JP2007316536A - Optical scanner - Google Patents

Optical scanner Download PDF

Info

Publication number
JP2007316536A
JP2007316536A JP2006148490A JP2006148490A JP2007316536A JP 2007316536 A JP2007316536 A JP 2007316536A JP 2006148490 A JP2006148490 A JP 2006148490A JP 2006148490 A JP2006148490 A JP 2006148490A JP 2007316536 A JP2007316536 A JP 2007316536A
Authority
JP
Japan
Prior art keywords
recording medium
laser light
light source
laser beam
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006148490A
Other languages
Japanese (ja)
Inventor
Takayuki Hiyoshi
隆之 日吉
Kazunori Murakami
和則 村上
Yoshimitsu Otaka
善光 大高
Toshiyuki Tamura
敏行 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba TEC Corp
Original Assignee
Toshiba TEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba TEC Corp filed Critical Toshiba TEC Corp
Priority to JP2006148490A priority Critical patent/JP2007316536A/en
Publication of JP2007316536A publication Critical patent/JP2007316536A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform laser beam scanning with high recording accuracy without using an optical system for compensating focal length. <P>SOLUTION: The optical scanner is equipped with a plurality of laser light source units 11-15 for emitting a laser beam and also with a scanning means which is arranged above the transporting path of a heat-sensitive recording medium 16, which, while reflecting a laser beam from each laser light source unit by a reflection member 17, transfers the reflection member 17 orthogonally to the transporting direction A of the heat-sensitive recording medium, while maintaining the optical path length to the heat-sensitive recording medium 16 for each laser beam to be constant, and which simultaneously scans each laser beam orthogonally to the transporting direction relative to the heat-sensitive recording medium. For example, a laser beam from the laser light source is made incident to the reflection member 17, orthogonally to the transporting direction A of the heat-sensitive recording medium and from above with the incidence angle at an elevation of 45°, and then, the reflection member is transferred vertically/obliquely along the extension of the incidence angle 45° of the laser beam; thus, the optical path length is maintained to bb constant. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、記録媒体に情報を記録するためにレーザ光を走査する光走査装置に関する。   The present invention relates to an optical scanning device that scans a laser beam to record information on a recording medium.

従来、可逆性感熱記録媒体などの記録媒体にレーザ光を照射することで情報を非接触で記録する光走査装置として、レーザ光源からのレーザ光を、光ファイバ、レンズヘッドを介してスキャニングミラーに導き、このスキャニングミラーの回転によってレーザ光を、平面上を搬送する記録媒体に対して走査するものが知られている(例えば、特許文献1参照)。
特開2002−113889号公報
Conventionally, as an optical scanning device that records information in a non-contact manner by irradiating a recording medium such as a reversible thermosensitive recording medium, laser light from a laser light source is applied to a scanning mirror via an optical fiber and a lens head. A laser beam that scans a recording medium transported on a plane by the rotation of the scanning mirror is known (see, for example, Patent Document 1).
JP 2002-113889 A

しかし、このように平面上を搬送する記録媒体に対してスキャニングミラーの回転によってレーザ光を走査するものでは、レーザ光が記録媒体を走査するときの光路長が中央と側部では異なるため、記録精度を高めようとするとfθレンズ等を使用した高価な焦点距離補正光学系を使用しなければならないという問題があった。
そこで、本発明は、焦点距離補正光学系を使用せずに記録精度の高いレーザ光走査ができる光走査装置を提供する。
However, in the case where the laser beam is scanned by rotating the scanning mirror with respect to the recording medium transported on the flat surface in this way, the optical path length when the laser beam scans the recording medium is different between the center and the side portion. In order to increase the accuracy, there is a problem that an expensive focal length correction optical system using an fθ lens or the like must be used.
Accordingly, the present invention provides an optical scanning device that can perform laser light scanning with high recording accuracy without using a focal length correction optical system.

本発明は、レーザ光を出射するレーザ光源と、記録媒体の搬送路上方に配置され、レーザ光源からのレーザ光を反射部材で反射しつつその反射部材を、レーザ光の記録媒体までの光路長を一定に保持して記録媒体の搬送方向とは直交する方向に移動させ、レーザ光を記録媒体に対して搬送方向と直交する方向に走査させる走査手段を備えたものである。   The present invention provides a laser light source that emits laser light and a recording medium conveying path, and reflects the laser light from the laser light source with a reflecting member while the reflecting member passes the optical path length of the laser light to the recording medium. Is provided with scanning means for moving the laser beam in a direction orthogonal to the conveyance direction by moving the laser beam in a direction orthogonal to the conveyance direction of the recording medium.

