JP2007317550A - Heat ray transmission visible light reflecting body - Google Patents

Heat ray transmission visible light reflecting body Download PDF

Info

Publication number
JP2007317550A
JP2007317550A JP2006146942A JP2006146942A JP2007317550A JP 2007317550 A JP2007317550 A JP 2007317550A JP 2006146942 A JP2006146942 A JP 2006146942A JP 2006146942 A JP2006146942 A JP 2006146942A JP 2007317550 A JP2007317550 A JP 2007317550A
Authority
JP
Japan
Prior art keywords
visible light
heat ray
ray transmitting
light reflector
transmitting visible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006146942A
Other languages
Japanese (ja)
Other versions
JP4795121B2 (en
Inventor
Isao Tomomatsu
功 友松
Yosuke Kokubo
陽介 小久保
Masayasu Ito
正康 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2006146942A priority Critical patent/JP4795121B2/en
Publication of JP2007317550A publication Critical patent/JP2007317550A/en
Application granted granted Critical
Publication of JP4795121B2 publication Critical patent/JP4795121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat ray transmission visible light reflecting body of which the structure is simple, which can be manufactured easily, and which has superior heat ray transmissivity and reflectance of visible light. <P>SOLUTION: This is heat ray transmissive visible light reflecting body 31 which comprises a plastic foam, in which the entire reflection ratio A of the visible light of wavelength 550 nm is 30% or higher, in which the difference (B-C) of the transmissivity B of the heat wave of the wavelength 1,200 nm and the transmissivity C of the visible light of the wavelength 550 nm is 15% or higher. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、プラスチック発泡体からなる熱線透過可視光反射体に関する。本発明の熱線透過可視光反射体は、例えば、照明器具などの光反射板や、種々の目隠し材等として使用される。   The present invention relates to a heat ray transmitting visible light reflector made of a plastic foam. The heat ray transmitting visible light reflector of the present invention is used as, for example, a light reflector such as a lighting fixture, various blindfolds, and the like.

光反射板が設けられた照明器具においては、光源から放射される可視光が光反射板で反射されて、一定の照度が確保されるが、それと同時に熱線も光反射板により反射され、この熱線によって照明器具が設置された箇所の近傍にある物品が熱変形したり、熱変色したりするという問題がある。   In a lighting fixture provided with a light reflecting plate, visible light emitted from the light source is reflected by the light reflecting plate to ensure a certain illuminance, but at the same time, heat rays are also reflected by the light reflecting plate. Therefore, there is a problem that an article in the vicinity of the place where the lighting apparatus is installed is thermally deformed or discolored.

上述した問題を解決するため、従来、可視光反射性および熱線透過性を有する多層構造の反射体が提案されている(特許文献1)。特許文献1の反射体は、膜形成面を有する基体と、膜形成面に設けられた可視光反射赤外線透過膜と、可視光反射赤外線透過膜面上に設けられた光触媒作用を有する金属酸化物を主体とした光触媒層とを具備するものである。   In order to solve the above-described problem, a multilayered reflector having visible light reflectivity and heat ray transmittance has been proposed (Patent Document 1). The reflector of Patent Document 1 includes a substrate having a film forming surface, a visible light reflecting infrared transmissive film provided on the film forming surface, and a metal oxide having a photocatalytic action provided on the visible light reflecting infrared transmissive film surface. And a photocatalyst layer mainly composed of.

特開平9−293405号公報JP-A-9-293405

しかし、特許文献1の反射体は、基体、可視光反射赤外線透過膜および光触媒層を積層した多層構造であるため、リサイクル性が悪く、また、構造が複雑で、製造が難しいものであった。   However, since the reflector of Patent Document 1 has a multilayer structure in which a substrate, a visible light reflecting infrared transmission film, and a photocatalyst layer are laminated, the recyclability is poor and the structure is complicated and difficult to manufacture.

本発明は、上記事情に鑑みてなされたもので、基本的に樹脂と気泡からできているためリサイクル性が良く、また、構造が簡単で、容易に製造することができるとともに、優れた熱線透過性および可視光反射性を有する熱線透過可視光反射体を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is basically made of a resin and bubbles, so that it has good recyclability, has a simple structure, can be easily manufactured, and has excellent heat ray transmission. It is an object to provide a heat ray transmissive visible light reflector having a property and a visible light reflectivity.

本発明は、前述した目的を達成するため、プラスチック発泡体からなり、波長550nmの可視光の全反射率Aが30%以上、波長1200nmの熱線の透過率Bと波長550nmの可視光の透過率Cとの差B−Cが15%以上であることを特徴とする熱線透過可視光反射体を提供する。   In order to achieve the above-mentioned object, the present invention is made of a plastic foam, has a total reflectance A of visible light having a wavelength of 550 nm of 30% or more, a transmittance B of heat rays having a wavelength of 1200 nm, and a transmittance of visible light having a wavelength of 550 nm. Provided is a heat ray transmitting visible light reflector characterized in that a difference BC with C is 15% or more.

本発明の熱線透過可視光反射体は、原料樹脂に加圧下で不活性ガスを含有させた後、常圧下でその原料樹脂の軟化温度以上に加熱して発泡させることにより、容易に製造することができる。   The heat ray transmitting visible light reflector of the present invention can be easily manufactured by adding an inert gas under pressure to the raw material resin, and then heating and foaming the raw material resin to a temperature higher than the softening temperature of the raw material resin. Can do.

