズムがバーストレベルで生じる(4つの連続するバーストがスチールされる)。このとき、各データフレームは、若干影響を受けるだけであり、一方、FACCHの形容詞「高速」は、意味のある状態に保たれる。スピーチが搬送されるときには、スチーリングメカニズムがフレームレベルで生じる。このとき、データフレーム(1つ又は複数)は単純に失われる。
以下のテーブル2は、2つのスチーリングメカニズムの可能性を手短に比較するものである。
Figure 2007318782
FACCHを与える方法は、スチーリングメカニズムを動作するところのチャンネルの形式に依存する。それらは、データチャンネルか又はスピーチチャンネルである。
全レートデータチャンネルは、8PSK又はGMSKのいずれかの変調を使用することができる。それらの両方に対し、既存の解決策がGSM仕様に含まれ、従って、GERANに対して再使用される。8PSK変調が使用されるときには、どちらの変調を使用してFACCHを送信するかの問題が生じる。ECSDの研究から、FACCH識別の健全さ及び性能結果を考慮すると、4つの全連続的GMSKバーストにわたってFACCHをマップするのが好ましい解決策であることが示された。
半レートのデータチャンネルは、GSM仕様に含まれる既存の解決策を再使用するのにGMSK変調しか使用できない。新規な8PSK半レートデータチャンネルを使用できるが、好ましいものではない。他方、全レートスピーチチャンネルは、8PSK又はGMSKのいずれかの変調を使用できる。GMSK変調の場合に、FACCHマッピングは、GSM仕様書に記載された既存の解決策に従う(フレームをスチーリングする)。8PSK変調の場合には、スチーリングメカニズムは、図5に示すように、2つの異なるレベル(バースト又はフレーム)で実行できる。両メカニズムの比較をテーブル3で行う。
Figure 2007318782
図5は、連続的なTDMAフレーム510-17より成る全レートスピーチチャンネルに対するマルチフレーム50の一部分を示す。各フレームは、8個のバースト周期52即ちタイムスロットで形成される。各バースト周期は、上述したように、156.25ビットで構成される。これらは、2つの57ビットフレーム53即ちデータバーストとして知られている2つの57ビット情報ビットを含む。従って、各タイムスロット52は、2つの57ビットデータバースト53を含み、その各々は、タイムスロット52の対応する部分に配置される。別の方法では、各156.25ビットバースト周期が2つの57ビットフレーム53を含む。緊急処置が迅速なハンドオーバー又はチャンネル再指定を要求するときには、FACCHは、このような緊急処置を制御するデータを与えるために4つの連続するバースト周期をスチールすることもできるし、又は連続するバースト周期から8ビットフレームをスチールすることもできる。ビットフレームをスチールする場合には、情報の完全性を維持するために対角インターリーブポリシーが採用される。このように全バースト周期(又はタイムスロット)ではなくビットフレーム(又はデータバースト)をスチールすることにより、テーブル3から明らかなように、オープンチャンネルに転送されている可聴スピーチへの影響を最小にすることができる。
図6は、半レートスピーチチャンネルに使用するためのスチーリングメカニズムを示す。このようなチャンネルの場合には、8PSK又はGMSK変調技術を使用することができる。GMSK変調の場合には、FACCHマッピングは、良く知られたGSM仕様書に記載された既存のマッピング解決策に従うことができる。
8PSK変調の場合には、FACCHを与えるのに必要なスチーリングメカニズムは、図6に示すように、2つの異なるレベル(バースト又はビットフレーム)において実行することができる。図6は、8つのバースト周期62(又はタイムスロット)を各々含む連続するTDMAフレーム610-17のストリームで構成されたマルチフレーム60の一部分を示す。半レートチャンネルの場合には、チャンネルがサブチャンネルに分割され、各サブチャンネルは、ほぼ1つおきのTDMAフレームの同じタイムスロットにおけるバースト周期で構成される。図6において、チャンネルは、バースト周期610-3を使用してスピーチを転送する。迅速なハンドオーバー又はチャンネル再指定を必要とする緊急処置が生じたときには、FACCHは、連続的なフレーム又は非連続的なフレームにおいて4つの連続的なバースト630-0を任意にスチールすることができる。連続的なビットフレームをスチールするときには、2つの連続的なバースト周期各々からの2つのフレームが使用される。フレームをスチールする場合には、もし可能であれば、対角インターリーブポリシーが採用される。テーブル4は、3つの個別のスチーリングメカニズムのスピーチへの作用を示すと共に、それらの他の特徴も示す。
Figure 2007318782
図7は、四半レートスピーチチャンネルに対するスチーリングメカニズムを示す。2つの四半レートチャンネルに適合する好ましい変調は、8PSK変調である。スチーリングメカニズムは、図6に示すように、2つの異なるレベル(バースト又はフレーム)で実行することができる。インターリーブ深さ(ひいては、リンクレベル性能)を増加するために、考慮するべき1つの解決策は、2つの非連続的フレームをスチールすることである。
3つのメカニズムの比較がテーブル5に示されている。
Figure 2007318782
図7は、スピーチトラフィックを搬送する進行中情報流の一部分であるマルチフレーム70の一部分を示す。このマルチフレームは、連続的TDMAフレーム710-17の流れより成る。四半レートチャンネルの場合には、チャンネルがサブチャンネルに分割され、各サブチャンネルは、ほぼ4つごとのTDMAフレーム(実際にはTDMAフレーム710,4,8,13,17)の同じタイムスロットにおけるバースト周期より成る。緊急処置が迅速なハンドオーバー又はチャンネル再指定を必要とするときには、FACCHは、サブチャンネルから4つの連続するバースト(即ち、TDMAフレーム710,4,8,13からバースト周期)を、又は連続するバースト周期から連続するフレーム(即ち、TDMAフレーム710のバースト周期から第2フレーム、TDMAフレーム714,8,13のバースト周期から両フレーム、及びTDMAフレーム7117のバースト周期から第1フレーム)を、或いは連続するバースト周期から非連続的フレーム(図7に示すものより多数のTDMAフレームを必要とする)を任意にスチールすることができる。四半レートスピーチチャンネル用のFACCHスチーリングメカニズムにより与えられる作用及び特徴がテーブル5に示されている。
パケットトラフィックチャンネル(PACCH)に関連したACCHは、回路交換トラフィックチャンネルに関連したACCHと相違する。PACCHは、明確なリソース割り当てを必要とするが、SACCHには、120ms(26個のTDMAフレーム)ごとに1つのタイムスロットが無条件で与えられる。更に、FACCHの解決策は必要とされない。というのは、正に1つのパケットがユーザデータ又はシグナリングのいずれかを搬送できるからである。その相違は、RLC/MACヘッダにより生じる。
リアルタイムの一定データ流が必要とされないバックグランド及びインターアクティブトラフィッククラスの場合には、PACCHブロックをどこかに挿入することができる。