本発明によれば、焦点距離補正光学系を使用せずに記録精度の高いレーザ光走査ができる光走査装置を提供できる。   According to the present invention, it is possible to provide an optical scanning device capable of performing laser beam scanning with high recording accuracy without using a focal length correction optical system.

以下、本発明の一実施の形態を、図面を参照して説明する。
(第1の実施の形態)
図1に示すように、5台のレーザ光源装置11,12,13,14,15を、記録媒体である可逆性感熱記録媒体16の搬送路の上方に、その感熱記録媒体16の搬送方向Aに沿って互いに所定の間隔を隔てて配置している。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(First embodiment)
As shown in FIG. 1, five laser light source devices 11, 12, 13, 14, and 15 are placed above a transport path of a reversible thermosensitive recording medium 16 as a recording medium in the transport direction A of the thermosensitive recording medium 16. Are spaced apart from each other at a predetermined interval.

前記各レーザ光源装置11〜15の配置に沿って長尺な反射部材17を、前記感熱記録媒体16の搬送方向Aに平行に、かつ、その反射面が前記感熱記録媒体16の記録面に対して垂直になるようにして配置している。   A long reflecting member 17 is arranged in parallel with the conveying direction A of the thermal recording medium 16 along the arrangement of the laser light source devices 11 to 15, and the reflecting surface thereof is relative to the recording surface of the thermal recording medium 16. Are arranged vertically.

前記レーザ光源装置11は、図2に示すように、レーザ光源11aと、このレーザ光源11aからのレーザ光を平行光に変換するコリメータレンズ11bと、このコリメータレンズ11bからのレーザ光を前記反射部材17の反射面に集光させる集光レンズ11cによって構成されている。なお、図2ではレーザ光源装置11のみについて述べたが、他のレーザ光源装置12〜15についても構成は同じである。   As shown in FIG. 2, the laser light source device 11 includes a laser light source 11a, a collimator lens 11b that converts the laser light from the laser light source 11a into parallel light, and the laser light from the collimator lens 11b as the reflection member. A condensing lens 11c that condenses light on the 17 reflecting surfaces. Although only the laser light source device 11 has been described in FIG. 2, the configurations of the other laser light source devices 12 to 15 are the same.

前記各レーザ光源装置11〜15は、レーザ光を前記反射部材17の反射面に対して、前記感熱記録媒体16の搬送方向Aとは直交する方向で、かつ、入射角度が仰角45°となる上方から入射するように配置されている。   Each of the laser light source devices 11 to 15 has a laser beam that is perpendicular to the transport direction A of the thermal recording medium 16 with respect to the reflection surface of the reflection member 17 and has an incident angle of 45 °. It arrange | positions so that it may inject from upper direction.

前記反射部材17は、後述する駆動装置により、その反射面を搬送面に対して垂直を維持した状態で、各レーザ光源装置11〜15からのレーザ光の入射角度45°の延長方向に沿って図中矢印Bに示すように上下に移動制御される構成になっている。   The reflection member 17 is extended along an extending direction of an incident angle of 45 ° of the laser light from each of the laser light source devices 11 to 15 in a state where the reflection surface is maintained perpendicular to the transport surface by a driving device described later. As shown by the arrow B in the figure, the movement is controlled up and down.

すなわち、図2に示すように、前記反射部材17が最も高い位置(図中実線の位置)にあるときその反射面で反射したレーザ光が前記感熱記録媒体16の搬送方向Aとは直交する方向である主走査方向の印字範囲の一端P1に位置する。また、前記反射部材17が最も低い位置(図中点線の位置)にあるときその反射面で反射したレーザ光が前記感熱記録媒体16における主走査方向の印字範囲の他端P2に位置する。そして、前記反射部材17が最も高い位置と最も低い位置との間で図中矢印Bに示すように斜め上下方向に移動することでレーザ光を印字範囲で走査して1走査ラインの印字を行うようになっている。   That is, as shown in FIG. 2, when the reflecting member 17 is at the highest position (the position of the solid line in the figure), the laser beam reflected by the reflecting surface is perpendicular to the transport direction A of the thermal recording medium 16. Is located at one end P1 of the print range in the main scanning direction. Further, when the reflecting member 17 is at the lowest position (dotted line position in the figure), the laser beam reflected by the reflecting surface is located at the other end P2 of the print range in the main scanning direction on the thermal recording medium 16. Then, the reflection member 17 moves obliquely up and down between the highest position and the lowest position as shown by the arrow B in the figure, thereby scanning the laser beam in the print range and printing one scan line. It is like that.