また、微細な気泡を有し、かつ、波長550nmの可視光の全反射率A、波長1200nmの熱線の透過率Bと波長550nmの可視光の透過率Cとの差B−Cおよび気孔率が前述した範囲であるため、優れた熱線透過性および可視光反射性を併有する。   Also, there are fine bubbles, and the difference between the total reflectance A of visible light having a wavelength of 550 nm, the transmittance B of heat rays having a wavelength of 1200 nm and the transmittance C of visible light having a wavelength of 550 nm, and the porosity are Since it is the above-mentioned range, it has both excellent heat ray transmittance and visible light reflectivity.

これに対し、波長550nmの可視光の全反射率Aが30%未満では、反射体が透明になりすぎて光反射板や目隠し材として使用できなくなる。波長1200nmの熱線の透過率Bと波長550nmの可視光の透過率Cとの差B−Cが15%未満では、熱線と可視光とを分離する機能があるとは言えなくなる。   On the other hand, if the total reflectance A of visible light having a wavelength of 550 nm is less than 30%, the reflector becomes too transparent and cannot be used as a light reflector or a blindfold. If the difference BC between the transmittance B of heat rays having a wavelength of 1200 nm and the transmittance C of visible light having a wavelength of 550 nm is less than 15%, it cannot be said that there is a function of separating heat rays and visible light.

本発明の熱線透過可視光反射体は、気孔率が0.08以上であることが好ましい。気孔率が0.08未満では、熱線と可視光とを十分に分離する機能が発現しないことがある。   The heat ray transmitting visible light reflector of the present invention preferably has a porosity of 0.08 or more. If the porosity is less than 0.08, the function of sufficiently separating heat rays and visible light may not be exhibited.

本発明の熱線透過可視光反射体において、波長550nmの可視光の全反射率Aのより好ましい範囲は50%以上、さらに好ましくは70%以上、さらにより好ましくは85%以上であり、波長1200nmの熱線の透過率Bと波長550nmの可視光の透過率Cとの差B−Cのより好ましい範囲は20%以上、さらに好ましくは30%以上、さらにより好ましくは50%以上であり、気孔率のより好ましい範囲は0.10〜0.95、さらに好ましくは0.15〜0.8、さらにより好ましくは0.30〜0.75である。   In the heat ray transmitting visible light reflector of the present invention, the more preferable range of the total reflectance A of visible light having a wavelength of 550 nm is 50% or more, more preferably 70% or more, still more preferably 85% or more, and the wavelength of 1200 nm. A more preferable range of the difference BC between the transmittance B of heat rays and the transmittance C of visible light having a wavelength of 550 nm is 20% or more, more preferably 30% or more, and even more preferably 50% or more. A more preferable range is 0.10 to 0.95, still more preferably 0.15 to 0.8, and still more preferably 0.30 to 0.75.

本発明の熱線透過可視光反射体は、平均気泡径が100nm以下、特に30〜80nmであることが適当である。   The heat ray transmitting visible light reflector of the present invention suitably has an average bubble diameter of 100 nm or less, particularly 30 to 80 nm.

本発明の熱線透過可視光反射体は、後述する熱線透過度が30〜90%、熱線反射度が10〜70%であることが適当である。   The heat ray transmissive visible light reflector of the present invention suitably has a heat ray transmittance of 30 to 90% and a heat ray reflectivity of 10 to 70%, which will be described later.

本発明の熱線透過可視光反射体は、優れた熱線透過性および可視光反射性を併有するとともに、簡単な単層構造で、容易に製造することが可能であり、また、リサイクル性が良い。   The heat ray transmitting visible light reflector of the present invention has both excellent heat ray transmittance and visible light reflectivity, can be easily manufactured with a simple single layer structure, and has good recyclability.

以下、本発明につきさらに詳しく説明する。本発明の熱線透過可視光反射体の製造に用いる原料樹脂の材質としては、例えば、ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)、ポリサルフォン(PSU)等の非晶性樹脂を挙げることができる。これらの中では、ポリエーテルスルホンが特に好ましい。なお、樹脂は1種を単独で用いてもよく、2種以上を混合して用いてもよい。   Hereinafter, the present invention will be described in more detail. Examples of the material of the raw material resin used for producing the heat ray transmitting visible light reflector of the present invention include amorphous resins such as polyethersulfone (PES), polyetherimide (PEI), and polysulfone (PSU). it can. Of these, polyethersulfone is particularly preferred. In addition, resin may be used individually by 1 type and may be used in mixture of 2 or more types.

本発明においては、特性に影響を及ぼさない範囲で、原料樹脂に、結晶化核剤、結晶化促進剤、気泡化核剤、酸化防止剤、帯電防止剤、紫外線防止剤、光安定剤、蛍光増白剤、顔料、染料、相溶化剤、滑剤、強化剤、難燃剤、架橋剤、架橋助剤、可塑剤、増粘剤、減粘剤などの各種添加剤を配合してもよい。また、得られたプラスチック発泡体に上記添加剤を含有する樹脂を積層してもよいし、上記添加剤を含有する塗料をコーティングしてもよい。   In the present invention, as long as the properties are not affected, the raw material resin includes a crystallization nucleating agent, a crystallization accelerator, a bubble nucleating agent, an antioxidant, an antistatic agent, an anti-UV agent, a light stabilizer, a fluorescent agent. Various additives such as whitening agents, pigments, dyes, compatibilizers, lubricants, reinforcing agents, flame retardants, cross-linking agents, cross-linking aids, plasticizers, thickeners, thinning agents may be blended. Moreover, the resin containing the said additive may be laminated | stacked on the obtained plastic foam, and the coating material containing the said additive may be coated.