しかし、それが会話及びストリーミングトラフィッククラスに至るときには、一定データ流が必要とされる。不都合なことに、52マルチフレームの構造であるために、このようなトラフィック形式のマッピングは、PACCHの目的に対して何ら空きブロックを与えない。一例として、全レートのスピーチパケットトラフィックチャンネルについて考える。一方では、52個のTDMAフレームごとに、12ブロックが使用できる。他方では、52個のTDMAフレーム(240ms)ごとに、12個のスピーチフレーム(20ms)を送信する必要がある。それ故、各ブロックは、1つのスピーチフレームを搬送しなければならない。その結果、ACCHに対して使用できるブロックがない。2人の半レートパケット音声ユーザが同じパケットトラフィックチャンネルにマルチプレクスされるときにも、同じことが生じる。
しかしながら、タイミング進み及び電力制御メカニズムは、PACCHを使用しない。
更に、セルの再選択はMSで制御できるので、測定レポートをアップリンクに送信することが常に必要とされるのではない。それ故、1つのオプションは、ハンドオーバーが必要とされるときだけ所望のセル候補のリストをMSが送信するようにするメカニズムである。その結果、パケットモードでは480msごとといった高いPACCHレートは必要とされない。従って、会話及びストリーミングトラフィッククラスの場合に、PACCHは、必要なときに1つのスピーチブロックをスチールすることができねばならない。エンドユーザが認知するクオリティへの影響を減少するために、PCUは、無音周期をPACCHブロックで埋めるように試みることができる。
しかしながら、制御情報を送信するために音声パケットを常にスチールしなければならないことは厄介である。それ故、会話及びストリーミングトラフィッククラスの場合に、回路交換解決策は、以下に述べるように行われねばならない。
図8は、2つのマルチフレーム810,1より成る全レートパケットチャンネル(PCH/F)80を示す。各マルチフレームは、26個のTDMAフレーム820-25及び8226-51を含む。各TDMAフレームは、データ(D)を搬送するのに使用される8個のバー
スト周期を含む。データチャンネルは、各TDMAフレームにおける対応バースト周期によって与えられる。各マルチフレームでは、24個のTDMAフレームを使用して、パケット交換データDが転送される。1つのTDMAフレームは、パケット交換トラフィック制御チャンネル(PTCCH)として使用され、一方、残りのバースト周期はアイドル状態に保たれる。
図9は、半レートのパケットチャンネル(PCH/H)を示す。2つのサブチャンネル90、91が示されており、その各々は、マルチフレームの対920,1及び930,1を経て与えられる。サブチャンネル90は、ほぼ1つおきのTDMAフレーム940-51においてバースト周期Dにより形成される。同様に、サブチャンネル91は、ほぼ1つおきのTDMAフレーム950-51において対応バースト周期Dにより形成される。2つのサブチャンネルは、各々のバースト周期が互いにオフセットされるように構成される。従って、TDMAフレーム940は、サブチャンネル90に使用され、TDMAフレーム951は、サブチャンネル91に使用され、TDMAフレーム942は、サブチャンネル90に使用され、TDMAフレーム953は、サブチャンネル91に使用され、等々となる。
PTCCHは、TDMAフレーム9412及び9438においてサブチャンネル90に対して設けられる。PTCCHは、TDMAフレーム9525及び9551においてサブチャンネル91に対して設けられる。当業者であれば、サブチャンネル90及び91は、説明上4つの個別のマルチフレーム920,1及び930,1として示されているが、実際には、2つの相互リンクされた連続的マルチフレームを表わすものに過ぎないことが理解されよう。
このような半レートパケットチャンネル(PCH/H)を使用すると、同じタイムスロットにおいて半レート回路交換チャンネル(TCH/H)とマルチプレクシングすることができる。
半レートパケットチャンネルを考慮する別のやり方は、PCH/F内で2つのブロックごとに(バーストに対して)1つを割り当てることである。しかしながら、物理層の観点から、これは、PCH/Fに類似し、従って、TCH/Hとマルチプレクスすることはできない。パケットは、4つの連続バーストの粒度に従うことによりマップされる。換言すれば、パケットは、長さが4バースト又は8バーストである。
上述した全、半及び四半レートチャンネルでは、チャンネルを基本的な物理チャンネルへと結合できる方法として次のものが考えられる。チャンネル呼称の後にかっこ内に現れる数字は、サブチャンネル番号を示す。
i)TCH/F
ii)PCH/F
iii)TCH/H(0)+TCH/H(1)
iv)TCH/H(0)+PCH/H(1)
v)PCH/H(0)+TCH/H(1)
vi)PCH/H(0)+PCH/H(1)
vii)TCH/Q(0)+TCH/Q(1)
+TCH/Q(2)+TCH/Q(3)
viii)TCH/Q(0)+TCH/Q(1)+TCH/H(1)
ix)TCH/H(0)+TCH/Q(2)+TCH/Q(3)
x)TCH/Q(0)+TCH/Q(1)+PCH/H(1)
xi)PCH/H(0)+TCH/Q(2)+TCH/Q(3)
図10は、会話トラフィックに適しそしてGERANに使用されるユーザ平面プロトコルスタックの種々のモードがいかに構成されるかを示す。プロトコルスタック100は、良く知られたUMTSスタックモデルのアプリケーション層に対応するパケットデータ集中プロトコル(PDCP)層101を備え、これは、ヘッダ除去を伴う非透過的、ヘッダ適応及びフレーミングを伴う非透過的、及びフレーミングを伴う非透過的の3つのモード102、103及び104を含む。透過的モードは、順方向エラー修正(FEC)のみを経てエラー保護を与える。一方、非透過的モードは、ACK(確認)を経て付加的な保護を与える。RTP/UDP/IPヘッダは、除去することもできるし、適応させることもできる。
又、プロトコルスタック100は、UMTSスタックネットワーク層に対応する無線リンク制御(RLC)層105も備え、これは、LA暗号化を伴う透過的と、セグメント化、リンク適応(LA)及び暗号化を伴う非確認と、セグメント化、リンク適応(LA)、順方向エラー修正(FEC)及び暗号化を伴う非確認とであるモード106、107及び108を含む。
又、プロトコルスタックは、媒体アクセス制御(MAC)層109も備え、これは、各々専用及び共用チャンネルに対する2つのモード110及び111を含む。専用チャンネルの場合に、ユーザIDは含まれず、チャンネル当たり1人のユーザしか許さないが、DTXが行われるときには、同じユーザからのデータパケットを送信することができる。共用モードでは、同じチャンネルを多数のユーザ間で共用することができる。
又、プロトコルスタックは、物理層(PHYS)112も備え、これは、各々回路交換チャンネル(TCH)及びパケット交換チャンネル(PCH)に対する2つのモード113及び114を含む。物理層は、チャンネルコード化スピーチ又はデータを、無線チャンネルを経て送信するのに適した形式に変換するためにGMSK又は8PSK変調を行えるようにする。UEP及びEEPのようなデータ完全性を保護するために、種々のチャンネルコード化戦略を実施することもできる。データ完全性を高めるために、深さ2、4、8又は19における矩形及び対角インターリーブも導入できる。










