JP2007315840A - Device and method for measuring mechanical impedance of flexible deformable object - Google Patents

Device and method for measuring mechanical impedance of flexible deformable object Download PDF

Info

Publication number
JP2007315840A
JP2007315840A JP2006143763A JP2006143763A JP2007315840A JP 2007315840 A JP2007315840 A JP 2007315840A JP 2006143763 A JP2006143763 A JP 2006143763A JP 2006143763 A JP2006143763 A JP 2006143763A JP 2007315840 A JP2007315840 A JP 2007315840A
Authority
JP
Japan
Prior art keywords
flexible deformation
mechanical impedance
displacement
flexible
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006143763A
Other languages
Japanese (ja)
Inventor
Toru Takeshima
透 竹島
Ryota Okimoto
良太 沖本
Koichi Hayashi
弘一 林
Yoshiyuki Tanaka
良幸 田中
Toshio Tsuji
敏夫 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Kogyo Co Ltd
Hiroshima University NUC
Original Assignee
Delta Kogyo Co Ltd
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Kogyo Co Ltd, Hiroshima University NUC filed Critical Delta Kogyo Co Ltd
Priority to JP2006143763A priority Critical patent/JP2007315840A/en
Publication of JP2007315840A publication Critical patent/JP2007315840A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and method capable of determining a mechanical impedance of a flexible deformable object without using various sensors. <P>SOLUTION: Since a high speed camera 40 as a photographing means for acquiring images before and after deformation of the flexible deformable object 100 is provided, the mechanical impedance such as rigidness, viscosity or elasticity of the flexible deformable object 100 can be determined without using sensors, by determining its displacement and by using an equation of motion of a known object (rigid body 30) which is a displacement applicator. Consequently, stable and highly-accurate measurement can be performed without requiring as hitherto much labor in order to clear problems such as calibration accuracy of various sensors, synchronization of a measuring signal, or noises. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ポリウレタンフォーム、ゴムなどの柔軟変形物の慣性、剛性、粘性などの機械インピーダンスを計測する技術に関する。   The present invention relates to a technique for measuring mechanical impedance such as inertia, rigidity, and viscosity of a flexible deformation material such as polyurethane foam and rubber.

例えば、様々な工業製品に多用されているポリウレタンフォームに関し、試料の荷重試験による周波数応答からその粘弾性を推定する研究が数多く報告されている。非特許文献1では、分数階微分モデルを用いた粘弾性の推定手法が提案されており、非特許文献2では、実際に分数階微分モデルを用いてポリウレタンフォームの粘弾性の推定を行ったことが報告されている。
R.L. Bagley, P.J. Torvik: A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity, Journal of Rheology, Vol. 27, No.3, 201/210 (1983) R. Deng, P. Davies, A.K. Bajaj: Application of Fractional Derivatives to Modeling the Quasi-Static Responce of Polyurethane Foam, Proceedings of ASME 2003 Design Engineering Technical Conferences, VIB-48397 (2003)
For example, many studies have been reported on the estimation of the viscoelasticity from the frequency response of a sample load test for polyurethane foams that are widely used in various industrial products. Non-Patent Document 1 proposes a viscoelasticity estimation method using a fractional differential model, and Non-Patent Document 2 actually estimates the viscoelasticity of polyurethane foam using a fractional differential model. Has been reported.
RL Bagley, PJ Torvik: A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity, Journal of Rheology, Vol. 27, No. 3, 201/210 (1983) R. Deng, P. Davies, AK Bajaj: Application of Fractional Derivatives to Modeling the Quasi-Static Responce of Polyurethane Foam, Proceedings of ASME 2003 Design Engineering Technical Conferences, VIB-48397 (2003)

しかしながら、上記従来の手法では、柔軟変形物に印加される外力や表面の変位量を計測するために、加速度センサ、荷重センサなど複数のセンサを必要とする。従って、各センサのキャリブレーション精度、計測信号の同期化、ノイズなどの問題をクリアする必要があるなど、高精度で安定した測定を実現するためには多くの手間を要していた。   However, the conventional method requires a plurality of sensors such as an acceleration sensor and a load sensor in order to measure the external force applied to the flexible deformation and the amount of displacement of the surface. Accordingly, it is necessary to clear problems such as calibration accuracy of each sensor, synchronization of measurement signals, noise, and the like, and much labor is required to realize high-accuracy and stable measurement.

本発明は上記の点に鑑みてなされたものであり、上記した各種のセンサを使用することなく、柔軟変形物の機械インピーダンスを求めることができる計測装置及び計測方法を提供することを課題とする。   This invention is made | formed in view of said point, and makes it a subject to provide the measuring device and measuring method which can obtain | require the mechanical impedance of a flexible deformation | transformation, without using the above-mentioned various sensors. .