本発明の熱線透過可視光反射体を製造する方法は特に限定されないが、原料樹脂シートを加圧不活性ガス雰囲気中に保持して原料樹脂シートに不活性ガスを含有させる工程と、不活性ガスを含有させた原料樹脂シートを常圧下で加熱して発泡させる工程とからなる製造方法により製造することができる。   The method for producing the heat ray transmissive visible light reflector of the present invention is not particularly limited, but the step of holding the raw resin sheet in a pressurized inert gas atmosphere and containing the inert gas in the raw resin sheet, and the inert gas It can manufacture with the manufacturing method which consists of the process of heating and foaming the raw material resin sheet containing a normal pressure.

この場合、量産性を考慮すると、例えば以下のような方法を用いることが好ましい。すなわち、原料樹脂からなるシートを作製し、このシートとセパレータとを重ねて巻くことによりロールを形成し、このロールを加圧不活性ガス雰囲気中に保持してシートに不活性ガスを含有させ、さらに不活性ガスを含有させたシートを常圧下で原料樹脂の軟化温度以上に加熱して発泡させる、という方法を用いることが好ましい。   In this case, considering the mass productivity, for example, the following method is preferably used. That is, a sheet made of a raw material resin is produced, a roll is formed by winding the sheet and a separator, and the roll is held in a pressurized inert gas atmosphere so that the sheet contains an inert gas. Furthermore, it is preferable to use a method in which a sheet containing an inert gas is heated to a temperature equal to or higher than the softening temperature of the raw material resin and foamed under normal pressure.

上記不活性ガスとしては、ヘリウム、窒素、二酸化炭素、アルゴンなどが挙げられる。原料樹脂シートが飽和状態になるまでの不活性ガス浸透時間および不活性ガス浸透量は、発泡させる樹脂の種類、不活性ガスの種類、浸透圧力およびシートの厚さによって異なる。不活性ガスとしては、樹脂へのガス浸透性(速度、溶解度)を考慮すると、二酸化炭素がより好ましい。   Examples of the inert gas include helium, nitrogen, carbon dioxide, and argon. The inert gas permeation time and the inert gas permeation amount until the raw material resin sheet is saturated vary depending on the type of resin to be foamed, the type of inert gas, the permeation pressure, and the thickness of the sheet. As the inert gas, carbon dioxide is more preferable in consideration of gas permeability (rate, solubility) to the resin.

本発明の熱線透過可視光反射体は、種々の用途に使用することができ、例えば、スポットライト、ヘッドライト、照明灯、写真のレフ板、植物工場光源、液晶表示装置のバックライトユニット、太陽光を用いた室内照明、ヒートシンクと組み合わせた反射光システム、あるいは半透明目隠し窓材、温室の壁材等に使用することができる。例えば、写真のレフ板に用いれば、被写体の温度を上げずに、明るさのみを供給することができるし、ライト・照明の反射板として用いれば,明るさだけを前方に反射することができる。さらに、反射板裏面にヒートシンクを取り付けることにより、より光源からの熱を裏面方向に逃がすことが可能となる。また、太陽光を室内に導入する導光管として用いれば、室内に熱線を除いた可視光のみの明りを導入することが可能となる。その他、可視光透過率が比較的高い本発明の熱線透過可視光反射体を窓に貼ることによって、半透明であるために障子や曇りガラスの代替として室内の目隠し材になるし、熱線透過率は高いので、冬の太陽光の熱線のみを取り入れることも可能となり、省エネに役立つ。同様の理由で、温室の壁材としても有用である。   The heat ray transmitting visible light reflector of the present invention can be used in various applications, for example, spotlights, headlights, illumination lamps, photographic reflex plates, plant factory light sources, backlight units of liquid crystal display devices, solar It can be used for indoor lighting using light, reflected light system combined with heat sink, semi-transparent blindfold window material, greenhouse wall material, etc. For example, if it is used for a photographic reflex plate, only the brightness can be supplied without raising the temperature of the subject, and if it is used as a light / illumination reflector, only the brightness can be reflected forward. . Furthermore, by attaching a heat sink to the back surface of the reflecting plate, it is possible to release heat from the light source in the back surface direction. Moreover, if it uses as a light guide tube which introduce | transduces sunlight into a room | chamber interior, it will become possible to introduce | transduce only the light of visible light except a heat ray in a room | chamber interior. In addition, by sticking the heat ray transmitting visible light reflector of the present invention having a relatively high visible light transmittance to the window, it becomes translucent and can be used as a blindfold in the room as an alternative to shoji and frosted glass. Since it is expensive, it is possible to incorporate only the heat rays of winter sunlight, which helps to save energy. For the same reason, it is also useful as a greenhouse wall material.

以下に、本発明を実施例によって説明するが、本発明は下記例に限定されるものではない。なお、本実施例において、得られたプラスチック発泡体の各種特性の測定および評価は以下の通りとした。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the following examples. In this example, measurement and evaluation of various properties of the obtained plastic foam were as follows.

