JP2007317812A - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP2007317812A
JP2007317812A JP2006144792A JP2006144792A JP2007317812A JP 2007317812 A JP2007317812 A JP 2007317812A JP 2006144792 A JP2006144792 A JP 2006144792A JP 2006144792 A JP2006144792 A JP 2006144792A JP 2007317812 A JP2007317812 A JP 2007317812A
Authority
JP
Japan
Prior art keywords
double layer
electric double
layer capacitor
separator
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006144792A
Other languages
Japanese (ja)
Inventor
Masahiro Murata
正浩 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2006144792A priority Critical patent/JP2007317812A/en
Publication of JP2007317812A publication Critical patent/JP2007317812A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric double layer capacitor which betters an adhesion between a collector and a terminal plate to materialize a low ESR, and has an excellent durability during using at a high temperature. <P>SOLUTION: A pair of electrodes which are disposed opposite to each other through a separator, a pair of collectors which are disposed outside of the pair of electrodes, and a plurality of unit cells 5 are laminated which have a frame-shaped gasket which seals circumferences of the separator and electrode together with the collectors. The collectors on upper and lower ends are connected to a terminal plate 7 for taking out a terminal via a conductive adhesive 6 containing a low repulsive elastic rubber based binder. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気二重層コンデンサに関し、特に電極に多孔質体を用い、セパレータに多孔質絶縁体を用い、電極及びセパレータを巻回せず平面状に積層し、電解液を用いた電気二重層コンデンサに関する。   The present invention relates to an electric double layer capacitor, and in particular, a porous body is used for an electrode, a porous insulator is used for a separator, and the electrode and the separator are laminated in a flat shape without being wound, and an electric double layer capacitor using an electrolytic solution About.

近年、携帯電話機等の携帯用電子機器においては、低電流化、低電圧化が図られているが、その機能によっては、瞬間的に非常に大きな電流が必要な場合があり、このとき電池等の電源で電圧変動(IRドロップ等)が生じることによって、電子回路が正常に作動しなくなったり、電池の寿命を短くさせてしまうことがある。   In recent years, in portable electronic devices such as mobile phones, low current and low voltage have been achieved. However, depending on the function, a very large current may be required instantaneously. As a result of voltage fluctuations (IR drop, etc.) in the power source, the electronic circuit may not operate normally or the life of the battery may be shortened.

例えば、通信カード等では動作電圧の下限値を下回ると、通信状態が確保できなくなり通信エラーとなってしまう。このため、瞬間的に大電流を必要とするときのみ、急速な充電及び大電流の放電が可能な電気二重層コンデンサから電力を供給して全体の電力を平準化することが行われている。さらに、電子機器の小型化及び薄型化に伴って、電気二重層コンデンサも小型化及び薄型化が要求されてきている。   For example, in a communication card or the like, if the operating voltage falls below the lower limit value, the communication state cannot be secured and a communication error occurs. For this reason, only when instantaneously a large current is required, power is supplied from an electric double layer capacitor capable of rapid charging and discharging of a large current to level the entire power. Furthermore, with the miniaturization and thinning of electronic devices, electric double layer capacitors are also required to be small and thin.

しかしながら、小型化及び薄型化するほど、逆に、ESR(等価直列抵抗)が増大し、本来の機能としての大電流を供給することが困難となってきている。なお、このESRは、素子としてのコンデンサを構成する、例えば、電極、端子及びリード線等の固有抵抗、および接触抵抗からなる。   However, as the size and thickness are reduced, conversely, ESR (equivalent series resistance) increases, and it has become difficult to supply a large current as an original function. The ESR is composed of, for example, a specific resistance such as an electrode, a terminal and a lead wire, and a contact resistance, which constitute a capacitor as an element.

図3は、従来技術である電気二重層コンデンサのセルを説明するための分解斜視図であり、図4は、従来技術を説明するための図であり、電気二重層コンデンサの概略構成図及び組立方法を示す分解斜視図である。図5は、従来技術である電気二重層コンデンサを説明するための断面図である。   FIG. 3 is an exploded perspective view for explaining a cell of an electric double layer capacitor according to the prior art, and FIG. 4 is a diagram for explaining the prior art, a schematic configuration diagram and assembly of the electric double layer capacitor. It is a disassembled perspective view which shows a method. FIG. 5 is a cross-sectional view for explaining a conventional electric double layer capacitor.