Figure 2007318782
第1無線アクセスベアラAは、マルチプレクシング能力を伴わずに音声コール(会話トラフィッククラス)にチャンネルを永久的に割り当てるものである動作シナリオ(OS)をサポートする。これは、GSMCSモードからデータリンク層を再使用して最適な適応マルチライト(AMR)スピーチを与える。マッピングは、チャンネルレート、即ち全レートTCH/F、半レートTCH/H又は四半レートTCH/Qに基づいて図2、3又は4に従う。又、UEP、TCH/AFS、E−TCH/AFS、E−TCH/AHS及びE−TCH/AQSのような種々のコード化戦略を与えることもできる。この無線アクセスベアラは、上述したFACCH及びSACCHシグナリングマッピングを利用する。
テーブル6の第2無線アクセスベアラBは、音声コール(会話トラフィッククラス)にチャンネルを永久的に割り当てそして同じユーザからのベスト・エフォートデータ(バックグランドトラフィッククラス)をマルチプレクシングするOS1及びOS2をサポートする。このベアラBは、ヘッダ除去を伴うPDCP層101の透過的モード102、リンク適応(LA)及び暗号化を伴うRLC層105の透過的モード106、MAC層109の専用モード110、及び物理層112の回路交換モード113を使用することにより与えられる。このベアラは、最適なAMRスピーチを与える。コード及びシグナリングは、ベアラAと同等であるが、プロトコルスタックは、MAC層によるOS2のサポートを考慮して相違する。マッピングは、チャンネルレートに基づき図2、3又は4に従う。同じユーザからのベスト・エフォートパケットを無音周期内に適合させることができる。
テーブル6の第3無線アクセスベアラCは、OS1及びOS2を同様にサポートする。
このベアラは、ヘッダ剥離を適応機能として伴いそしてセグメント化及びヘッダ追加を含むフレーミングを伴うPDCP層101の非透過的モード103を使用することにより与えられる。LA及び暗号化を伴うRLC層105の透過的モード106、並びにMAC層109の専用モード110も使用される。回路交換モード113は、必要なチャンネルレートに基づき、全、半又は四半(TCH(F/H/Q))レートで物理層に使用される。
ベアラは、ヘッダ剥離により最適なAMRスピーチを与える。SACCH及びFACCH制御チャンネルに加えて、ベアラは、参考としてここに取り上げる2000年2月23日に出願されたフィンランド特許出願第20000415号に開示されたように、埋め込まれた関連制御チャンネル(MACH)を使用する。マッピングは、チャンネルレートに基づいて、図2、3又は4に従う。同じユーザからのベスト・エフォートデータパケットを無音周期内に適合させることができる。
テーブル6の第4無線アクセスベアラDは、音声コール(会話トラフィッククラス)にチャンネルを永久的に割り当てそして異なるユーザからのベスト・エフォートデータをマルチプレクシングするOS3をサポートする。2人以上の音声ユーザ(及び/又はデータユーザ)にチャンネルを動的に割り当てるOS4もサポートされる。このベアラは、PDCP層101からのヘッダ剥離及びフレーミングを伴う非透過的モード103により与えられる。RLC層105からの非確認モード107も使用され、これは、セグメント化、LA及び暗号化を与える。MAC層109からの共用モード111は、物理層112からのパケット交換モード114と同様に使用される。プロトコルスタックをこのように構成することにより一般的な会話無線アクセスベアラDが形成される。マッピングは、必要なチャンネルレートに基づき、図8及び9に示す構成に従う。長いインターリーブ動作からの利益を得るために、2つのスピーチフレームが1つの無線ブロックにカプセル化される。
図11は、ストリーミング無線アクセスベアラのためのプロトコルスタック100を示す。このプロトコルスタックは、図10と同じモード及び層を含むが、モードのルーティング及び選択が相違する。破線で示されたブロックは使用されない。データリンク層115は、GSMCSモードから取り出され、それ故、既存の回路交換データチャンネルを使用できるようにする。図11に矢印で示されたプロトコルスタックを通る経路がテーブル7に詳細に示されている。動作シナリオは、ストリーミング無線アクセスベアラの観点には適用できない。



