(密度)
プラスチック発泡体の密度(ρf)および発泡前の原料樹脂の密度(ρs)を水中置換法により測定した。
(density)
The density (ρf) of the plastic foam and the density (ρs) of the raw material resin before foaming were measured by an underwater substitution method.

(気孔率)
1−(ρf/ρs)として算出した。
(Porosity)
It calculated as 1- (ρf / ρs).

(孔の有無の確認)
プラスチック発泡体シートの断面のSEM写真から観測した。
(Confirmation of the presence or absence of holes)
It observed from the SEM photograph of the cross section of a plastic foam sheet.

(全反射率)
分光光度計(UV−3101PC:島津製作所社製)を用いて、550nmの波長における全反射率を測定した。なお、表1においては、硫酸バリウムの微粉末を固めた白板の拡散反射率を100%として、各々のプラスチック発泡体の拡散反射率を相対値で示している。
(Total reflectance)
The total reflectance at a wavelength of 550 nm was measured using a spectrophotometer (UV-3101PC: manufactured by Shimadzu Corporation). In Table 1, the diffuse reflectance of each plastic foam is shown as a relative value, assuming that the diffuse reflectance of the white plate obtained by hardening the fine powder of barium sulfate is 100%.

(透過率)
分光光度計(UV−3101PC:島津製作所社製)を用いて、1200nmおよび550nmの波長における透過率を測定した。
(Transmittance)
Using a spectrophotometer (UV-3101PC: manufactured by Shimadzu Corporation), transmittance at wavelengths of 1200 nm and 550 nm was measured.

(透過率差)
波長1200nmにおける透過率Bと、波長550nmにおける透過率Cを用いて、B−Cを透過率差と定義した。
(Transmissivity difference)
Using transmittance B at a wavelength of 1200 nm and transmittance C at a wavelength of 550 nm, BC was defined as a transmittance difference.

(熱線透過度)
図1の測定系を作製して、ハロゲンランプ10点灯から45秒後の熱電対12の温度変化(ΔT)を測定した。サンプル14を置かない場合の室温からの温度変化をΔT(0)、サンプル14を置いた場合の室温からの温度変化をΔT(S)とし、ΔT(S)/ΔT(0)を熱線透過度と定義した。なお、ハロゲンランプ10と熱電対12との距離は200mmm、ハロゲンランプ10とサンプル14との距離は120mmとした。
(Heat ray permeability)
The measurement system of FIG. 1 was prepared, and the temperature change (ΔT) of the thermocouple 12 45 seconds after the halogen lamp 10 was turned on was measured. The temperature change from room temperature when the sample 14 is not placed is ΔT (0), the temperature change from the room temperature when the sample 14 is placed is ΔT (S), and ΔT (S) / ΔT (0) is the heat ray transmittance. Defined. The distance between the halogen lamp 10 and the thermocouple 12 was 200 mm, and the distance between the halogen lamp 10 and the sample 14 was 120 mm.

(熱線反射度)
図2の測定系を作製して、ハロゲンランプ20点灯から45秒後の熱電対22の温度変化(ΔR)を測定した。アルミニウム箔をサンプル24として置いた場合の室温からの温度変化をΔR(A)、プラスチック発泡体をサンプル24として置いた場合の室温からの温度変化をΔR(S)とし、ΔR(S)/ΔR(A)を熱線反射度と定義した。なお、ハロゲンランプ20とサンプル24との距離は120mm、サンプル24と熱電対22との距離は200mmとし、サンプル24における光の入射角および反射角はいずれも20度とした。
(Heat ray reflectivity)
The measurement system of FIG. 2 was prepared, and the temperature change (ΔR) of the thermocouple 22 45 seconds after the halogen lamp 20 was turned on was measured. ΔR (A) is the temperature change from room temperature when the aluminum foil is placed as the sample 24, and ΔR (S) is the temperature change from room temperature when the plastic foam is placed as the sample 24. ΔR (S) / ΔR (A) was defined as heat ray reflectivity. The distance between the halogen lamp 20 and the sample 24 was 120 mm, the distance between the sample 24 and the thermocouple 22 was 200 mm, and the incident angle and reflection angle of light in the sample 24 were both 20 degrees.

(実施例1)
PESフィルム(住友ベークライト社製スミライトFS−1300、250μm厚、ρs=1.37)を圧力容器に入れ、炭酸ガスで17℃において7MPaに加圧し、フィルムに炭酸ガスを浸透させた。フィルムへの炭酸ガスの浸透時間は20時間とした。次に、圧力容器からフィルムを取り出し、140℃に設定した熱風循環式発泡炉に1分間投入して発泡させた。得られた発泡体の評価結果を表1に示す。
Example 1
A PES film (Sumilite FS-1300 manufactured by Sumitomo Bakelite Co., Ltd., 250 μm thickness, ρs = 1.37) was put in a pressure vessel, pressurized with carbon dioxide gas to 17 MPa at 17 ° C., and carbon dioxide gas was infiltrated into the film. The penetration time of carbon dioxide gas into the film was 20 hours. Next, the film was taken out from the pressure vessel and put into a hot air circulating foaming furnace set at 140 ° C. for 1 minute to foam. The evaluation results of the obtained foam are shown in Table 1.