図3ないし図5に示すように電気二重層コンデンサのセル5は、セパレータ2の両面に1対の平板形状の電極1が配置され、電極1のセパレータ2に対し反対側に集電体3が配置され、電極1とセパレータ2の周囲で集電体3に介装される枠状のガスケット4を有し、内部に電解液が含有された状態で封止されている。電極1には、電解液に対して安定で導電性があり、かつ大きな表面積を有する必要があるため、粉末活性炭や活性炭繊維、及びこれらの活性炭をポリテトラフルオロエチレンなどのバインダにより成形したもの(例えば特許文献1)、または活性炭をポリアセン及び炭素に結合させた固形状活性炭(例えば特許文献2、特許文献3)が用いられる。電解液は水溶液系と有機溶媒系に大別され、水溶液系としては主に硫酸や水酸化カリウムなどが、有機溶媒系としては主にプロピレンカーボネートに電解質として主に四級アンモニウム塩を溶解させたものが用いられる。セパレータ2には、ガラス繊維やポリプロピレン繊維等の不織布及びポリオレフィン系多孔質フィルムなど、電子絶縁性でかつイオン透過性の高い多孔膜が用いられている。集電体3には、水溶液系電解質を用いた場合はカーボン粉末等により導電性を付与したゴムあるいはエラストマが、有機溶媒系電解液を用いた場合は金属製のフィルムが用いられる。ガスケット4は、セルの形状を維持し、電解液の漏れを防ぐと共に、上下の集電体3の接触による短絡を防ぐ役割がある。図4に示すように電気二重層コンデンサ9はセル5の上下に端子取り出しのため端子板7が設けられ、さらに通常は、端子板7の外側からラミネートフィルムからなる外装フィルム8で封止している。   As shown in FIG. 3 to FIG. 5, in the electric double layer capacitor cell 5, a pair of plate-like electrodes 1 are disposed on both sides of the separator 2, and a current collector 3 is disposed on the opposite side of the separator 2 of the electrode 1. It has a frame-like gasket 4 which is disposed and is interposed in the current collector 3 around the electrode 1 and the separator 2, and is sealed in a state in which an electrolytic solution is contained therein. Since the electrode 1 needs to be stable and conductive with respect to the electrolytic solution and have a large surface area, powdered activated carbon and activated carbon fiber, and those activated carbon molded with a binder such as polytetrafluoroethylene ( For example, Patent Document 1) or solid activated carbon obtained by binding activated carbon to polyacene and carbon (for example, Patent Document 2 and Patent Document 3) is used. Electrolyte solutions are broadly classified into aqueous solutions and organic solvents. As aqueous solutions, sulfuric acid and potassium hydroxide are mainly used, and as organic solvents, quaternary ammonium salts are mainly dissolved in propylene carbonate as electrolytes. Things are used. For the separator 2, a porous film having an electronic insulating property and a high ion permeability such as a nonwoven fabric such as glass fiber and polypropylene fiber and a polyolefin-based porous film is used. For the current collector 3, rubber or elastomer imparted with conductivity by carbon powder or the like is used when an aqueous electrolyte is used, and a metal film is used when an organic solvent electrolyte is used. The gasket 4 has a role of maintaining the shape of the cell, preventing leakage of the electrolyte, and preventing a short circuit due to contact between the upper and lower current collectors 3. As shown in FIG. 4, the electric double layer capacitor 9 is provided with terminal plates 7 for taking out terminals above and below the cell 5, and usually sealed with an exterior film 8 made of a laminate film from the outside of the terminal plate 7. Yes.

セルの耐電圧は電解液によって決まり、水溶液系の場合0.6〜1.0V、有機溶媒系の場合構成する電解質によって違うが2.0〜3.0V程度である。電気二重層コンデンサでは、必要な耐電圧に応じてセルを直列に積層している。   The withstand voltage of the cell is determined by the electrolytic solution, and is about 0.6 to 1.0 V in the case of an aqueous solution system, and about 2.0 to 3.0 V depending on the electrolyte to be configured in the case of an organic solvent system. In an electric double layer capacitor, cells are stacked in series according to the required withstand voltage.

電気二重層コンデンサに要求される特性としては、大電流時においても使用できるために低ESRであること、また、高温使用時における耐久性の向上が挙げられる。従来技術の電気二重層コンデンサにおいては集電体と端子板の接触抵抗が大きいために、ESRが大きくなってしまうことがある。また、集電体と端子板の接触抵抗が大きい場合には、高温使用時における耐久性の低下につながる。集電体と端子板の接触抵抗を改善する方法としては、集電体と端子板の間に導電性接着剤として銀ペーストを塗布する記載(例えば特許文献4)がある。   The characteristics required for the electric double layer capacitor include low ESR because it can be used even at high currents, and improvement in durability at high temperature use. In the conventional electric double layer capacitor, the contact resistance between the current collector and the terminal plate is large, and thus the ESR may be increased. In addition, when the contact resistance between the current collector and the terminal plate is large, the durability during high temperature use is reduced. As a method for improving the contact resistance between the current collector and the terminal plate, there is a description (for example, Patent Document 4) in which a silver paste is applied as a conductive adhesive between the current collector and the terminal plate.