上記した課題を解決するため、請求項1記載の本発明では、測定対象物である柔軟変形物を変形させる変位付与体と、
前記変位付与体により前記柔軟変形物を変形させる際の、少なくとも該柔軟変形物の変形前後の画像を撮影する撮影手段と、
前記撮影手段により取得した画像から、前記柔軟変形物の変位量を求め、この変位量と前記変位付与体の運動方程式を用いて前記柔軟変形物の機械インピーダンスを求める画像処理演算手段と
を具備することを特徴とする柔軟変形物の機械インピーダンス計測装置を提供する。
請求項2記載の本発明では、前記変位付与体は、測定対象物である柔軟変形物に対して、所定位置から、所定速度で衝突させる、機械インピーダンスが既知の物体であることを特徴とする請求項1記載の柔軟変形物の機械インピーダンス計測装置を提供する。
請求項3記載の本発明では、前記既知の物体が、測定対象物である柔軟変形物の上方所定位置に、支持フレームにより支持され、自由落下させられることにより柔軟変形物を変形させる剛体であることを特徴とする請求項2記載の柔軟変形物の機械インピーダンス計測装置を提供する。
請求項4記載の本発明では、変位付与体により柔軟変形物を変形させ、
撮影手段により、少なくとも前記柔軟変形物の変形前後の画像を取得し、
前記撮影手段により取得した画像から、前記柔軟変形物の変位量を求め、この変位量と前記変位付与体の運動方程式を用いて前記柔軟変形物の機械インピーダンスを求めることを特徴とする柔軟変形物の機械インピーダンス計測方法を提供する。
請求項5記載の本発明では、前記変位付与体は、機械インピーダンスが既知の物体であり、測定対象物である柔軟変形物に対して、所定位置から、所定速度で衝突させて前記柔軟変形物を変形させることを特徴とする請求項4記載の柔軟変形物の機械インピーダンス計測方法を提供する。
請求項6記載の本発明では、前記既知の物体が剛体であり、前記柔軟変形物の上方所定位置から自由落下させて前記柔軟変形物を変形させることを特徴とする請求項5記載の柔軟変形物の機械インピーダンス計測方法を提供する。
In order to solve the above-described problem, in the present invention according to claim 1, a displacement imparting body that deforms a flexible deformation object that is a measurement object;
An imaging unit that captures at least images before and after the deformation of the flexible deformation product when the flexible deformation product is deformed by the displacement imparting body;
Image processing calculation means for obtaining a displacement amount of the flexible deformation object from an image acquired by the photographing means and obtaining a mechanical impedance of the flexible deformation object using the displacement amount and an equation of motion of the displacement imparting body. There is provided a mechanical impedance measuring device for a flexible deformed material.
According to the second aspect of the present invention, the displacement imparting body is an object having a known mechanical impedance that is caused to collide at a predetermined speed from a predetermined position with respect to a flexible deformation object as a measurement object. A mechanical impedance measuring device for a flexible deformation according to claim 1 is provided.
In this invention of Claim 3, the said known object is a rigid body which deform | transforms a flexible deformation | transformation by being supported by the support frame in the predetermined position above the flexible deformation | transformation object which is a measuring object, and making it fall freely. A mechanical impedance measuring device for a flexible deformation according to claim 2 is provided.
In this invention of Claim 4, a flexible deformation | transformation object is changed with a displacement provision body,
Acquire at least images before and after the deformation of the flexible deformation object by the photographing means,
A flexible deformation object characterized in that a displacement amount of the flexible deformation object is obtained from an image acquired by the photographing means, and a mechanical impedance of the flexible deformation object is obtained using the displacement amount and an equation of motion of the displacement imparting body. Provide a method for measuring the mechanical impedance of
In this invention of Claim 5, the said displacement imparting body is an object with known mechanical impedance, and it is made to collide with the flexible deformation body which is a measuring object from a predetermined position at a predetermined speed, and the said flexible deformation body. The method of measuring a mechanical impedance of a flexible deformed object according to claim 4 is provided.
6. The flexible deformation according to claim 5, wherein the known object is a rigid body, and the flexible deformation is deformed by freely dropping from a predetermined position above the flexible deformation. A method for measuring mechanical impedance of an object is provided.