Figure 2007318782
ストリーミング無線アクセスベアラに対して5つの無線アクセスベアラAないしEが定義されている。Aで示された第1のベアラは、GSMCSモードからのデータリンク層115を再使用してストリーミングを最適化するために設けられる。ベアラAは、全レートの回路交換トラフィックチャンネルに対して深さ19対角のインターリーブを使用し、このトラフィックチャンネルは、GMSK又は8PSKのいずれかで変調できる。これら2つの形態に対するコード化構成は、シグナリングマッピング構成と同様に相違する。GMSK変調が使用されるときには、FACCH及びSACCH制御チャンネルが、TCH/F14.4及びF9.6コード化と一緒に使用される。これは、GSM仕様書05.02に規定されたデータ送信用のトラフィックチャンネルである。数字は、各々、14.4kビット/s及び9.6kビット/sのビットレートに対応する。8PSK変調がトラフィックチャンネルに使用されるときには、FACCH及びSACCH制御チャンネルがE−IACCH/Fと一緒にサポートされる。これらは、E−TCH/F28.8、32.0又は43.2コード化を使用できるようにする。ここで、数字は、各コード化構成のビットレート、即ち28.8kビット/s、32kビット/s又は43.2kビット/sに各々対応する。これらのコード化構成は、ECSD(エッジ回路交換データサービス)に等エラー保護として使用される。
第2のストリーミング無線アクセスベアラBは、プロトコルスタックのPDCP層101における透過的モード102を使用する。RLC層105からの透過的モード106も、MAC層109の専用モード110と一緒に使用される。物理層112は、深さ19対角インターリーブポリシーを使用して回路交換チャンネルを与えるように構成される。GMSK又は8PSK変調をチャンネルに使用してデータの完全性を保持することにより、テーブル7から明らかなように、種々のコード化及びシグナリングマッピングポリシーを実施することができる。コード化及びシグナリングは、Aと同等であるが、プロトコルスタックは、構成が異なる。シグナリングマッピングは、チャンネルレートに基づき、図2、3及び4に従う。
第3のストリーミング無線アクセスベアラCは、プロトコルスタックのPDCP層からの非透過的モード103を使用する。更に、剥離によりヘッダが適応され、次いで、フレーミングが実行される。次いで、セグメント化、LA及び暗号化を含むRLC層105の非確認モード107を使用するようにプロトコル経路が構成される。層109からの専用モード110も使用される。次いで、テーブル7に記載されたように、チャンネル動作に対して種々のオプションが使用できる。これは、ヘッダ剥離を伴う最適なストリーミングを与える。マッピングは、チャンネルレートに基づき、図2、3及び4に従う。
第4のストリーミング無線アクセスベアラDは、ヘッダ圧縮を伴う最適なストリーミングを与える。ベアラDは、ヘッダ圧縮及びフレーミングを含むプロトコルスタックのPDCP層における非透過的モード103を使用する。RLC層105からの非確認モード107も、セグメント化、LA及び暗号化と共に使用される。MAC層109は、専用モード110において動作するように構成され、一方、物理層112は、回路交換モード113において動作するように構成される。実施することのできる種々のインターリービング、変調、コード化及びマッピングプロトコルがテーブル7に示されている。
第5のストリーミング無線アクセスベアラEは、一般的なストリーミング無線アクセスベアラを与える。プロトコルスタックは、テーブル7及び図11に示すように構成される。PDCP層101における非透過的モード103が選択されそしてヘッダ圧縮及びフレーミング用に構成される。RLC層105において非確認モード107がセグメント化、LA及び暗号化と共に使用される。MAC層109から共用モード111が使用される。
パケット交換モード114が物理層から選択される。このようにプロトコルスタックを構成することにより、テーブル7に示すトラフィックチャンネル用の種々のオプションを使用できる。このベアラは、上述したようにPACCH及びPTCCH制御チャンネルを使用する。マッピングは、チャンネルレートに基づき、図2、3又は4に従う。長いインターリーブ動作から利益を得るために、2つのスピーチフレームが1つのパケット内にカプセル化される。しかしながら、1つのデータフレームしかカプセル化できない。
図12は、インターアクティブ無線アクセスベアラに対するプロトコルスタックを示す。このプロトコルスタックは、図10に示すものと同じモード及び層を含むが、モードのルーティング及び選択は、考えられるベアラの経路を指示する矢印で示すように相違する。破線で示されたブロック又はモードは、使用されない。2つの無線アクセスベアラしか与えられず、これらは、A及びBで示されている。
Figure 2007318782
その第1ベアラAは、PDCP層101のモード103により形成され、これは、圧縮及びフレーミング技術によりヘッダを適応させる非透過的モードである。確認モード108は、RLC層105から、セグメント化、LA及び暗号化、並びに逆方向エラー修正(BEC)と一緒に選択される。プロトコルスタックにおけるMAC層109の共用モード111も実施される。パケット交換トラフィックチャンネルは、図2、3又は4に示すように必要なチャンネルレートに基づいて全又は半レートチャンネルが使用されるようにして、使用される。PACCH及びPTCCHチャンネルは、上述したように使用することができる。動作シナリオの参照は、インターアクティブアクセスベアラには関係ない。
第2のインターアクティブベアラBも、同様に実施されるが、採用されるPDCPモードは、ヘッダ圧縮を使用しない。このベアラは、一般的なインターアクティブ無線アクセスベアラを与える。チャンネルマッピングは、チャンネルレートに基づいて図2、3又は4に従う。
図13は、バックグランド無線アクセスベアラに対するプロトコルスタックを示す。このプロトコルスタックは、図10、11及び12に示すものと同じモード及び層を含むが、矢印で示すように異なるルーティング方法により異なるモードを使用する。破線で示すブロックは、使用されない。図13に矢印で示された経路は、テーブル9に詳細に記載されている。4つのバックグランド無線アクセスベアラAないしDが定義される。

