前記可逆性感熱記録媒体16としては、図3に示すように、PET(ポリテレフタル酸エチレン)層161の上にリライト層162を形成し、その上に保護層163を形成したサーモリライトTRF33TA(三菱製紙(株)社製)をベースにし、このベースの上に光熱変換層164を形成したものを使用している。   As the reversible thermosensitive recording medium 16, as shown in FIG. 3, a thermolite TRF33TA (Mitsubishi) in which a rewrite layer 162 is formed on a PET (polyethylene terephthalate) layer 161 and a protective layer 163 is formed thereon. A paper manufacturing company) is used as a base, and a photothermal conversion layer 164 is formed on the base.

前記光熱変換層164は、近赤外線吸収色素(SDA5688: H.W.SANDS社製、λmax=842nm):0.2重量部、ポリエステル樹脂:10重量部、イソシアネート:0.1重量部を混合した材料を、前記ベースの上にワイヤーバーで塗布し、乾燥膜厚で2μmにして形成している。なお、前記感熱記録媒体16の主走査方向の幅は110mmになっている。
前記各レーザ光源装置11〜15のレーザ光源としては、近赤外線吸収色素の吸収波長に合わせて波長が830nmで出力が1Wのレーザ光を出射するものを使用している。そして、レーザ光の照射によって感熱記録媒体16はその光熱変換層164に照射された光が熱に変換され、保護層163を介してその下のリライト層162に熱を伝達することで発色させる。この発色によって感熱記録媒体16に対する1ドットずつの記録が行われる。また、リライト層162に与える熱を変化させることで消色させることができる。すなわち、前記可逆性感熱記録媒体16はリライト層162に与える熱の状態によって発色、消色の両方ができ、情報の記録及び消去が繰り返しできるようになっている。
The photothermal conversion layer 164 is made of a material obtained by mixing a near-infrared absorbing dye (SDA5688: manufactured by HWSANDS, λmax = 842 nm): 0.2 parts by weight, polyester resin: 10 parts by weight, isocyanate: 0.1 parts by weight. It is applied on the base with a wire bar and formed to a dry film thickness of 2 μm. The thermal recording medium 16 has a width in the main scanning direction of 110 mm.
As the laser light source of each of the laser light source devices 11 to 15, a laser light source that emits laser light having a wavelength of 830 nm and an output of 1 W in accordance with the absorption wavelength of the near-infrared absorbing dye is used. Then, the heat-sensitive recording medium 16 is irradiated with laser light, and the light applied to the light-to-heat conversion layer 164 is converted into heat, and color is developed by transferring heat to the rewrite layer 162 under the protective layer 163. By this color development, recording is performed dot by dot on the thermal recording medium 16. Further, the color can be erased by changing the heat applied to the rewrite layer 162. In other words, the reversible thermosensitive recording medium 16 can be colored and decolored depending on the state of heat applied to the rewrite layer 162, and can record and erase information repeatedly.

図4は制御部の構成を示すブロック図で、搬送ベルトなどからなる搬送路18を搬送装置19によって駆動し、搬送路18の上に載置されている前記感熱記録媒体16を搬送する。前記レーザ光源装置11のレーザ光源11aはレーザドライバ20によって駆動され記録情報を載せたレーザ光を出射する。なお、他のレーザ光源装置12〜15のレーザ光源についても同様にそれぞれレーザドライバによって駆動され記録情報を載せたレーザ光を出射する構成になっている。   FIG. 4 is a block diagram showing the configuration of the control unit. A conveyance path 18 including a conveyance belt is driven by a conveyance device 19 to convey the thermal recording medium 16 placed on the conveyance path 18. The laser light source 11a of the laser light source device 11 is driven by a laser driver 20 to emit laser light on which recording information is placed. Similarly, the laser light sources of the other laser light source devices 12 to 15 are each driven by a laser driver so as to emit laser light with recorded information.

前記反射部材17は駆動装置21により駆動されて図2に矢印Bで示すように斜め上下方向に往復移動されるようになっている。すなわち、前記駆動装置21は、図5に示すように、ACサーボモータ22を内蔵した単軸ロボット23からなり、この単軸ロボット23を前記各レーザ光源装置11〜15からのレーザ光の入射角度45°と同じ角度で設置されている。そして、前記単軸ロボット21bは、ACサーボモータ22でスライダ24を図中矢印で示すように軸に沿って往復移動させることで、そのスライダ24に取付けた前記反射部材17をその反射面を前記記録媒体16に対して垂直状態を維持したまま入射角度45°と同じ角度で斜め上下方向に往復移動させるようになっている。前記反射部材17と駆動装置21は走査手段を構成している。   The reflecting member 17 is driven by a driving device 21 so as to reciprocate in a slanting vertical direction as indicated by an arrow B in FIG. That is, as shown in FIG. 5, the driving device 21 is composed of a single-axis robot 23 incorporating an AC servo motor 22, and the single-axis robot 23 is incident on the laser beam incident angle from the laser light source devices 11-15. It is installed at the same angle as 45 °. Then, the single-axis robot 21b reciprocates the slider 24 along the axis as shown by the arrow in the figure by the AC servo motor 22 so that the reflecting member 17 attached to the slider 24 has its reflecting surface on the reflecting surface. While maintaining a perpendicular state with respect to the recording medium 16, it is reciprocated obliquely up and down at the same angle as the incident angle of 45 °. The reflection member 17 and the driving device 21 constitute scanning means.