本発明によれば、柔軟変形物の変形前後の画像を取得する撮影手段を備えているため、その変位量を求めると共に、変位付与体の運動方程式を用いることで、センサを用いることなく柔軟変形物の慣性、剛性、粘性などの機械インピーダンスを求めることができる。従って、従来のように各種センサのキャリブレーション精度、計測信号の同期化、ノイズなどの問題をクリアするための手間をかけることなく、高精度で安定した計測を行うことができる。   According to the present invention, since the photographing means for acquiring the images before and after the deformation of the flexible deformation object is provided, the displacement amount is obtained and the deformation equation is used without using the sensor by using the equation of motion of the displacement imparting body. Mechanical impedance such as inertia, rigidity, and viscosity of an object can be obtained. Therefore, highly accurate and stable measurement can be performed without taking the trouble of clearing problems such as calibration accuracy of various sensors, synchronization of measurement signals, and noise as in the past.

以下、図面に示した実施形態に基づき、本発明をさらに詳細に説明する。図1は、本実施形態の機械インピーダンス計測装置の全体構成を示す図であり、測定対象物である柔軟変形物100を支持するための試料載置台10と、試料載置台に付設された支持フレーム20と、該支持フレーム20によって試料載置台10上の柔軟変形物100の上方所定高さに支持される変位付与体であって、機械インピーダンスが既知の物体である剛体30と、撮影手段である高速カメラ40と、該高速カメラ40に接続されたコンピュータからなる画像処理演算手段50を有して構成される。なお、「機械インピーダンス」とは、運動を力に変換するパラメータ(慣性、剛性、粘性)を意味する。   Hereinafter, the present invention will be described in more detail based on the embodiments shown in the drawings. FIG. 1 is a diagram illustrating an overall configuration of a mechanical impedance measuring apparatus according to the present embodiment. A sample mounting table 10 for supporting a flexible deformable object 100 that is a measurement object, and a support frame attached to the sample mounting table. 20, a displacement imparting body supported by the support frame 20 at a predetermined height above the flexible deformation body 100 on the sample mounting table 10, and a rigid body 30 that is an object having a known mechanical impedance, and an imaging unit. The image processing unit 50 includes a high-speed camera 40 and a computer connected to the high-speed camera 40. Note that “mechanical impedance” means parameters (inertia, rigidity, viscosity) for converting motion into force.

支持フレーム20に支持部31を介して支持されている既知の物体である剛体30を、所定高さから自由落下させて柔軟変形物100に衝突させる。高速カメラ40は、剛体30に付したマーカを、少なくとも柔軟変形物100への衝突前後(変形前後)の2位置で撮影し、好ましくは、剛体30の衝突前から衝突後までを連続的に複数枚撮影する。なお、剛体30は、自由落下させるのではなく、測定対象物である柔軟変形物に対して、所定位置から、所定速度で衝突させることで、例えば、柔軟変形物100に対して、水平方向に所定の距離、離れた位置から所定の速度で衝突させ、その挙動を上記のように高速カメラ40で捉えることも可能である。   A rigid body 30, which is a known object supported by the support frame 20 via the support portion 31, is allowed to freely fall from a predetermined height and collide with the flexible deformation object 100. The high-speed camera 40 photographs the marker attached to the rigid body 30 at least at two positions before and after the collision with the flexible deformable object 100 (before and after the deformation), and preferably a plurality of markers continuously from before the collision of the rigid body 30 to after the collision. Take a picture. Note that the rigid body 30 is not allowed to fall freely, but is caused to collide with a flexible deformation object, which is a measurement object, from a predetermined position at a predetermined speed, for example, in a horizontal direction with respect to the flexible deformation object 100. It is also possible to cause a collision at a predetermined speed from a position separated by a predetermined distance and capture the behavior with the high-speed camera 40 as described above.

高速カメラ40により取得された画像データは、画像処理演算手段50に伝送され、処理される。画像処理演算手段50では、まず、剛体30に付設したマーカの衝突前の位置情報と衝突後の位置情報から、剛体30の衝突による柔軟変形物100の沈み込み量(変位量)dXを求める。次に、この変位量dXと、剛体30の運動方程式から、衝突直後から最下点(最も沈み込んだ位置)に至るまでの剛体30の速度、加速度を求める。そして、変位量dX、速度、加速度を用いて最小二乗法により、柔軟変形物100の機械インピーダンスを求める。   The image data acquired by the high speed camera 40 is transmitted to the image processing calculation means 50 and processed. In the image processing calculation means 50, first, the subtraction amount (displacement amount) dX of the flexible deformable object 100 due to the collision of the rigid body 30 is obtained from the position information before the collision of the marker attached to the rigid body 30 and the position information after the collision. Next, from the displacement dX and the equation of motion of the rigid body 30, the speed and acceleration of the rigid body 30 from immediately after the collision to the lowest point (the most depressed position) are obtained. And the mechanical impedance of the flexible deformation | transformation object 100 is calculated | required by the least square method using displacement dX, speed, and acceleration.