Figure 2007318782
テーブル9の第1ベアラAは、PDCP層101からの非透過的モード103をヘッダ圧縮及びフレーミングと共に選択することにより与えられる。RLC層105は、確認モード108を使用して構成され、これは、セグメント化、LA、暗号化及びBECを行えるようにする。MAC層109は、モード110を選択することにより専用チャンネル構造を使用して実施される。次いで、モードTCHを選択することにより回路交換チャンネルが使用される。これは、OS2を満足し、そして回路交換チャンネルの無音周期内にパケット送信を与える。OS2内でヘッダ圧縮を伴うベスト・エフォートデータ(又はバックグランド)が与えられる。パケットデータに関連した制御は、スピーチトラフィックチャンネル(FACCH及びSACCH)の関連制御チャンネルにより実行される。ベスト・エフォートデータパケットは、4つの連続するバーストにおいてマッピングされる。
第2のバックグランド無線アクセスベアラ(テーブル9のB)は、テーブル9に示すように、非透過的モード104、確認モード108、専用モード110、及び回路交換モード113を使用して実施される。これは、無音周期内にパケット送信も与えるが、OS2内でヘッダ圧縮を伴わずにベスト・エフォートデータ(又はバックグランド)を与える。
パケットデータに関連した制御は、スピーチトラフィックチャンネル(FACCH及びSACCH)の関連制御チャンネルにより実行される。ベスト・エフォートデータパケットは、4つの連続するバーストにマップされる。
第3のバックグランド無線アクセスベアラ(テーブル9のC)は、PDCP層101の非透過的モード103、RLC層105の確認モード108、MAC層109の共用モード111及び物理層112のパケット交換モード114を使用して実施される。このベアラは、OS3及びOS4を実施し、ヘッダ圧縮を伴うバックグランド無線アクセスベアラを与える。
第4のバックグランド無線アクセスベアラ(テーブル9のD)は、一般的なバックグランド無線アクセスベアラを与える。これは、PDCP層101の非透過的モード104、RLC層105の確認モード108、MAC層109の共用モード111、及び物理層112のパケット交換モード114を使用して実施される。マッピングは、チャンネルレートに基づいて図2、3又は4に従い、そしてベアラは、OS3及びOD4をサポートする。
GERANに必要な考えられる関連制御チャンネルについて以下に述べる。それらは、インターフェイスを経て使用されるトラフィックチャンネルの種類に依存する。パケットトラフィックチャンネルの場合には、PACCHが、バックグランド及びインターアクティブトラフィッククラスに対するシグナリング要求を明らかに満足する。しかしながら、会話及びストリーミングトラフィッククラスを考慮するときには、PACCHを送信する唯一の方法は、音声パケットをスチール(盗用)することである。音声クオリティに対する影響は減少される。しかしながら、TA及びPCの更新はPACCHを使用せず、そして測定レポートが制限され得るので、PACCHトラフィックを減少することができる。
しかし、より効率的な関連制御が定義された既存の回路交換トラフィックチャンネルを再使用するのが効果的である。
回路交換トラフィックチャンネルの場合には、SACCH及びFACCHが、ストリーミング及び会話トラフィッククラスのシグナリング要求を受け入れる。
本発明の実施形態は、GERANにおいて実行され、これは、物理層が主としてパケット交換コアネットワークに接続されるが、回路交換コアネットワークにも接続できることを意味する。従来、一方では、回路交換エアインターフェイス(TCH+SACCH+アイドル)が回路交換コアネットワークに接続され(Aインターフェイスを経て)、そして他方では、パケット交換エアインターフェイス(PDTCH+PTCCH+アイドル、即ちPDCH)がパケット交換コアネットワークに接続されている(Gbインターフェイスを経て)。本発明の実施形態は、回路交換エアインターフェイスをパケット交換コアネットワークに接続できるようにし(Gb又はIu−psインターフェイスを経て)、そして回路交換エアインターフェイスがパケットデータを(TCHだけでなく)サポートできるようにし、それ故、これをパケット交換コアネットワークにも接続することができる(Gb又はIu−psインターフェイスを経て)。従って、回路交換エアインターフェイスを経て考えられる1つの組合せは、PDTCH+SACCH+アイドルである。OS2の場合には、考えられる組合せがTCH+PDTCH+SACCH+アイドルである。そこで、本発明による通信システムを実施することができる。
GERANは、本発明による通信システムを実施できるシステムの一例として使用された。しかしながら、以上に述べた本発明によるシステム及び方法は、GSM又はEDGEに使用されるものに限定されず、本発明によるシステム及び方法は、他の無線ネットワークにも適用できる。
GERANは、本発明による通信システムを実施できるシステムの一例として使用された。
当業者であれば、本発明は、上記実施形態に限定されず、本発明の範囲から逸脱せずに種々の変更がなされ得ることが明らかであろう。
添付資料A − 関連制御チャンネルの内容
関連制御チャンネル メッセージ
SACCH 測定レポート−アップリンク
システム情報形式5−ダウンリンク
システム情報形式6−ダウンリンク
システム情報形式6bis−ダウンリンク
システム情報形式6ter−ダウンリンク
拡張測定オーダー−ダウンリンク
拡張測定レポート−アップリンク
DTXの場合のSIDフレーム
FACCH 付加的な指定−ダウンリンク
指定コマンド−ダウンリンク
指定完了−アップリンク
指定欠陥−アップリンク
チャンネルモード変更−ダウンリンク
チャンネルモード変更確認−アップリンク
チャンネル解除−ダウンリンク
暗号モードコマンド−ダウンリンク
暗号モード完了−アップリンク
クラスマーク変更−アップリンク
クラスマーク問合せ−ダウンリンク
構成変更コマンド−ダウンリンク
構成変更確認−アップリンク
構成変更拒絶−アップリンク
周波数再定義−ダウンリンク
ハンドオーバーアクセス
ハンドオーバーコマンド−ダウンリンク
ハンドオーバー完了−アップリンク
ハンドオーバー欠陥−アップリンク
通知/FACCH−ダウンリンク
RRセル変更オーダー−ダウンリンク
ページング応答−アップリンク
部分的解除−ダウンリンク
部分的解除完了−アップリンク
物理的情報−ダウンリンク
RR初期化要求−アップリンク
トーカー指示−アップリンク
アップリンクビジー−ダウンリンク−VGCSのみ
アップリンクフリー−ダウンリンク−VGCSのみ
アップリンク解除−VGCSのみ
PACCH パケットアクセス拒絶−ダウンリンク
パケット制御確認−アップリンク
パケットセル変更オーダー−ダウンリンク
パケットセル変更欠陥−アップリンク
パケットダウンリンク確認/非確認−アップリンク
EGPRSパケットダウンリンク確認/非確認
−アップリンク
パケットダウンリンク指定−ダウンリンク
EGPRSパケットダウンリンク指定−ダウンリンク
パケットダウンリンクダミー制御ブロック
−ダウンリンク
パケットアップリンクダミー制御ブロック
−アップリンク
パケット測定レポート−アップリンク
パケット測定オーダー−ダウンリンク
パケット移動TBF状態−アップリンク
パケットページング要求−ダウンリンク
パケットPDCH解除−ダウンリンク
パケットポーリング要求−ダウンリンク
パケット電力制御/タイミング進み−ダウンリンク
パケットリソース要求−アップリンク
EGPRSパケットリソース要求−アップリンク
EGPRSパケットリソース要求−アップリンク
パケットシステム情報形式1−ダウンリンク
パケットシステム情報形式2−ダウンリンク
パケットシステム情報形式3−ダウンリンク
パケットシステム情報形式3bis−ダウンリンク
パケットシステム情報形式4−ダウンリンク
パケットシステム情報13−ダウンリンク
パケットTBF解除−ダウンリンク
パケットアップリンク確認/非確認−ダウンリンク
EGPRSパケットアップリンク確認/非確認
−ダウンリンク
パケットアップリンク指定−ダウンリンク
EGPRSパケットアップリンク指定−ダウンリンク
パケットタイムスロット再構成−ダウンリンク
EGPRSパケットタイムスロット再構成
−ダウンリンク
GERANに使用するのに適したユーザ平面プロトコルスタックを示す図である。 全レートトラフィックチャンネルを示す図である。 半レートトラフィックチャンネルを示す図である。 四半レートトラフィックチャンネルを示す図である。 全レートチャンネルにおけるFACCHマッピングを示す図である。 半レートチャンネルにおけるFACCHマッピングを示す図である。 四半レートチャンネルにおけるFACCHマッピングを示す図である。 全レートパケットチャンネルを示す図である。 半レートパケットチャンネルを示す図である。 会話無線アクセスベアラを示す図である。 ストリーミング無線アクセスベアラを示す図である。 インターアクティブ無線アクセスベアラを示す図である。 バックグランド無線アクセスベアラを示す図である。
符号の説明
10 ユーザ平面プロトコルスタック
11 物理層
12 媒体アクセス制御(MAC)層
13 無線リンク制御(RLC)層
14 パケットデータ集中プロトコル(PDCP)層