特開平6−196364号公報JP-A-6-196364 特許第2778425号公報Japanese Patent No. 2778425 特公平7−70448号公報Japanese Examined Patent Publication No. 7-70448 特開2001−250742号公報JP 2001-250742 A

上述した特許文献4の技術においても、集電体と端子板の接触抵抗の低減、高温耐久性に対しては充分ではなかった。   Even the technique of Patent Document 4 described above is not sufficient for reducing the contact resistance between the current collector and the terminal plate and high-temperature durability.

本発明は、このような問題点を解決すべくなされたもので、技術課題は、集電体と端子板の接触抵抗を改善し、ESRを低減し、また高温使用時の耐久性を向上した電気二重層コンデンサを提供することにある。   The present invention was made to solve such problems, and the technical problem was to improve the contact resistance between the current collector and the terminal plate, to reduce ESR, and to improve the durability during high temperature use. It is to provide an electric double layer capacitor.

本発明は、前記課題を解決するため、集電体と端子板の間に塗布される導電性接着剤に、低反発弾性ゴム系バインダを含有させることにより、集電体と端子板との密着性を向上することを見出したものである。   In order to solve the above-mentioned problems, the present invention improves the adhesion between the current collector and the terminal plate by adding a low-rebound elastic rubber binder to the conductive adhesive applied between the current collector and the terminal plate. It has been found to improve.

本発明の電気二重層コンデンサは、セパレータを介して対向配置された一対の電極と、前記一対の電極の外側に配置された一対の集電体と、前記集電体とともに、前記セパレータと前記電極を周囲で封止する枠状のガスケットを有した単位となるセルを複数個積層し、上下端面の前記集電体と、端子取り出しのための端子板とが低反発弾性ゴム系バインダが含有された導電性接着剤を介して接続されたことを特徴とする。   The electric double layer capacitor of the present invention includes a pair of electrodes disposed opposite to each other via a separator, a pair of current collectors disposed outside the pair of electrodes, and the current collector together with the separator and the electrodes A plurality of unit cells each having a frame-like gasket that seals the periphery are stacked, and the current collector on the upper and lower end surfaces and the terminal plate for taking out the terminal contain a low-rebound resilience rubber-based binder. It is characterized by being connected through a conductive adhesive.

また、本発明の電気二重層コンデンサは、前記導電性接着剤の低反発弾性ゴム系バインダの含有量が3〜18重量%であることが好ましい。   In the electric double layer capacitor of the present invention, it is preferable that the content of the low-elasticity rubber binder in the conductive adhesive is 3 to 18% by weight.

本発明の電気二重層コンデンサは、集電体と端子板の間に塗布される導電性接着剤に、低反発弾性ゴム系バインダを含有させることにより、集電体と端子板との密着性を向上することができ、このためESRを低減することができ、さらに、高温使用時の集電体と端子板間の密着性も維持できるので、温度変化によるESRの増加が少なく、高温耐久性を向上させることができる。   The electric double layer capacitor of the present invention improves the adhesion between the current collector and the terminal plate by incorporating a low-elasticity rubber-based binder into the conductive adhesive applied between the current collector and the terminal plate. Therefore, ESR can be reduced, and furthermore, the adhesion between the current collector and the terminal board during high temperature use can be maintained, so that the increase in ESR due to temperature change is small and high temperature durability is improved. be able to.

次に、本発明の実施の形態について図面を参照して説明する。図1は本発明の電気二重層コンデンサの断面図であり、図2は、本発明の電気二重層コンデンサの単位となるセルを示す断面図である。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of the electric double layer capacitor of the present invention, and FIG. 2 is a cross-sectional view showing a cell as a unit of the electric double layer capacitor of the present invention.