(実施例2)
実施例1と同じPESフィルムを圧力容器に入れ、炭酸ガスで17℃において7MPaに加圧し、フィルムに炭酸ガスを浸透させた。フィルムへの炭酸ガスの浸透時間は20時間とした。次に、圧力容器からフィルムを取り出し、170℃に設定した熱風循環式発泡炉に1分間投入して発泡させた。得られた発泡体の評価結果を表1に示す。
(Example 2)
The same PES film as in Example 1 was put in a pressure vessel, pressurized to 7 MPa at 17 ° C. with carbon dioxide, and carbon dioxide was permeated into the film. The penetration time of carbon dioxide gas into the film was 20 hours. Next, the film was taken out from the pressure vessel and put into a hot-air circulating foaming furnace set at 170 ° C. for 1 minute for foaming. The evaluation results of the obtained foam are shown in Table 1.

(実施例3)
実施例1と同じPESフィルムを圧力容器に入れ、炭酸ガスで17℃において4MPaに加圧し、フィルムに炭酸ガスを浸透させた。フィルムへの炭酸ガスの浸透時間は20時間とした。次に、圧力容器からフィルムを取り出し、120℃に設定した熱風循環式発泡炉に1分間投入して発泡させた。得られた発泡体の評価結果を表1に示す。
(Example 3)
The same PES film as in Example 1 was put in a pressure vessel, pressurized to 4 MPa with carbon dioxide gas at 17 ° C., and carbon dioxide gas was permeated into the film. The penetration time of carbon dioxide gas into the film was 20 hours. Next, the film was taken out from the pressure vessel and put into a hot-air circulating foaming furnace set at 120 ° C. for 1 minute to foam. The evaluation results of the obtained foam are shown in Table 1.

(実施例4)
実施例1と同じPESフィルムを圧力容器に入れ、炭酸ガスで−30℃において1.2MPaに加圧し、フィルムに炭酸ガスを浸透させた。フィルムへの炭酸ガスの浸透時間は20時間とした。次に、圧力容器からフィルムを取り出し、170℃に設定した熱風循環式発泡炉に1分間投入して発泡させた。得られた発泡体の評価結果を表1に示す。
Example 4
The same PES film as in Example 1 was put in a pressure vessel, pressurized to 1.2 MPa with carbon dioxide at −30 ° C., and carbon dioxide was permeated into the film. The penetration time of carbon dioxide gas into the film was 20 hours. Next, the film was taken out from the pressure vessel and put into a hot-air circulating foaming furnace set at 170 ° C. for 1 minute for foaming. The evaluation results of the obtained foam are shown in Table 1.

(実施例5)
実施例1と同じPESフィルムを圧力容器に入れ、炭酸ガスで17℃において7MPaに加圧し、フィルムに炭酸ガスを浸透させた。フィルムへの炭酸ガスの浸透時間は20時間とした。次に、圧力容器からフィルムを取り出し、125℃に設定した熱風循環式発泡炉に1分間投入して発泡させた。得られた発泡体の評価結果を表1に示す。
(Example 5)
The same PES film as in Example 1 was put in a pressure vessel, pressurized to 7 MPa at 17 ° C. with carbon dioxide, and carbon dioxide was permeated into the film. The penetration time of carbon dioxide gas into the film was 20 hours. Next, the film was taken out from the pressure vessel and put into a hot-air circulating foaming furnace set at 125 ° C. for 1 minute for foaming. The evaluation results of the obtained foam are shown in Table 1.

(実施例6)
PEIフィルム(住友ベークライト社製スミライトFS−1400、250μm厚、ρs=1.27)を圧力容器に入れ、炭酸ガスで−30℃において1.2MPaに加圧し、フィルムに炭酸ガスを浸透させた。フィルムへの炭酸ガスの浸透時間は80時間とした。次に、圧力容器からフィルムを取り出し、200℃に設定した熱風循環式発泡炉に1分間投入して発泡させた。得られた発泡体の評価結果を表1に示す。
(Example 6)
A PEI film (Sumilite FS-1400 manufactured by Sumitomo Bakelite Co., Ltd., 250 μm thickness, ρs = 1.27) was put in a pressure vessel, pressurized to 1.2 MPa at −30 ° C. with carbon dioxide, and carbon dioxide was permeated into the film. The carbon dioxide gas permeation time into the film was 80 hours. Next, the film was taken out from the pressure vessel and put into a hot-air circulating foaming furnace set at 200 ° C. for 1 minute for foaming. The evaluation results of the obtained foam are shown in Table 1.

(実施例7)
PSUフィルム(住友ベークライト社製スミライトFS−1200、250μm厚、ρs=1.24)を圧力容器に入れ、炭酸ガスで−30℃において1.2MPaに加圧し、フィルムに炭酸ガスを浸透させた。フィルムへの炭酸ガスの浸透時間は80時間とした。次に、圧力容器からフィルムを取り出し、150℃に設定した熱風循環式発泡炉に1分間投入して発泡させた。得られた発泡体の評価結果を表1に示す。
(Example 7)
A PSU film (Sumilite FS-1200, 250 μm thickness, ρs = 1.24, manufactured by Sumitomo Bakelite Co., Ltd.) was placed in a pressure vessel, pressurized to 1.2 MPa at −30 ° C. with carbon dioxide, and carbon dioxide was infiltrated into the film. The carbon dioxide gas permeation time into the film was 80 hours. Next, the film was taken out from the pressure vessel and put into a hot-air circulating foaming furnace set at 150 ° C. for 1 minute for foaming. The evaluation results of the obtained foam are shown in Table 1.