Claims (29)

  1. ワイヤレスチャンネルを経て第2ステーションと通信することができる第1ステーションを備える通信システムであって、データがワイヤレスチャンネルを経てスーパーフレーム(20)で搬送され、各スーパーフレームは複数のフレーム(210-25)を含みそして各フレームは複数のタイムスロット(22)を含む通信システムにおいて、
    当該システムが、
    回路交換通信用のデータチャンネルが、各スーパーフレーム内のいくつかのフレームの対応タイムスロットをそのチャンネルに割り当てることにより規定され、そしてパケット交換通信用のデータチャンネルが、各スーパーフレーム内の他のフレームの対応タイムスロットをそのチャンネルに割り当てることにより規定されるようなオペレーションモードを備えることを特徴とする通信システム。
  2. 回路交換通信用のデータチャンネル及びパケット交換通信用のデータチャンネルに、各フレーム内の同数のタイムスロットが割り当てられる請求項1に記載の通信システム。
  3. パケット交換通信用のデータチャンネルに割り当てられたスロットの半数が回路交換通信用のデータチャンネルに割り当てられる請求項1に記載の通信システム。
  4. パケット交換通信用のデータチャンネルに割り当てられたスロットの四半数が回路交換通信用のデータチャンネルに割り当てられる請求項1に記載の通信システム。
  5. 回路交換通信用のデータチャンネルは、半レートデータチャンネルである請求項1ないし4のいずれかに記載の通信システム。
  6. 回路交換通信用のデータチャンネルは、四半レートデータチャンネルである請求項1ないし5のいずれかに記載の通信システム。
  7. パケット交換通信用のデータチャンネルが、半レートデータチャンネルである、請求項1ないし5のいずれかに記載の通信システム。
  8. パケット交換通信用のデータチャンネルを制御するための制御データが回路交換通信用のデータチャンネルにより搬送される、請求項1ないし6のいずれかに記載の通信システム。
  9. 前記制御データは、チャンネルの送信電力及び/又はハンドオーバーを制御するためのものである、請求項1ないし8のいずれかに記載の通信システム。
  10. 前記制御データは、高速アクセス制御チャンネル及び/又は低速アクセス制御チャンネルを備えた請求項8又は9に記載の通信システム。
  11. 回路交換通信用のデータチャンネルは、会話チャンネルである、請求項1ないし10のいずれかに記載の通信システム。
  12. 回路交換通信用のデータチャンネルは、バックグランドチャンネルである、請求項1ないし10のいずれかに記載の通信システム。
  13. パケット交換通信用のデータチャンネルには、回路交換通信用のデータチャンネルが相対的にインアクティブである周期中にタイムスロットが割り当てられる、請求項1ないし12のいずれかに記載の通信システム。
  14. パケット交換通信用のデータチャンネルには、回路交換通信用のデータチャンネルにより搬送される会話データの切れ間(lulls)の間にタイムスロットが割り当てられる請求項13に記載の通信システム。
  15. 回路交換チャンネルは、通信システムの回路交換コアネットワークを経て動作することができる、請求項1ないし14のいずれかに記載の通信システム。
  16. 前記システムは、前記ワイヤレスチャンネルが第1及び第2のサブチャンネルを含むオペレーションモードを有し、
    前記第1サブチャンネルは、回路交換通信用の半レートデータチャンネルを含み、そして
    前記第2サブチャンネルは、パケット交換通信用の半レートデータチャンネルを含む、以上の請求項のいずれかに記載の通信システム。
  17. 請求項1ないし16に記載の通信システムであって、当該システムが、オペレーションモードを持ち、当該オペレーションモードにおいて、前記ワイヤレスチャンネルが、第1の、第2の、第3の、及び、第4のサブチャンネルを含み、当該サブチャンネルのそれぞれが、回路交換通信用の四半レートのデータチャンネルを含む、
    通信システム。
  18. 請求項1ないし16に記載の通信システムであって、当該システムが、オペレーションモードを持ち、当該オペレーションモードにおいて、前記ワイヤレスチャンネルが、第1の、第2の、及び、第3のサブチャンネルを含み、
    前記第1のサブチャンネルが、回路交換通信用の四半レートのデータチャンネルを含み、
    前記第2のサブチャンネルが、回路交換通信用の四半レートのデータチャンネルを含み、そして、
    前記第3のサブチャンネルが、パケット交換通信用の半レートのデータチャンネルを含む、
    通信システム。
  19. 請求項1ないし16のいずれかに記載の通信システムであって、当該システムが、オペレーションモードを持ち、当該オペレーションモードにおいて、前記ワイヤレスチャンネルが、第1、第2、及び、第3のサブチャンネルを含み、
    前記第1のサブチャンネルが、回路交換通信用の四半レートのデータチャンネルを含み、
    前記第2のサブチャンネルが、回路交換通信用の四半レートのデータチャンネルを含み、そして、
    前記第3のサブチャンネルが、パケット交換通信用の半レートデータチャンネルを含む、
    通信システム。
  20. ワイヤレス・チャンネルを経てデータを通信することが可能な移動ステーションであって、
    データが、スーパーフレーム(20)内のワイヤレスチャンネルを経て搬送され、
    各スーパーフレームが、複数のフレーム(210-25)を含み、そして、
    各フレームが、複数のタイムスロット(22)を含み、
    前記移動ステーションが、各スーパーフレームのいくつかのフレームの対応するタイムスロットのデータチャンネルへの割当てによって規定される当該データチャンネルを経た回路交換通信用にデータを送信するようにされ、
    前記移動ステーションが、各スーパーフレームの他のフレームの対応するタイムスロットのデータチャンネルへの割当てによって規定される当該データチャンネルを経たパケット交換通信用にデータを送信するようにされる、
    移動ステーション。
  21. 請求項20に記載の移動ステーションであって、
    回路交換通信用のデータチャンネルが相対的にインアクティブな(inactive)周期中に、当該移動ステーションがパケット交換通信用のデータを送信するようにされる、
    移動ステーション。
  22. 請求項20に記載の移動ステーションであって、
    当該移動ステーションが、回路交換通信用のデータチャンネルによって搬送されている会話データの切れ間(lulls)の間にパケット交換通信用のデータを送信するようにされる、
    移動ステーション。
  23. 請求項20から22のいずれかに記載の移動ステーションであって、当該移動ステーションが、半レートデータチャンネルを経て回路交換通信用のデータを送信するようにされ、半レートデータチャンネルを経てパケット交換通信用のデータを送信するようにされる、
    移動ステーション。
  24. 請求項23に記載の移動ステーションであって、
    当該移動ステーションが、回路交換通信用の半レートデータチャンネルを含む第1のサブ・チャンネルを経て回路交換通信用のデータを送信するようにされ、
    当該移動ステーションが、パケット交換通信用の半レートデータチャンネルを含む第2のサブ・チャンネルを経てパケット交換通信用のデータを送信するようにされる、
    移動ステーション。
  25. ワイヤレスチャンネルを経てデータを通信することが可能なベースステーションであって、
    データが、スーパーフレーム(20)内のワイヤレスチャンネルを経て搬送され、
    各スーパーフレームが、複数のフレーム(210-25)を含み、
    各フレームが、複数のタイムスロット(22)を含み、
    前記ベースステーションが、各スーパーフレームのいくつかのフレームの対応するタイムスロットのデータチャンネルへの割当てによって規定される当該データチャンネルを経て回路交換通信用のデータを送信するようにされ、
    前記ベースステーションが、各スーパーフレームの他のフレームの対応するタイムスロットのデータチャンネルへの割当てによって規定される当該データチャンネルを経てパケット交換通信用のデータを送信するようにされる、
    ベースステーション。
  26. 請求項25に記載のベースステーションであって、当該ベースステーションが、回路交換通信用のデータチャンネルが、相対的にインアクティブな(inactive)周期中にパケット交換通信用のデータを送信するようにされている、ベースステーション。
  27. 請求項25に記載のベースステーションであって、当該ベースステーションが、回路交換通信用のデータチャンネルによって搬送されている会話データの切れ間(lulls)の間にパケット交換通信用のデータを送信するようにされる、ベースステーション。
  28. 請求項25ないし27に記載のベースステーションであって、当該ベースステーションが、半レートデータチャンネルを経て回路交換通信用のデータを送信するようにされ、半レートデータチャンネルを経てパケット交換通信用のデータを送信するようにされる、ベースステーション。
  29. 請求項28に記載のベースステーションであって、当該ベースステーションが、回路交換通信用の半レートデータチャンネルを含む第1のサブ・チャンネルを経て回路交換通信用のデータを送信するようにされており、当該ベースステーションが、パケット交換通信用の半レートデータチャンネルを含む第2のサブチャンネルを経てパケット交換通信用のデータを送信するようにされている、ベースステーション。
JP2007175115A 2000-02-18 2007-07-03 通信システム Pending JP2007318782A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB0003892.7A GB0003892D0 (en) 2000-02-18 2000-02-18 Communication system
FI20000415A FI109570B (fi) 2000-02-23 2000-02-23 Menetelmä tiedon siirtämiseksi radiopääsyverkossa
GBGB0031296.7A GB0031296D0 (en) 2000-02-18 2000-12-21 Communications system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004260029A Division JP2005020783A (ja) 2000-02-18 2004-09-07 通信システム

Publications (1)

Publication Number Publication Date
JP2007318782A true JP2007318782A (ja) 2007-12-06

Family

ID=27241776

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2001560574A Expired - Fee Related JP3722749B2 (ja) 2000-02-18 2001-02-16 通信システム
JP2004260030A Pending JP2005045827A (ja) 2000-02-18 2004-09-07 通信システム
JP2004260029A Pending JP2005020783A (ja) 2000-02-18 2004-09-07 通信システム
JP2007175115A Pending JP2007318782A (ja) 2000-02-18 2007-07-03 通信システム

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2001560574A Expired - Fee Related JP3722749B2 (ja) 2000-02-18 2001-02-16 通信システム
JP2004260030A Pending JP2005045827A (ja) 2000-02-18 2004-09-07 通信システム
JP2004260029A Pending JP2005020783A (ja) 2000-02-18 2004-09-07 通信システム

Country Status (12)