図1に示すように、本発明の電気二重層コンデンサは、電極、セパレータ、集電体、及びガスケットからなる単位となるセル5を、所定の電圧に応じて複数個重ね、セル内部の電荷を取り出す為に導電性接着剤6を介して上下端面の集電体上に端子板7を配置したものを外装フィルム8で封止して構成されている。ここで導電性接着剤6は銀や銅、カーボンなどの導電性物質と、低反発弾性のゴム系バインダ、例えばフッ素ゴムやアクリルゴム、ブチルゴム等、から成る。また、端子板7は、厚さ0.05〜1mmの金属板であり、外装フィルム8は金属箔とポリオレフィン系フィルムを貼り合わせたラミネートフィルムや、ポリオレフィン、ポリエステル、ポリ塩化ビニル、ネオプレンなどから成る熱収縮性を有するチューブ等を用いる。   As shown in FIG. 1, the electric double layer capacitor according to the present invention includes a plurality of cells 5 that are units composed of electrodes, separators, current collectors, and gaskets, which are stacked in accordance with a predetermined voltage. In order to take out, what comprised the terminal board 7 arrange | positioned on the electrical power collector of an upper-lower-end surface through the conductive adhesive 6 is sealed with the exterior film 8, and is comprised. Here, the conductive adhesive 6 is made of a conductive material such as silver, copper, or carbon, and a low-rebound resilience rubber-based binder, such as fluorine rubber, acrylic rubber, or butyl rubber. The terminal plate 7 is a metal plate having a thickness of 0.05 to 1 mm, and the exterior film 8 is made of a laminate film obtained by bonding a metal foil and a polyolefin film, polyolefin, polyester, polyvinyl chloride, neoprene, or the like. A heat-shrinkable tube or the like is used.

本発明の電気二重層コンデンサに使用される単位となるセル5は、図2に示すように電極1、セパレータ2、集電体3及びガスケット4で形成されている。電極1は、椰子柄系に代表される活性炭と、導電性を確保する為のカーボン、及びバインダから成る。セパレータ2は多孔質を有するフィルムであり、例えばポリテトラフルオロエチレン系フィルムやポリオレフィン系フィルムを用いる。セパレータ2の外寸は電極1の外寸以上であり、かつ集電体3の外寸以下である。集電体3は、金属箔、もしくは導電性を有するゴムまたは樹脂が用いられる。ガスケット4はセル内の絶縁を確保するための物であり、ポリエチレンやポリプロピレン、エチレン−メタクリル酸共重合体などに代表される熱可塑性樹脂、あるいは熱可塑性樹脂と接着可能なゴムまたは樹脂を用いる。ここで、ガスケットは、電極1、セパレータ2及び集電体3の外周部にそれぞれ配置する。   A cell 5 serving as a unit used in the electric double layer capacitor of the present invention is formed of an electrode 1, a separator 2, a current collector 3 and a gasket 4 as shown in FIG. The electrode 1 is made of activated carbon typified by an insulator pattern, carbon for ensuring conductivity, and a binder. The separator 2 is a porous film. For example, a polytetrafluoroethylene film or a polyolefin film is used. The outer dimension of the separator 2 is not less than the outer dimension of the electrode 1 and not more than the outer dimension of the current collector 3. The current collector 3 is made of metal foil or conductive rubber or resin. The gasket 4 is for securing insulation in the cell, and a thermoplastic resin typified by polyethylene, polypropylene, ethylene-methacrylic acid copolymer, or a rubber or resin that can be bonded to the thermoplastic resin is used. Here, the gasket is disposed on the outer periphery of the electrode 1, the separator 2, and the current collector 3.

次に、セルの構造について、寸法の例を用いて説明する。電極1は活性炭/カーボン複合材料であり、寸法12×24×0.05mmの長方形に加工されている。セパレータ2はポリテトラフルオロエチレン系繊維からなり、寸法14×26×0.025mmの長方形に加工されている。集電体3は導電性オレフィン共重合体からなり、寸法は16×28×0.05mmの長方形に加工されている。   Next, the structure of the cell will be described using an example of dimensions. The electrode 1 is an activated carbon / carbon composite material and is processed into a rectangle having dimensions of 12 × 24 × 0.05 mm. The separator 2 is made of polytetrafluoroethylene-based fiber, and is processed into a rectangle with dimensions of 14 × 26 × 0.025 mm. The current collector 3 is made of a conductive olefin copolymer, and is processed into a rectangle having a size of 16 × 28 × 0.05 mm.

電極外周部のガスケット4aはエチレン−メタクリル酸共重合体樹脂からなり、外寸は18×30mm、内寸は12×24、厚さは0.05mmのものを1セル当り2枚使用しており、それぞれフレーム状に加工されている。セパレータ外周部のガスケット4bは外寸18×30mm、内寸は14×26、厚さは0.025mmであり、フレーム状に加工されている。集電体外周部のガスケット4cは外寸18×30mm、内寸は16×28mm、厚さは0.050mmのものを1セル当り2枚使用しており、それぞれフレーム状に加工されている。なお、それぞれのガスケット4a,4b,4cに使用される樹脂は構造により大幅に物性が異なるものを使用できるが、ここでは軟化点が61℃、融点が88℃の樹脂を用いた。   The gasket 4a on the outer periphery of the electrode is made of ethylene-methacrylic acid copolymer resin. The outer dimensions are 18x30mm, the inner dimension is 12x24, and the thickness is 0.05mm. Each is processed into a frame shape. The gasket 4b on the outer periphery of the separator has an outer dimension of 18 × 30 mm, an inner dimension of 14 × 26, and a thickness of 0.025 mm, and is processed into a frame shape. The gasket 4c on the outer peripheral portion of the current collector has two outer dimensions of 18 × 30 mm, an inner dimension of 16 × 28 mm, and a thickness of 0.050 mm. Each cell is processed into a frame shape. The resin used for each of the gaskets 4a, 4b, and 4c can be a resin having significantly different physical properties depending on the structure. Here, a resin having a softening point of 61 ° C. and a melting point of 88 ° C. was used.