(比較例1)
MCPET(登録商標、古河電気工業社製、800μm厚)をサンプルとして用いた。評価結果を表2に示す。
(Comparative Example 1)
MCPET (registered trademark, manufactured by Furukawa Electric Co., Ltd., 800 μm thickness) was used as a sample. The evaluation results are shown in Table 2.

(比較例2)
原料としてPEN(ポリエチレンナフタレート、帝人化成社製テオネックス TN8065S)を用い、熱圧プレス成形で200μm厚のフィルムを得た。これを220℃に設定した熱風循環式発泡炉に10分間投入して完全に結晶化させた。得られたフィルムの評価結果を表2に示す。
(Comparative Example 2)
Using PEN (polyethylene naphthalate, Teonex TN8065S manufactured by Teijin Chemicals Ltd.) as a raw material, a film having a thickness of 200 μm was obtained by hot press molding. This was put into a hot-air circulating foaming furnace set at 220 ° C. for 10 minutes for complete crystallization. The evaluation results of the obtained film are shown in Table 2.

(比較例3)
実施例1と同じPESフィルムを圧力容器に入れ、炭酸ガスで17℃において2MPaに加圧し、フィルムに炭酸ガスを浸透させた。フィルムへの炭酸ガスの浸透時間は20時間とした。次に、圧力容器からフィルムを取り出し、200℃に設定した熱風循環式発泡炉に30秒間投入して発泡させた。得られた発泡体の評価結果を表2に示す。
(Comparative Example 3)
The same PES film as in Example 1 was put in a pressure vessel, pressurized to 2 MPa at 17 ° C. with carbon dioxide, and carbon dioxide was permeated into the film. The penetration time of carbon dioxide gas into the film was 20 hours. Next, the film was taken out from the pressure vessel and put into a hot-air circulating foaming furnace set at 200 ° C. for 30 seconds to be foamed. The evaluation results of the obtained foam are shown in Table 2.

(比較例4)
アルミニウム箔(グローリー社製 ホームマスターアルミホイル、15μm厚)をサンプルとして用いた。評価結果を表2に示す。
(Comparative Example 4)
An aluminum foil (Glory's home master aluminum foil, 15 μm thick) was used as a sample. The evaluation results are shown in Table 2.

(比較例5)
実施例1の発泡体原料であるPESフィルムをサンプルとして用いた。評価結果を表2に示す。
(Comparative Example 5)
The PES film which is the foam raw material of Example 1 was used as a sample. The evaluation results are shown in Table 2.

(比較例6)
実施例1と同じPESフィルムを圧力容器に入れ、炭酸ガスで17℃において7MPaに加圧し、フィルムに炭酸ガスを浸透させた。フィルムへの炭酸ガスの浸透時間は20時間とした。次に、圧力容器からフィルムを取り出し、125℃に設定した熱風循環式発泡炉に1分間投入して発泡させた。得られた発泡体の評価結果を表2に示す。
(Comparative Example 6)
The same PES film as in Example 1 was put in a pressure vessel, pressurized to 7 MPa at 17 ° C. with carbon dioxide, and carbon dioxide was permeated into the film. The penetration time of carbon dioxide gas into the film was 20 hours. Next, the film was taken out from the pressure vessel and put into a hot-air circulating foaming furnace set at 125 ° C. for 1 minute for foaming. The evaluation results of the obtained foam are shown in Table 2.

(比較例7)
コピー用紙(NBSリコー社製マイリサイクルペーパー100、100μm厚)をサンプルとして用いた。評価結果を表2に示す。
(Comparative Example 7)
Copy paper (My Recycle Paper 100 manufactured by NBS Ricoh Company, 100 μm thickness) was used as a sample. The evaluation results are shown in Table 2.

(比較例8)
台所用スポンジ(住友スリーエム社製スコッチブライト、8mm厚)をサンプルとして用いた。評価結果を表2に示す。
(Comparative Example 8)
A kitchen sponge (Sumitomo 3M Scotch Bright, 8 mm thickness) was used as a sample. The evaluation results are shown in Table 2.

Figure 2007317550
Figure 2007317550

Figure 2007317550
Figure 2007317550

(実施例8)
図3に示すように、実施例1で作製した熱線透過可視光反射体31に支持棒32を取り付けることにより写真撮影用レフ板を作製した。
(Example 8)
As shown in FIG. 3, a photographic reflex plate was produced by attaching a support bar 32 to the heat ray transmitting visible light reflector 31 produced in Example 1.

(実施例9)
図4に示すように、実施例1で作製した熱線透過可視光反射体31を電球35の反射板に用い、反射板の裏側にヒートシンク33を取り付けた金属筐体34を配置することにより照明器具を作製した。
Example 9
As shown in FIG. 4, the heat transmissive visible light reflector 31 produced in Example 1 is used as a reflector of a light bulb 35, and a metal casing 34 with a heat sink 33 attached to the back side of the reflector is arranged to provide a lighting fixture. Was made.

(実施例10)
図5に示すように、実施例1で作製した熱線透過反射板31をLED36の反射板に用い、反射板の裏側にヒートシンク33を取り付けた金属筐体34を配置することにより自動車用ヘッドライトを作製した。
(Example 10)
As shown in FIG. 5, the heat ray transmitting reflection plate 31 produced in Example 1 is used as a reflection plate of the LED 36, and a metal housing 34 with a heat sink 33 attached to the back side of the reflection plate is used to provide an automobile headlight. Produced.