また、マイクロプロセッサ等を備えた制御装置25を設け、この制御装置25によって前記搬送装置19、各レーザドライバ20,…及び駆動装置21をそれぞれ制御するようになっている。   Further, a control device 25 having a microprocessor or the like is provided, and the control device 25 controls the transport device 19, the laser drivers 20,.

このような構成においては、搬送装置19は搬送路18を駆動して感熱記録媒体16を搬送し印字開始位置で停止させる。この状態で各レーザドライバ20,…は各レーザ光源装置11〜15のレーザ光源11a,…を駆動するとともに駆動装置21は単軸ロボット23のスライダ24を動作して反射部材17を最も高い位置から最も低い位置に向かって移動開始させる。   In such a configuration, the transport device 19 drives the transport path 18 to transport the thermal recording medium 16 and stop it at the print start position. In this state, each laser driver 20,... Drives the laser light sources 11a,... Of each laser light source device 11-15, and the drive device 21 operates the slider 24 of the single-axis robot 23 to move the reflecting member 17 from the highest position. Start moving towards the lowest position.

各レーザ光源装置11〜15のレーザ光源からのレーザ光は反射部材17に対して感熱記録媒体16の搬送方向Aとは直交する方向から入射角度45°で入射し、その反射面で反射されて感熱記録媒体16上に照射される。   Laser light from the laser light sources of the laser light source devices 11 to 15 is incident on the reflecting member 17 at an incident angle of 45 ° from a direction orthogonal to the conveyance direction A of the thermal recording medium 16 and is reflected by the reflecting surface. Irradiated onto the thermal recording medium 16.

反射部材17が移動すると、レーザ光は感熱記録媒体16における主走査方向の印字範囲の一端から他端へ向かって走査される。こうして感熱記録媒体16に対して各レーザ光源装置11〜15によってそれぞれ1走査ラインの印字が行われる。   When the reflecting member 17 moves, the laser beam is scanned from one end to the other end of the print range in the main scanning direction of the thermal recording medium 16. In this way, one scanning line is printed on the thermal recording medium 16 by each of the laser light source devices 11-15.

そして、1走査ラインの印字が終了すると、搬走路18が搬送装置19によって駆動され感熱記録媒体16が1走査ライン分だけ搬送される。すなわち、感熱記録媒体16は1走査ライン分だけ副走査方向に搬送される。搬送が終了すると、レーザドライバ20,…は各レーザ光源装置11〜15のレーザ光源を再度駆動するとともに駆動装置21は単軸ロボット23のスライダ24を動作して反射部材17を今度は逆に最も低い位置から最も高い位置に向かって移動開始させる。   When printing for one scanning line is completed, the transport path 18 is driven by the transport device 19 and the thermal recording medium 16 is transported for one scanning line. That is, the thermal recording medium 16 is conveyed in the sub-scanning direction by one scanning line. When the conveyance is finished, the laser drivers 20,... Drive the laser light sources of the laser light source devices 11 to 15 again, and the drive device 21 operates the slider 24 of the single-axis robot 23 to turn the reflecting member 17 to the opposite side this time. Start moving from the lowest position to the highest position.

反射部材17が移動すると、レーザ光は感熱記録媒体16における主走査方向の印字範囲の他端から一端へ向かって走査される。こうして感熱記録媒体16に対して各レーザ光源装置11〜15によってそれぞれ次の1走査ラインの印字が行われ、レーザ光の1往復走査による印字が終了する。   When the reflecting member 17 moves, the laser beam is scanned from the other end of the print range in the main scanning direction on the thermal recording medium 16 toward one end. In this way, each laser light source device 11-15 prints the next one scanning line on the thermal recording medium 16, and the printing by one reciprocating scanning of the laser light is completed.

従って、各レーザ光源装置11〜15のレーザ光による走査ラインの副走査方向の間隔が、例えば6ラインであれば、反射部材17の3往復移動によるレーザ光の3往復走査が終了すると、各レーザ光源装置11〜15からのレーザ光による副走査方向の走査ライン間は埋まることになる。   Therefore, if the interval in the sub-scanning direction of the scanning lines by the laser beams of the laser light source devices 11 to 15 is, for example, 6 lines, the three reciprocating scans of the laser beams by the three reciprocating movements of the reflecting member 17 are completed. The space between the scanning lines in the sub-scanning direction by the laser light from the light source devices 11 to 15 is filled.