作製した単位となるセル5の寸法は18×30×0.225mmの直方体である。単位となるセル5を6枚積層し上下端面の集電体3に端子板7を低反発弾性ゴム系バインダを含有する銀を主成分とした導電性接着剤6を介して接続した。端子板7は、厚さ0.1mmの銅板からなり、寸法はセルと接触する17×29mmの長方形部に幅3mmのリードタブ部が成形加工されている。さらにその外側から外装フィルム8を配置し、外装フィルム同士の重なった部分を熱融着することで、外装フィルム封止体を形成し、電気二重層コンデンサを作製する。外装フィルム8は、ここでは厚さ0.11mmのラミネートフィルムを用いた。   The dimension of the cell 5 as a unit produced is a rectangular parallelepiped of 18 × 30 × 0.225 mm. Six cells 5 serving as a unit were laminated, and the terminal plate 7 was connected to the current collector 3 on the upper and lower end faces through a conductive adhesive 6 mainly composed of silver containing a low-elasticity rubber-based binder. The terminal plate 7 is made of a copper plate having a thickness of 0.1 mm, and a lead tab portion having a width of 3 mm is formed on a 17 × 29 mm rectangular portion that contacts the cell. Furthermore, the exterior film 8 is arrange | positioned from the outer side, the exterior film sealing body is formed by heat-sealing the part which the exterior films overlapped, and an electrical double layer capacitor is produced. Here, a laminate film having a thickness of 0.11 mm was used as the exterior film 8.

次に、幾つかの実施例及び比較例を示して発明を具体的に説明する。   Next, the present invention will be specifically described with reference to some examples and comparative examples.

図2に示すように、集電体3、ガスケット4a,4cを加熱圧着により貼り合わせたものを2枚作製した。平均粒径15μm粉末椰子殻活性炭、平均粒径15μmの非球状カーボン、繊維径10〜20μmの繊維状カーボン及びバインダの組成比75:10:10:5の割合で形成されるスラリーを作製し、これをガスケットの内側にあたる集電体上に塗布、乾燥させ、電極1を形成した。このようにして電極1の塗布された集電体3を2枚作製した後、そのうちの1枚にガスケット4bを熱圧着により貼り合わせた。次に、40重量%硫酸水溶液を電極1上に添加した。セパレータ2の中で、電極1と接する12×24mm以外の部分を、25℃,5kg/cm2,1秒間、加圧前処理を行った。このセパレータ2を硫酸添加済みシートの1枚に配置した後、2枚のシートを集電体が外側になるように貼り合わせ、熱圧着によりガスケットを溶融させて接着させた。 As shown in FIG. 2, two sheets were prepared by bonding the current collector 3 and the gaskets 4a and 4c by thermocompression bonding. A slurry formed with a ratio of 75: 10: 10: 5 of a composition ratio of 75: 10: 10: 5 of powdered coconut shell activated carbon having an average particle diameter of 15 μm, non-spherical carbon having an average particle diameter of 15 μm, fibrous carbon having a fiber diameter of 10 to 20 μm, and a binder, This was applied onto a current collector inside the gasket and dried to form an electrode 1. In this way, two current collectors 3 to which the electrode 1 was applied were produced, and then a gasket 4b was bonded to one of them by thermocompression bonding. Next, a 40 wt% aqueous sulfuric acid solution was added onto the electrode 1. A portion other than 12 × 24 mm in contact with the electrode 1 in the separator 2 was subjected to pressure pretreatment at 25 ° C., 5 kg / cm 2 for 1 second. After this separator 2 was placed on one of the sheets added with sulfuric acid, the two sheets were bonded so that the current collector was on the outside, and the gasket was melted and bonded by thermocompression bonding.