図2は、画像処理演算手段50により機械インピーダンスを求める原理を説明するための図である。まず、十分大きな質量Mを持つ機械インピーダンスの既知の物体が垂直に自由落下運動を行い、測定対象物である柔軟変形物100に時刻tで衝突して表面を変形させる場合を考える。鉛直方向上向きを正とすると、既知の物体の衝突により柔軟変形物100の表面には、強制変位dX(t)=X(t)−X(t)(X(t)は既知の物体の落下後の位置を示す)が加えられ、その特性は、柔軟変形物100の機械インピーダンスである剛性(K(dX))と粘性(B(dX ))を用いて、変位量dXの関数として次式により表される。なお、式中、F(t)は柔軟変形物100の復元力である。 FIG. 2 is a diagram for explaining the principle of obtaining the mechanical impedance by the image processing calculation means 50. First, consider a case where a known object of mechanical impedance having a sufficiently large mass M 0 performs free fall motion vertically and collides with a flexible deformation object 100 as a measurement object at time t 0 to deform the surface. Assuming that the upward direction in the vertical direction is positive, a forced displacement dX (t) = X (t 0 ) −X (t) (X (t) is the value of the known object due to the collision of the known object. The characteristic after the fall is added as a function of the displacement dX using the rigidity (K (dX)) and the viscosity (B (dX)), which are mechanical impedances of the flexible deformable body 100. It is expressed by the formula. In the formula, F (t) is the restoring force of the flexible deformable body 100.

Figure 2007315840
Figure 2007315840

一方、既知の物体の運動方程式は、次式により表される。   On the other hand, the equation of motion of a known object is expressed by the following equation.

Figure 2007315840
Figure 2007315840

式(1),(2)より、既知の物体の形状と質量を基に、高速カメラ40等の撮影手段を用いて、柔軟変形物100に衝突した剛体30の運動を高サンプリングで計測することにより、変位量dX、速度、加速度を計算できる。   From equations (1) and (2), based on the shape and mass of a known object, the motion of the rigid body 30 that has collided with the flexible deformable object 100 is measured with high sampling using a photographing means such as a high-speed camera 40. Thus, the displacement dX, the speed, and the acceleration can be calculated.

なお、既知の物体の剛性(K(dX))と粘性(B(dX ))が柔軟変形物100より十分に大きい場合(剛体の場合)には、変形量dXが十分小さくなるので、式(2)は次式のように変形できる。 When the stiffness (K 0 (dX 0 )) and viscosity (B 0 (dX 0 )) of the known object is sufficiently larger than the flexible deformable material 100 (in the case of a rigid body), the deformation amount dX 0 is sufficiently small. Therefore, the equation (2) can be transformed as the following equation.

Figure 2007315840
Figure 2007315840

(試験例)
図1に示した試料載置台10上に、測定対象物である柔軟変形物100として、自動車シートのクッション材(シートバック部)を載置してその粘弾性特性を求めた。シートバック部は、金属製のバネ材の上にポリウレタンと布地を重ねた構造をしてなり、表面から押圧されて生じる変位量に対して、その機械的特性は非線形的に変化することが知られている。このことから、シートバック部の粘弾性特性(剛性(K(dX))と粘性(B(dX)))は、変位量dXに関する非線形多項式として、次式によりモデル化される。
(Test example)
On the sample mounting table 10 shown in FIG. 1, a cushion material (seat back portion) of an automobile seat was placed as the flexible deformation object 100 as a measurement object, and the viscoelastic characteristics were obtained. The seat back has a structure in which polyurethane and fabric are stacked on a metal spring material, and its mechanical properties change nonlinearly with the amount of displacement caused by pressing from the surface. It has been. From this, the viscoelastic characteristics (stiffness (K (dX)) and viscosity (B (dX))) of the seat back part are modeled by the following equation as a nonlinear polynomial related to the displacement dX.

Figure 2007315840
Figure 2007315840

ここで、a,b(i=0,1,2,・・・,m;j=0,1,2,・・・,n)は重み係数である。式(4)を式(1)に代入し、高速カメラ40から得られた画像情報の衝突物体(図1の剛体30)の挙動を用いてシートバック部の粘弾性特性を推定する。なお、本試験例では、粘弾性モデルの次数をm=6,n=5とした。また、安定した粘弾性特性の推定を実現するため、予め実施した準静的な加圧試験において推定した剛性関数の係数を初期値に設定した。 Here, a i and b j (i = 0, 1, 2,..., M; j = 0, 1, 2,..., N) are weighting coefficients. Substituting Equation (4) into Equation (1), the viscoelastic characteristics of the seat back portion are estimated using the behavior of the collision object (the rigid body 30 in FIG. 1) of the image information obtained from the high-speed camera 40. In this test example, the order of the viscoelastic model was set to m = 6 and n = 5. In addition, in order to realize stable estimation of viscoelastic properties, the coefficient of the stiffness function estimated in a quasi-static pressurization test performed in advance was set as an initial value.