そして、レーザ光の3往復走査が終了すると、搬送路18は搬送装置19に駆動されて感熱記録媒体16を(5×6+1)走査ライン分、すなわち、31走査ライン分の距離だけ搬送される。こうして、レーザ光源装置15からのレーザ光によって最後に走査された走査ラインの次のライン位置にレーザ光源装置11による最初の走査ラインが位置するようになる。そして、各レーザ光源装置11〜15による次の30走査ラインの往復走査が開始される。   When the three reciprocating scans of the laser beam are completed, the transport path 18 is driven by the transport device 19 and transports the thermal recording medium 16 by a distance of (5 × 6 + 1) scan lines, that is, 31 scan lines. Thus, the first scanning line by the laser light source device 11 is positioned at the line position next to the scanning line last scanned by the laser light from the laser light source device 15. Then, the reciprocal scanning of the next 30 scanning lines by the laser light source devices 11 to 15 is started.

このように、5台のレーザ光源装置11〜15を使用して同時に5走査ラインずつレーザ光を走査して印字を行うので、感熱記録媒体16に対する印字を高速で行うことができる。   As described above, since printing is performed by simultaneously scanning the laser beam by five scanning lines using the five laser light source devices 11 to 15, printing on the thermal recording medium 16 can be performed at high speed.

また、各レーザ光源装置11〜15からのレーザ光を、感熱記録媒体16の搬送方向と直交する方向から反射部材17に対して入射角度45°で入射させ、かつ、その反射部材17を、その反射面を搬送面に対して垂直を維持した状態で入射角に沿って矢印B方向に往復移動させることによって感熱記録媒体16に対するレーザ光の走査を行っている。これにより、感熱記録媒体16の主走査方向における印字範囲の一端から他端までのどの位置においても各レーザ光源装置11〜15からのレーザ光の光路長は一定になる。従って、焦点距離補正光学系を使用せずにレーザ光を印字範囲内においてどの位置でも焦点を合わせることができ、レーザ光による記録精度を高めることができる。しかも、高価で複雑な構成の焦点距離補正光学系を使用しないので、構成の簡単化、経済性の向上を図ることができる。   Further, the laser light from each of the laser light source devices 11 to 15 is incident on the reflecting member 17 at an incident angle of 45 ° from the direction orthogonal to the conveying direction of the thermal recording medium 16, and the reflecting member 17 is The thermal recording medium 16 is scanned with laser light by reciprocating the reflecting surface in the direction of arrow B along the incident angle while maintaining the reflecting surface perpendicular to the transport surface. As a result, the optical path length of the laser light from each of the laser light source devices 11 to 15 is constant at any position from one end to the other end of the print range in the main scanning direction of the thermal recording medium 16. Accordingly, the laser beam can be focused at any position within the printing range without using the focal length correction optical system, and the recording accuracy by the laser beam can be improved. In addition, since the focal length correcting optical system having an expensive and complicated configuration is not used, the configuration can be simplified and the economy can be improved.

(第2の実施の形態)
この実施の形態は、図6に示すように、反射部材17の角度を変更する角度変更装置26を設け、この角度変更装置26を制御装置22で制御するようにしている。前記角度変更装置26は、前記反射部材17と同様、前記単軸ロボット23のスライダ24に取付けられている。
(Second Embodiment)
In this embodiment, as shown in FIG. 6, an angle changing device 26 that changes the angle of the reflecting member 17 is provided, and the angle changing device 26 is controlled by the control device 22. The angle changing device 26 is attached to the slider 24 of the single-axis robot 23 in the same manner as the reflecting member 17.

また、搬送装置19は各レーザ光源装置11〜15からレーザ光が出射され、反射部材17が移動動作されている間も搬送路18を駆動し可逆性感熱記録媒体16を所定の速度で搬送し続けるようになっている。その他の構成については前述した第1の実施の形態と同様である。
前記角度変更装置26は、図7の(a)に側面図、(b)に平面図を示すように、1対のギア31,32間にベルト33を架け渡し、一方のギア31をステッピングモータ34で回転駆動することで前記ベルト33を介して他方のギア32に回転を伝達する構成になっている。そして、他方のギア32に前記反射部材17の反射面とは反対側の背面側を、固定部材35を使用して固定している。
Further, the conveying device 19 drives the conveying path 18 to convey the reversible thermosensitive recording medium 16 at a predetermined speed while the laser light is emitted from each of the laser light source devices 11 to 15 and the reflecting member 17 is moved. To continue. Other configurations are the same as those of the first embodiment described above.
As shown in the side view of FIG. 7 (a) and the plan view of FIG. 7 (b), the angle changing device 26 spans a belt 33 between a pair of gears 31 and 32. The rotation is transmitted to the other gear 32 through the belt 33 by being rotationally driven at 34. The back side of the reflecting member 17 opposite to the reflecting surface of the reflecting member 17 is fixed to the other gear 32 by using a fixing member 35.