この方法で作製した単位となるセル5を図1に示すように6枚重ね合わせて積層セルとして用意した。用意した積層セルの両側から、0.01mmの厚さでフッ素ゴム系バインダを3重量%含有した銀ペーストからなる導電性接着剤6を施した厚さ0.1mmの銅製端子板7を重ねあわせた状態で、さらにその外側から外装フィルム8を配置し、減圧下で外装フィルム同士の重なった部分を熱融着することで、端子板7と積層セルの外装フィルム封止体を形成させた。なお、ここで外装フィルム8として厚さ0.11mmのラミネートフィルムを用いた。以上の方法で電気二重層コンデンサ9を10個作製した。   As shown in FIG. 1, six cells 5 as a unit produced by this method were stacked to prepare a stacked cell. From both sides of the prepared laminated cell, a copper terminal board 7 having a thickness of 0.1 mm and a conductive adhesive 6 made of a silver paste containing 3% by weight of a fluororubber binder with a thickness of 0.01 mm is laminated. In this state, the exterior film 8 was further arranged from the outside, and the overlapping portion of the exterior films was heat-sealed under reduced pressure to form the terminal film 7 and the exterior film sealing body of the laminated cell. Here, a laminate film having a thickness of 0.11 mm was used as the exterior film 8. Ten electric double layer capacitors 9 were produced by the above method.

実施例1において、導電性接着剤6のフッ素ゴム系バインダ含有率を10重量%とした。その他は実施例1と同様にして電気二重層コンデンサを10個作製した。   In Example 1, the fluororubber binder content of the conductive adhesive 6 was 10% by weight. Otherwise, ten electric double layer capacitors were produced in the same manner as in Example 1.

実施例1において、導電性接着剤6のフッ素ゴム系バインダ含有率を18重量%とした。その他は実施例1と同様にして電気二重層コンデンサを10個作製した。   In Example 1, the fluororubber binder content of the conductive adhesive 6 was 18% by weight. Otherwise, ten electric double layer capacitors were produced in the same manner as in Example 1.

上記の方法により作製した電気二重層コンデンサについて、サンプル作製直後及び70℃、5.4V(1セルあたり0.9V)、1,000時間の負荷を行い室温まで冷却した後に、ESRを測定したところ、表1に示す結果が得られた。なお、数値は作製したサンプル10個の平均値である。ここでESRと静電容量は、1kHz,10mVrmsの交流電圧を印加して、電流と位相差を測定することで求めた。また、参考例1として、実施例1と同種のフッ素ゴム系バインダを20重量%含有した銀ペーストからなる導電性接着剤を使用した電気二重層コンデンサ、比較例1として、高反発弾性ゴム系バインダであるウレタン系バインダを10重量%含有した銀ペーストからなる導電性接着剤を使用した電気二重層コンデンサ、さらに、比較例2として、樹脂系バインダであるポリアミド系バインダを10重量%含有した銀ペーストからなる導電性接着剤を使用した電気二重層コンデンサを10個作製し、サンプル作製直後及び70℃、5.4V、1,000時間の負荷を行い室温まで冷却した後に、ESRを測定した。   About the electric double layer capacitor produced by the above method, the ESR was measured immediately after producing the sample and after cooling to room temperature by applying a load of 1,000 hours at 70 ° C., 5.4 V (0.9 V per cell). The results shown in Table 1 were obtained. In addition, a numerical value is an average value of 10 produced samples. Here, ESR and capacitance were determined by applying an alternating voltage of 1 kHz and 10 mVrms and measuring the current and phase difference. Further, as Reference Example 1, an electric double layer capacitor using a conductive adhesive made of a silver paste containing 20% by weight of the same kind of fluororubber binder as in Example 1, and as a comparative example 1, a high resilience rubber binder. An electric double layer capacitor using a conductive adhesive comprising a silver paste containing 10% by weight of a urethane binder, and, as Comparative Example 2, a silver paste containing 10% by weight of a polyamide binder as a resin binder Ten electric double layer capacitors using a conductive adhesive consisting of the following were prepared, and immediately after the sample was prepared and after being loaded at 70 ° C., 5.4 V, 1,000 hours and cooled to room temperature, ESR was measured.