既知の物体である剛体30は直径165mmであり、支持フレーム20によって自由落下する剛体30とこの剛体30を支持する支持部31とを合わせた重さは6.8kgであった。剛体30を、シートバック部の表面から300mmの高さにセットし、垂直に自由落下させて衝突させた。なお、支持フレーム20における剛体30の支持部31は、剛体30の自由落下に伴って同方向に可動になっている。高速カメラ40は、図1に示したように、シートバック部の幅方向中心線の延長上に設置し、剛体30に貼り付けたマーカを落下直後からサンプリング周波数1kHzで撮影した。また、検証のため、支持部31には、加速度センサ(サンプリング周波数:10kHz)を取り付けた。   The rigid body 30 that is a known object has a diameter of 165 mm, and the combined weight of the rigid body 30 that freely falls by the support frame 20 and the support portion 31 that supports the rigid body 30 was 6.8 kg. The rigid body 30 was set to a height of 300 mm from the surface of the seat back portion, and was allowed to vertically fall and collide. The support portion 31 of the rigid body 30 in the support frame 20 is movable in the same direction as the rigid body 30 is freely dropped. As shown in FIG. 1, the high-speed camera 40 was installed on the extension of the center line in the width direction of the seat back portion, and the marker attached to the rigid body 30 was photographed at a sampling frequency of 1 kHz immediately after dropping. For verification, an acceleration sensor (sampling frequency: 10 kHz) was attached to the support portion 31.

得られた各画像情報を基に、画像処理演算手段50により求めた、剛体30がシートバック部の表面に衝突した直後から最下点に至るまでの変位量dx、速度、及び加速度を図3(a)〜(c)に示した。いずれも、連続10試行のうちの後半の連続5試行の結果を細線で重ねて描いたものであり、このうち図3(c)の加速度のグラフでは、加速度センサで計測した10試行目の加速度を破線で示した。   FIG. 3 shows the displacement dx, speed, and acceleration from immediately after the rigid body 30 collides with the surface of the seat back portion to the lowest point, obtained by the image processing calculation means 50 based on the obtained image information. (A) to (c). In each case, the results of the last five consecutive trials of the ten consecutive trials are drawn with thin lines, and the acceleration graph in FIG. 3C shows the acceleration of the tenth trial measured by the acceleration sensor. Is indicated by a broken line.

図3から、シートバック部の表面からの変位量が大きくなるにつれ、これに比例するように、加速度に若干のバラツキが見られるが、高速カメラ40で撮影した画像データを用いて、衝突直後からの剛体30の挙動を高い再現性で計測できることがわかる。また、図3(c)の加速度波形に関しては、高速カメラ40の画像データから画像処理演算手段50により求めた加速度(細線)が、加速度センサで計測した加速度(破線)とほぼ一致しており、高速カメラ40を用いた本発明の手法により、剛体30の挙動を精度よく計測できることが検証できた。   As shown in FIG. 3, as the amount of displacement from the surface of the seat back portion increases, the acceleration slightly varies so as to be proportional to this, but immediately after the collision using the image data taken by the high-speed camera 40. It can be seen that the behavior of the rigid body 30 can be measured with high reproducibility. In addition, regarding the acceleration waveform in FIG. 3C, the acceleration (thin line) obtained from the image data of the high-speed camera 40 by the image processing calculation means 50 is substantially coincident with the acceleration (dashed line) measured by the acceleration sensor. It has been verified that the behavior of the rigid body 30 can be accurately measured by the method of the present invention using the high-speed camera 40.

次に、上記5試行の計測データから得られた変位量dx、速度、加速度を用いて、画像処理演算手段50において、上記式(1)〜(4)を演算し、粘弾性特性(剛性(K(dX))と粘性(B(dX)))を求めた(推定した)。その結果を図4〜図6に示す。なお、これらの図では、いずれも横軸に変位量dXをとっている。図4は、推定した剛性(K(dX))の平均(実線)に加え、剛性を演算する際に用いた剛性の初期関数(破線)を示している。図5は、推定した粘性(B(dX))の平均を示している。図6は、推定結果から求めたシートバック部の復元力(実線)の平均と高速カメラで計測した10試行目の加速度データを用いて求めた復元力(破線)を示している。   Next, using the displacement dx, velocity, and acceleration obtained from the measurement data of the five trials, the image processing calculation unit 50 calculates the above formulas (1) to (4) to obtain viscoelastic characteristics (rigidity ( K (dX)) and viscosity (B (dX))) were determined (estimated). The results are shown in FIGS. In these figures, the horizontal axis represents the displacement dX. FIG. 4 shows an initial stiffness function (broken line) used in calculating the stiffness in addition to the average (solid line) of the estimated stiffness (K (dX)). FIG. 5 shows the average of the estimated viscosity (B (dX)). FIG. 6 shows the restoring force (broken line) obtained by using the average of the restoring force (solid line) of the seat back portion obtained from the estimation result and the acceleration data of the 10th trial measured by the high-speed camera.