前記角度変更装置26は、ステッピングモータ34でギア31を回転し、この回転をベルト33により他方のギア32に伝達する。そして、このギア32の回転する角度に応じて前記反射部材17は反射面を前記感熱記録媒体16の搬送方向と平行な状態から傾かせる。なお、前記ギア32は接続軸36によって回転自在に支持されている。   The angle changing device 26 rotates a gear 31 by a stepping motor 34 and transmits this rotation to the other gear 32 by a belt 33. Then, according to the rotation angle of the gear 32, the reflection member 17 tilts the reflection surface from a state parallel to the conveyance direction of the thermal recording medium 16. The gear 32 is rotatably supported by a connection shaft 36.

すなわち、前記角度変更装置26は、図8に示すように、前記反射部材17を図中矢印B1で示すように最も高い位置から最も低い位置へ移動してレーザ光を走査するときには、感熱記録媒体16の搬送速度に応じて搬送方向(矢印A方向)の下流側である反射部材17の手前側端が徐々に開くようにその反射部材17の角度を変更する。   That is, when the angle changing device 26 scans the laser beam by moving the reflecting member 17 from the highest position to the lowest position as shown by an arrow B1 in the drawing, as shown in FIG. The angle of the reflection member 17 is changed so that the front end of the reflection member 17 on the downstream side in the conveyance direction (arrow A direction) is gradually opened according to the conveyance speed of 16.

また、前記角度変更装置26は、図9に示すように、前記反射部材17を図中矢印B2で示すように最も低い位置から最も高い位置へ移動してレーザ光を走査するときには、感熱記録媒体16の搬送速度に応じて搬送方向(矢印A方向)の上流側である反射部材17の後方側端が徐々に開くようにその反射部材17の角度を変更する。   Further, as shown in FIG. 9, the angle changing device 26 moves the reflecting member 17 from the lowest position to the highest position as shown by an arrow B2 in the figure, and scans the laser beam. The angle of the reflecting member 17 is changed so that the rear end of the reflecting member 17 on the upstream side in the conveying direction (arrow A direction) gradually opens according to the conveying speed of 16.

このような構成においては、感熱記録媒体16を所定の速度で搬送させつつレーザ光を走査して印字ができる。すなわち、反射部材17の角度を変更せずに、図10に示すように、感熱記録媒体16を矢印A方向に搬送させてレーザ光を走査すると、図中点線の矢印で示すように主走査方向に対して斜めにレーザ光を走査することになり、印字を行うことはできない。   In such a configuration, printing can be performed by scanning the laser beam while transporting the thermal recording medium 16 at a predetermined speed. That is, when the laser beam is scanned by transporting the thermal recording medium 16 in the direction of arrow A as shown in FIG. 10 without changing the angle of the reflecting member 17, the main scanning direction is shown in FIG. In contrast, the laser beam is scanned obliquely, and printing cannot be performed.

これに対し、反射部材17の角度を、角度変更装置26を使用して感熱記録媒体16の搬送速度に応じて図8及び図9に示すように変更すると、図中実線の矢印で示すように搬双方向Aに対して直交する方向、すなわち、主走査方向に対して平行にレーザ光を走査することができ印字ができる。   On the other hand, when the angle of the reflecting member 17 is changed as shown in FIGS. 8 and 9 according to the conveyance speed of the thermal recording medium 16 using the angle changing device 26, as shown by the solid line arrow in the figure. Laser light can be scanned in a direction orthogonal to the carrying direction A, that is, parallel to the main scanning direction, and printing can be performed.

このようにすれば、感熱記録媒体16を所定の速度で搬送させつつレーザ光を走査して印字ができるので、さらに高速印字が実現できる。その他については前述した実施の形態と同様の作用効果が得られるものである。   In this way, printing can be performed by scanning the laser beam while transporting the thermal recording medium 16 at a predetermined speed, so that higher-speed printing can be realized. In other respects, the same effects as those of the above-described embodiment can be obtained.

例えば、感熱記録媒体16を0.32mm/secの搬送速度で搬送させつつ反射部材17を320mm/secの速度で往復移動させ、搬送速度に同期させて反射部材17の角度を可変させることで感熱記録媒体16に対して主走査方向への適切なレーザ光走査が実現できた。   For example, while the thermal recording medium 16 is conveyed at a conveyance speed of 0.32 mm / sec, the reflection member 17 is reciprocated at a speed of 320 mm / sec, and the angle of the reflection member 17 is varied in synchronization with the conveyance speed. Appropriate laser beam scanning in the main scanning direction with respect to the recording medium 16 was realized.