Figure 2007317812
Figure 2007317812

この結果、表1に示すように、初期のESRを比較すると、実施例1,2,3はいずれも比較例より約10%以上低いことがわかる。ここで、実施例1,2,3と同種の低反発弾性ゴム系バインダを使用している参考例1の初期のESRが実施例1,2,3と比べて高いのは、バインダの添加量が多すぎると、銀ペースト表面および内部の銀比率が下がり、集電体と端子板間の接触抵抗を下げる効果が小さくなることを示しており、ESRを下げるにはバインダ添加率は18重量%以下が効果的であることがわかる。また、高反発弾性ゴム系バインダを使用した比較例1の初期のESRが実施例2と比べて高いのは、銀ペースト表面に存在するバインダの高い反発弾性力により、集電体と銀ペーストの銀成分との接触が阻害されているものと考える。   As a result, as shown in Table 1, when the initial ESR is compared, it can be seen that Examples 1, 2, and 3 are all about 10% lower than the comparative example. Here, the initial ESR of Reference Example 1 using a low-rebound resilience rubber-based binder of the same type as in Examples 1, 2, and 3 is higher than that in Examples 1, 2, and 3 in that the amount of binder added If the amount is too much, the silver ratio on the surface and inside of the silver paste decreases, indicating that the effect of reducing the contact resistance between the current collector and the terminal plate is reduced. To reduce ESR, the binder addition rate is 18% by weight. It turns out that the following is effective. In addition, the initial ESR of Comparative Example 1 using a high resilience rubber-based binder is higher than that of Example 2 because of the high resilience of the binder present on the silver paste surface, It is considered that contact with the silver component is inhibited.

次に、70℃、5.4V、1,000時間後のESRを比較すると、実施例1,2,3はサンプル作製直後のESRに対して10%以下の変化率であったが、参考例、比較例1は10%以上の変化率であり、比較例2においては400%以上の変化率であった。これは、ゴム系バインダを使用した実施例1,2,3および、参考例、比較例1は、電圧印加や高温放置による集電体やガスケット、端子板、ラミネート等のが多少変形しても、バインダの弾性により銀ペーストも追従して変形するのでESRの低下は起こりにくいが、弾性を有さない樹脂系バインダを使用した比較例2では、電圧印加や高温放置により集電体やガスケット、端子板、ラミネート等が変形した際に、銀ペースト自体は変形に追従できず、長期試験中に集電体と端子板の密着性が弱まり、剥離が生じることにより、ESRが低下した。   Next, when ESR after 1,000 hours was compared at 70 ° C., 5.4 V, Examples 1, 2, and 3 had a change rate of 10% or less with respect to ESR immediately after sample preparation. Comparative Example 1 had a change rate of 10% or more, and Comparative Example 2 had a change rate of 400% or more. This is because Examples 1, 2, and 3 using a rubber binder, Reference Example, and Comparative Example 1 are slightly deformed even when current collectors, gaskets, terminal boards, laminates, and the like due to voltage application and high temperature storage are slightly deformed. The silver paste also follows and deforms due to the elasticity of the binder, so that the ESR is hardly lowered. However, in Comparative Example 2 using a resin-based binder that does not have elasticity, the current collector or gasket is When the terminal board, laminate, etc. were deformed, the silver paste itself could not follow the deformation, and the adhesion between the current collector and the terminal board was weakened during the long-term test, and the ESR was lowered due to peeling.

なお、実施例1,2,3のうちでは初期のESRおよび高温試験後のESRとも実施例2が最も良好な結果を示していたことから、バインダの含有率は、10重量%前後とすることでより大きい効果が得られるといえる。   In Examples 1, 2, and 3, since Example 2 showed the best results for both the initial ESR and the ESR after the high temperature test, the binder content should be around 10% by weight. It can be said that a greater effect can be obtained.

以上、この発明の実施例を図面を参照して詳述してきたが、いうまでもなく、具体的な構成はこの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. Needless to say, the specific configuration is not limited to this embodiment, and the design of the present invention is not limited to the scope of the present invention. Any changes or the like are included in the present invention.

本発明の電気二重層コンデンサの断面図。Sectional drawing of the electric double layer capacitor of this invention. 本発明の電気二重層コンデンサの単位となるセルの断面図。Sectional drawing of the cell used as the unit of the electric double layer capacitor of this invention. 従来技術の電気二重層コンデンサのセルを説明するための分解斜視図。The disassembled perspective view for demonstrating the cell of the electric double layer capacitor of a prior art. 従来技術の電気二重層コンデンサの概略構成示す分解斜視図。The disassembled perspective view which shows schematic structure of the electrical double layer capacitor of a prior art. 従来技術の電気二重層コンデンサの構成を模式的に示す断面図。Sectional drawing which shows the structure of the electrical double layer capacitor of a prior art typically.