Country Link
US (1) US20040120302A1 (ja)
EP (1) EP1169799B1 (ja)
JP (4) JP3722749B2 (ja)
CN (1) CN100482002C (ja)
AT (3) ATE270481T1 (ja)
AU (1) AU4645101A (ja)
BR (1) BR0104591B1 (ja)
CA (1) CA2370664C (ja)
DE (3) DE60121971T2 (ja)
ES (2) ES2269916T3 (ja)
TR (1) TR200402505T4 (ja)
WO (1) WO2001061899A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500515A (ja) * 2008-08-12 2012-01-05 インターデイジタル パテント ホールディングス インコーポレイテッド 直交サブチャネルの概念を使用したgeranにおける制御チャネル割振りのための方法および装置

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100290862B1 (ko) * 1998-04-02 2001-07-12 구자홍 이동통신시스템에서의패킷데이터를전송하기위한슬롯의구조
FI108203B (fi) * 1998-11-27 2001-11-30 Nokia Mobile Phones Ltd Menetelmä ja järjestely tiedon siirtämiseksi pakettiradiopalvelussa
FR2812508B1 (fr) * 2000-07-28 2003-03-21 Sagem Procede de transmission simultanee de signaux de parole et de donnee entre une station base et un telephone mobile et telephone mobile utilisable pour mettre en oeuvre ce procede
FR2822614B1 (fr) * 2001-03-23 2003-08-01 Evolium Sas Coordination de l'envoi de messages de recherche dans un systeme de radiocommunications mobiles
US20030101049A1 (en) * 2001-11-26 2003-05-29 Nokia Corporation Method for stealing speech data frames for signalling purposes
US20030112790A1 (en) * 2001-12-17 2003-06-19 Hayduk Matthew A. Providing data link services to upper layer protocols in application and communication subsystems
KR100896484B1 (ko) 2002-04-08 2009-05-08 엘지전자 주식회사 이동통신시스템에서 데이터 전송 무선통신방법 및 무선통신장치
US7177658B2 (en) 2002-05-06 2007-02-13 Qualcomm, Incorporated Multi-media broadcast and multicast service (MBMS) in a wireless communications system
FR2840758B1 (fr) * 2002-06-11 2004-11-26 Evolium Sas Procede pour supporter du trafic temps reel dans un systeme de radiocommunications mobiles
KR100958519B1 (ko) * 2002-08-14 2010-05-17 엘지전자 주식회사 이동통신 시스템에서의 멀티미디어 서비스 수신 및 전송 방법
JP2005538654A (ja) * 2002-09-11 2005-12-15 シーメンス アクチエンゲゼルシヤフト データ圧縮方式の通信システムにおける接続変更方法および装置
JP4370802B2 (ja) * 2003-04-22 2009-11-25 富士通株式会社 データ処理方法およびデータ処理装置
US8694869B2 (en) * 2003-08-21 2014-04-08 QUALCIMM Incorporated Methods for forward error correction coding above a radio link control layer and related apparatus
US8804761B2 (en) * 2003-08-21 2014-08-12 Qualcomm Incorporated Methods for seamless delivery of broadcast and multicast content across cell borders and/or between different transmission schemes and related apparatus
US7106714B2 (en) * 2003-11-25 2006-09-12 Motorola, Inc. Method and apparatus for transmission of control data in a packet data communication system
PT1658688E (pt) 2004-01-20 2010-09-21 Qualcomm Inc Comunicações sincronizadas de difusão/grupos de entidades
JP4528541B2 (ja) * 2004-03-05 2010-08-18 株式会社東芝 通信装置、通信方法、および通信システム
US7920884B2 (en) 2004-06-04 2011-04-05 Qualcomm Incorporated Frame structures for a wireless communication system with multiple radio technologies
KR101141112B1 (ko) * 2004-09-15 2012-05-02 가부시키가이샤 엔.티.티.도코모 이동 통신 시스템, 무선 제어국, 무선 기지국, 이동국 및 이동 통신 방법
US7734741B2 (en) 2004-12-13 2010-06-08 Intel Corporation Method, system, and apparatus for dynamic reconfiguration of resources
US7738484B2 (en) * 2004-12-13 2010-06-15 Intel Corporation Method, system, and apparatus for system level initialization
CN101351017B (zh) * 2005-01-10 2011-03-02 中兴通讯股份有限公司 一种无线综合接入网插入定位时隙的方法
US7957351B2 (en) * 2005-04-04 2011-06-07 Qualcomm Incorporated Method and apparatus for management of multi-carrier communications in a wireless communication system
EP1884134B1 (en) * 2005-05-25 2013-08-21 Telefonaktiebolaget LM Ericsson (publ) Connection type handover of voice over internet protocol call based on resource type
US7712005B2 (en) * 2005-10-21 2010-05-04 Marvell World Trade Ltd. Encoding and error correction system for enhanced performance of legacy communications networks
GB2436417B (en) * 2006-03-22 2008-02-20 Nec Technologies Radio access bearer transfer
FI20065197A0 (fi) * 2006-03-27 2006-03-27 Nokia Corp Nousevan siirtotien synkronointiparametrin voimassaolon päättely pakettiradiojärjestelmässä
US7738416B2 (en) 2006-04-28 2010-06-15 Research In Motion Limited Data burst communication techniques for mobile communication devices operating in packet data sessions
KR101330633B1 (ko) * 2006-06-08 2013-11-18 삼성전자주식회사 무선 통신 방법 및 장치
WO2007144956A1 (ja) * 2006-06-16 2007-12-21 Mitsubishi Electric Corporation 移動体通信システム及び移動端末
US20080058004A1 (en) * 2006-08-29 2008-03-06 Motorola, Inc. System and method for reassigning an uplink time slot from a circuit-switched gprs mobile device to a different packet-switched gprs mobile device
US20080056194A1 (en) * 2006-08-29 2008-03-06 Gonorovsky Ilya O System for combining uplink data blocks from a user with transmission pauses from another user
TW200824474A (en) * 2006-10-28 2008-06-01 Interdigital Tech Corp Method and apparatus for scheduling uplink transmissions for real time services during a silent period
FI20065866A0 (fi) 2006-12-29 2006-12-29 Nokia Corp Tiedonsiirto matkaviestinjärjestelmässä
US20080279176A1 (en) * 2007-05-08 2008-11-13 Jing-Ru Cheng Base station system and mobile station supporting dtmf protocol
KR20090054186A (ko) * 2007-11-26 2009-05-29 삼성전자주식회사 하향 더미 제어블록을 이용한 데이터 전송방법 및 그방법에 따른 시스템
TW201032607A (en) * 2008-03-19 2010-09-01 Interdigital Patent Holdings Signaling for multi-user reusing one slot (MUROS) operation in GSM
CN101645751B (zh) * 2008-08-05 2012-10-03 华为技术有限公司 下行随路控制信道帧的传输方法、系统及设备
US8634408B2 (en) * 2009-12-04 2014-01-21 Blackberry Limited Single slot DTM for speech/data transmission
US8593983B2 (en) * 2010-01-26 2013-11-26 Entropic Communications, Inc. Method and apparatus for use of silent symbols in a communications network
US9356785B2 (en) * 2011-02-15 2016-05-31 Blackberry Limited Method and system for security enhancement for mobile communications
WO2012154114A1 (en) * 2011-05-09 2012-11-15 Telefonaktiebolaget L M Ericsson (Publ) Device and method for extended ptcch space
WO2012162997A1 (zh) * 2011-09-30 2012-12-06 华为技术有限公司 一种分组上行功控的方法及设备
US10491265B2 (en) * 2016-04-26 2019-11-26 Texas Instruments Incorporated Sleepy device operation in asynchronous channel hopping networks