なお、前述した各実施の形態では5台のレーザ光源装置を使用して同時に5本のレーザ光を走査するものについて述べたが必ずしもこれに限定するものではなく、1台のレーザ光源装置を使用したものであっても、また、5台以外の複数台のレーザ光源装置を使用したものであってもよい。   In each of the above-described embodiments, the case where five laser light sources are used to simultaneously scan five laser lights is described. However, the present invention is not limited to this, and one laser light source is used. Even if it is what was used, the thing using several laser light source devices other than five may be used.

また、この実施の形態では記録媒体として書き込み及び消去ができる可逆性感熱記録媒体を使用したものに適用したものについて述べたがこれに限定されるものではなく、1回の書込みしかできない感熱記録媒体を使用したものにも、また、感光体ドラムの感光面を記録媒体として使用したものにも適用できるものである。   In this embodiment, the recording medium is applied to a recording medium that uses a reversible thermal recording medium that can be written and erased. However, the present invention is not limited to this, and the thermal recording medium can be written only once. The present invention can also be applied to a recording medium using the photosensitive surface of the photosensitive drum as a recording medium.

本発明の第1の実施の形態に係る光走査装置の概略構成を示す斜視図。1 is a perspective view showing a schematic configuration of an optical scanning device according to a first embodiment of the present invention. 同実施の形態に係る光走査装置によるレーザ光走査を説明するための図。The figure for demonstrating the laser beam scanning by the optical scanning device concerning the embodiment. 同実施の形態で使用する可逆性感熱記録媒体の構成を示す断面図。Sectional drawing which shows the structure of the reversible thermosensitive recording medium used in the embodiment. 同実施の形態に係る光走査装置の制御構成を示すブロック図。FIG. 3 is a block diagram showing a control configuration of the optical scanning device according to the embodiment. 同実施の形態に係る駆動装置の構成を示す図。The figure which shows the structure of the drive device which concerns on the same embodiment. 本発明の第2の実施の形態に係る光走査装置の制御構成を示すブロック図。The block diagram which shows the control structure of the optical scanning device which concerns on the 2nd Embodiment of this invention. 同実施の形態の角度変更装置の構成を示す図で、(a)は側面図、(b)は平面図。It is a figure which shows the structure of the angle change apparatus of the embodiment, (a) is a side view, (b) is a top view. 同実施の形態において反射部材が高い位置から低い位置へ移動するときの反射部材の角度変更状態を示す平面図。The top view which shows the angle change state of a reflection member when a reflection member moves to a low position from a high position in the embodiment. 同実施の形態において反射部材が低い位置から高い位置へ移動するときの反射部材の角度変更状態を示す平面図。The top view which shows the angle change state of a reflection member when a reflection member moves from a low position to a high position in the same embodiment. 同実施の形態における反射部材と角度を変更しない反射部材を使用して感熱記録媒体を搬送しつつレーザ光を走査したときの感熱記録媒体上の走査ラインを比較して示す斜視図。The perspective view which compares the scanning line on a thermal recording medium when scanning a laser beam, conveying a thermal recording medium using the reflective member which does not change an angle with the reflective member in the embodiment, and shows.

符号の説明Explanation of symbols

11〜15…レーザ光源装置、11a…レーザ光源、16…可逆性感熱記録媒体、17…反射部材、19…搬送装置、20…レーザドライバ、21駆動装置。   DESCRIPTION OF SYMBOLS 11-15 ... Laser light source device, 11a ... Laser light source, 16 ... Reversible thermosensitive recording medium, 17 ... Reflecting member, 19 ... Conveyance device, 20 ... Laser driver, 21 drive device.

Claims (4)