符号の説明Explanation of symbols

1 電極
2 セパレータ
3 集電体
4,4a,4b,4c ガスケット
5 セル
6 導電性接着剤
7 端子板
8 外装フィルム
9 電気二重層コンデンサ
DESCRIPTION OF SYMBOLS 1 Electrode 2 Separator 3 Current collector 4,4a, 4b, 4c Gasket 5 Cell 6 Conductive adhesive 7 Terminal board 8 Exterior film 9 Electric double layer capacitor

Claims (3)

セパレータを介して対向配置された一対の電極と、前記一対の電極の外側に配置された一対の集電体と、前記集電体とともに、前記セパレータと前記電極を周囲で封止する枠状のガスケットを有した単位セルを複数個積層し、上下端面の前記集電体と、端子取り出しのための端子板とが低反発弾性ゴム系バインダが含有された導電性接着剤を介して接続されたことを特徴とする電気二重層コンデンサ。   A pair of electrodes opposed to each other via a separator, a pair of current collectors arranged outside the pair of electrodes, and a frame-like shape that seals the separator and the electrodes together with the current collector A plurality of unit cells having gaskets are stacked, and the current collectors on the upper and lower end surfaces and the terminal plate for taking out the terminals are connected via a conductive adhesive containing a low-elasticity rubber binder. An electric double layer capacitor characterized by that. 前記導電性接着剤の低反発弾性ゴム系バインダの含有量が3〜18重量%であることを特徴とする請求項1記載の電気二重層コンデンサ。   2. The electric double layer capacitor according to claim 1, wherein the content of the low rebound elastic rubber binder in the conductive adhesive is 3 to 18% by weight. 前記低反発弾性ゴムがフッ素ゴム、アクリルゴム、ブチルゴムから選ばれる少なくとも1種であることを特徴とする請求項1または2に記載の電気二重層コンデンサ。   The electric double layer capacitor according to claim 1 or 2, wherein the low-rebound resilience rubber is at least one selected from fluorine rubber, acrylic rubber, and butyl rubber.
JP2006144792A 2006-05-25 2006-05-25 Electric double layer capacitor Pending JP2007317812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006144792A JP2007317812A (en) 2006-05-25 2006-05-25 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006144792A JP2007317812A (en) 2006-05-25 2006-05-25 Electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2007317812A true JP2007317812A (en) 2007-12-06

Family

ID=38851425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006144792A Pending JP2007317812A (en) 2006-05-25 2006-05-25 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2007317812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018122851A3 (en) * 2016-12-29 2018-10-11 POCell Tech Ltd. Processes and systems for supercapacitor stack fabrication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235283A (en) * 2003-01-29 2004-08-19 Nec Tokin Corp Electric double layer capacitor
JP2005183820A (en) * 2003-12-22 2005-07-07 Tdk Corp Method for manufacturing electrochemical devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235283A (en) * 2003-01-29 2004-08-19 Nec Tokin Corp Electric double layer capacitor
JP2005183820A (en) * 2003-12-22 2005-07-07 Tdk Corp Method for manufacturing electrochemical devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018122851A3 (en) * 2016-12-29 2018-10-11 POCell Tech Ltd. Processes and systems for supercapacitor stack fabrication
WO2018122850A3 (en) * 2016-12-29 2018-10-11 POCell Tech Ltd. Supercapacitor current collectors, separators, stacks and modules
US10896786B2 (en) 2016-12-29 2021-01-19 POCell Tech Ltd. Processes and systems for supercapacitor stack fabrication

Similar Documents

Publication Publication Date Title
CN102195025B (en) Electrode assembly and secondary battery using the same
JP2001250742A (en) Electric double layer capacitor and its manufacturing method
JP5079780B2 (en) Chip type electric double layer capacitor and manufacturing method thereof
US11114727B2 (en) Power storage device
KR101060869B1 (en) Electrical Double Layer Capacitor Packages
JP2004349306A (en) Electric double layer capacitor and electric double layer capacitor laminate
JP2011119639A (en) Chip-type electric double layer capacitor and method of manufacturing the same
KR101222873B1 (en) Super capacitor of surface mount type
KR100720994B1 (en) Method for manufacturing of ultra-thin electric double layer capacitor
JP2011146668A (en) Electric double layer capacitor
JP2007317812A (en) Electric double layer capacitor
JP2007227425A (en) Electric double layer capacitor
CN211125803U (en) Power storage device and power storage device group structure
KR101337373B1 (en) Super capacitor of surface mount type
JP2004342643A (en) Electric double layer capacitor
JP2006294735A (en) Electric double-layer capacitor
JP2002170552A (en) Electricity storage element and method for manufacturing the same
KR101306601B1 (en) Super capacitor of surface mount type
JP2007299857A (en) Electric double-layer capacitor
KR101297093B1 (en) Wiring substrate and super capacitor of surface mount type using the same
JP2006049670A (en) Electrochemical element
JP2008153516A (en) Electric double layer capacitor
JP2010114365A (en) Electric double layer capacitor and method of manufacturing the same
JP2006108140A (en) Electrochemical element
JP2007189127A (en) Electric double-layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081201

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101116

A131 Notification of reasons for refusal

Effective date: 20101124

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110406

Free format text: JAPANESE INTERMEDIATE CODE: A02