(実施例11)
図6に示すように、実施例1で作製した熱線透過可視光反射体31を反射板に用いた液晶テレビを作製した。図6において、37は液晶テレビ筐体、38 は冷陰極管、39は液晶パネル、40は光学フィルムを示す。
(Example 11)
As shown in FIG. 6, the liquid crystal television which used the heat ray transmission visible light reflector 31 produced in Example 1 for the reflecting plate was produced. In FIG. 6, 37 is a liquid crystal television casing, 38 is a cold cathode tube, 39 is a liquid crystal panel, and 40 is an optical film.

(実施例12)
図7に示すように、実施例1で作製した熱線透過可視光反射体を筒状に加工した導光管43を屋根裏に配置することにより太陽光取り入れ型室内照明システムを作製した。図7において、41は太陽光取り入れ窓、42は室内太陽光出射口を示す。
(Example 12)
As shown in FIG. 7, a solar light intake type indoor lighting system was manufactured by arranging a light guide tube 43 obtained by processing the heat ray transmitting visible light reflector manufactured in Example 1 into a cylindrical shape on the attic. In FIG. 7, reference numeral 41 denotes a sunlight intake window, and 42 denotes an indoor sunlight outlet.

熱線透過度の測定系を示す模式図である。It is a schematic diagram which shows the measuring system of heat ray transmittance. 熱線反射度の測定系を示す模式図である。It is a schematic diagram which shows the measurement system of a heat ray reflectivity. 実施例8の写真撮影用レフ板を示す模式図である。FIG. 10 is a schematic diagram showing a photographic reflex plate of Example 8. 実施例9の照明器具を示す模式図である。It is a schematic diagram which shows the lighting fixture of Example 9. 実施例10の自動車用ヘッドライトを示す模式図である。FIG. 10 is a schematic diagram showing an automotive headlight of Example 10. 実施例11の液晶テレビの断面を示す模式図である。10 is a schematic diagram showing a cross section of a liquid crystal television of Example 11. FIG. 実施例12の太陽光取り入れ型室内照明システムを示す模式図である。It is a schematic diagram which shows the sunlight intake type indoor lighting system of Example 12.

符号の説明Explanation of symbols

10 ハロゲンランプ
12 熱電対
14 サンプル
20 ハロゲンランプ
22 熱電対
24 サンプル
31 熱線透過可視光反射板
32 支持棒
33 ヒートシンク
34 金属筐体
35 電球
36 LED及びその回路基板
37 液晶TV筐体
38 冷陰極管
39 液晶パネル
40 光学フィルム
41 太陽光取り入れ窓
42 室内太陽光出射口
43 導光管(熱線透過可視光反射体からなる筒)
10 Halogen lamp 12 Thermocouple 14 Sample 20 Halogen lamp 22 Thermocouple 24 Sample 31 Heat ray transmitting visible light reflector 32 Support rod 33 Heat sink 34 Metal housing 35 Light bulb 36 LED and its circuit board 37 LCD TV housing 38 Cold cathode tube 39 Liquid crystal panel 40 Optical film 41 Sunlight intake window 42 Indoor sunlight outlet 43 Light guide tube (cylinder made of heat ray transmitting visible light reflector)

Claims (12)

プラスチック発泡体からなり、波長550nmの可視光の全反射率Aが30%以上、波長1200nmの熱線の透過率Bと波長550nmの可視光の透過率Cとの差B−Cが15%以上であることを特徴とする熱線透過可視光反射体。   Made of plastic foam, the total reflectance A of visible light with a wavelength of 550 nm is 30% or more, and the difference BC between the heat ray transmittance B with a wavelength of 1200 nm and the visible light transmittance C with a wavelength of 550 nm is 15% or more. A heat ray transmitting visible light reflector characterized by being. 気孔率が0.08以上であることを特徴とする請求項1に記載の熱線透過可視光反射体。   The heat ray transmitting visible light reflector according to claim 1, wherein the porosity is 0.08 or more. プラスチック発泡体が非晶性樹脂の発泡体であることを特徴とする請求項1または2に記載の熱線透過可視光反射体。   The heat ray transmitting visible light reflector according to claim 1 or 2, wherein the plastic foam is a foam of an amorphous resin. 平均気泡径が100nm以下であることを特徴とする請求項1〜3のいずれか1項に記載の熱線透過可視光反射体。   The heat ray transmitting visible light reflector according to any one of claims 1 to 3, wherein an average bubble diameter is 100 nm or less. 原料樹脂シートを加圧不活性ガス雰囲気中に保持して原料樹脂シートに不活性ガスを含有させる工程と、不活性ガスを含有させた原料樹脂シートを常圧下で加熱して発泡させる工程とからなる製造方法により製造されたことを特徴とする請求項1〜4のいずれか1項に記載の熱線透過可視光反射体。   From the step of holding the raw material resin sheet in a pressurized inert gas atmosphere and containing the inert gas in the raw material resin sheet, and the step of heating and foaming the raw material resin sheet containing the inert gas under normal pressure The heat ray transmitting visible light reflector according to any one of claims 1 to 4, wherein the heat ray transmitting visible light reflector is manufactured by the manufacturing method. 請求項1〜5のいずれか1項に記載の熱線透過可視光反射体を反射板として用いたことを特徴とする照明装置。   6. A lighting device comprising the heat ray transmitting visible light reflector according to claim 1 as a reflector. 請求項1〜5のいずれか1項に記載の熱線透過可視光反射体からなることを特徴とする写真撮影用レフ板。 A refracting plate for photography, comprising the heat ray transmitting visible light reflector according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載の熱線透過可視光反射体を反射板として用いたことを特徴とする液晶表示装置。   A liquid crystal display device using the heat ray transmitting visible light reflector according to claim 1 as a reflector. 請求項1〜5のいずれか1項に記載の熱線透過可視光反射体を導光体として用いたことを特徴とする太陽光を用いた室内照明。   Indoor lighting using sunlight, wherein the heat ray transmitting visible light reflector according to any one of claims 1 to 5 is used as a light guide. 請求項1〜5のいずれか1項に記載の熱線透過可視光反射体を壁材として用いたことを特徴とする温室。   A greenhouse using the heat ray transmitting visible light reflector according to any one of claims 1 to 5 as a wall material. 請求項1〜5のいずれか1項に記載の熱線透過可視光反射体からなることを特徴とする目隠し窓材。   A blindfold window material comprising the heat ray transmitting visible light reflector according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載の熱線透過可視光反射体を基材に貼りつけたことを特徴とする目隠し窓材。
A blindfold window material, wherein the heat ray transmitting visible light reflector according to any one of claims 1 to 5 is attached to a substrate.
JP2006146942A 2006-05-26 2006-05-26 Heat ray visible light reflector Active JP4795121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006146942A JP4795121B2 (en) 2006-05-26 2006-05-26 Heat ray visible light reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006146942A JP4795121B2 (en) 2006-05-26 2006-05-26 Heat ray visible light reflector