レーザ光を出射するレーザ光源と、
記録媒体の搬送路上方に配置され、前記レーザ光源からのレーザ光を反射部材で反射しつつその反射部材を、前記レーザ光の前記記録媒体までの光路長を一定に保持して前記記録媒体の搬送方向とは直交する方向に移動させ、前記レーザ光を前記記録媒体に対して搬送方向と直交する方向に走査させる走査手段を備えたことを特徴とする光走査装置。
A laser light source for emitting laser light;
The recording medium is disposed above the conveyance path of the recording medium, reflects the laser light from the laser light source with a reflecting member, and maintains the optical path length of the laser light to the recording medium while maintaining the reflection path of the recording medium. An optical scanning device comprising: scanning means for moving in a direction orthogonal to a conveyance direction and scanning the laser beam in a direction orthogonal to the conveyance direction with respect to the recording medium.
レーザ光を出射する複数のレーザ光源と、
記録媒体の搬送路上方に配置され、前記各レーザ光源からのレーザ光を反射部材で反射しつつその反射部材を、前記各レーザ光の前記記録媒体までの光路長を一定に保持して前記記録媒体の搬送方向とは直交する方向に移動させ、前記各レーザ光を前記記録媒体に対して搬送方向と直交する方向に同時に走査させる走査手段を備えたことを特徴とする光走査装置。
A plurality of laser light sources for emitting laser light;
The recording medium is disposed above the conveyance path of the recording medium, reflects the laser light from each laser light source with a reflecting member, and keeps the optical path length of each laser light to the recording medium constant while the recording member performs the recording. An optical scanning apparatus comprising: a scanning unit that moves in a direction orthogonal to a medium conveyance direction and simultaneously scans the recording medium in a direction orthogonal to the conveyance direction with respect to the recording medium.
レーザ光源は、レーザ光を反射部材の反射面に対して、記録媒体の搬送方向とは直交する方向から入射角度45°で入射させ、
走査手段は、反射部材をその反射面が記録媒体の記録面に対して垂直になるように配置するとともにレーザ光の入射角方向に沿って斜めに移動させることを特徴とする請求項1又は2記載の光走査装置。
The laser light source makes the laser light incident on the reflecting surface of the reflecting member at an incident angle of 45 ° from a direction perpendicular to the recording medium conveyance direction,
The scanning means arranges the reflecting member so that the reflecting surface thereof is perpendicular to the recording surface of the recording medium, and moves the reflecting member obliquely along the incident angle direction of the laser beam. The optical scanning device described.
走査手段は、記録媒体の搬送速度に同期して反射部材の反射面の、前記記録媒体の搬送方向に対する角度を可変する角度変更装置を備え、前記記録媒体の搬送を停止させずにレーザ光を走査することを特徴とする請求項1乃至3のいずれか1記載の光走査装置。   The scanning means includes an angle changing device that varies the angle of the reflection surface of the reflecting member with respect to the conveyance direction of the recording medium in synchronization with the conveyance speed of the recording medium, and emits laser light without stopping conveyance of the recording medium. 4. The optical scanning device according to claim 1, wherein scanning is performed.
JP2006148490A 2006-05-29 2006-05-29 Optical scanner Pending JP2007316536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006148490A JP2007316536A (en) 2006-05-29 2006-05-29 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006148490A JP2007316536A (en) 2006-05-29 2006-05-29 Optical scanner

Publications (1)

Publication Number Publication Date
JP2007316536A true JP2007316536A (en) 2007-12-06

Family

ID=38850417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006148490A Pending JP2007316536A (en) 2006-05-29 2006-05-29 Optical scanner

Country Status (1)

Country Link
JP (1) JP2007316536A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9375944B2 (en) 2010-09-10 2016-06-28 Ricoh Company, Ltd. Laser erasing apparatus and laser erasing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9375944B2 (en) 2010-09-10 2016-06-28 Ricoh Company, Ltd. Laser erasing apparatus and laser erasing method

Similar Documents

Publication Publication Date Title
JP6326760B2 (en) Image recording system and image recording method
US20060108508A1 (en) Method and apparatus for high speed imaging
TWI477405B (en) Image erasing apparatus and image erasing method
JP5910985B2 (en) Laser light irradiation system
JP2004512549A (en) Direct laser imaging device
JP4845556B2 (en) Non-contact type rewrite thermal label recording method
US20100078857A1 (en) Diode-laser marker with one-axis scanning mirror mounted on a translatable carriage
JP5040049B2 (en) Reversible thermal recording medium recording / erasing apparatus
JP2009172801A (en) Non-contact optical writing erasing device and method
JP2009096011A (en) Image rewriting method and its apparatus
JP4377490B2 (en) Reversible thermal recording medium recording / erasing apparatus
JP2007316536A (en) Optical scanner
JP5040048B2 (en) Reversible thermal recording medium recording / erasing apparatus
JP3040047B2 (en) Laser recording method
JP4194458B2 (en) Laser marking device and method for adjusting work distance of laser marking device
US7804759B2 (en) Contactless optical writing apparatus
EP1884364A1 (en) Information recording apparatus for thermosensitive medium
JP4644355B2 (en) Non-contact IC card reader / writer with rewrite display
US8031218B2 (en) Recording apparatus with a record head and recording method using the record head
KR20220165979A (en) A laser label printer using a polygon mirror scanner and label printing method thereof
JP2005049461A (en) Light beam recorder
JP2009000949A (en) Non-contact optical writing apparatus
JP2010005988A (en) Non-contact optical writing apparatus
JP2002059575A (en) Write apparatus for visible information recording medium
JP2008230221A (en) Contactless optical writing apparatus