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914650A (en) * 1988-12-06 1990-04-03 American Telephone And Telegraph Company Bandwidth allocation and congestion control scheme for an integrated voice and data network
SE517499C2 (sv) * 1991-08-01 2002-06-11 Ericsson Ge Mobile Communicat Förfarande för åtkomst av ett mobilradiolandsystem från en av ett antal mobilstationer
US5465269A (en) * 1994-02-02 1995-11-07 Motorola, Inc. Method and apparatus for encoding and decoding a supplementary signal
US5517504A (en) * 1994-07-29 1996-05-14 Motorola, Inc. Method and system for providing uplink/downlink collision avoidance in a wireless communication system
US5802105A (en) * 1994-11-30 1998-09-01 Qualcomm Incorporated Method and apparatus for testing a digital communication channel
FI97187C (fi) * 1994-12-09 1996-10-25 Nokia Telecommunications Oy Suurinopeuksinen datasiirto matkaviestinverkoissa
ZA961025B (en) * 1995-02-28 1996-07-16 Qualcomm Inc Method and apparatus for providing variable rate data in a communications system using non-orthogonal overflow channels
US6292476B1 (en) * 1997-04-16 2001-09-18 Qualcomm Inc. Method and apparatus for providing variable rate data in a communications system using non-orthogonal overflow channels
MY121893A (en) * 1995-04-28 2006-03-31 Qualcomm Inc Method and apparatus for providing variable rate data in a communications system using statistical multiplexing.
US5663957A (en) * 1995-07-12 1997-09-02 Ericsson Inc. Dual mode satellite/cellular terminal
US6091960A (en) * 1995-10-18 2000-07-18 Telefonaktiebolaget Lm Ericsson Method for paging mobile stations
US5790551A (en) * 1995-11-28 1998-08-04 At&T Wireless Services Inc. Packet data transmission using dynamic channel assignment
US6205190B1 (en) * 1996-04-29 2001-03-20 Qualcomm Inc. System and method for reducing interference generated by a CDMA communications device
US5953344A (en) * 1996-04-30 1999-09-14 Lucent Technologies Inc. Method and apparatus enabling enhanced throughput efficiency by use of dynamically adjustable mini-slots in access protocols for shared transmission media
US5881053A (en) * 1996-09-13 1999-03-09 Qualcomm Incorporated Method for a wireless communications channel
GB2320648A (en) * 1996-12-20 1998-06-24 Dsc Telecom Lp Controlling interference in a cell of a wireless telecommunications system
US6480521B1 (en) * 1997-03-26 2002-11-12 Qualcomm Incorporated Method and apparatus for transmitting high speed data in a spread spectrum communications system
SE516234C2 (sv) * 1998-03-17 2001-12-03 Ericsson Telefon Ab L M System och förfarande för allokering av kanalresurser i ett radiokommunikationssystem
US6535497B1 (en) * 1998-05-11 2003-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for multiplexing of multiple users for enhanced capacity radiocommunications
KR100257884B1 (ko) * 1998-05-14 2000-06-01 김영환 디지털 이동통신 시스템의 제어국과 기지국간트렁크 전송 효율향상 방법
US6931002B1 (en) * 1998-12-08 2005-08-16 Daniel S. Simpkins Hybrid switching
US6501736B1 (en) * 1999-03-19 2002-12-31 Lucent Technologies Inc. System for increasing the call capacity of a wireless communication system
US6532225B1 (en) * 1999-07-27 2003-03-11 At&T Corp Medium access control layer for packetized wireless systems
US6351464B1 (en) * 1999-09-20 2002-02-26 Mci Worldcom, Inc. Virtual second line hybrid network communication system
US6728296B1 (en) * 1999-10-19 2004-04-27 Skyworks Solutions, Inc. Direct sequence spread spectrum system with enhanced forward error correction code feature
US6545990B1 (en) * 1999-12-20 2003-04-08 Tantivy Communications, Inc. Method and apparatus for a spectrally compliant cellular communication system
US6813252B2 (en) * 2000-01-07 2004-11-02 Lucent Technologies Inc. Method and system for interleaving of full rate channels suitable for half duplex operation and statistical multiplexing
US7181161B2 (en) * 2001-09-14 2007-02-20 Atc Technologies, Llc Multi-band/multi-mode satellite radiotelephone communications systems and methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500515A (ja) * 2008-08-12 2012-01-05 インターデイジタル パテント ホールディングス インコーポレイテッド 直交サブチャネルの概念を使用したgeranにおける制御チャネル割振りのための方法および装置

Also Published As

Publication number Publication date
CA2370664A1 (en) 2001-08-23
US20040120302A1 (en) 2004-06-24
BR0104591A (pt) 2002-06-11
EP1169799A1 (en) 2002-01-09
AU4645101A (en) 2001-08-27
CA2370664C (en) 2009-02-03
ES2219635T3 (es) 2004-12-01
EP1169799B1 (en) 2003-11-26
DE60121971D1 (de) 2006-09-14
ATE255305T1 (de) 2003-12-15
JP2005045827A (ja) 2005-02-17
WO2001061899A1 (en) 2001-08-23
ES2269916T3 (es) 2007-04-01
TR200402505T4 (tr) 2004-12-21
BR0104591B1 (pt) 2014-09-09
CN100482002C (zh) 2009-04-22
DE60101291D1 (de) 2004-01-08
JP2004507121A (ja) 2004-03-04
JP2005020783A (ja) 2005-01-20
CN1363157A (zh) 2002-08-07
ATE335333T1 (de) 2006-08-15
DE60101291T2 (de) 2004-09-09
ATE270481T1 (de) 2004-07-15
DE60121971T2 (de) 2007-03-01
DE60104134D1 (de) 2004-08-05
JP3722749B2 (ja) 2005-11-30
DE60104134T2 (de) 2005-08-25

Similar Documents

Publication Publication Date Title
JP3722749B2 (ja) 通信システム
JP3865585B2 (ja) 移動通信システムのパケット音声データ通信装置及び方法
JP5155403B2 (ja) 同じ無線リソースへの複数の未要求使用権サービス(ugs)ユーザの多重化
KR101061323B1 (ko) 통신망 액세스 제공 방법 및 시스템
KR101347404B1 (ko) 무선통신 시스템에서 음성 패킷의 전송 방법
EP2208329B1 (en) Voice and data communication services using orthogonal sub-channels
JP3445577B2 (ja) 移動通信システムにおいてある複数プロトコルに従ってある複数層でデータを処理するための方法と装置
KR20120120447A (ko) 통신 시스템 내에서 시그널링
WO2002078371A2 (en) Time multiplexed transmission scheme for a spread spectrum communication system
KR20100080743A (ko) Sps 무선 자원 해제시 단말의 harq 방식 신호 전송 방법
US20020106032A1 (en) Devices for sending and receiving a modulated signal
US20020114311A1 (en) Continuous allocation of real-time traffic in a telecommunication system
EP1320228B1 (en) Wireless telecommunication system with multiple-frame structure and variable rate data channel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100624