図4から、推定した剛性は、初期の剛性に近似しており、また、図5の粘性に関しても、変位量が最大付近で多少のバラツキが見られたものの、全体的に推定した粘性のバラツキは小さく、高い再現性で推定できることがわかった。また、図6に示したように、推定結果から求めたシート復元力が高速カメラ40で計測した復元力とほぼ一致していることから、推定結果の精度の高さを確認することができた。従って、高速カメラ40などの撮影手段と、変位付与体としての既知の物体(例えば、剛体30)の運動方程式を用いることにより、柔軟変形物の機械インピーダンスを推定することができることが検証された。   From FIG. 4, the estimated stiffness approximates the initial stiffness, and the viscosity of FIG. 5 also shows some variation near the maximum displacement, but the estimated viscosity variation as a whole. Is small and can be estimated with high reproducibility. Further, as shown in FIG. 6, the sheet restoring force obtained from the estimation result almost coincides with the restoring force measured by the high-speed camera 40, so that the accuracy of the estimation result can be confirmed. . Therefore, it has been verified that the mechanical impedance of the flexible deformable object can be estimated by using the imaging means such as the high-speed camera 40 and the motion equation of a known object (for example, the rigid body 30) as the displacement imparting body.

なお、上記実施例では、柔軟変形物として、自動車シートのシートバック部を取り上げているが、これはあくまで一例であり、自動車、列車、飛行機などの乗物用シートのクッション材のほか、家具用・事務用椅子のクッション材、ベッドパッドなどの寝具に用いられるクッション材、その他の柔軟変形物(例えば、センサなどを取り付けにくい人体など)の機械インピーダンスの推定にも適用できることはもちろんである。   In the above embodiment, the seat back portion of the automobile seat is taken up as the flexible deformation, but this is only an example, and in addition to the cushioning material for the vehicle seat such as an automobile, train, airplane, etc. Needless to say, the present invention can also be applied to the estimation of the mechanical impedance of cushion materials for office chairs, cushion materials used for bedding such as bed pads, and other flexible deformations (for example, human bodies that are difficult to attach sensors or the like).

図1は、本発明の一の実施形態に係る機械インピーダンス計測装置の全体構成を示す図である。FIG. 1 is a diagram showing an overall configuration of a mechanical impedance measuring apparatus according to an embodiment of the present invention. 図2は、機械インピーダンスを求める原理を説明するための図である。FIG. 2 is a diagram for explaining the principle of obtaining the mechanical impedance. 図3(a)は、画像処理演算手段により求めた、剛体がシートバック部の表面に衝突した直後から最下点に至るまでの変位量を示す図であり、図3(b)はその際の剛体の速度を示す図であり、図3(c)はその際の剛体の加速度を示す図である。FIG. 3A is a diagram showing the amount of displacement obtained by the image processing calculation means from immediately after the rigid body collides with the surface of the seat back portion to the lowest point, and FIG. FIG. 3C is a diagram showing the acceleration of the rigid body at that time. 図4は、試験例において、推定した剛性の平均(実線)に加え、剛性を演算する際に用いた剛性の初期関数(破線)を示した図である。FIG. 4 is a diagram showing an initial stiffness function (broken line) used in calculating the stiffness in addition to the estimated average stiffness (solid line) in the test example. 図5は、推定した粘性の平均を示した図である。FIG. 5 is a diagram showing the estimated average viscosity. 図6は、推定結果から求めたシートバック部の復元力(実線)の平均と高速カメラで計測した加速度データを用いて求めた復元力(破線)を示した図である。FIG. 6 is a diagram showing the average of the restoring force (solid line) of the seat back portion obtained from the estimation result and the restoring force (broken line) obtained using the acceleration data measured by the high-speed camera.