Publications (2)

Publication Number Publication Date
JP2007317550A true JP2007317550A (en) 2007-12-06
JP4795121B2 JP4795121B2 (en) 2011-10-19

Family

ID=38851227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006146942A Active JP4795121B2 (en) 2006-05-26 2006-05-26 Heat ray visible light reflector

Country Status (1)

Country Link
JP (1) JP4795121B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023173A1 (en) * 2010-08-17 2012-02-23 古河電気工業株式会社 Thermoplastic resin foam, process for producing thermoplastic resin foam, and light reflection material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225709A (en) * 1985-03-29 1986-10-07 東芝ライテック株式会社 Light reflector
WO1997001117A1 (en) * 1995-06-23 1997-01-09 The Furukawa Electric Co., Ltd. Light reflection plate
JP2005055883A (en) * 2003-07-18 2005-03-03 Oji Paper Co Ltd Light reflector
JP2005114777A (en) * 2003-10-02 2005-04-28 Mitsui Chemicals Inc Reflection sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225709A (en) * 1985-03-29 1986-10-07 東芝ライテック株式会社 Light reflector
WO1997001117A1 (en) * 1995-06-23 1997-01-09 The Furukawa Electric Co., Ltd. Light reflection plate
JP2005055883A (en) * 2003-07-18 2005-03-03 Oji Paper Co Ltd Light reflector
JP2005114777A (en) * 2003-10-02 2005-04-28 Mitsui Chemicals Inc Reflection sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023173A1 (en) * 2010-08-17 2012-02-23 古河電気工業株式会社 Thermoplastic resin foam, process for producing thermoplastic resin foam, and light reflection material
US8853288B2 (en) 2010-08-17 2014-10-07 Furukawa Electric Co., Ltd. Thermoplastic resin foam, method of producing the same, and light reflecting material using the same

Also Published As

Publication number Publication date
JP4795121B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
KR100383431B1 (en) Light reflecting plate
KR100680126B1 (en) Void-formed light-diffusing sheet for tft-lcd
TW200848797A (en) Optical diffuser film and light assembly
KR20110043641A (en) Anisotropic light-diffusing film, anisotropic light-diffusing laminate, anisotropic light-reflecting laminate, and uses thereof
WO2006064907A1 (en) Light reflector and surface light source device
JP2005173546A (en) Light reflective film and surface light source using the same
TW201202755A (en) Light diffusion film for LED illuminator
JP2011513793A (en) Improved reflective projection screen
JP2009155427A (en) White film for optical duct
JP4795121B2 (en) Heat ray visible light reflector
JP2012177880A (en) Light diffusing material, lighting fixture, and method for manufacturing lighting fixture
JP2011215295A (en) Method for producing light diffusion sheet for illumination
JP2013242345A (en) Reflection member molding for luminaire and method for manufacturing reflection member molding for luminaire
KR20110036580A (en) Light reflector, and planar light source device and illuminating device using light reflector
JP5184183B2 (en) Manufacturing method of light reflector
JP2004029648A (en) Light diffusing sheet
JP2010152035A (en) Light reflection plate
JP5574642B2 (en) Illumination body
CN108690496B (en) Water-based light diffusion coating, water-based low-light-loss light diffusion film, preparation method and application
JP5353178B2 (en) Polyester film and liquid crystal display backlight and solar cell using the same
KR20120106589A (en) Polarizer protective film
JP5598839B2 (en) Light diffusing foam sheet and method for producing the same, backlight device, and lighting device
JP4866075B2 (en) Light reflector and surface light source device using the same
KR101574190B1 (en) White polyester reflective film and method for manufacturing the same and reflective sheet using the same
JP2006339136A (en) Plane light source lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R151 Written notification of patent or utility model registration

Ref document number: 4795121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350