符号の説明Explanation of symbols

10 試料載置台
20 支持フレーム
30 剛体
31 支持部
40 高速カメラ
50 画像処理演算手段
100 柔軟変形物
DESCRIPTION OF SYMBOLS 10 Sample mounting base 20 Support frame 30 Rigid body 31 Support part 40 High-speed camera 50 Image processing calculating means 100 Flexible deformation | transformation object

Claims (6)

測定対象物である柔軟変形物を変形させる変位付与体と、
前記変位付与体により前記柔軟変形物を変形させる際の、少なくとも該柔軟変形物の変形前後の画像を撮影する撮影手段と、
前記撮影手段により取得した画像から、前記柔軟変形物の変位量を求め、この変位量と前記変位付与体の運動方程式を用いて前記柔軟変形物の機械インピーダンスを求める画像処理演算手段と
を具備することを特徴とする柔軟変形物の機械インピーダンス計測装置。
A displacement imparting body for deforming a flexible deformation object as a measurement object;
An imaging unit that captures at least images before and after the deformation of the flexible deformation product when the flexible deformation product is deformed by the displacement imparting body;
Image processing calculation means for obtaining a displacement amount of the flexible deformation object from an image acquired by the photographing means and obtaining a mechanical impedance of the flexible deformation object using the displacement amount and an equation of motion of the displacement imparting body. An apparatus for measuring mechanical impedance of a flexible deformed material.
前記変位付与体は、測定対象物である柔軟変形物に対して、所定位置から、所定速度で衝突させる、機械インピーダンスが既知の物体であることを特徴とする請求項1記載の柔軟変形物の機械インピーダンス計測装置。   2. The flexible deformation object according to claim 1, wherein the displacement imparting body is an object having a known mechanical impedance that collides at a predetermined speed with respect to the flexible deformation object that is a measurement object. Mechanical impedance measuring device. 前記既知の物体が、測定対象物である柔軟変形物の上方所定位置に、支持フレームにより支持され、自由落下させられることにより柔軟変形物を変形させる剛体であることを特徴とする請求項2記載の柔軟変形物の機械インピーダンス計測装置。   3. The known object is a rigid body that is supported by a support frame at a predetermined position above a flexible deformed object that is a measurement object, and that deforms the flexible deformed object by being freely dropped. Mechanical impedance measuring device for flexible deformation. 変位付与体により柔軟変形物を変形させ、
撮影手段により、少なくとも前記柔軟変形物の変形前後の画像を取得し、
前記撮影手段により取得した画像から、前記柔軟変形物の変位量を求め、この変位量と前記変位付与体の運動方程式を用いて前記柔軟変形物の機械インピーダンスを求めることを特徴とする柔軟変形物の機械インピーダンス計測方法。
Deform the flexible deformation by the displacement imparting body,
Acquire at least images before and after the deformation of the flexible deformation object by the photographing means,
A flexible deformation object characterized in that a displacement amount of the flexible deformation object is obtained from an image acquired by the photographing means, and a mechanical impedance of the flexible deformation object is obtained using the displacement amount and an equation of motion of the displacement imparting body. Mechanical impedance measurement method.
前記変位付与体は、機械インピーダンスが既知の物体であり、測定対象物である柔軟変形物に対して、所定位置から、所定速度で衝突させて前記柔軟変形物を変形させることを特徴とする請求項4記載の柔軟変形物の機械インピーダンス計測方法。   The displacement imparting body is an object having a known mechanical impedance, and causes the flexible deformation object to be deformed by colliding with a predetermined speed from a predetermined position with respect to the flexible deformation object as a measurement object. Item 5. A method for measuring mechanical impedance of a flexible deformation according to Item 4. 前記既知の物体が剛体であり、前記柔軟変形物の上方所定位置から自由落下させて前記柔軟変形物を変形させることを特徴とする請求項5記載の柔軟変形物の機械インピーダンス計測方法。   6. The method of measuring a mechanical impedance of a flexible deformation according to claim 5, wherein the known object is a rigid body, and the flexible deformation is deformed by freely dropping from a predetermined position above the flexible deformation.
JP2006143763A 2006-05-24 2006-05-24 Device and method for measuring mechanical impedance of flexible deformable object Pending JP2007315840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006143763A JP2007315840A (en) 2006-05-24 2006-05-24 Device and method for measuring mechanical impedance of flexible deformable object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006143763A JP2007315840A (en) 2006-05-24 2006-05-24 Device and method for measuring mechanical impedance of flexible deformable object

Publications (1)

Publication Number Publication Date
JP2007315840A true JP2007315840A (en) 2007-12-06

Family

ID=38849838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143763A Pending JP2007315840A (en) 2006-05-24 2006-05-24 Device and method for measuring mechanical impedance of flexible deformable object

Country Status (1)

Country Link
JP (1) JP2007315840A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072559A1 (en) 2007-12-06 2009-06-11 Nippon Steel Corporation Process for producing thick high-strength steel plate excellent in brittle fracture arrestability and toughness of zone affected by heat in large-heat-input welding and thick high-strength steel plate excellent in brittle fracture arrestability and toughness of zone affected by heat in large-heat-input welding
JP2010066028A (en) * 2008-09-08 2010-03-25 Hiroshima Univ Applied force estimation apparatus and method
KR101018000B1 (en) 2009-05-26 2011-03-02 건국대학교 산학협력단 System for measuring elastic modulus and the method therefor
JP2011110354A (en) * 2009-11-30 2011-06-09 Pola Chemical Industries Inc Method for distinguishing skin characteristics by using high-speed camera
CN104913986A (en) * 2015-04-27 2015-09-16 合肥工业大学 Small hydraulic buffer impact test method and device
CN105865915A (en) * 2016-04-12 2016-08-17 华中科技大学 Soft material mechanical performance measurement apparatus and method thereof
CN108633303A (en) * 2017-01-25 2018-10-09 松下知识产权经营株式会社 Rigid measurement device and rigid assay method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010027A (en) * 1996-06-27 1998-01-16 Matsushita Electric Ind Co Ltd Measuring method of elastic constant and damping ratio of measuring object
JP2000304669A (en) * 1999-04-22 2000-11-02 Natl Aerospace Lab Suspension device for drop-type shock testing apparatus
JP2006047277A (en) * 2004-07-08 2006-02-16 Nitto Denko Corp Impact test device and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010027A (en) * 1996-06-27 1998-01-16 Matsushita Electric Ind Co Ltd Measuring method of elastic constant and damping ratio of measuring object
JP2000304669A (en) * 1999-04-22 2000-11-02 Natl Aerospace Lab Suspension device for drop-type shock testing apparatus
JP2006047277A (en) * 2004-07-08 2006-02-16 Nitto Denko Corp Impact test device and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072559A1 (en) 2007-12-06 2009-06-11 Nippon Steel Corporation Process for producing thick high-strength steel plate excellent in brittle fracture arrestability and toughness of zone affected by heat in large-heat-input welding and thick high-strength steel plate excellent in brittle fracture arrestability and toughness of zone affected by heat in large-heat-input welding
JP2010066028A (en) * 2008-09-08 2010-03-25 Hiroshima Univ Applied force estimation apparatus and method
KR101018000B1 (en) 2009-05-26 2011-03-02 건국대학교 산학협력단 System for measuring elastic modulus and the method therefor
JP2011110354A (en) * 2009-11-30 2011-06-09 Pola Chemical Industries Inc Method for distinguishing skin characteristics by using high-speed camera
CN104913986A (en) * 2015-04-27 2015-09-16 合肥工业大学 Small hydraulic buffer impact test method and device
CN105865915A (en) * 2016-04-12 2016-08-17 华中科技大学 Soft material mechanical performance measurement apparatus and method thereof
CN108633303A (en) * 2017-01-25 2018-10-09 松下知识产权经营株式会社 Rigid measurement device and rigid assay method

Similar Documents

Publication Publication Date Title
JP2007315840A (en) Device and method for measuring mechanical impedance of flexible deformable object
Luinge et al. Inclination measurement of human movement using a 3-D accelerometer with autocalibration
JP4189840B2 (en) Apparatus and program for estimating viscoelasticity of soft tissue using ultrasound
US8567084B2 (en) Profile measuring instrument
JP4831703B2 (en) Object displacement measurement method
JP6483775B2 (en) Determining the position of moving parts of coordinate measuring machines
CN111093914B (en) Friction-based tactile sensor for measuring clamping safety
JP5001580B2 (en) Body measuring device
JP2006217939A5 (en)
KR102219789B1 (en) Compensated Mechanical Test System
Krajewski et al. Simple master artefact for CMM dynamic error identification
Reinhardt et al. Ultra-miniature force plate for measuring triaxial forces in the micronewton range
JP2017203668A (en) Indentation tester and indentation testing method
Zhong et al. Quasi-optical coherence vibration tomography technique for damage detection in beam-like structures based on auxiliary mass induced frequency shift
CN108195336B (en) Method, device and system for sensing three-dimensional shape of object
JP6375178B2 (en) Balance type texture measuring device
RU2010124610A (en) GRAVIMETRIC DEVICE NOT DEPENDING ON ORIENTATION
CN105588675B (en) For identifying the system of the power in vehicle interface and method
JP2019011995A (en) Rigidity measuring device, rigidity measuring method, and program
Scheijgrond et al. Digital image correlation for analyzing portable electronic products during drop impact tests
Kawamura et al. Impact force measurement of a plastic sheet using drop ball test by the Levitation Mass Method (LMM)
JP3074358B2 (en) Vibration test apparatus, vibration test method and vibration response analysis method for structures
Dunne et al. A comparative evaluation of bend sensors for wearable applications
Sato et al. Wearable finger pad sensor for tactile textures using propagated deformation on a side of a finger: Assessment of accuracy
JP7054139B2 (en) Viscoelasticity measuring device and viscoelasticity measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090427

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110331